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ABSTRACT. A novel approach is presented to recover image degradedniyspheric
turbulence. Given a sequence of frames affected by turbe)eme construct a variational
model to characterize the static image. The optimizatiablem is solved by the Bregman
iteration and operator splitting method. Our algorithmimpe and efficient, and can be
easily generalized for different scenarios.

1. INTRODUCTION

In the last decade, long range imaging systems have beefogeddo improve target
identification. One of the main visual effect is distortiahge to atmospheric turbulence
(known in the literature as “image dancing”). It may occumany other scenarios. For
example, underwater imaging systems are subject to sSogtteffects and video shooting
in summer suffers from hot air near the ground, and so on. Weddulence does not
really affect human observers, but it can cause problenafautomatic target recognition
algorithm because the shape of the object may be very différem those learned by the
algorithm. Fig_l shows some examples obtained by a camegalrscenarios. For each
video we arbitrarily choose three frames to display here.

Previous methods have been developed to deal with the ambekeffect in astronomical
images. In[[18], local filters (Wiener filter, Laplacian régpization and so on) were utilized
and local properties were obtained by block partitioningh&f image. As a result, some
block artifacts appear on the restored images.

An interesting work about turbulence modelization for gation algorithms was made
by Frakes[[11ll, 12]. The authors modeled the turbulence phenon by using two opera-
tors:

1) fi(z) = Di(H (u(z))) + noise

whereu is the static original scene we want to retrieygjs the observed image at time

i, H is a blurring kernel, and; is an operator which represents the geometric distortions
caused by the turbulence at timeBased on this model, the authors bfl[14] proposed a
scheme to evaluate thig—' andD~' operators. Thed ~! operator is obtained by blind
deconvolution, while the correction of the geometricatalisons D~! is computed by

an elastic registration algorithm based on diffeomorphappings. This approach gives
nice results but it has two main drawbacks. First, it is tinnesuming to perform the
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2 YU MAO AND JEROME GILLES

FIGURE 1. Sample images. Each row contains three arbitrary frames
from different testing turbulence videos.

calculations due to the two iterative processes involveth@éalgorithm. Secondly, the
performance is sensitive to the choice of the parameters.

Another kind of approach for this problem is to utilize thelian filter, which is a
statistical tool that recovers a static object from a timeeseof observations. 1 [27],
the authors successfully use this filter in the turbulencemstruction problem. However,
this method requires a strong time dependence of the fralma®fore the frame rate has
to be sufficiently high. It treats the warped frames orderetime as governed by fluid
dynamics, and thus can be characterized by time-dependtaredtial equations, which
is not a practical assumption in some applications.

More recently, some efforts were made to propose new mitigatigorithms. In[[2D],
assuming long exposure video capture, the authors propasseta Principal Component
Analysis to find the statistically best restored image froseguence of acquired frames. In
[2], the authors use the assumption that for a fixed locatidhé image, its neighborhood
has some high probability to appear with better quality tigtothe time. Then the restored
region is a fusion of the best ones. Some spatially variabiudeng was proposed i [18]
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FIGURE 2. The model of deformation used in this paper.

but the algorithm doesn’t specially address the probleneohgetrical distortions. Close to
the modelization of Frakes[11], in[30] the authors proposaverse the geometric distor-
tions and the blur. They use some B-Spline registrationrdlgn embedded in a Bayesian
framework with bilateral total variation regularization.

The goal of this paper is to propose new investigations anghoblem, principally on
the correction of geometrical distortions. We develop diediframework which uses both
an optical flow scheme to estimate the geometrical distoramd a nonlocal-TV based
regularization process to recover the original observethec The paper is organized as
follows: in sectio R, we describe the basic model used tijinout the whole paper. Section
[3 deals with Bregman iteration and the operator splittingrafr used in the optimization
process. Sectionl 4 provides the whole algorithm and impteation details. Section] 5
present many numerical results obtained by the proposedthaien real data. We conclude
in sectior{ 6.

2. OUR BAsIC MODEL

We denote the observed image sequencgfgs—1,... ~ and the true image that needs
to be reconstructed as We assume

) fi(z) = u(¢i(x)) + noise Vi
whereg; corresponds to the geometric deformation onititle frame (let remark that the
¢; are the deformations between the true image and the obskared: and not the con-
tinuous movement flow from frame to frame, see Elg. 2).

If we fix ¢;, u(-) — u(¢:(-)) can be treated as a linear operatorQrso we can write
the right hand side of{2) as

®3) w(pi(+)) = (Pau)(-)
whered; is the linear operator corresponding deformatignthen [2) becomes
4) fi = ®;u + noise Vi

which gives our fidelity equations in the model.

On the other hand, it is reasonable to assume that our imageehtin regularization
features. For natural image the total variation has beeveprto be satisfactory for avoid-
ing noise while preserving sharp edges in imageé [25]. Therewny other modern models
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4 YU MAO AND JEROME GILLES

such as nonlocal total variation that has been developethaestigated throughly as well
[5,[13]. If we denote the regularization term of the image/as), then we can formulate
our problem as
(5) Inzbn J(u) st fi =®u+noise Vi

We want to remark that rather than investigating the timeedeent fluid dynamics
model behind the warping effect, which is often extremelynpticated, we simply treat
the frames as arbitrary samples of the image after randonphiray without using any
sequential information of the video frames. This can gyesithplify the model and make
the model available even if the sequential relevance istnmtg enough in practical data.

The regularization term ofi, J(u), has many different choices. Most notably, total
variation based optimizatioh [25] have been successfutdigie preserving regularization.
However, the use of pure total variation models for realistiages have been shown to
produce artificial patches; this is due to the choice of thenbled-variation space and
the corresponding total variation norm. More recently, tbalocal means regularization
model [5/13] has been introduced which modifies the intgiodia pixel by considering the
nearby pixel values with similar patterns. The basic assiompehind is that a natural im-
age contains repeating structures instead of repeatiegspikXhis method has been proved
to be successful to remove artifacts while keeping the eequdttern and texture contained
in the image and has been extended to include variationdlodeatsing functionals with
nonlocal regularization, and proven superior to many otimage regularization methods
as it considers the large-scale structure of the image &d¢isallocal differences between
pixels, which makes it capable of preserving importantitetdeatures in an image while
removing artifacts effectively. For these reasons, inlaiger we utilize the nonlocal regu-
larization. Thereafter, for the reader’s convenience,&ealt the expression of(u) in the
nonlocal regularization case. A detailed introductionha$ regularization method and its
numerical implementation can be found in[13]. The nonldaakl Variation (NLTV) is
defined by

(6) J(u) = Jyrrv(u) = /Q \//Q (u(y) — u(x))2 w(x,y)dydx

where the weightv(z, y) corresponds to the similarity between patches centeredxeh p
x andy. The more the patches are similar, the more they are takeragtount into the
regularized image.

There are many problems which have similar forms wiih (5) timve been studied in
many recent references. For example[in [8, 9, 17], the ewbnvolution problem was
modeled as

(7) Hli]? J(u)+ H(k) st f=k*u+noise Vi

where H (k) is another regularization term on the unknown convolutiemkl k. This
kind of model can be solved by the alternative optimizatiaethod, i.e. optimizing over
different variables alternatively. We want to remark tfi#tié a convex problem fox and
k respectively, but not convex for the joint variables, anddeld3) has the same feature.
The nature of non-convexity makes it hard to analyze the @mance behaviour for the
optimization procedure, but the alternative optimizatioethod at least guarantees that the
functional is always decreasing over the iterations.

In our model[(b), if we have a good guessmarthen the optimad; can be estimated by
(2) via certain optical flow algorithms (e.g. the methodsealeped in [3/ 4, 26]). On the
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NON RIGID GEOMETRIC DISTORTIONS CORRECTION 5

other hand, given fixed®; } the model[(b) can be solved as a constrained problem, which
we will discuss in the next section.

3. ALGORITHM

3.1. BREGMAN ITERATION. The Bregman iterative method was originally introduced to
the image processing by [23]. It solves the following caaisied optimization problem

(8) min J(u) s.t. f= Au+ noise

by solving the following series of problems
u* = argmin, J(u) + 3[|Au — f*||?

(9)
fk+1 sz—i—f—Auk

with f9 = f andA a linear operator (the deformations in our case). It has beewn that
this iteration converges to the solution of (8). The Bregiitenative method(9) is actually
equivalent to alternatively descent the primal variabld ascent the dual variable of the
Lagrangian of[(B), as pointed out by many papers, €.9.128, 29

3.2. OPERATORSPLITTING METHOD. The first step in[{9) is an unconstrained problem.
This formulation has appeared in many practical imagingigmad processing problems,
seel[17] 22, 28] for examples. It can be solved by the forvimakward operating splitting
method, which was first proposed by Lions and Merdciei [21] Badsty([24] and general-
ized by Combettes and Wajs |10]. The scheme can be describfedl@vs: to solve the
unconstrained problem

(10) min J(u) + 3| Au — P

we want to find theu such that) € d.J(u) + AAT (Au — f), whered.J(u) denotes the
sub-derivative of/(u). This leads to the following fixed point algorithm:

v u— AT (Au— f)
(11) : A 5
u < argmin, J(u) + 55 [lu — v||

This method is practically efficient. The first line is caltbeé forward step which is nothing
but the gradient descent tfiu, — f||2. The second line

(12) u(—argminJ(u)—i—2—/\6Hu—v||2

is called the backward step and can be solved efficiently fanyrchoice ofJ(u). For
example, if we choose the total variation as the reguladmaerm

(13) Iw) = [ 1Vulw)ldz,

then [12) is nothing but the standard ROF model and can bedalery efficiently via

graph-cut method [15]. In our methotw) is the nonlocal total variation, thehh {12) can be

solved as a typical nonlocal denoising problem as discussedny references, e.d. [13].
Apply this method to[{(9), we get the following AlgoritHoh 1 tolge (8).
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6 YU MAO AND JEROME GILLES

Algorithm 1 The Bregman Iteration

Initialize: Start from some initial guess Let f = f.
while || Au — f]|? not small enougklo
while || Au — f||? not convergelo
v u— AT (Au — f)
u 4 argmin, J(u) + 35|ju — v|?

_endwhile
f< f+f—Au.
end while

3.3. ALGORITHM. We now apply algorithmi]1 to our problem. Besides puttipdy —
fl3 =3, |®;u— f;]|3 and.J(u) to be the nonlocal regularization, we also need to notice
that in our problem thé; is unknown and should be updated as well.

In our implementation we will combine the updating step fog ®; into the Bregman
updating loop, similar as in [17]. We will choose the optiftalv method described in [3]
to updated;. The overall algorithrhl2 is as follows:

Algorithm 2 The Alternative Optimization Algorithm

Initialize: Start from some initial guess Let f; = f;.
while ", [|®,u — f;]|? not small enougllo
Estimate®,; which maps: onto f; from (2) via optical flow scheme.
while Y™, ||®;u — fi[* not convergelo
viu—08Y, o (d;u— f)
u 4 argmin, J(u) + 35||u — v|?
end while
fi = fi+ fi — Qu.
end while

4. IMPLEMENTATION

FIGURE 3. The average of the frames of one example video and its mag-
nification of the top right corner.

4.1. INITIAL VALUE. The initial value ofu is chosen as the temporal average of the
frames. In Fig[B an example is shown. We can see that the gavexfathe frames is
very blur but gives good initial guess of the rough shape efabject.
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NON RIGID GEOMETRIC DISTORTIONS CORRECTION 7

4.2. NUMBER OF FRAMES. The quantity of frames determines the quality of the recon-
struction. On the other hand, the more frames are used, tfjerlaomputational cost is
consumed due to the fact that the registration between dinesfs are most time costing. In
our numerical experiments we use less than 100 frames aratallgrnwe can always get
satisfactory results with only 10 frames. In the synthetiareple shown in Fid.]8 we only
use 20 frames.

4.3. COMPUTATION OF ®; AND ®. As we described above, the turbulence warging
is estimated by optical flow scheme. In our implementatioruae the method developed
in [26], while other schemes can be applied as well. Giwen®,u = u(¢;(-)) can be
evaluate by interpolation.

@/ is the adjoint operator ob;, that is to say,

(14) <v,<I);ru> = (P;v,u), Vv

Mathematically, this can be written as

(15) /(fbju) ~vdx = /u -v(¢i)dzx, Yo
which is sometimes denoted as
(16) ®/ u(z) = ¢ittu(x)

whereg; #u(z) is called the push-forward action ¢f ontou(z). Giveng;, ®; u(z) can
be numerically evaluated as follows. Let

a7) (o) = {(1) e

be the ‘single-pixel spike’ function at pixel, then the value ofo] u at pixely can be
calculated as

(18) (Q);ru)(y) = <vy7CI)ZTu> = <q)ivy7u>a

This computation is very efficient becausev, is a very simple function and can be di-
rectly evaluated frong;.

4.4, REGULARIZATION. As discussed in sectibn 3 the regularization step
(19) u(—argminJ(u)—i—2—/\6Hu—v||2

is a well-studied optimization problem and can be solved bBpyrexisting routine. We use
the method developed in [13] to implement this step.

4.5. RRAMETERS. There are two parameters in our algorithind Z the step size for the
gradient descent of the fidelity term. As showslinl [10], tlepstize should be chosen such
thatu — u—6) ", <I>1-T(<I>1-u—f~) is contractive to guarantee the convergence. The parameter
Ais not a crucial factor and numerical results also indidad¢it is not sensitive. In practice

we suggest a small initia{ to make the image regularized enough at the very beginning,
then increase the gradually. This method is also used in other image recoctsbru
method, e.g. 1].
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5. EXPERIMENTATIONS

5.1. TEsTs RESULTS In Fig.[4[B[6 and]7 some frames of test sequences from ebsi
are shown, as well as the magnified details. Our reconstrucéisults are shown in the
last row for Fig[#[ b6 and the last column for Hig. 7. Onlyé&rdtions are implemented
in our algorithm to get this satisfactory result (espewiall Fig.[1 where the letters on the
board are much readable on processed image than in theadrigimes). FiglZ8 shows a
synthetic example, where the wave filter with unknown patams imposed on the static
image. Only 20 frames are used in this example.

5.2. INFLUENCE OF THE OPTICAL FLOW SCHEME CHOICE As mentioned before, the
optical flow scheme used was one developped_in [26]. Thisrifgo gives good optical
flow estimation but is time consuming. In Fig. 9, we presemisaesults both obtained by
the above mentioned algorithm and the classical Lucas-t@{¥] optical flow algorithm
which is faster. The different experiments seems to showthigaresults are very similar
and then our restoration algorithm is not sensitive to thaaehof the optical flow scheme.

5.3. THE CASE OF NONSTATIC SCENE In Fig.[10, we show some results when the pro-
posed algorithm is applied on a sequence where a pedestriaoving. A restored frame
N is processed with only the ten initial framg&a” — 10, N'}. The number of frames used
by the algorithm may clearly depends on the velocity diffieebetween the movement of
the pedestrian and movements dues to turbulence. Thegshkolv an improved sequence
where the turbulence deformations are mostly compensatedwt altering the pedestrian
movement which will be easier to detect.

5.4. COMPARISON WITH EXISTING METHODS Fig.[11 shows a comparison between re-
sults obtained by our method and two state of the art othenaast the algorithm based on
PCA [20] and the algorithm using the Lucky-Region Fusidn [B]these tests, we deal with
short exposure sequences; then it is not surprising th&@#emethod failed as in this case
the assumption of a gaussian kernel for the blur is not releviéhe Lucky-Region Fusion
approach gives some good results but our method shows & etimetry reconstruction
(see for example near the high spatial frequencies in thanskeow, the separation between
each bar is more clear in our results). The other advantagaradlgorithm is that it need
few frames to get a good result, compared to the 100 frames instne Lucky-Region
Fusion.

6. CONCLUSION

We proposed a novel approach to restore an image from a vedpm@ace contaminated
by geometric deformations like the ones observed in atmerépturbulence. Our method
is based on a variational model solved by Bregman iteratihogerator splitting method.
Both state-of-the-art and classical optical flow methodsevtilized to estimate the warp-
ing effect. No restriction on the frame rate or sequencerasdgeeded in our method. The
algorithm is simple, concise and computationally efficient

In order to deal with the complete turbulence problem and¥ahg the model of Frakes
[11], we try some deblurring at the end of the process. Webtatst nonblind deconvolution
(by assuming a gaussian blur kernel, where its size is cimoesgerimentally) based on
total variation regularizatiori [16] or framelet decompiosi [6, [7], and bayesian blind
deconvolution (theleconfunction available in Matlab).

The results, shown in Fig. 112, obtained by adding these dehfueffects doesn'’t give
real good improvements, for the two nonblind technics tlifiedinces between the inputs
and outputs are rather small. Another point, is that difieexperiments seems to show that
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NON RIGID GEOMETRIC DISTORTIONS CORRECTION 9

FIGURE 4. The first three rows are example frames and the magnifica-

tions of the right part of the frames. The last row shows oconstructed
result.

the gaussian assumption for the kernel is not relevant ferkihd of blur. The Bayesian
blind algorithm gives images with sharper edges, but asiguely, the improvements are
not really significants. Some investigations are curreshdiye to find the best way to deblur.
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FIGURE 5. The first three rows are example frames and the magnifica-
tion of the top right part of the frames. The last row shows r&won-
structed result.
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FIGURE 6. The first three rows are example frames and the magnifica-
tion of the center part of the frames. The last row shows awgnistructed
result.

The main questions are: which kind of deblurring method? #when is the best moment
to apply deblurring (at the end of the process of during thegBran iteration)?
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12 YU MAO AND JEROME GILLES

FIGURE 7. The first two figures are example frames. The last figure is
our reconstructed result. Only 10 frames are used in thispl&a

FIGURE 8. The first two figures are the distorted Lena. The last figgaire i
our reconstructed result. Only 20 frames are used in thispl&a

FIGURE 9. Results obtained by using different optical flow schemes.
Black-Anandan scheme on the left column and Lukas-Kanadense
on the right column.
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FIGURE 10. Results obtained on a sequence with a moving pedestrian
(original frames on top and restored frames on bottom).

FIGURE 11. Results obtained with different algorithms: our metbad
left, the PCA based approach in the middle and the Lucky-&telgusion
on the right.

Finally, we look forward to exploring the broader capal@itof this method in different
applications like underwater imaging.
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FIGURE 12. Outputs of three different deblurring algorithms: Ntmdb
TV-deblurring on left, a Nonblind Framelet based approadhé middle
and the Matlab Bayesian Blind deconvolution on right.
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