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ABSTRACT. A novel approach is presented to recover image degraded by atmospheric
turbulence. Given a sequence of frames affected by turbulence, we construct a variational
model to characterize the static image. The optimization problem is solved by the Bregman
iteration and operator splitting method. Our algorithm is simple and efficient, and can be
easily generalized for different scenarios.

1. INTRODUCTION

In the last decade, long range imaging systems have been developed to improve target
identification. One of the main visual effect is distortionsdue to atmospheric turbulence
(known in the literature as “image dancing”). It may occur inmany other scenarios. For
example, underwater imaging systems are subject to scattering effects and video shooting
in summer suffers from hot air near the ground, and so on. Weakturbulence does not
really affect human observers, but it can cause problems foran automatic target recognition
algorithm because the shape of the object may be very different from those learned by the
algorithm. Fig 1 shows some examples obtained by a camera in real scenarios. For each
video we arbitrarily choose three frames to display here.

Previous methods have been developed to deal with the turbulence effect in astronomical
images. In [19], local filters (Wiener filter, Laplacian regularization and so on) were utilized
and local properties were obtained by block partitioning ofthe image. As a result, some
block artifacts appear on the restored images.

An interesting work about turbulence modelization for mitigation algorithms was made
by Frakes [11, 12]. The authors modeled the turbulence phenomenon by using two opera-
tors:

(1) fi(x) = Di(H(u(x))) + noise

whereu is the static original scene we want to retrieve,fi is the observed image at time
i, H is a blurring kernel, andDi is an operator which represents the geometric distortions
caused by the turbulence at timei. Based on this model, the authors of [14] proposed a
scheme to evaluate theH−1 andD−1 operators. TheH−1 operator is obtained by blind
deconvolution, while the correction of the geometrical distortionsD−1 is computed by
an elastic registration algorithm based on diffeomorphic mappings. This approach gives
nice results but it has two main drawbacks. First, it is time consuming to perform the
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FIGURE 1. Sample images. Each row contains three arbitrary frames
from different testing turbulence videos.

calculations due to the two iterative processes involved inthe algorithm. Secondly, the
performance is sensitive to the choice of the parameters.

Another kind of approach for this problem is to utilize the Kalman filter, which is a
statistical tool that recovers a static object from a time series of observations. In [27],
the authors successfully use this filter in the turbulence reconstruction problem. However,
this method requires a strong time dependence of the frames,therefore the frame rate has
to be sufficiently high. It treats the warped frames ordered in time as governed by fluid
dynamics, and thus can be characterized by time-dependent differential equations, which
is not a practical assumption in some applications.

More recently, some efforts were made to propose new mitigation algorithms. In [20],
assuming long exposure video capture, the authors propose to use a Principal Component
Analysis to find the statistically best restored image from asequence of acquired frames. In
[2], the authors use the assumption that for a fixed location in the image, its neighborhood
has some high probability to appear with better quality through the time. Then the restored
region is a fusion of the best ones. Some spatially variant deblurring was proposed in [18]
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FIGURE 2. The model of deformation used in this paper.

but the algorithm doesn’t specially address the problem of geometrical distortions. Close to
the modelization of Frakes [11], in [30] the authors proposeto inverse the geometric distor-
tions and the blur. They use some B-Spline registration algorithm embedded in a Bayesian
framework with bilateral total variation regularization.

The goal of this paper is to propose new investigations on this problem, principally on
the correction of geometrical distortions. We develop a unified framework which uses both
an optical flow scheme to estimate the geometrical distortion, and a nonlocal-TV based
regularization process to recover the original observed scene. The paper is organized as
follows: in section 2, we describe the basic model used throughout the whole paper. Section
3 deals with Bregman iteration and the operator splitting operator used in the optimization
process. Section 4 provides the whole algorithm and implementation details. Section 5
present many numerical results obtained by the proposed method on real data. We conclude
in section 6.

2. OUR BASIC MODEL

We denote the observed image sequence as{fi}i=1,...,N and the true image that needs
to be reconstructed asu. We assume

(2) fi(x) = u(φi(x)) + noise, ∀i

whereφi corresponds to the geometric deformation on thei-th frame (let remark that the
φi are the deformations between the true image and the observedframei and not the con-
tinuous movement flow from frame to frame, see Fig. 2).

If we fix φi, u(·) → u(φi(·)) can be treated as a linear operator onu, so we can write
the right hand side of (2) as

(3) u(φi(·)) = (Φiu)(·)

whereΦi is the linear operator corresponding deformationφi , then (2) becomes

(4) fi = Φiu+ noise, ∀i

which gives our fidelity equations in the model.
On the other hand, it is reasonable to assume that our image has certain regularization

features. For natural image the total variation has been proved to be satisfactory for avoid-
ing noise while preserving sharp edges in image [25]. There are many other modern models
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such as nonlocal total variation that has been developed andinvestigated throughly as well
[5, 13]. If we denote the regularization term of the image asJ(u), then we can formulate
our problem as

(5) min
u,φi

J(u) s.t. fi = Φiu+ noise, ∀i

We want to remark that rather than investigating the time-dependent fluid dynamics
model behind the warping effect, which is often extremely complicated, we simply treat
the frames as arbitrary samples of the image after random morphing without using any
sequential information of the video frames. This can greatly simplify the model and make
the model available even if the sequential relevance is not strong enough in practical data.

The regularization term ofu, J(u), has many different choices. Most notably, total
variation based optimization [25] have been successful foredge preserving regularization.
However, the use of pure total variation models for realistic images have been shown to
produce artificial patches; this is due to the choice of the bounded-variation space and
the corresponding total variation norm. More recently, thenonlocal means regularization
model [5, 13] has been introduced which modifies the intensity of a pixel by considering the
nearby pixel values with similar patterns. The basic assumption behind is that a natural im-
age contains repeating structures instead of repeating pixels. This method has been proved
to be successful to remove artifacts while keeping the regular pattern and texture contained
in the image and has been extended to include variational method using functionals with
nonlocal regularization, and proven superior to many otherimage regularization methods
as it considers the large-scale structure of the image beside the local differences between
pixels, which makes it capable of preserving important detailed features in an image while
removing artifacts effectively. For these reasons, in thispaper we utilize the nonlocal regu-
larization. Thereafter, for the reader’s convenience, we recall the expression ofJ(u) in the
nonlocal regularization case. A detailed introduction of this regularization method and its
numerical implementation can be found in [13]. The nonlocalTotal Variation (NLTV) is
defined by

(6) J(u) = JNLTV (u) =

∫

Ω

√

∫

Ω

(u(y)− u(x))2 w(x, y)dydx

where the weightw(x, y) corresponds to the similarity between patches centered on pixel
x andy. The more the patches are similar, the more they are taken into account into the
regularized image.

There are many problems which have similar forms with (5) that have been studied in
many recent references. For example, in [8, 9, 17], the blinddeconvolution problem was
modeled as

(7) min
u,k

J(u) +H(k) s.t. f = k ⋆ u+ noise, ∀i

whereH(k) is another regularization term on the unknown convolution kernelk. This
kind of model can be solved by the alternative optimization method, i.e. optimizing over
different variables alternatively. We want to remark that (7) is a convex problem foru and
k respectively, but not convex for the joint variables, and model (5) has the same feature.
The nature of non-convexity makes it hard to analyze the convergence behaviour for the
optimization procedure, but the alternative optimizationmethod at least guarantees that the
functional is always decreasing over the iterations.

In our model (5), if we have a good guess onu, then the optimalφi can be estimated by
(2) via certain optical flow algorithms (e.g. the methods developed in [3, 4, 26]). On the
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other hand, given fixed{φi} the model (5) can be solved as a constrained problem, which
we will discuss in the next section.

3. ALGORITHM

3.1. BREGMAN ITERATION. The Bregman iterative method was originally introduced to
the image processing by [23]. It solves the following constrained optimization problem

(8) min
u

J(u) s.t. f = Au+ noise

by solving the following series of problems

(9)

{

uk = argminu J(u) +
λ
2
‖Au− fk‖2

fk+1 = fk + f −Auk

with f0 = f andA a linear operator (the deformations in our case). It has beenshown that
this iteration converges to the solution of (8). The Bregmaniterative method (9) is actually
equivalent to alternatively descent the primal variable and ascent the dual variable of the
Lagrangian of (8), as pointed out by many papers, e.g. [28, 29].

3.2. OPERATORSPLITTING METHOD. The first step in (9) is an unconstrained problem.
This formulation has appeared in many practical imaging or signal processing problems,
see [17, 22, 28] for examples. It can be solved by the forward-backward operating splitting
method, which was first proposed by Lions and Mercier [21] andPassty [24] and general-
ized by Combettes and Wajs [10]. The scheme can be described as follows: to solve the
unconstrained problem

(10) min
u

J(u) +
λ

2
‖Au− f‖2

we want to find theu such that0 ∈ ∂J(u) + λA⊤(Au − f), where∂J(u) denotes the
sub-derivative ofJ(u). This leads to the following fixed point algorithm:

(11)

{

v ← u− δA⊤(Au − f)

u← argminu J(u) +
λ
2δ
‖u− v‖2

This method is practically efficient. The first line is calledthe forward step which is nothing
but the gradient descent of‖Au− f‖2. The second line

(12) u← argmin
u

J(u) +
λ

2δ
‖u− v‖2

is called the backward step and can be solved efficiently for many choice ofJ(u). For
example, if we choose the total variation as the regularization term

(13) J(u) =

∫

|∇u(x)|dx,

then (12) is nothing but the standard ROF model and can be solved very efficiently via
graph-cut method [15]. In our methodJ(u) is the nonlocal total variation, then (12) can be
solved as a typical nonlocal denoising problem as discussedin many references, e.g. [13].

Apply this method to (9), we get the following Algorithm 1 to solve (8).
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Algorithm 1 The Bregman Iteration

Initialize: Start from some initial guessu. Let f̃ = f .
while ‖Au− f‖2 not small enoughdo

while ‖Au− f̃‖2 not convergedo
v ← u− δA⊤(Au− f̃)
u← argminu J(u) +

λ
2δ
‖u− v‖2

end while
f̃ ← f̃ + f −Au.
end while

3.3. ALGORITHM. We now apply algorithm 1 to our problem. Besides putting‖Au −
f‖22 =

∑

i ‖Φiu− fi‖
2
2 andJ(u) to be the nonlocal regularization, we also need to notice

that in our problem theΦi is unknown and should be updated as well.
In our implementation we will combine the updating step for theΦi into the Bregman

updating loop, similar as in [17]. We will choose the opticalflow method described in [3]
to updateΦi. The overall algorithm 2 is as follows:

Algorithm 2 The Alternative Optimization Algorithm

Initialize: Start from some initial guessu. Let f̃i = fi.
while

∑

i ‖Φiu− fi‖
2 not small enoughdo

EstimateΦi which mapsu ontofi from (2) via optical flow scheme.
while

∑

i ‖Φiu− f̃i‖
2 not convergedo

v ← u− δ
∑

i Φ
⊤

i (Φiu− f̃)

u← argminu J(u) +
λ
2δ
‖u− v‖2

end while
f̃i ← f̃i + fi − Φiu.

end while

4. IMPLEMENTATION

FIGURE 3. The average of the frames of one example video and its mag-
nification of the top right corner.

4.1. INITIAL VALUE . The initial value ofu is chosen as the temporal average of the
frames. In Fig. 3 an example is shown. We can see that the average of the frames is
very blur but gives good initial guess of the rough shape of the object.
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4.2. NUMBER OF FRAMES. The quantity of frames determines the quality of the recon-
struction. On the other hand, the more frames are used, the larger computational cost is
consumed due to the fact that the registration between the frames are most time costing. In
our numerical experiments we use less than 100 frames and generally we can always get
satisfactory results with only 10 frames. In the synthetic example shown in Fig. 8 we only
use 20 frames.

4.3. COMPUTATION OFΦi AND Φ⊤

i . As we described above, the turbulence warpingφi

is estimated by optical flow scheme. In our implementation weuse the method developed
in [26], while other schemes can be applied as well. Givenφi, Φiu = u(φi(·)) can be
evaluate by interpolation.

Φ⊤

i is the adjoint operator ofΦi, that is to say,

(14) 〈v,Φ⊤

i u〉 = 〈Φiv, u〉, ∀v

Mathematically, this can be written as

(15)
∫

(Φ⊤

i u) · vdx =

∫

u · v(φi)dx, ∀v

which is sometimes denoted as

(16) Φ⊤

i u(x) = φi#u(x)

whereφi#u(x) is called the push-forward action ofφi ontou(x). Givenφi, Φ⊤

i u(x) can
be numerically evaluated as follows. Let

(17) vy(x) =

{

1, y = x

0, y 6= x

be the ‘single-pixel spike’ function at pixely, then the value ofΦ⊤

i u at pixel y can be
calculated as

(18) (Φ⊤

i u)(y) = 〈vy,Φ
⊤

i u〉 = 〈Φivy, u〉,

This computation is very efficient becauseΦivy is a very simple function and can be di-
rectly evaluated fromφi.

4.4. REGULARIZATION . As discussed in section 3 the regularization step

(19) u← argmin
u

J(u) +
λ

2δ
‖u− v‖2

is a well-studied optimization problem and can be solved by many existing routine. We use
the method developed in [13] to implement this step.

4.5. PARAMETERS. There are two parameters in our algorithm 2.δ is the step size for the
gradient descent of the fidelity term. As shows in [10], the step size should be chosen such
thatu→ u−δ

∑

iΦ
⊤

i (Φiu−f̃) is contractive to guarantee the convergence. The parameter
λ is not a crucial factor and numerical results also indicate that it is not sensitive. In practice
we suggest a small initialλ to make the image regularized enough at the very beginning,
then increase theλ gradually. This method is also used in other image reconstruction
method, e.g. [1].

INVERSE PROBLEMS AND IMAGING VOLUME X, NO. X (200X), X–XX



8 YU MAO AND JÉRÔME GILLES

5. EXPERIMENTATIONS

5.1. TESTS RESULTS. In Fig. 4, 5, 6 and 7 some frames of test sequences from real videos
are shown, as well as the magnified details. Our reconstruction results are shown in the
last row for Fig. 4, 5, 6 and the last column for Fig. 7. Only 5 iterations are implemented
in our algorithm to get this satisfactory result (especially in Fig. 7 where the letters on the
board are much readable on processed image than in the original frames). Fig. 8 shows a
synthetic example, where the wave filter with unknown parameter is imposed on the static
image. Only 20 frames are used in this example.

5.2. INFLUENCE OF THE OPTICAL FLOW SCHEME CHOICE. As mentioned before, the
optical flow scheme used was one developped in [26]. This algorithm gives good optical
flow estimation but is time consuming. In Fig. 9, we present some results both obtained by
the above mentioned algorithm and the classical Lucas-Kanade [4] optical flow algorithm
which is faster. The different experiments seems to show that the results are very similar
and then our restoration algorithm is not sensitive to the choice of the optical flow scheme.

5.3. THE CASE OF NONSTATIC SCENE. In Fig. 10, we show some results when the pro-
posed algorithm is applied on a sequence where a pedestrian is moving. A restored frame
N is processed with only the ten initial frames{N − 10, N}. The number of frames used
by the algorithm may clearly depends on the velocity difference between the movement of
the pedestrian and movements dues to turbulence. The results show an improved sequence
where the turbulence deformations are mostly compensated without altering the pedestrian
movement which will be easier to detect.

5.4. COMPARISON WITH EXISTING METHODS. Fig. 11 shows a comparison between re-
sults obtained by our method and two state of the art other methods: the algorithm based on
PCA [20] and the algorithm using the Lucky-Region Fusion [2]. In these tests, we deal with
short exposure sequences; then it is not surprising that thePCA method failed as in this case
the assumption of a gaussian kernel for the blur is not relevant. The Lucky-Region Fusion
approach gives some good results but our method shows a better geometry reconstruction
(see for example near the high spatial frequencies in the second row, the separation between
each bar is more clear in our results). The other advantage ofour algorithm is that it need
few frames to get a good result, compared to the 100 frames used in the Lucky-Region
Fusion.

6. CONCLUSION

We proposed a novel approach to restore an image from a video sequence contaminated
by geometric deformations like the ones observed in atmospheric turbulence. Our method
is based on a variational model solved by Bregman iteration and operator splitting method.
Both state-of-the-art and classical optical flow methods were utilized to estimate the warp-
ing effect. No restriction on the frame rate or sequence order is needed in our method. The
algorithm is simple, concise and computationally efficient.

In order to deal with the complete turbulence problem and following the model of Frakes
[11], we try some deblurring at the end of the process. We testboth nonblind deconvolution
(by assuming a gaussian blur kernel, where its size is choosen experimentally) based on
total variation regularization [16] or framelet decomposition [6, 7], and bayesian blind
deconvolution (thedeconvfunction available in Matlab).

The results, shown in Fig. 12, obtained by adding these deblurring effects doesn’t give
real good improvements, for the two nonblind technics the differences between the inputs
and outputs are rather small. Another point, is that different experiments seems to show that
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NON RIGID GEOMETRIC DISTORTIONS CORRECTION 9

FIGURE 4. The first three rows are example frames and the magnifica-
tions of the right part of the frames. The last row shows our reconstructed
result.

the gaussian assumption for the kernel is not relevant for this kind of blur. The Bayesian
blind algorithm gives images with sharper edges, but as previously, the improvements are
not really significants. Some investigations are currentlydone to find the best way to deblur.
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FIGURE 5. The first three rows are example frames and the magnifica-
tion of the top right part of the frames. The last row shows ourrecon-
structed result.
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FIGURE 6. The first three rows are example frames and the magnifica-
tion of the center part of the frames. The last row shows our reconstructed
result.

The main questions are: which kind of deblurring method? Andwhen is the best moment
to apply deblurring (at the end of the process of during the Bregman iteration)?
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FIGURE 7. The first two figures are example frames. The last figure is
our reconstructed result. Only 10 frames are used in this example.

FIGURE 8. The first two figures are the distorted Lena. The last figure is
our reconstructed result. Only 20 frames are used in this example.

FIGURE 9. Results obtained by using different optical flow schemes.
Black-Anandan scheme on the left column and Lukas-Kanade scheme
on the right column.
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FIGURE 10. Results obtained on a sequence with a moving pedestrian
(original frames on top and restored frames on bottom).

FIGURE 11. Results obtained with different algorithms: our methodon
left, the PCA based approach in the middle and the Lucky-Region Fusion
on the right.

Finally, we look forward to exploring the broader capabilities of this method in different
applications like underwater imaging.
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FIGURE 12. Outputs of three different deblurring algorithms: Nonblind
TV-deblurring on left, a Nonblind Framelet based approach in the middle
and the Matlab Bayesian Blind deconvolution on right.
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