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Abstract:   

 

 We introduce a new volumetric registration method that effectively combines active surfaces with the finite 

element method.  The method is able to incorporate automatic structural segmentation results to produce an 

anatomically accurate registration.  This is not done by morphing individual regions independently, but by morphing 

all anatomical regions simultaneously.  We explain how this approach yields better registration results than what can 

be obtained by either morphing the brain without region labels or by morphing each anatomical region 

independently.  The method also effectively limits changes in volume, stretch, and shear to only what is necessary to 

match two images.  The registration is obtained by finding the minimum of a single energy functional.   

 

Introduction: 

 Image registration can refer to any means of comparing the data in different images.  For example, image 

registration can include methods for taking several low quality images of the exact same scene and combining them 

to create a single high quality image [18].  But here we focus exclusively on the type of registration method that  

takes an initial , or template,  image and morphs into to a target, or reference, image.  The deformation that occurs 

during the morphing is taken as a direct measure of how the images are different ([3] ,[29] and [33]).  The two 

images that are compared are usually two instances of the same type, such as brain MRI from two different people.    

 One popular class of image registration methods involves fluid dynamics ([3]).  In these methods, a 

velocity vector field is computed based on the differences between two images and then a Navier-Stokes equation is 

solved in order to find a displacement field that corresponds to that vector field.  In the original formulation ([3]), 

this results in a large variance in the local deformations that is not justified by the image differences.  In [33], the 

formulation was modified using mutual information to prevent an unjustified variability in local volume changes.   

 Another class of registration methods stem from segmentation methods that have been adapted to work for 

registration ([15], [31] ).  In [15], an adaptation from the segmentation model [2], the boundary of the initial region 

is associated with the zero iso-contour of a level set and the level set is evolved so that it is positive on top of the 

target region and negative outside of the target region.  The regularization term no longer acts upon the location of 

the level set itself, as is the case in segmentation, but on the map from the initial state to the target state.  It was 

shown to give comparable results to the fluid based methods in its ability to register disparately shaped regions [15].  

We use a variant of this active contour, or active surface in 3D, registration in the method proposed here.  

 The direct relationship between image segmentation and registration has led some registration methods to 

be promoted as joint segmentation and registration methods ([15], [31], [22] and [35]).  However, any registration 

method, whether adapted from a segmentation method or not, can be used for segmentation, simply by ignoring the 

map and taking the final location of the morphing.  The converse is not true.  Not all segmentation methods can be 

easily adapted to registration, such as those involving non-differentiable level sets [17] and machine learning [30].  

And even if a segmentation method can be adapted for registration, it may give a weaker segmentation result.  For 

example, [2] can change topology and the adapted registration method [15] cannot.  So while combining 

segmentation and registration may offer some advantages, applying a sophisticated segmentation program in 

advance of the registration has the potential to give a better final result.  In brain registration, some segmentation 

preprocessing is usually applied to improve the registration result, such as stripping away the skull and non-brain 

tissue ([12] and [20].)  The method proposed here takes advantage of much more advanced preprocessing to 

improve the registration result. 

 Many of the registration methods derived from fluid and segmentation models employ finite differences 

and not finite elements.  Finite difference methods seem to be a natural choice as they can be immediately run on the 

rectangular images while finite element methods are typically used for solving PDEs on domains with complicated 
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boundaries.  Yet for many registration applications, there are one or more objects with sharply defined boundaries 

within image that is to be registered.  The sharp contrasts at the boundary of the object within the image are the 

primary driver of the registration and not the subtle variations in pixel or voxel intensities within the object.  The 

objects are placed in a box for reasons related to the capture and storage of the image.  As long as the object of 

interest is fully inside the image, the boundary of the image has no real significance and there is no necessity to 

satisfy some type of boundary condition on the image boundary.  In contrast, the boundary of the object to be 

registered is of fundamental importance to the registration as that is what is being evolved during the morphing.  But 

the object to be morphed is never rectangular.  Finite elements have been used in engineering and computer graphics 

for decades [8], [9] and are a better choice for solving PDEs on an arbitrary domain.  

 Another relevant advantage of finite elements is that they are excellent at modeling deformation ([9] and 

[28]).  The deformation on an element can be computed directly from the relative positions of the nodes of an 

element.  In contrast, for finite differences, deformation is computed by approximating derivates of a displacement 

field defined on a grid.   

 Some papers have employed volumetric finite elements, such as [6], [12],  [20], [1], [7], and [24].  All of 

these methods are, at their core, a two step procedure in which the desired behavior of the boundary is found first 

and independently and then applied as a boundary term for a volumetric finite element model.  The result is that the 

boundary nodes end up close to where the boundary matching determines they should be and a reasonable 

volumetric morph is produced, that is, one that does not have excessively large deformations or inverted elements.  

The method proposed here is distinct in its capacity to effectively combine a surface matching term and a volumetric 

regularization term in a single formulation to dramatically improve both the surface registration and volume 

registration.   

 We explain in the methods section how the proposed method is able to match boundaries that may initially 

be nowhere near each other, minimize volumetric deformation, and efficiently incorporate an arbitrary number of 

labels into a single coupled registration.   We believe these advantages are important for the theoretical study of 

image registration and also may have practical benefits for the study of neurological disease.   The method allows 

information from automatic structural segmentations to be efficiently incorporated into a single registration.  The 

region to region interaction produce a better registration result than can be achieved by registering the regions 

independently and combining the registrations together in a second step.  Second, the ability of the registration 

method to avoid deformation that is not necessary to match images may have applications to morphometry and the 

study of Alzheimer's disease.  Any analysis of the deformation should point to meaningful differences between the 

brains and not merely artifacts of the registration method.    

 An additional practical and theoretical advantage of the method presented here is that it is a pure 

optimization method.  The registration result is given by attempting to find the minimum of a single energy 

functional.  Some, although not all, registration methods have this property. Optimization problems are well studied 

and many efficient means of finding an energy minimum have been developed, such as the Sobolev Gradient 

Method ([14] and[23]).   

 The details of the registration method are given below and three examples are given.  The first two 

examples are used to explain two very important aspects of the registration method and should not be misinterpreted 

as the maximum to which method is capable.  The third example registers brains that have been automatically 

segmented using a modern machine learning based method.  We explain how it achieves the desired registration that 

matches all labels and minimized deformation.  In future studies, we will evaluate the registration method using 

manual markers which are hidden to the registration method and do a morphometric analysis of healthy and 

Alzheimer's disease patients.  Both of these future studies will depend not just on the quality of the registration 

method but also on the segmentation quality and statistical methods used to analyze the morphometry.   

Methods:   

 Starting from a raw image or volume, existing software must be applied that can segment the images into 

regions of interest.  For the case of the 3D brain MRI, we remove the skull and non-brain tissue, and use a computer 

learning based method [30] to automatically identify 56 anatomical regions in each brain.  The method proposed 

here will use these region labels to guide the registration. 
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 A single tetrahedral mesh with multiple smooth region labels must then be constructed from the initial 

segmented image.  Tetrahedral mesh generation is not a straightforward task and is a current active area of research.  

For most methods, mesh generation is generally a two step process.  First, construct a web of region boundaries 

from the images.  Second, fill in the region boundaries with tetrahedra.  The first step can fail for automatically 

segmented data.  Some unusual feature of the image can cause two boundaries to intersect and consequently the 

mesh generation to fail.  Thus the method described in [16], (available online at http://www.nitrc.org/projects/tmma)  
 is used which can generate a mesh directly from the images.  It also has a number of other desirable properties, such 

as adaptively sized tetrahedra with boundary tetrahedra of  sub-voxel resolution,  good tetrahedra dihedral angles, 

smooth regions boundaries (i.e., not voxelized), and a multi-resolution representation.  All of these properties are 

essential to making the registration method presented here work adequately.   

 During registration, the mesh is deformed from an initial state X, to a morphed state x.  The change in the 

mesh from the initial to the morphed state is described by a displacement vector field v: 

(1)   Xxv   

 The registration result is achieved by obtaining an optimal displacement vector field v that minimizes a 

specific energy functional G(v).  The energy functional consists of the sum of two terms, an elastic regularization 

term E(v) and a novel data fidelity term, A(v), that is minimized when the morphed regions and target regions have 

the same shapes and occupy the same positions.   To find the minimum energy, an artificial time is introduced and 

the whole mesh deforms to decrease the energy at each time step.   

 The fidelity term A(v) is formulated using level sets as is also done in [15].  The boundary of every region 

coincides exactly with the zero iso-contour of a corresponding level set.  The level sets are linear on each element.  

Unlike what is commonly practiced, the level sets in our formulation are only utilized on their respective regions and 

not on the whole domain.  Without this, the amount of computation required would increase dramatically as the 

number of regions increases.  This does inhibit a topological change which is important for many level set 

applications, but this is not an issue here as topological change may not be appropriate if the initial and target 

volumes have homologous features, as the automatically segmented brain volumes do.  

 Multiple level sets exist for multiple regions and the level sets are sewn together at the boundaries.  This 

prevents regions from overlapping and gaps from developing.  This also allows regions to interact during the 

morphing.  If one region moves to a given location, it will necessarily pull all neighboring regions along with it.   

Given N anatomical brain regions and their boundaries, we define the functions  

 (2) boundarynearest  todistance)(0 x   
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The initial level sets that are exactly zero on the boundary of the smooth regions are provided as a byproduct of the 

meshing method [16].   

 The target regions are obtained directly from the segmented target image without any smoothing.  This is 

computationally faster than using a smoothed out version of the target of image, though this may be something we 

reconsider in a future work.  We define   

(3)  





otherwise0

regioninisif
)(

mxm
xIm  

 From these functions an energy is constructed that will work if an initial and target region have little or no 

overlap.  This is not problematic when only one region is being registered as a rigid alignment can be performed 

ahead of time.  But with a large number of regions, there is no guarantee that all regions in the initial and target 

images will overlap.  If an initial and target region do not overlap, a penalty is added for the initial region being 

http://www.nitrc.org/projects/tmma
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small.  This has the effect of causing the initial region to grow in volume during the morphing until it overlaps 

significantly with the target region and then collapse on it.  The following quantity Mm is a measure of how well the 

region being morphed covers the corresponding target region:  

(4) ]1,0[
)))((( ,0



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


m

mm

m
I

IxvxH
M


 

  

 Based on the above remarks, we define the functional A(v) as: 

 (5)  


)))((())(1())))(((1)(()( ,0

1

,0 xvxHmIMxvxHmIvA mmm

N

m

mm   

    ))))(((1))((1()1( ,0 xvxHmIM mmm    

 Typically, other segmentation and registration methods of this type ([2], and [15]) are implemented with 

smooth approximations to the Heaviside and Delta functions.  This will cause the fidelity term to affect the 

deformation in region interiors.   However, with finite elements, accurate modeling of two dimensional surfaces 

imbedded in three dimensional space is possible.  The proposed method takes advantage of this by having the 

fidelity term only affect region boundaries while leaving region interiors free to position themselves in a 

deformation minimizing configuration.   

 On the other hand, a somewhat smooth Heaviside function does have some advantages.  It prevents the 

mesh from acquiring sharp features from the voxelization in the target image (the voxelization is a byproduct of how 

the image is captured and stored) and improves numerical stability.  The mesh connectivity is employed to create 

some smoothing along the exact two dimensional boundary.  Since the smoothing is not volumetric, all the 

advantages described in the previous paragraph are maintained.   

 Additionally, this region matching formulation allows mesh region boundaries freedom to move along 

boundaries in the target region without penalty.  This type of boundary movement may be necessary to match other 

areas of the image or reduce deformation.     

 We also note that the term A(v) requires the same labels to occur in both the target and initial image for a 

sensible registration.  This usually is the case for medical imaging applications as all human beings generally have 

the same anatomy.  But there are certainly interesting problems where this is not the case, such as when a healthy 

brain is compared to a brain with a tumor.  Cases like this may be of interest but are outside the scope of this 

registration method (as well as most others).  

 The second part of the energy functional, E(v), is designed to resist deformation.  The deformation of the 

tetrahedral mesh is computed using the deformation gradient F:  

(6)  
dX

dx
F   

 The displacement vector field v is related to F by: 

(7) 
1 FIvx  

 However, it is far better to compute F directly from the node locations of an element ([28],[9]).  If the four 

nodes of a tetrahedron are given the superscripts a,b,c,d and subscripts 1,2,3, for the coordinates of a node in three 

dimensional space: 
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1 dXdxF . 

 Another useful measure of deformation is C, the Right Cauchy-Green deformation tensor, which is 

unaffected by rotation and defined by: 

(9) FFC T  

 In three dimensional space, there are exactly three invariants of deformation.  These invariants relate to 

volume change, shear, and stretch.  If λ1, λ2, λ3 are the eigenvalues of F, then a choice for the three invariants is: 
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 The regularization energy is the Mooney-Rivlin elasticity [21], which is a function of all three invariants: 

(10)  )( 32211

CCC JgJkJkW 
.
 

 If a change in all three of these invariants is resisted, measurements taken of them should relate to 

meaningful differences between the initial and target images and not just be artifacts of the registration method.  For 

example, if volume change is resisted but not stretching, unnecessary stretching may occur minimize volume 

change.   

 The Mooney-Rivlin model also provides an accurate elastic model over a wider range of deformations in 

comparison to simpler models such as the St. Venant Kirchoff..   This is important for the method proposed here in 

particular as the fidelity term may cause considerable expansion in regions before they contract.   It also provides 

more general advantages to numerical stability and it may simply be necessary to allow large deformations as they 

could potentially be required to match the initial and target image if the images differ substantially in some areas.   

Additionally, the Mooney- Rivlin elasticity, unlike the St. Venant Kirchoff elasticity and even the Neo-Hookean 

elasticity is polyconvex [21].  This is a desirable property for optimization problems like the one presented here.   

 We chose a specific formulation such that the undeformed state is a stable equilibrium and reasonable 

elastic behavior is achieved for our registration method.   
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 The total energy is given by: 
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 gradient of the functional is: 
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 The minimum can be found by taking: 
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L

  

 However, an adjustment is made to improve the numerical implementation.  Solving equation (14) involves 

computing the gradient of the level set on the deformed mesh.  This can be done directly by the formula: 
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 As the elements flatten, the matrix dx approaches uninvertibility and the derivatives computed approach 

infinity.  Theoretically, the elastic energy should approach infinity at a sufficient rate to prevent any inversion.   But 

while this should work theoretically, it gives disastrous results when implemented numerically.  The elastic energy 

in equation (11) is bounded near 0.  To keep the calculated derivatives small for nearly flattened tetrahedra, the 

inverse matrix in equation (15) is replaced with an approximation to the Moore–Penrose pseudo-inverse (with ε a 

small positive constant) : 

(16) 
TT dxIdxdxdx 11 )(     

 Approximating the inverse of a matrix in this way is known as Tikhonov regularization [27], which is 

typically used in solving linear systems involving uninvertible matrices.  The effect of Tikhonov regularization can 

be seen using SVD decomposition.   

(17) 
TVUdx   

where U and V are rotation matrices and Σ is diagonal matrix whose diagonal entries are the singular values of dx, σ1 

, σ2 , σ3 (the absolute value of the eigenvalues).  The inverse is given as the product of U,V, and diagonal matrix D: 

(17)  
TVDU  

where 
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(21) 

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2

i

i
iiD  

for the pseudo-inverse approximation.   

 In directions where the deformed tetrahedra have sufficient length, in comparison to ε, the derivative 

approximation is close to the true derivative.  In directions where the tetrahedra are nearly flattened, a very large 

derivative is replaced with a very small one.  Thus the elasticity component of the L
2
 gradient should always be able 

to prevent the active contour component of the L
2
 gradient from causing an element to invert.       

 While equation (14) with the modification in equation (16) could be used to obtain the minimum of 

functional (12),   the Sobolev Gradient Method is faster.  As discussed in [14] and [23], it can be implemented by 

replacing equation (14) with: 

(22) )()1()( 21

1 vGKvG
dt

dv
LH

 
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 For this particular optimization problem, better results are obtained by taking a larger value of K.  

Increasing the value of K causes additional smoothing, which may be beneficial because the L
2
 gradient is not at all 

smooth.  It is very large on region boundaries and small on region interiors. 

 The solution, i.e. the v that minimizes equation (12), is found at 3 resolutions.  The registration is first 

completed at a low resolution where both the initial and target images have 1/64 the number of voxels.  This results 

in fewer tetrahedra and larger time steps, allowing the solution to be found hundreds of times faster than at the 

highest resolution.  The final location of a low resolution registration is then used as the starting position of a 

registration at a higher resolution.  The undeformed state X is not the starting position of the registration at a given 

resolution, but the high quality mesh created from the initial image.  

Results and Discussion: 

 

Figure 1.  The mesh of a sphere is given on the left and morphed mesh into an ellipse is shown on the right.  Both meshes 

are cut open to show the stretching that occurs to the tetrahedra within. 

 

Figure 2.  Histograms of the volume weighted deformation invariants that occur from morphing a sphere to an ellipse.    
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Example 1 

 A sphere with equation: 

(23)  22

3

2

2

2

1 20 xxx  

is registered to an ellipsoid with equation: 

(24) 1
302020 2

2

3

2

2

2

2

2

1 
xxx

 

 An example similar to this one is done in [33] and [7] where it shown that the deformation is somewhat 

reasonable and/or better than another method.  Here, we are able to achieve close to the exact minimum 

deformation.  The difference between these two objects is unambiguous and should be used to understand what type 

of registration should occur, with one small caveat.  The ellipse is stretched in the x3 direction by 50%, which 

corresponds to two eigenvalues of the deformation gradient equal to 1.0 and one equal to 1.5.   The caveat is that the 

sphere could rotate and then stretch and still produce a reasonable registration.  However, here we analyze rotation 

invariant deformation measures which are unaffected by any rotation that may occur.  An example of how this 

method rotates regions into the correct position in a case where the rotation is not ambiguous is given in example 2.   

 To draw a fair comparison to finite difference methods, the regions are voxelized with voxel size 1 by 1 

by1, which will introduce some error into the result.  The registration is shown in figure 1.  The invariants that are 

computed on each element cluster closely around the expected values, as shown in figure 2.  We note that the 

invariants do not actually give the direction of the stretching as they are invariant to rotation. 

 Despite the apparent simplicity of this example, this is not a typical result for registration methods as 

explained in [33] and [34].  Methods such as [3] and [15] will produce large deformations that are not justified based 

on the images.  In [33] and [34], these existing models are modified to produce a narrower range of volume change.  

The proposed method not only obtains similar results for volume change, but for measures of shear and stretch as 

well.  This is important, as without these measurements it is unclear whether the registration method is causing 

unnecessary deformation.  For example stretching might occur to keep the volume constant or as a side of effect 

forcing the images to match.  A finite element based method [7] also does an example similar to this and does not 

obtain the correct result.  A good deformation limiting regularization along with a matching term that does not 

distort volumes are not all that is required to obtain the correct deformation.   

 The superior result of the proposed registration method stems from how little the method does to match the 

images.  No node is forced into any particular location (as is done in [7]) ,  no fixed vector is involved ([33]), and no 

unnecessary volumetric movement is created ([15]).  The mesh simply has to stay exactly on the corresponding 

target region and is free to achieve a deformation minimizing configuration while doing so.  

 This example is also suggestive of why statistically analyzing the deformation, rather the shapes themselves 

may be more informative.  To figure out volume or stretch differences in the ellipsoids directly involves a global 

computation, such as an integral over the whole volume.  In contrast, looking at the deformation gives you the 

stretch and volume difference by examining only a few elements, and theoretically only one.  In this example, the 

image differences could be obtained either way.  But for complicated registrations, like example 3 below, every 

element might have a different value relating in some way to the global differences between the initial and target 

mage. 
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Figure 3.  A mesh of the initial image is shown on the left, the morphed mesh on the center left, and a mesh of the target 

image is shown in the center.  To show the rotation that occurs throughout the volume the initial mesh is cut open on the 

center right and the morphed mesh on the right.   Region 1 is red, region 2 is green, and region 3 is blue. 

 

Figure 4.  Histograms of the volume weighted deformation invariants that occur from the morphing in example 2.    
  is 

left,   
   is center, and   

  is right.  The values should be   
      

      
     

 

 Example 2 

 Two images with three regions each that differ by a rotation are registered.  Figure 3 shows two coordinates 

of the images and the image is constant in the third coordinate.  While there are certainly easier methods for doing a 

rigid registration (that is, methods exist that characterize the rigid registration by 6 numbers instead of an arbitrary 

map),  we chose this example because the resulting registration is completely unambiguous and can therefore be 

used to determine if the proposed registration method produces the correct result.   

 This type of behavior is important in real medical imaging examples, such as example 3 below, where only 

part of an object may differ by a rotation and a rigid alignment is consequently not possible as a first step before 

applying a non-rigid registration method.  Considered as a non-rigid problem, matching the initial and target images 

correctly is quite difficult.  Region 1, the tube, when considered on its own, already matches perfectly.  For regions 2 

and 3, there is no overlap between the initial and target images.  The common practice of determining how all the 

boundary nodes of each region should move separately and in advance and then performing a volumetric registration 

as a second step will not work.  Determining how the boundaries of regions 2 and 3 should be moved cannot be done 

by a simplistic procedure involves finding the nearest boundary in the target image but may be possible with a more 

sophisticated technique.  But any reasonable boundary registration of region 1 will cause it to stick in place, as it 

already matches perfectly, and hence the correct volumetric registration of all three regions would be resisted.   

 The proposed method is capable of registrations of this type.  Regions 2 and 3 in the mesh correctly find 

their corresponding regions in the target image and region 1 does not resist rotation caused by movement of regions 

2 and 3.  The mesh is cut open in figure 3 to show the large correctly rotated tetrahedra on the interior.  The 

deformation near the boundary is slightly off because a voxelized version of a tube is being used.  The deformation 

is given in figure 4 which roughly corresponds to no change in the rotationally invariant deformation measures.     
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Figure 5A.  Two views are shown from registration #1 in example 3.  A mesh from the initial image is shown on the top, 

the morphed mesh is in the center, and a mesh of the target image is shown on the bottom.  Boundary nodes are shown on 

the initial and morphed mesh to visualize the deformation that occurs on the surface. 
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Figure 5B.  Same as figure 5A but for registration #2 in example 3. 
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Figure 6A.  Three cuts are made through the exact center of three 3D images relating to registration #1 in example 3.  The 

left column shows three cuts of the initial image, the center column shows three cuts of the morphed image, and the right 

column shows 3 cuts of the target image.   
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Figure 6B.  The same as figure 6A but for registration #2 in example 3.   

 

Figure 7A.  Histograms of the volume weighted deformation invariants that occur from the morphing in registration #1 in 

example 3.   
  is left,   

   is center, and   
  is right.   



15 
 

 

Figure 7B.  Same as figure 7A but for registration #2 in example 3. 

Example 3 

 Four automatically segmented brains were generated from the LONI pipeline ([5] and [30]) and used for 

two registration examples as shown in figures 5,6, and 7.  For each of the 56 regions we computed the Dice 

coefficient of a target region, Im, and a morphed region Bm.   
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 The computation involves both voxels, from the target region, and tetrahedra, from the morphed region.  To 

convert the mesh to an image, we approximated the amount of mesh volume in each image voxel by assuming all 

the volume of each tetrahedron is located at tetrahedron's centroid.  The voxel is assigned to the region with the most 

associated mesh volume.  This voxelized image is then compared to the target image to obtain the dice coefficients.  

This process of transforming an image into a mesh and then back into an image does introduce some error in the 

dice coefficients.  The Dice coefficients of every region before and after registration are given in table 1.  Dice 

coefficients from before the registration were computing by simply using the images and no mesh.  Figure 5 shows 

the initial and morphed meshes with the boundary nodes present to show the type of deformation that occurs.  A 

separately generated mesh of the target image is shown for comparison.  Figure 6 shows the initial image, the 

approximation to the morphed mesh and the target image.  The invariants of the deformation are given in figure 7.  

Overall, we note that despite the significant differences between the initial and target images, the morphed and target 

images match very well.  This is achieved using a very small amount of deformation as revealed in the histograms.     

 Registration methods that do not incorporate automatic anatomical segmentations into the method will 

sometime use manual segmentations afterward to evaluate the effectiveness of their methods ([20] and [26]).  The 

overlap measures are not as good as those presented here.  A critical comparison to these other methods which have 

a somewhat different validation technique would not be appropriate, but clearly, these results indicate that an 

effective means of incorporating the data in an accurate automatic structural segmentation has the potential to 

improve a brain registration.   

 

Region Number Before Registration #1 After  Registration #1 Before Registration #2 After Registration #2 

1 0.548771 0.963498 0.0509844 0.969764 

2 0.580495 0.967291 0.0545999 0.970443 

3 0.54279 0.968299 0.0266322 0.973716 

4 0.577491 0.962209 0.000561246 0.962836 

5 0.288413 0.972855 0.00537836 0.962104 

6 0.407447 0.953972 0.0614528 0.956338 

7 0.534865 0.954091 0 0.961055 

8 0.539107 0.940693 0 0.949021 

9 0.00016919 0.952389 0 0.957158 

10 0 0.940602 0.0691253 0.956071 

11 0.0521301 0.960743 0 0.956508 

12 0.0365042 0.90987 0.00044238 0.928571 

13 0 0.935214 0.000672947 0.937462 

14 0 0.912787 0 0.933204 

15 0.454753 0.945737 0 0.946345 
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16 0.565737 0.953927 0 0.953807 

17 0.663397 0.948637 0 0.962624 

18 0.714081 0.959789 0 0.963628 

19 0.538618 0.938267 0 0.942461 

20 0.749147 0.945187 0 0.936019 

21 0.644427 0.937124 0 0.93813 

22 0.715833 0.950787 0 0.945322 

23 0.668487 0.953278 0 0.951349 

24 0.707502 0.93896 0 0.952415 

25 0.517688 0.923077 0 0.914426 

26 0.481457 0.907959 0 0.915846 

27 0.643303 0.934466 0 0.928032 

28 0.423287 0.926505 0 0.92989 

29 0.460316 0.928223 0 0.937523 

30 0.39356 0.953376 0 0.937192 

31 0.440258 0.882726 0 0.923407 

32 0.557796 0.911304 0 0.919326 

33 0.209502 0.943338 0 0.950533 

34 0.452653 0.948294 0 0.959092 

35 0.140926 0.956573 0 0.9596 

36 0.416593 0.948222 0 0.953611 

37 0.124486 0.946887 0 0.955689 

38 0.258558 0.953847 0.000224936 0.950499 

39 0 0.929159 0 0.941058 

40 0.0127772 0.945515 0 0.947778 

41 0.56823 0.910139 0 0.922782 

42 0.570833 0.938658 0 0.930282 

43 0.149778 0.921458 0 0.94171 

44 0.263297 0.951295 0 0.941581 

45 0.155711 0.953333 0 0.953378 

46 0.148088 0.942894 0 0.935013 

47 0.317376 0.915761 0 0.916346 

48 0.419122 0.941777 0 0.943609 

49 0.00624721 0.941071 0 0.944007 

50 0.0232981 0.926679 0 0.92291 

51 0 0.931634 0 0.910251 

52 0 0.942614 0 0.930206 

53 0 0.911073 0 0.946697 

54 0 0.945243 0 0.944696 

55 0.647841 0.981408 0.0309923 0.982277 

56 0.49395 0.970592 0.162201 0.967213 

Table 1.  The dice coefficients before and after registration are shown for each region and for two registrations in 

example 3. 

 

Conclusion: 

 We presented here a means to effectively incorporate an automatic segmentation into a registration method.   

The finite element implementation, with region matching and regularization terms in a single energy, produces 

excellent deformation minimizing and region matching results.  Two academic examples produced the correct 

registration and examples with real brain data produced the expected results of the method. 

 The brain registration example given utilizes only one particular anatomical brain segmentation.  We 

believe other brain, and non-brain, anatomical segmentations could be used.  While these methods are not easy to 

develop and any error in the segmentation will also end up in the registration, some means of incorporating 

anatomical data is essential for an anatomical registration.  

 In a future work, we plan to further validate the method by considering how well hidden manual 

information is matched.  We will then apply this registration method to the study of neurological disease.   
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