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a b s t r a c t

We propose the backward phase flow method to implement the Fourier–Bros–Iagolnitzer

(FBI)-transform-based Eulerian Gaussian beam method for solving the Schrödinger equa-

tion in the semi-classical regime. The idea of Eulerian Gaussian beams has been first pro-

posed in [12]. In this paper we aim at two crucial computational issues of the Eulerian

Gaussian beam method: how to carry out long-time beam propagation and how to com-

pute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address

the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam

framework. Essentially we reinitialize beam propagation by applying the FBI transform to

wavefields at intermediate time steps when the beams become too wide. To address the

second issue, inspired by the original phase flow method, we propose the backward phase

flow method which allows us to compute beam ingredients rapidly. Numerical examples

demonstrate the efficiency and accuracy of the proposed algorithms.

Ó 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Schrödinger equation for a particle with unity mass

ÿ ı�hUt þ VðxÞU ÿ �h
2

2
DU ¼ 0; x 2 Rd; t > 0;

Uðx;0Þ ¼ U0ðxÞ;
where ı ¼

ffiffiffiffiffiffiffi
ÿ1

p
, V is real and smooth, �h � h/2p with h a small (scaled) Planck’s constant, and U0 is a compactly supported L2

function, presumably highly oscillatory. Because the Schrödinger equation propagates oscillations of wavelength �h in space

and time, resolving such oscillations by direct finite difference methods requires many grid points per wavelength of O(�h),

which is costly in practice. As an alternative to obtain a numerical approximation capturing quantum effects, semi-classical

methods are sought to link classical and quantum mechanics. In this paper, we further develop the Fourier–Bros–Iagolnitzer

(FBI)-transform-based Eulerian Gaussian beam method, first proposed in [11], to compute the semiclassical solution for the

Schrödinger equation.

The idea of Eulerian Gaussian beam methods has been first proposed in [12] to treat the Helmholtz equation. It can be nat-

urally generalized to treat the Schrödinger equation as shown in [11]. To have an efficient Eulerian Gaussian beam method,

there are three computational problems that one has to deal with. As the Eulerian Gaussian beam is formulated in phase

space, the first computational problem is how to initialize beam propagation based on the initial data given in physical space.

This problem has been successfully treated by using the FBI transform as originally proposed in [11].
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The second problem is how to carry out long-time beam propagation. A simple analysis in [20] indicates that the width of

a Gaussian beam can grow exponentially with time. An overly-extended Gaussian beam not only leads to large approxima-

tion errors in the Taylor expansions of phase and amplitude functions but also makes the final summation extremely expen-

sive. Inspired by the reinitialization idea as first proposed in [20] in the context of Lagrangian Gaussian beams, we propose to

reinitialize beam propagation whenever necessary in the FBI-transform-based Eulerian Gaussian beams, as our unique setup

based on the FBI transform enables us to carry out reinitialization efficiently. In semi-classical approximation for quantum

mechanics, it has been observed [18] that the semi-classical approximation breaks down for most initial states on a time

scale very long compared to the ‘‘log time” t̂ ¼ O log 1
�h

ÿ �ÿ �ÿ �
. By using the reinitialization strategy we are able to compute valid

semi-classical solutions beyond the log-time scale.

The third problem is how to compute beam ingredients efficiently in phase space so that the Eulerian Gaussian beam

summation can be carried out rapidly. Inspired by the phase flowmethod [25], we propose the backward phase flowmethod

to compute beam ingredients. The original phase flowmethod assumes that the domain in phase space under the phase flow

is invariant so that the group property of the phase flow allows rapid interpolation on the invariant manifold. Our backward

phase flow will not explicitly make such an assumption. Once we have a mapping generating the backward phase flow, we

can apply this mapping repeatedly to generate beam ingredients for arbitrarily long time.

1.1. Related work

The idea underlying Gaussian beams is simply to build asymptotic solutions to partial differential equations concentrated

on a single curve through the domain; this single curve is nothing but a ray as shown in [22]. The existence of such solutions

has been known to the pure mathematics community since sometime in the 1960s [1], and these solutions have been used to

obtain results on propagation of singularities in hyperbolic PDEs [9,22]. An integral superposition of these solutions can be

used to define a more general solution that is not necessarily concentrated on a single curve. Gaussian beams can be used to

treat pseudo-differential equations in a natural way, including Helmholtz and Schrödinger equations.

In geophysical applications, Gaussian beam superpositions have been used for seismic wave modeling [4] and for seismic

wave migration [8]. The numerical implementations in these works are based on ray-centered coordinates which prove to be

computationally inefficient [4,8]. More recently, based on [22,24] a purely Eulerian computational approach was proposed in

[12] which overcomes some of these difficulties. To the best of our knowledge, the Eulerian Gaussian beammethod proposed

in [12] is the first efficient, successful Eulerian Gaussian beam framework; it can be easily applied to both high frequency

waves and semi-classical quantum mechanics [11]. In [24] Lagrangian Gaussian beams are successfully constructed to sim-

ulate mountain waves, a kind of stationary gravity wave forming over mountain peaks and interfering with aviation. See [14]

for Eulerian Gaussian beams for diffraction problems. See also [23,17] for some other recent works.

In quantum mechanics, some variants of Gaussian beams, such as frozen Gaussian beams and Gaussian wave packets,

have been used to construct approximate solutions to the Schrödinger equation in the semi-classical regime [10,5,6]. How-

ever, these formulations were all based on the Lagrangian framework. In [11] we proposed an Eulerian formulation of Gauss-

ian beams for the Schrödinger equation by generalizing the work in [12].

1.2. Contents

The rest of the paper is organized as follows. In Section 2, we outline the Lagrangian Gaussian beam formulation, describe

the FBI transform for initializing beam propagation, summarize the Eulerian Gaussian beam formulation based on the FBI

transform as developed in [11], and propose the beam reinitialization strategy to carry out long-time beam propagation

in the Eulerian framework. In Section 3, we introduce the backward phase flow method to compute beam ingredients in

phase space rapidly; the backward phase flow method couples nicely with the beam reinitialization strategy. In Section 4,

we show that the FBI-transform-based Gaussian beam method yields an asymptotic solution to the Schrödinger equation.

In Section 5, we show numerical examples to demonstrate the efficiency and accuracy of the algorithms.

2. Gaussian beams and the FBI transform

2.1. Lagrangian gaussian beams (LGB)

We consider the Schrödinger equation in the following form,

ÿ ı�hUt þ VðxÞU ÿ �h
2

2
DU ¼ 0; x 2 Rd; t > 0; ð1Þ

Uðx; 0Þ ¼ U0ðxÞ; ð2Þ

where V is real and smooth, �h � h/2p with h a small (scaled) Planck’s constant, and U0 is a compactly supported L2 function,

presumably highly oscillatory. We notice that the initial data U0 is not assumed to have a Wentzel–Kramers–Brillouin–Jeff-

reys (WKBJ) form.

We are looking for Gaussian-beam-based semi-classical solutions for the above initial value problem in the WKBJ form,
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Uðx; tÞ � Aðx; tÞ exp ısðx; tÞ
�h

� �
: ð3Þ

According to the Gaussian beam theory [22,24,16], we solve the following ODE system to obtain ingredients for constructing

Gaussian beams [11]:

dx

dt
¼ HpðxðtÞ;pðtÞÞ; xjt¼0 ¼ x0; ð4Þ

dp

dt
¼ ÿHxðxðtÞ; pðtÞÞ; pjt¼0 ¼ p0; ð5Þ

ds
dt

¼ pðtÞ � HpðxðtÞ;pðtÞÞ ÿ HðxðtÞ;pðtÞÞ; sjt¼0 ¼ x0 � p0; ð6Þ
dB

dt
¼ ÿHT

xpðxðtÞ; pðtÞÞBðtÞ ÿ HxxðxðtÞ;pðtÞÞCðtÞ; Bjt¼0 ¼ ıI; ð7Þ
dC

dt
¼ HppðxðtÞ;pðtÞÞBðtÞ þ HpxðxðtÞ;pðtÞÞCðtÞ; Cjt¼0 ¼ I; ð8Þ

dA

dt
¼ ÿ1

2
traceðBðtÞCÿ1ðtÞÞAðtÞ; Ajt¼0 ¼ A0ðx0;p0Þ; ð9Þ

where the Hamiltonian Hðx; pÞ ¼ 1
2
p2 þ VðxÞ is derived from the Schrödinger equation. Here {(x(t),p(t)):0 6 t 6 T} defines a

bicharacteristic emanating from the initial point (x0,p0), and the x-projection of this bicharacteristic defines a ray c in the

physical space, c = {(x(t), t):0 6 t 6 T}. s(t) is the phase function along the ray c, and A(t) is the amplitude function along

the ray c. B(t) and C(t) yield the Hessian of the phase function along c: B(t)Cÿ1(t) = sxx(x(t), t); see [22,24] for the justification.

See [11] for more details.

Moreover, the following lemmas hold [22,16,24]:

Lemma 2.1. Under the above assumptions, C(t) is non-singular for any t, and Im(BCÿ1) is positive definite.

Lemma 2.2. The solution for the transport equation (9) is

Aðt; x0; p0Þ ¼
A0ðx0; p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðCðt; x0;p0ÞÞ
p : ð10Þ

According to the above ingredients, we define two globally smooth functions to approximate phase and amplitude functions

required in the WKBJ ansatz,

sðx; t; x0;p0Þ ¼ sðt; x0;p0Þ þ pðt; x0;p0Þ � ðxÿ xðt; x0;p0ÞÞ þ
1

2
ðxÿ xðt; x0; p0ÞÞTðBCÿ1Þðxÿ xðt; x0;p0ÞÞ; ð11Þ

Aðx; t; x0;p0Þ ¼ Aðt; x0; p0Þ: ð12Þ

Inserting (11) and (12) into the WKBJ ansatz yields an asymptotically valid solution:

Wðx; t; x0;p0Þ ¼ Aðx; t; x0;p0Þ exp ı
sðx; t; x0;p0Þ

�h

� �
; ð13Þ

this is a single beam solution concentrated on the ray c which is the x-projection of the bicharacteristic emanating from

(x0,p0) at t = 0.

To justify that the beam solution constructed this way is a valid asymptotic solution for the initial value problem (1) and

(2), we have to take into account the initial condition (2) in the beam construction. However, this depends upon how the

initial condition is decomposed into Gaussian profiles and how the beam propagation is initialized; see [12,24,11,23,

20,21] for several different approaches in terms of decomposing initial conditions into Gaussian profiles. In particular, in

[11] the FBI transform has been first used to decompose the initial data into Gaussian profiles in the context of initializing

beam propagation in both Lagrangian and Eulerian formulations.

2.2. The Fourier–Bros–Iagolnitzer (FBI) transform

Given g 2 L2ðRdÞ, the Fourier–Bros–Iagolnitzer transform [15] is defined by the following formula:

ĝðx; p; �hÞ ¼ T gðx;p; �hÞ ¼ ad;�h

Z

y

exp
ıðxÿ yÞ � p

�h

� �
exp ÿðxÿ yÞ2

2�h

" #
gðyÞdy; ð14Þ

with the normalization constant given by

ad;�h ¼ 2ÿd=2ðp�hÞÿ3d=4; ð15Þ
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where d is the dimensionality. Here the multiplication by the function exp ıx�p
�h

� �
in the FBI transform is done only for the con-

venience of having a convolution operator.

To demonstrate the behavior of this transformation, we consider the so-called coherent state gðxÞ ¼ exp½ÿx2=ð2�hÞ�
exp ı p0 �x

�h

ÿ �
which oscillates on the O(�h) scale in a neighborhood of x = 0, where p0 is a quantity of O(1). A straight-forward

calculation gives

ĝðx; p; �hÞ ¼ c exp
ıx � p
�h

h i
exp ÿ x2 þ ðpÿ p0Þ2

4�h

" #
exp ÿ ıx � ðpÿ p0Þ

2�h

� �

for some normalization constant c; this implies that in this case the FBI coefficient divided by exp½ıx�p
�h
� oscillates on the scale of

O(�h1/2) in both x- and p-directions. Moreover, according to [15, p. 96], all u 2 S0ðRdÞ (the Schwartz space of tempered distri-

butions on R
d) can be written as a superposition of coherent states; consequently, we may assume that the FBI transform of

the initial condition divided by exp ıx�p
�h

� �
(‘‘the modified FBI coefficient”), bU0ðx; p; �hÞ exp½ÿ ıx�p

�h
�, oscillates on the scale of O(�h1/2)

in both x- and p-directions.

Another explanation for the definition of the FBI transform relies on the uncertainty principle. The transformation tries to

have the errorsm(x) andm(p) made in a measurement of the position and the momentum satisfym(x) �m(p) � �h1/2 by local-

izing g near x up to O(�h1/2) by multiplying it with the Gaussian function exp[ ÿ (x ÿ y)2/2�h] and by localizing F �hg near p up to

O(�h1/2) by taking the �h-Fourier transform with respect to y [15, p. 69]. We refer interested readers to [15] for more analysis of

the FBI transform. Moreover, we also have the following identity [15]: kT gkL2ðR2dÞ ¼ kgkL2ðRdÞ.

Thus according to [11], we first apply the FBI transform to the initial condition (2) to obtain bU0ðx; p; �hÞ ¼ ðT U0Þðx; p; �hÞ,
and we then initialize the amplitude function in Eq. (9) by

Ajt¼0 ¼ A0ðx0;p0Þ ¼ bU0ðx0;p0; �hÞ exp ÿ ıx0 � p0

�h

h i
; ð16Þ

this way the amplitude A is initialized to be the modified FBI coefficient so that it oscillates on the scale of O(�h1/2) in both x-

and p-directions.

Based upon the above setup, the asymptotic solution to the Schrödinger equation is obtained by integrating all the beams

parametrized by the initial point (x0,p0):

Uðx; tÞ ¼ ad;�h

Z

p0

Z

x0

Wðx; t; x0;p0Þdx0dp0: ð17Þ

As shown in [11], this beam solution satisfies the initial condition.

To specify initial data under consideration more precisely, we use the following definition of the frequency set of U0

according to Martinez [15, p. 98].

Definition 2.3. A point ðx0; p0Þ 2 R
2n is not in the frequency set of an �h-dependent function U0 2 L2ðRnÞ if and only if

T U0ðx; p; �hÞ ¼ Oð�h1Þ uniformly in a neighborhood of (x0,p0).

Therefore, in addition to U0 being a compactly supported L2-function and the modified FBI coefficient of U0 oscillating on

the scale of O(�h1/2) in both x- and p-directions, we further assume that the frequency set of U0 is compactly supported. This

assumption is reasonable because the frequency set is defined in phase space rather than in frequency space and the FBI

transform of U0 can be infinitely small rather than zero in the complement of the frequency set of U0. Thus, we conclude that

for arbitrary g > 0 the set

Xg ¼ fðx;pÞ : jbU0ðx;p; �hÞj > gg

is bounded and measurable. Consequently, given g > 0, the global asymptotic solution to the Schrödinger equation is ob-

tained by integrating all the beams parameterized by the initial point (x0,p0) 2Xg,

Ugðx; tÞ ¼ ad;�h

Z

ðx0 ;p0Þ2Xg

Wðx; t; x0;p0Þdx0dp0: ð18Þ

The FBI transform has been numerically implemented in [11]. To be complete, we summarize the implementation in [11]

in the following. We denote U0,i = U0(xi) at the grid points xi for i = 1, . . . , I. Consider an equivalent form of the FBI transform,

bU0 ¼ T U0 ¼ ad;�h

Z

y

exp ÿðxÿ yÞ2
2�h

þ p � ðxÿ yÞı
�h

" #

U0ðyÞdy: ð19Þ

One way to determine bUðxi0 ; pj0 ; �hÞ is to approximate the above integral using the midpoint quadrature,

bU0 xi0 ; pj0 ; �h
ÿ �

¼ ad;�hDx
XI

j¼1

exp ÿ xi0 ÿ xj
ÿ �2

2�h
þ
pj0 � xi0 ÿ xj

ÿ �
ı

�h

" #

U0;j ð20Þ

for each individual xi0 ; pj0
ÿ �

. In MATLAB, we do not implement this in a point-by-point fashion. For a one-dimensional

numerical FBI transform, we first construct two matrices A and B with each entry given by ÿ xi0 ÿ xj
ÿ �2

=2�h and
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i xi0 ÿ xj
ÿ �

=�h, respectively. These two matrices are independent of pj0 and are stored separately from the integration routine.

Then, for each pj0 we construct the matrix exp Aþ pj0B
ÿ �

and multiply it by the vector containing U0 xi0ð Þ. This gives
bU0 xi0 ; pj0 ; �h
ÿ �

for all i
0
= 1, . . . , I for a fixed pj0 .

The above approximation converges to the exact solution as the mesh size Dx? 0. However, in practice, we have to avoid

the aliasing error as in the numerical Fourier transform. For simplicity, we consider the one-dimensional case where U0(y) is

real. We first rewrite (14) into

T U0 ¼ ad;�h exp
ıxp

�h

� �Z

y

exp ÿðxÿ yÞ2
2�h

" #
exp ÿ ıyp

�h

h i
U0ðyÞdy: ð21Þ

To well-sample the oscillations from exp ÿ ıyp
�h

ÿ �
, we require

jpjDx
�h

<
p
2
; ð22Þ

which implies p 2 (ÿ⁄p/2Dx,⁄p/2Dx).

To improve the computational complexity, we also truncate the Gaussians in the kernel and limit the evaluation of the

integral in a small neighborhood of each x. For instance, the exponential term exp ÿðxi0 ÿ xjÞ2=ð2�hÞ
h i

decays to zero when

xi0 ÿ xj
�� �� is larger than approximately 3�h1/2. We will further address this in Section 3.4.

2.3. Eulerian Gaussian beams (EGB)

First we summarize the construction of Eulerian Gaussian beams as developed in [12,11]. Starting from the Hamiltonian

system (4) and (5), the essential idea is first to develop a PDE formulation of the phase flow map:

UðtÞ ¼ Ut : ðx0;p0Þ ! ðxðtÞ;pðtÞÞ;

this can be achieved by embedding the Hamiltonian system into the Liouville equations in phase space. Assuming that

/ 2 C1ðR2dþ1;RdÞ and w 2 C1ðR2dþ1;RdÞ, we have the following Liouville equations [12,11],

/t þ Hp � /x ÿ Hx � /p ¼ 0; /ðx;p; 0Þ ¼ x; ð23Þ
wt þ Hp � wx ÿ Hx � wp ¼ 0; wðx;p; 0Þ ¼ p: ð24Þ

To understand the relation between the mapping (/(�, � ,t),w(�, � ,t)) and the phase flow map U(t), we observe that since Eqs.

(23) and (24) are homogeneous linear advection equations, the initial condition

ð/ðx;p; 0Þ ¼ x;wðx; p;0Þ ¼ pÞ

of the mapping (/(�, � ,t),w(�, � ,t)) is advected along the bicharacteristic emanating from the initial point (x,p), and (/

(x,p, t),w(x,p, t)) refers to the initial value of the mapping as stated in [12,11]:

ð/ðx;p; tÞ ¼ /ðx0;p0;0Þ ¼ x0;wðx;p; tÞ ¼ wðx0;p0;0Þ ¼ p0Þ;

where (x0,p0) and (x,p) are connected by a unique bicharacteristic through the phase flow map U(t)(x0,p0) = (x,p) or

(x0,p0) =U
ÿ1(t)(x,p). Therefore, (/(�, � ,t),w(�, � ,t)) encodes the initial value of the mapping (/,w) in the following sense:

/ðx;p; tÞ ¼ /ðUÿ1ðtÞðx;pÞ; 0Þ ¼ /ðUðÿtÞðx;pÞ;0Þ;
wðx;p; tÞ ¼ wðUÿ1ðtÞðx;pÞ; 0Þ ¼ wðUðÿtÞðx;pÞ;0Þ;

where Uÿ1(t) is the inverse of the phase flow map of U(t). Because of the reversibility of the Hamiltonian flow, we also have

Uÿ1(t) =U(ÿt). The semi-Lagrangian method for computing Eulerian Gaussian beam ingredients and carrying out beam

summation as first proposed in [12] essentially relies on this property; see [12,11] for more details. The backward phase flow

method that we are going to develop also hinges on this crucial invertibility of the phase flowmap which we assume to hold.

Furthermore, as developed in [11] we have the following Liouville equation for the phase T, matrices B and C, and the

amplitude A,

T t þ Hp � Tx ÿ Hx � Tp ¼ p � Hpðx; pÞ ÿ Hðx; pÞ; Tðx;p; 0Þ ¼ x � p; ð25Þ
Bt þ Hp � Bx ÿ Hx � Bp ¼ ÿHT

xpBÿ HxxC; Bjt¼0 ¼ ıI; ð26Þ
Ct þ Hp � Cx ÿ Hx � Cp ¼ HppBþ HpxC; Cjt¼0 ¼ I; ð27Þ

At þ Hp � Ax ÿ Hx � Ap ¼ ÿ1

2
traceðBCÿ1ÞA; Ajt¼0 ¼ bU0ðx;p; �hÞ exp ÿ ıx � p

�h

h i
: ð28Þ

We remark that initializing Bjt=0 = ıI effectively complexifies the Liouville equations for B and C at the matrix level because B

and C are coupled to each other; such complexification at the matrix level for the Liouville equation has been first proposed

in [12].

Once we have the above ingredients at our disposal, the Eulerian Gaussian beam solution is constructed by [11]
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Uðx; tÞ ¼ ad;�h

Z

p0

Z

x0
W Eulerðx; t; x0;p0Þdx0dp0

; ð29Þ

where

WEulerðx; t; x0;p0Þ ¼ Aðx0;p0; tÞ exp ı
1

�h
sðx; t; x0;p0Þ

� �
; ð30Þ

sðx; t; x0;p0Þ ¼ Tðx0; p0; tÞ þ p0 � ðxÿ x0Þ þ 1

2
ðxÿ x0ÞTðBCÿ1Þðxÿ x0Þ: ð31Þ

Here we have used the phase flow map to transform the beam summation formula (17) into (29); see [12,11] for more

details.

2.4. Beam reinitialization

As time evolves, the width of a Gaussian beam will change according to the imaginary part of the Hessian of the phase

function. To demonstrate this effect, we follow a similar analysis as in [20] and consider the evolution of a single beam under

the potential VðxÞ ¼ ÿ V2
0

2
x2 for some V0 > 0. Solving the system for B and C, we have

BðtÞ ¼ V0½c1 expðV0tÞ ÿ c2 expðÿV0tÞ�;
CðtÞ ¼ c1 expðV0tÞ þ c2 expðÿV0tÞ;

ð32Þ

with c1 = (1 + ı�/V0)/2 and c2 = (1 ÿ ı�/V0)/2. This implies that the beam width is approximately proportional to

expðV0tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h V2

0ð1þ expðÿ2V0tÞÞ2 þ �2ð1ÿ expðÿ2V0tÞÞ2
h i

4�V2
0

vuut ð33Þ

which grows exponentially in t. An overly-extended Gaussian beam not only leads to large approximation errors in the Tay-

lor expansions of phase and amplitude functions but also makes the final summation extremely expensive. Therefore, to

compute long-time beam propagation beyond the log-time scale, we have to control the growth of beam width to some

extent.

One remedy is to impose a mask function locally to each beam as in [22,24] such that the contribution of a given beam is

zero if the location is too far away from the central beam location. However, this may degrade the accuracy of the beam solu-

tion for a fixed finite �h.

Another remedy is to reinitialize the whole process by re-decomposing the wave function into a summation of beams

with a given initial beam width. This is unfortunately difficult for usual WKBJ-type decomposition methods which require

explicit representations of phase and amplitude functions in that the wave function will no longer have theWKBJ form in the

presence of caustics. However, in our current formulation based on the FBI transform, once we have obtained a wave func-

tion at a given time, we can simply re-apply the FBI transform to decompose the wave function at that time into a summa-

tion of beams with a fixed finite width; based upon this decomposition we reinitialize beam propagation; this process can be

repeated.

We remark that the reinitialization idea was first proposed in [20] in the context of fast-wavepacket-transform-based

Lagrangian beam methods for the Schrödinger equation; see also [21] in the context of fast-multiscale-wavepacket-trans-

form-based Lagrangian Gaussian beam methods for the wave equation. Inspired by Qian and Ying [20,21], we use the idea

in the context of FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation. Numerically, one can monitor

the width of each beam as it propagates. Once the width of a beam reaches a certain specified threshold, we can construct the

overall wavefield and reinitialize the evolution. On the other hand, if the Hessian of the potential is known, one can have a

rough estimate of the time period for reinitialization as explained in [20] and as demonstrated later in our examples.

We remark in passing that beam reinitialization may help to offset the effect of the errors in beam construction, which

will make Gaussian beam valid for longer time. However, due to the inherent limitation of asymptotics which does not solve

the PDE exactly, beam reinitialization will not offset the effect of asymptotic errors which builds up as time goes on.

3. The backward phase flow for FBI-based Eulerian beams

3.1. The algorithm

We are interested in developing a highly efficient Eulerian Gaussian beam framework to compute beam ingredients rap-

idly. Inspired by the original phase flow method [25], we propose the backward phase flow method to achieve this purpose.

The original phase flowmethod was developed in [25] in the context of obtaining geometrical optics approximation to the

wave equation. The idea is to first construct the phase flowmap for a fixed, small step size Dt and then apply it iteratively by

virtue of the group property of the phase flow. For instance, one obtains the map from t0 to t1,

UDt : ðxi;pj; t0Þ ! ðxðt1Þ;pðt1Þ; t1Þ
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with Dt = t1 ÿ t0. Thus, the value of the phase flow map (the arrival location of a bicharacteristic) at t2 = 2Dt with an initial

condition (x,p) = (xi,pj) can be computed by

UDtðUDtðxi;pj; t0ÞÞ ¼ UDt �UDtðxi; pj; t0Þ ¼ U2
Dtðxi;pj; t0Þ: ð34Þ

Indeed, the phase flow method is very efficient. One can obtain the solution for large t by first constructing the phase flow

map for a small Dt (as an overhead) and then marching forward by interpolation since the phase flow map is defined on an

invariant manifold [25]. Most of the computational overhead occurs during the pre-processing step. The interpolation can be

done very rapidly. We refer interested readers to [25] for a complete description of the original algorithm.

To develop an Eulerian method for beam propagation, we will apply the phase flow method backward in time. We first

construct the following backward phase flow map,

UÿDt : ðxi; pj; t1Þ ! ðxðt0Þ; pðt0Þ; t0Þ;

which maps the point (xi,pj) at t = t1 back to t = t0 for someDt = t1 ÿ t0. To determine the take-off location of a bicharacteristic

reaching the point (xi,pj) at t = tk = kD t, we iterate this backward phase flow map and get Uk
ÿDtðxi; pj; tkÞ.

On the other hand, this approach is also similar to the semi-Lagrangian method. For example, both of these approaches

compute solutions on a fixed mesh by tracing trajectories backward in time. In the typical semi-Lagrangian method, on the

other hand, one traces the solution backward in time from t = tn+1 for one time stepDt and then one interpolates the function

value at t = tn right away. In the global semi-Lagrangian method that we have used [13,12,11], one traces the solutions all the

way back from t = tn+1 to t = t0 to avoid interpolations in the solutions. The current proposed approach can be interpreted as a

generalization of these semi-Lagrangian methods, which on one hand speeds up the global semi-Lagrangian method and on

the other hand reduces the number of interpolations.

However, for the phase equation

Fig. 1. Discretization of phase space.
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Fig. 2. (Example 5.1) (a) The Morse potential and (b) the ray structure up to time t = 15.
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DT

Dt
¼ p � Hpðx;pÞ ÿ Hðx;pÞ; ð35Þ

where D/Dt is the material derivative defined by

D

Dt
¼ @

@t
þ Hp

@

@x
ÿ Hx

@

@p
;
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Fig. 3. (Example 5.1) �h = 1/32 and the phase flow map step size Dt = 1.5. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flowmethod on a mesh I = J = 256,M = 211 + 1. The position densities at (a) t = 2D t = 3, (b) t = 4Dt = 6, (c) t = 6Dt = 9, (d) t = 8D t = 12 and (e)

t = 10Dt = 15.
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we cannot directly apply the above procedure to obtain the phase information at a later time since the method applies only

to the bicharacteristic variables. To solve this reaction equation along the bicharacteristic based on the backward phase flow

map, we use the fact that this ODE is autonomous; therefore, if we denote TÿDt(xi,pj;t1) the backward map given by the

bicharacteristic reaching (xi,pj) at t = t1 starting from (x(t0),p(t0)), the solution at (xi,pj;tk) can be computed by

Tðxi;pj; tkÞ ¼ xðt0Þ � pðt0Þ þ
Xkÿ1

n¼0

TÿDtðUn
ÿDtðxi;pjÞ; tkÿnÞ; ð36Þ
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Fig. 4. (Example 5.1) �h = 1/32 and the phase flowmap step sizeDt = 3.0. Eulerian Gaussian beam summations with beam reinitialization using the backward

phase flowmethod on amesh I = J = 256,M = 211 + 1. The position densities at (a) t = D t = 3, (b) t = 2Dt = 6, (c) t = 3Dt = 9, (d) t = 4D t = 12 and (e) t = 5Dt = 15.
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where U0
ÿDtðxi; pjÞ ¼ ðxi; pjÞ. Numerically, it is more natural to express the solution in the following iterative form:

Tðxi; pj; tkÞ ¼ TÿDtðxi;pj; tkÞ þ TðUÿDtðxi;pjÞ; tkÿ1Þ: ð37Þ

With beam reinitialization, one resets the phase variable in the FBI transform. This implies that we can simply construct the

map TÿDt(xi,pj), which is independent of tkÿ1, and then assign
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Fig. 5. (Example 5.1) �h = 1/128 and the phase flow map step size Dt = 1.5. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flow method on a mesh I = J = 1025, M = 211 + 1. The position densities at (a) t = 2D t = 3, (b) t = 4Dt = 6, (c) t = 6Dt = 9, (d) t = 8D t = 12 and

(e) t = 10Dt = 15.
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Tðxi;pj; tkÞ ¼ TÿDtðxi;pjÞ þ ~xi � ~pj ð38Þ

where ð~xi; ~pjÞ ¼ UÿDtðxi; pjÞ.
We follow a similar idea for solving B and C. We first obtain the following maps BÿDt(xi,pj) and CÿDt(xi,pj) which corre-

spond to the solution to
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Fig. 6. (Example 5.1) �h = 1/128 and the phase flow map step size Dt = 3.0. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flowmethod on a mesh I = J = 1025,M = 211 + 1. The position densities at (a) t = D t = 3, (b) t = 2Dt = 6, (c) t = 3Dt = 9, (d) t = 4D t = 12 and (e)

t = 5Dt = 15.
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DB

Dt
¼ ÿHT

xpBÿ HxxC;

DC

Dt
¼ HT

ppBþ HpxC;

ð39Þ

along the bicharacteristic with the initial conditions B(x,p) = ıI and C(x,p) = I. With beam reinitialization in phase space using

the FBI transform, we simply have

Bðxi;pj; tkÞ ¼ BÿDtðxi; pjÞ;
Cðxi; pj; tkÞ ¼ CÿDtðxi; pjÞ:

ð40Þ

Next, we consider the amplitude function A. This function satisfies the transport equation

DA

Dt
¼ ÿ1

2
traceðBCÿ1ÞA ð41Þ

along the bicharacteristic arriving at (xi,pj; t1) from the initial point at (x(t0),p(t0)). This ODE is different from the equation for

the phase since we do not have the reciprocal principle. To obtain the solution based on the backward phase flow map, we

first obtain the following map AÿDt : ðxi; pjÞ ! Cwhich maps the location (xi,pj) at t = t1 to the solution to the above ODE with

the initial condition given by A(x(t0),p(t0)) = 1. Using the analytical solution to the transport equation (10), we have

Aðxi;pj; t1Þ ¼ AÿDtðxi;pjÞA0ðUÿDtðxi;pjÞÞ; ð42Þ

where A0(UÿDt(xi,pj)) is the modified FBI coefficient at the takeoff locationUÿDt(xi,pj). To obtain the solution at t = t2, we iter-

ate the map one more time and get

Aðxi;pj; t2Þ ¼ AÿDtðxi;pjÞAðUÿDtðxi; pjÞ; t1Þ ¼ AÿDtðxi;pjÞAÿDtðUÿDtðxi;pjÞÞA0ðU2
ÿDtðxi;pjÞÞ: ð43Þ

In general we have the following relation to link A(xi,pj;tn) to the initial condition A0(x,p) through

Aðxi;pj; tkÞ ¼
Ykÿ1

n¼0

AÿDt Un
ÿDtðxi;pjÞ

ÿ �
" #

A0 Uk
ÿDtðxi; pjÞ

� �
: ð44Þ

However, since we reinitialize beam propagation in phase space using the FBI transform, we can simply use

Aðxi;pj; tkÞ ¼ AÿDtðxi;pjÞAkÿ1ðUÿDtðxi;pjÞÞ; ð45Þ

where Akÿ1(x,p) is the reinitialized amplitude function at t = tkÿ1.

We summarize the above ingredients into an algorithm. To be specific, we outline the algorithm for the one-dimensional

case only.

Algorithm: EGB-backward phase flow with beam reinitialization (d = 1)

1. Discretize the computational domain

xi ¼ xmin þ ðiÿ 1ÞDx; Dx ¼ xmax ÿ xmin

I ÿ 1
; i ¼ 1;2; . . . ; I

pj ¼ pmin þ ðjÿ 1ÞDp; Dp ¼ pmax ÿ pmin

J ÿ 1
; j ¼ 1;2; . . . ; J

ym ¼ xmin þ ðmÿ 1ÞDy; Dy ¼ xmax ÿ xmin

M ÿ 1
; m ¼ 1;2; . . . ;M

tk ¼ t0 þ kDt; Dt ¼ tf ÿ t0
K

; k ¼ 1;2; . . . ;K:

2. Construct the phase flow map and other maps

UÿDtðxi;pjÞ; TÿDtðxi; pjÞ;AÿDtðxi;pjÞ;BÿDtðxi;pjÞ and CÿDtðxi;pjÞ:
3. Initialize T(xi,pj; t0) = xi � pj and A(xi,pj; t0) = A0(xi,pj).

4. For k = 1,2, . . .,K, construct the solution at t = tk,
(a) Tðxi; pj; tkÞ ¼ TÿDtðxi; pjÞ þ ~xi � ~pj;

(b) A(xi,pj; tk) = Akÿ1(UÿDt(xi,pj))AÿDt(xi,pj);

(c) B(xi,pj; tk) = BÿDt(xi,pj);

(d) C(xi,pj; tk) = CÿDt(xi,pj);

(e) construct the wave function U(yi; tk).

The extra set of mesh ym in the above algorithm is used only in 4(e) for the purpose of visualization. More details in choos-

ing M will be further discussed in Section 3.3. Numerically the most expensive step is to update the amplitude function
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A(xi,pj; tk) in Step 4(b). Since the function A is in general highly oscillatory, usual interpolation methods generate significant

errors which will degrade the accuracy of beam propagation. Therefore, we propose the following two different ways to ob-

tain the quantity Akÿ1(UÿDt(xi,pj)).

In the first approach, we consider not the overall wavefield but each beam individually. Since we have already obtained

all individual beam solutions at t = tkÿ1 arriving at phase space locations (xi,pj), we apply the FBI transform to each arrival

beam to obtain Akÿ1(UÿDt(xi,p_j)). The second approach uses the overall wavefield not at the coarse mesh xi but at the fine

mesh ym to accurately recover the phase information which is lost in the beam summation process.

3.2. Applying the FBI transform to each arrival beam

The first approach is to apply the FBI transform to each arrival beam at tkÿ1 and evaluate the amplitude function at

UÿDt(xi,pj). To do that, we assume that we have already obtained the wave function Wi0 ;j0 ¼ Wðx; tkÿ1; xi0 ; pj0 Þ contributed by

the beam arriving at the grid location ðx; pÞ ¼ ðxi0 ; pj0 Þ at time t = tkÿ1, where

Wi0 ;j0 ¼ Wðx; tkÿ1; xi0 ;pj0 Þ ¼ A xi0 ; pj0
ÿ �

exp
ısðx; tkÿ1; xi0 ; pj0 Þ

�h

� �
; ð46Þ

and

sðx; tkÿ1; xi0 ; pj0 Þ ¼ Tðxi0 ;pj0 ; tkÿ1Þ þ pj0 xÿ xi0ð Þ þ 1

2
xÿ xi0ð ÞTðB xi0 ; pj0 ; tkÿ1

ÿ �
Cðxi0 ;pj0 ; tkÿ1Þÿ1Þðxÿ xi0 Þ: ð47Þ

Since beam summation consists of a finite number of terms and the FBI transform is linear, Akÿ1(UÿDt(xi,pj)) can be com-

puted by

Akÿ1ðUÿDtðxi;pjÞÞ ¼
X

i0 ;j0
T Wi0 ;j0

��
UÿDtðxi ;pjÞ

0

@

1

A exp ÿ ıx0 � p0

�h

� �
; ð48Þ

where T is the FBI transform operator, and UÿDt(xi,pj) = (x
0
,p

0
). For the arrival beam Wi0 ;j0 , we can estimate the local neigh-

borhood of xi0 ; pj0
ÿ �

such that jTWi0 ;j0 j–0. For instance, applying the FBI transform to the above Gaussian beam, we obtain the

following estimate analytically,

jT Wi0 ;j0 j2 ¼ O exp ÿ1

2

xÿ xi0

pÿ pj0

 !T

M
xÿ xi0

pÿ pj0

 !2

4

3

5

0

@

1

A; ð49Þ

where the covariance matrix M is given by

M ¼ 2

�h b2
1 þ b2

2

ÿ � b2
1 ÿ b1 þ b2; ÿb2

ÿb2; b1

 !
ð50Þ

with

b1 ¼ 1þ Im Bðxi0 ;pj0 ; tkÿ1ÞCðxi0 ;pj0 ; tkÿ1Þÿ1
� �

;

b2 ¼ Re Bðxi0 ;pj0 ; tkÿ1ÞCðxi0 ;pj0 ; tkÿ1Þÿ1
� �

:
ð51Þ
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Fig. 7. (Example 5.2) The complicated ray structure up to time t = 8.
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This implies that the magnitude of TWi0 ;j0 decays exponentially in the directions of the eigenvectors ofM with standard devi-

ations related to their corresponding eigenvalues. Therefore, all numerical FBI transforms can be computed locally in the

small neighborhood of the beam arrival location ðxi0 ; pj0 Þ.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

 x

 I

Computed

Exact

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

 x

 I

Computed

Exact

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

 x

 I

Computed

Exact

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

 x

 I

Computed

Exact

Fig. 9. (Example 5.2) �h = 1/64 and the phase flow map step size Dt = 2.0. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = D t = 2, (b) t = 2Dt = 4, (c) t = 3Dt = 6, and (d) t = 4D t = 8.
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Fig. 8. (Example 5.2) Eulerian Gaussian beam summations without beam reinitialization using the backward phase flow method on a mesh I = J = 256,

M = 214 + 1. The position densities at t = 8 with (a) h = 1/64 and (b) h = 1/128.
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3.3. Applying the FBI transform to the overall wavefield

Indeed, the easiest way is to apply the FBI transform to the overall wavefield at t = tkÿ1 and evaluate it at UÿDt(xi,pj). One

difficulty is that during the beam summation process, we have already lost the phase information in the overall wavefield.

The FBI transform of the wavefield might introduce aliasing errors. In this section, we propose to first construct the overall

wavefield defined on a fine mesh y = ym so that we can correctly capture the phase in the solution. As discussed in obtaining

formula (22), for a fixed uniform sampling of the wavefield with a given Dy, referring to Fig. 1, one requires a certain bound

on the range of p. In practice, if we use only the overall wavefield to compute the FBI coefficient, this restriction cannot be

guaranteed in general.

One nice property of the current formulation is that the wavefield can be evaluated at arbitrary locations for a given set of

arrival beams in phase space. Using the notation above, once we have obtained a set of beams at t = tk with non-zero

jA(xi,pj; tk)j, we check the range of pj and compute

�pj ¼ maxfjpjj : for i; j fsuch that jAðxi; pj; tkÞj > gg;

where g is a prescribed positive constant. From the calculation in Eq. (49), the application of the FBI transform to an arrival

beam will propagate information to a local region. We extend the range of pj by O(�hÿ1/2) and define a new range for pj by

Rk ¼ ½ÿ�pj ÿ Oð�hÿ1=2Þ; �pj þ Oð�hÿ1=2Þ�:

Then the number of sampling points, M, is chosen so that this range Rk lies inside the constraint from formula (22), (ÿ⁄p/
2Dy,⁄p/2Dy). By over-sampling in the spatial domain, the FBI transform will not introduce aliasing errors, and we do not

need to introduce any artificial mask in the transformation.
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Fig. 10. (Example 5.2) �h = 1/128 and the phase flow map step size Dt = 2.0. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = D t = 2, (b) t = 2Dt = 4, (c) t = 3Dt = 6, and (d) t = 4D t = 8.
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3.4. Computational complexity

We first state the following orders of computational complexity in the above algorithm and then we will further discuss

these estimates.

Computational complexity: EGB-backward phase flow with reinitialization (d = 1)

1. I + J +M.

2. IJN, with N the number of intermediate time steps to advance from t0 to t1.

3. a(I, J,M), the computational complexity of the numerical FBI transform on a mesh of O(IJ) given O(M) data.

4.
(a) IJ;

(b) IJ + a(I, J,M);

(c) IJ;

(d) IJ;

(e) b(I, J,M), the computational complexity of reconstructing the overall wavefield at O(M) locations given FBI coef-

ficients on a mesh of O(IJ).

Since Step 4 will be iterated for K times, the overall computational complexity is of order

OðIJN þ aðI; J;MÞ þ K½IJ þ aðI; J;MÞ þ bðI; J;MÞ�Þ ¼ OðIJðK þ NÞ þ K½aðI; J;MÞ þ bðI; J;MÞ�Þ: ð52Þ

Before we determine a(I, J,M) and b(I, J,M), we first estimate I, J and M according to �h. For each xi0 , the exponential term

exp ÿ xi0 ÿ xj
ÿ �2

=ð2�hÞ
h i

in the FBI transform decays to zero when jxi0 ÿ xjj is larger than approximately 3�h1/2. To accurately

resolve this Gaussian in the x-direction, we require Dx = O(�h1/2) and so I = O(�hÿ1/2). Next, for a given xi0 and along the
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Fig. 11. (Example 5.2) �h = 1/64 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flowmethod on a mesh I = J = 256,M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c) t = 15Dt = 6, and (d) t = 20Dt = 8.
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p-direction, the magnitude of the FBI coefficient is a Gaussian with the standard deviation O(�h1/2), as seen in Eq. (49). To

accurately resolve this Gaussian in the p-direction, we require Dp = O(�h1/2) and so J = O(�hÿ1/2). ConcerningM, we require that

Dy well-sample the oscillation in the FBI transform. According to Eq. (22) we have Dy = O(�h) and M = O(�hÿ1).

Next we consider the expressions a(I, J,M) and b(I, J,M) related to the FBI transform and the number of Eulerian beams. At

the first glance, it seems that we are required to sum up M terms for each grid point of the I � J grid in the FBI transform,

which gives O(IJM) = O(�hÿ2); however, this actually over-estimates the complexity because it does not take into account

the decaying property of the Gaussian in the FBI transform. To compute each non-zero FBI coefficient, instead of summing

up O(M) terms in the FBI transform, one only needs to look at a local neighborhood with size of O(Dx) = O(�h1/2). This means

the computational cost for computing the FBI integral is O(M/I) = O(�hÿ1/2). Moreover, since for a given xi0 , the FBI coefficient in

the p-direction decays to zero in only few grid points, the total number of non-zero FBI coefficients is O(I). This gives

a(I, J,M) = the total number of non-zero FBI coefficients � computational complexity for computing each non-zero FBI coef-

ficient = O(I � (M/I)) = O(�hÿ1).

Now we consider the expression b(I, J,M), the computational complexity of the adjoint of the FBI transform; this is used to

construct the overall wavefield on an O(M) mesh using FBI coefficients on the O(IJ) mesh. Since the computations of B and C

are independent of �h, each beam contributes to a local neighborhood in the x-direction of size O(�hÿ1/2). Since Dy = O(�h) and

we have only O(I) non-zero Eulerian beams, we have b(I, J,M) = the total number of arrival beams � computational complex-

ity for computing the wavefield due to one beam = O(I � (M/I)) = O(�hÿ1).

In terms of �h, the overall computational complexity of the whole algorithm for one dimension (d = 1) is therefore

OðIJðK þ NÞ þ K½aðI; J;MÞ þ bðI; J;MÞ�Þ ¼ Oð�hÿ1ðK þ NÞÞ ¼ Oð�hÿ1Þ: ð53Þ

We can develop similar algorithms for the d-dimensional case. The only modification in the above algorithm is that xi, pj, and

ym now become mesh points in R
d. The derivation in Section 3.1 does not depend on the dimensionality of the domain.
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Fig. 12. (Example 5.2) Zoom-in of Fig. 11. �h = 1/64 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = 5Dt = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20Dt = 8.
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Concerning the computational complexity of the resulting algorithm in Rd, we have the same order as in (52). Following the

above argument, to accurately resolve the Gaussian exp½ÿkxi0 ÿ xjk2=ð2�hÞ� in the FBI transform, we requireDx = O(�h1/2) and so

I = O(�hÿd/2). The uncertainty principle (22) gives also Dy = O(�h) and therefore M = O(�hÿd). To resolve the Gaussian of the FBI

transform in the p-direction, we have also Dp = O(�h1/2) and so J = O(�hÿd/2). All these estimates lead to a(I, J,M) = I � (M/

I) = �hÿd,b(I, J,M) = I � (M/I) = �hÿd, and therefore the overall computational complexity of the whole algorithm in the d-dimen-

sions is O(�hÿd).

4. FBI-transform-based Gaussian beam global asymptotic solutions

Following the idea in [22,24], we prove that the beam solution defined in (18) is a global asymptotic solution to the initial

value problem (1) and (2).

Theorem 4.1. The solution (17) is a global asymptotic solution to the initial value problem (1) and (2) in the following sense: in a

finite time interval [0,T], for ⁄ small enough,

kðÿı�h@t þ Hðx;ÿı�h@xÞÞUgkL2ðRd�½0;T�Þ 6 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðGgÞ

q
kU0kL2ðRdÞ�h

3
2
ÿd

2;

lim
g!0

Ugðx; 0Þ ¼ U0ðxÞ;

where Hðx; pÞ ¼ 1
2
p2 þ VðxÞ is the Hamiltonian for the Schrödinger equation, and C is a constant independent of ⁄.

To prove this theorem, we need some lemmas. In formulas (11) and (12) we define two global approximations to the

phase and amplitude functions by using Taylor expansions centered on the x-projection of the bicharacteristic

{(x(t;x0,p0),p(t;x0,p0)):tP 0}. We have the following estimates which are proved in [20].
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Fig. 13. (Example 5.2) Zoom-in of Fig. 12. �h = 1/64 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = 5Dt = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20Dt = 8.
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Lemma 4.2. Assume that the Hamiltonian is C2 differentiable. Then the functions (11) and (12) em satisfy the eikonal and

transport equations in the following approximate sense, respectively:

stðx; t; x0; p0Þ þ Hðx; sxðx; t; x0;p0ÞÞ ¼ Oðjxÿ xðt; x0;p0Þj3Þ; ð54Þ

Atðx; t; x0; p0Þ þ Hp � Ax þ
A

2
traceðsxxÞ ¼ Oðjxÿ xðt; x0;p0ÞjÞ; ð55Þ

where Hðx; pÞ ¼ 1
2
p2 þ VðxÞ.

We also need the following lemma which is proved in [22,24].

Lemma 4.3. Assume that c (x,t) vanishes to order S ÿ 1 on c = {(x (t),t):0 6 t 6 T} which is the x-projection of a bicharacteristic

fðxðtÞ; pðtÞÞ : 0 6 t 6 Tg; suppðcÞ \ fðx; tÞ : x 2 R
d;0 6 t 6 Tg is compact, and Im (/(x,t))P ajx ÿ x (t)j2 on suppðcÞ \ fðx; tÞ : x 2

R
d;0 6 t 6 Tg, where a is a positive constant. Then

Z T

0

Z

R
d

cðx; tÞeı
/ðx;tÞ

�h

���
���
2

dxdt 6 C�h
Sþd

2; ð56Þ

where C is a constant independent of ⁄.

Now we are ready to prove Theorem 4.1.

Proof. It is easy to show that at t = 0 we recover the initial data. Since

Wðx; 0; x0;p0Þ ¼ bUðx0; p0; �hÞ exp ı
½sðx;0; x0;p0Þ ÿ x0 � p0�

�h

� �
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Fig. 14. (Example 5.2) �h = 1/128 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flowmethod on a mesh I = J = 256,M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c) t = 15Dt = 6, and (d) t = 20 Dt = 8.
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where

sðx;0; x0; p0Þ ¼ p0 � x0 þ p0 � ðxÿ x0Þ þ
ı

2
ðxÿ x0ÞTðxÿ x0Þ;

we have as g? 0,

Ugðx;0Þ ¼ ad;�h

Z

ðx0 ;p0Þ2Xg

Wðx;0; x0; p0Þdx0dp0

¼ ad;�h

Z

Xg

Û0ðx0; p0; �hÞ exp ÿ ı

�h
ðx0 ÿ xÞ � p0 ÿ

ðx0 ÿ xÞ2
2�h

" #
dx0dp0

! ad;�h

Z

x0

Z

p0

Û0ðx0;p0; �hÞ exp ÿ ı

�h
ðx0 ÿ xÞ � p0 ÿ

ðx0 ÿ xÞ2
2�h

" #
dx0dp0 ¼ T �T U0 ¼ U0;

where T � is the adjoint of T . Here we have used a property of the FBI transform [15]: T �T ¼ I under some appropriate con-

ditions, where I is the identity operator.

Next we evaluate the following,

ðÿı�h@t þ Hðx;ÿı�h@xÞÞUg ¼ ad;�h

Z

Xg

ðÿı�h@t þ Hðx;ÿı�h@xÞÞWðx; t; x0;p0Þdx0dp0

¼ ad;�h

Z

Xg

ðst þ Hðx; sxÞÞA exp ı
sðx; t; x0;p0Þ

�h

� �
dx0dp0

þ ad;�h

Z

Xg

�h

ı
At þ Hp � Ax þ

A

2
traceðsxxÞ

� �
exp ı

sðx; tÞ
�h

� �
dx0dp0 � f1ðx; tÞ þ f2ðx; tÞ:

We estimate f1 first. By the Cauchy–Schwartz inequality, we have
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Fig. 15. (Example 5.2) Zoom-in of Fig. 14. �h = 1/128 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = 5Dt = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20Dt = 8.
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jf1ðx; tÞj2 ¼ ad;�h

Z

Xg

ðst þ Hðx; sxÞÞbU0ðx0;p0; �hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCðt; x0;p0Þ

p exp ı
½sðx; t; x0;p0Þ ÿ x0 � p0�

�h

� �
dx0dp0

�����

�����

2

6 a2
d;�hkU0k2L2ðRdÞ

Z

Xg

ðst þ Hðx; sxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCðt; x0; p0Þ

p exp ı
½sðx; t; x0;p0Þ ÿ x0 � p0�

�h

� ������

�����

2

dx0dp0;
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Fig. 16. (Example 5.2) Zoom-in of Fig. 15. �h = 1/128 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = 5Dt = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20Dt = 8.
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Fig. 17. (Example 5.3) (a) The Cosine-Quadratic potential and (b) the complicated ray structure up to time t = 8.
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where we have used another property of the FBI transform: kbU0k2L2ðR2dÞ ¼ kU0k2L2ðRdÞ.

Denoting L2ðRd � ½0; T�Þ ¼ L2x;t we have

kf1k2L2x;t 6 a2
d;�hkU0k2L2ðRdÞ �

Z

Xg

Z T

0

Z

R
d
x

ðst þ Hðx; sxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCðt; x0;p0Þ

p exp ı
½sðx; t; x0;p0Þ ÿ x0 � p0�

�h

� ������

�����

2

dxdtdx0dp0

6 C2a2
d;�hkU0k2L2ðRdÞVolðXgÞ�h3þd

2;

where we have used Lemma 4.2 and 4.3 with S = 3 in the last step. Thus taking into account the definition of ad,�h we have

kf1kL2ðRd�½0;T�Þ 6 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðXgÞ

q
kU0kL2ðRdÞ�h

3
2
ÿd
2:

Similarly, using Lemma 4.2 and 4.3 with S = 1 we have the estimate for f2,

kf2kL2ðRd�½0;T�Þ 6 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðXgÞ

q
kU0kL2ðRdÞ�h

3
2
ÿd
2;

where C is a constant independent of �h. Combining the estimates for f1 and f2, we have the results stated in the theorem. h

We remark in passing that this in turn proves that the beam solution defined in (29) is also an asymptotic solution be-

cause the solution (29) is obtained from the solution (17) by using the phase flow map; see [11] for more details.

We also remark that by using optimal norms of some approximation operators defined by the beam summation operator

as introduced in [3], one may easily improve the asymptotic rate to be �h
3
2. We will report on this in an upcoming paper.
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Fig. 18. (Example 5.3) �h = 1/64 and the phase flow map step size Dt = 2.0. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = D t = 2, (b) t = 2Dt = 4, (c) t = 3Dt = 6, and (d) t = 4D t = 8.
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5. Numerical examples

We show some numerical examples to validate our algorithms. Since the wave function is an auxiliary quantity used to

compute physical observables, such as the position density,

Iðx; tÞ ¼ jUðx; tÞj2; ð57Þ

we will use this quantity to justify our algorithms.

According to the proposed algorithm, we first obtain all the required mappings on a fixed uniform mesh. The resulting

mappings allow us to construct accurate semi-classical solutions for �h’s in a certain interval as shown in the following

examples.

Since an exact wave function for the Schrödinger equation is not available in general, we will first use a pseudo-spectral

method [19,2] to solve the equation directly to obtain an ‘‘exact” wave function and then use the resulting position density to

calibrate our beam solutions. Because such pseudo-spectral methods are independent of the semi-classical asymptotics and

can yield highly accurate solutions for a long period of time, it is reasonable to use such solutions to calibrate our Gaussian-

beam-based semi-classical solutions up to a large time.

5.1. Example 1: Morse potential

We consider the Morse potential given by [5,7]

V ¼ D 1ÿ expðÿkxÞ½ �2; ð58Þ

where D = 160 and k = 0.036; see Fig. 2(a). The initial particle is a Gaussian centered at x = 2 with standard deviation of

r0 ¼ 1
2
ffiffi
6

p with zero initial momentum p0 = 0 [5,7]:
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Fig. 19. (Example 5.3) �h = 1/128 and the phase flow map step size Dt = 2.0. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = D t = 2, (b) t = 2Dt = 4, (c) t = 3Dt = 6, and (d) t = 4D t = 8.
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Ujt¼0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

ffiffiffiffiffiffiffi
2p

pp exp ÿðxÿ 2Þ2

4r2
0

 !
exp ÿ ıx � p0

�h

� �
: ð59Þ

To illustrate the potential difficulty of this example, in Fig. 2(b) we plot some rays traced according to a subset of the initial

values used in the FBI-based Eulerian beam construction which is formulated in phase space. We compute the solution up to

T = 15.

We first take �h ¼ 1
32

to compute the semiclassical solution with different backward phase flow maps. Here the log time

t̂ ¼ logð1=�hÞ ¼ 3:4657. Fig. 3 shows the solutions at t = 3,6, . . . , 15 using a backward phase flow map with Dt = 1.5 on a

mesh of I = J = 256 and M = 211 + 1. This implies that Fig. 3(e) is obtained by applying beam reinitialization nine times.

We compare our solutions with the exact solutions on a very fine mesh. These two solutions match very well even

for long-time propagation. We next repeat the same example using a backward phase flow map with Dt = 3.0 and we

plot the solutions at t = 3,6, . . . , 15 in Fig. 4. Fig. 4(a) shows that the computed solution at t = 3 matches with the exact

solution very well and we do not see visual differences in comparison to Fig. 3(a). However, as time increases, the errors

in the solution propagate and build up. The solution at the final time T = 15 is noticeably different from the exact

solution.

We also take �h ¼ 1
128

to compute the semiclassical solution with different backward phase flow maps. Here the log time

t̂ ¼ logð1=�hÞ ¼ 4:8520. Fig. 5 shows the solutions at t = 3,6, . . . ,15 using a backward phase flow map with Dt = 1.5 on a mesh

of I = J = 1025 and M = 211 + 1. This implies that Fig. 5(e) is obtained by applying beam reinitialization nine times. We com-

pare our solutions with the exact solutions on a very fine mesh. These two solutions match very well even for long-time

propagation. We also repeat the same example using a backward phase flow map with Dt = 3.0 and we plot the solutions

at t = 3,6, . . . ,15 in Fig. 6. Because of the smaller �h, we do not see noticeable differences between the two beam solutions

based on different backward phase flow maps.
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Fig. 20. (Example 5.3) �h = 1/64 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flowmethod on a mesh I = J = 256,M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c) t = 15Dt = 6, and (d) t = 20Dt = 8.
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5.2. Example 2: a gaussian in a cosine potential field

The potential is given by

VðxÞ ¼ 1

8
cosð2pxÞ: ð60Þ

The initial profile is a Gaussian of standard deviation r0 = 0.1 centered at x = 0 with zero initial momentum p0 = 0:

Ujt¼0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

ffiffiffiffiffiffiffi
2p

pp exp ÿ x2

4r2
0

� �
exp ÿ ıx � p0

�h

� �
: ð61Þ

Since the potential is a hill at x = 0, we expect that the Gaussian will split into two and each of them will fall into one of

the potential wells centered at x = ± 0.5, respectively. To illustrate the potential difficulty of this example, in Fig. 7 we plot

some rays traced according to a subset of the initial values used in the FBI-based Eulerian beam construction. We compute

the Eulerian Gaussian beam solution up to the final time T = 8.

Since the Hessian of the potential is bounded by

Vxx ¼ ÿp2

2
cosð2pxÞ P ÿp2

2
; ð62Þ

the beam width could grow in the order of O½expðpt=
ffiffiffi
2

p
Þ�. In order to keep the beamwidth to be of order Oð

ffiffiffi
�h

p
Þ, according to

Eq. (33) we require

exp

ffiffiffiffiffiffi
p2

2

r
Dt

 !
¼

ffiffiffi
2

p
p; ð63Þ
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Fig. 21. (Example 5.3) Zoom-in of Fig. 20. �h = 1/64 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20 Dt = 8.

8912 S. Leung, J. Qian / Journal of Computational Physics 229 (2010) 8888–8917



which implies that the size Dt for constructing the backward phase flow map should be at most

Dt� ¼
ffiffiffi
2

p

p
ln

ffiffiffi
2

p
p

� �
’ 0:6713: ð64Þ

Fig. 8 shows the solution at the final time T = 8 on a mesh of I = J = 256 and M = 214 + 1 without any beam reinitialization

for �h = 1/64 and �h = 1/128, respectively. In the case of �h = 1/64, the log time t̂ ¼ 4:1589; in the case of �h = 1/128, the log time

t̂ ¼ 4:8520. We compare these beam solutions with the exact solutions. The beam solutions are significantly different from

the exact solution. Even if we halve the value of �h, the computed solution does not improve too much.

To demonstrate improvement in the solutions by applying beam reinitialization, we apply the backward phase flow

method of step size Dt = 2.0 on a mesh of I = J = 256 and M = 214 + 1, and we reinitialize the beam computation at the begin-

ning of each interval of Dt = 2. Note that this step size is larger than the estimated step size; i.e. Dt > Dt*. We show the solu-

tions with �h = 1/64 and �h = 1/128 at different times in Figs. 9 and 10, respectively. Fig. 9(d) and Fig. 10(d) show the solutions

at t = 8 and they are improved slightly in comparison to the corresponding solutions as in Fig. 8. However, since Dt > Dt*, we

do not expect that beam summation will give accurate approximations.

Next we choose the size of the backward phase flow map to be Dt < Dt*. In Figs. 11–13, we construct the solutions for

�h = 1/64 at t = 2,4,6 and 8 based on the backward phase flowmap on a mesh of I = J = 256 andM = 214 + 1 withDt = 0.4 which

is smaller than Dt*. This implies that the solution at t = 2 is obtained by applying beam reinitialization four times at

t = 0.4,0.8, 1.2 and 1.6. We also compare our computed solutions with the exact solutions obtained by using a direct numer-

ical method on a very fine mesh. In Figs. 12 and 13, we plot only the solutions in the positive x region to see the differences

between beam and exact solutions more clearly.

To further demonstrate the property of the algorithm, we decrease �h. In Figs. 14–16, we construct the solutions for �h = 1/

128 at t = 2,4,6 and 8 based on the backward phase flow map on a mesh of I = J = 256 and M = 214 + 1 with Dt = 0.4. This

implies that the solution at t = 2 is obtained by applying beam reinitialization four times at t = 0.4,0.8,1.2 and 1.6. We also
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Fig. 22. (Example 5.3) Zoom-in of Fig. 21. �h = 1/64 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256,M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20 Dt = 8.
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compare our computed solutions with the exact solutions obtained by using a direct numerical method on a very fine mesh.

In Figs. 15 and 16, we plot only the solutions in the positive x region to see the differences between beam and exact solutions

more clearly. As shown in Figs. 14–16, our beam solutions match very nicely with the exact solutions. This is reasonable since

the Gaussian beam approximation is an asymptotic method to solve the Schrödinger equation in the semi-classical regime as

�h going to zero.

5.3. Example 3: a Gaussian in a Cosine-Quadratic potential field

The potential is given by

VðxÞ ¼ 1

8
cosð2pxÞ þ 1

2
x2: ð65Þ

The initial profile is a Gaussian of standard deviation r0 = 0.1 centered at x = 0 with zero initial momentum p0 = 0:

Ujt¼0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

ffiffiffiffiffiffiffi
2p

pp exp ÿ x2

4r2
0

� �
exp ÿ ıx � p0

�h

� �
: ð66Þ

Since the potential is a hill at x = 0, we expect that the Gaussian will split into two and each of them will fall into one of the

potential wells centered at x = ±0.5, respectively; see Fig. 17(a). To illustrate the potential difficulty of this example, in

Fig. 17(b) we plot some rays traced according to a subset of initial values used in the FBI-based Eulerian beam construction.

We compute the Eulerian Gaussian beam solution up to the final time T = 8.

Since the Hessian of the potential is bounded by

Vxx ¼ ÿp2

2
cosð2pxÞ þ 1 P ÿp2

2
þ 1; ð67Þ
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Fig. 23. (Example 5.3) �h = 1/128 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam reinitialization using the

backward phase flowmethod on a mesh I = J = 256,M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c) t = 15Dt = 6, and (d) t = 20 Dt = 8.

8914 S. Leung, J. Qian / Journal of Computational Physics 229 (2010) 8888–8917



the beamwidth could grow in the order of O exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=2þ 1

p
t

� �h i
. In order to keep the beamwidth of order Oð

ffiffiffi
�h

p
Þ, we require

that

exp Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2
þ 1

r !
¼

ffiffiffi
2

p
p ð68Þ

which implies that the step size Dt for constructing the backward phase flow map be at most

Dt� ¼ ln
ffiffiffi
2

p
p

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2
þ 1

r
’ 0:7518: ð69Þ

To demonstrate improvement in the solutions by applying beam reinitialization, we apply the backward phase flow method

of step size Dt = 2.0 on a mesh of I = J = 256 and M = 214 + 1, and we reinitialize beam computation at the beginning of each

interval of Dt = 2. Note that this step size is larger than the estimated step size; i.e. Dt > Dt*. We show the solutions with

�h = 1/64 and �h = 1/128 at different times in Figs. 18 and 19, respectively. However, sinceDt > Dt*, we do not expect that beam

summation will give accurate approximations.

In Figs. 20–22, we construct the solutions for �h = 1/64 at t = 2,4,6 and 8 based on the backward phase flowmap on a mesh

of I = J = 256 and M = 214 + 1 with Dt = 0.4 which is smaller than Dt*. This implies that the solution at t = 2 is obtained by

applying beam reinitialization four times at t = 0.4,0.8,1.2 and 1.6. We also compare our computed solutions with the ‘‘ex-

act” solutions obtained by using a direct method on a very fine mesh. In Figs. 21 and 22, we plot only the solutions in the

positive x region to see the differences between beam and exact solutions more clearly.

For a smaller �h = 1/128, as shown in Figs. 23–25, our beam solutions match very nicely with the exact solutions.
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Fig. 24. (Example 5.3) Zoom-in of Fig. 23. �h = 1/128 and the phase flow map step size Dt = 0.40. Eulerian Gaussian beam summations with beam

reinitialization using the backward phase flow method on a mesh I = J = 256, M = 214 + 1. The position densities at (a) t = 5D t = 2, (b) t = 10Dt = 4, (c)

t = 15Dt = 6, and (d) t = 20 Dt = 8.

S. Leung, J. Qian / Journal of Computational Physics 229 (2010) 8888–8917 8915



6. Conclusions

We proposed the backward phase flow method to implement the FBI-transform-based Eulerian Gaussian beams to solve

the Schrödinger equation in the semi-classical regime. In this paper we aimed at two challenging computational issues of the

Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rap-

idly in phase space. By virtue of the FBI transform, we addressed the first issue by introducing the reinitialization strategy

into the Eulerian Gaussian beam framework. Essentially we reinitialize the beam propagation by applying the FBI transform

to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the ori-

ginal phase flow method, we proposed the backward phase method which allows us to compute beam ingredients rapidly.

Numerical examples demonstrated the efficiency and accuracy of the proposed algorithms.
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