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ABSTRACT OF THE DISSERTATION

Local, Non-local and Global Methods
in Image Reconstruction

by

Yifei Lou
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2010

Professor Andrea Bertozzi, Co-chair

Professor Stefano Soatto, Co-chair

Image restoration has been an active research topic in image processing and com-

puter vision. There are vast of literature, most of which rely on the regularization, or

prior information of the underlying image. In this work, we examine three types of

methods ranging from local, nonlocal to global with various applications.

A classical approach for local regularization term is achieved by manipulating the

derivatives. We adopt the idea in the local patch-based sparse representation to present

a deblurring algorithm. The key observation is that the sparse coefficients that en-

code a given image with respect to an over-complete basis are the same that encode a

blurred version of the image with respect to a modified basis. Following an “analysis-

by-synthesis” approach, an explicit generative model is used to compute a sparse rep-

resentation of the blurred image, and its coefficients are used to combine elements of

the original basis to yield a restored image.

We follows the framework that generates the neighborhood filters to an variational

formulation for general image reconstruction problems. Specifically, two extensions
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regarding to the weight computation are investigated. One is to exploit the recurrence

of structures at different locations, orientations and scales in an image. While previous

methods based on “nonlocal filtering” identify corresponding patches only up to trans-

lations, we consider more general similarity transformation. The second algorithm

utilizes a preprocessed data as input for the weight computation. The requirements for

preprocessing are (1) fast and (2) containing sharp edges. We get superior results in

the applications of image deconvolution and tomographic reconstruction.

A Global approach is explored in a particular scenario, that is, taking a burst of

photographs under low light conditions with a hand-held camera. Since each image of

the burst is sharp but noisy, our goal is to efficiently denoise these multiple images. The

proposed algorithm is a complex chain involving accurate registration, video equaliza-

tion, noise estimation and the use of state-of-the-art denoising methods. Yet, we show

that this complex chain may become risk free thanks to a key feature: the noise model

can be estimated accurately from the image burst.
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CHAPTER 1

Introduction

Image restoration is a fundamental problem to improve image quality for high-level

vision tasks. A vast variety of methods are available touching very different fields of

mathematics and statistics. To the best of our knowledge, many successful algorithms

are based on

• a forward image formation model, e.g. (1.1)

• a generic image smoothness model, i.e. regularization term.

In this dissertation, we examine a general model of image formation:

f(x) = Ku(x) + n(x), ∀x ∈ Ω (1.1)

where Ω is the image domain, f is the observed data, K is a continuous linear oper-

ator, u is the original image and n is white noise. Image reconstruction is an inverse

problem, which refers to the estimation of u given the data f and operator K. The

simplest case is when K degenerates to be the identity operator. As a result, our goal

is to remove the noise n from the data f , hence the term “denoising”. When the oper-

ator K is formulated as a convolution with a shift-invariant kernel, the inverse problem

becomes image deconvolution. This shift-invariant kernel is referred to as the point-

spread function (PSF), which usually describes the response of an imaging system to

a point source. A close relative to deblurring 1 is super-resolution in the sense that its
1Although usually deblurring refers to non-shift-invariant kernels, we use deblurring and deconvo-

lution interchangeably in the dissertation.

1



PSF corresponds to block-averaging of neighboring pixels. Another example occurs in

the context of tomographic reconstruction in which K represents an attenuated Radon

transform and the data f are observed as photon counts [3].

It is standard to approach the inverse problem by the method of regularization.

Since there is always no unique solution, a prior is imposed to guarantee that the re-

constructed image satisfies some desirable properties, such as smooth in homogeneous

regions and sharp in edges. In this dissertation, we look into variational approaches

where the image u is computed by a minimization of some energy functional, which

typically consists of a data fidelity term and a regularization term.

The local smoothing model goes back to Gabor [83] in 1960, where the smoothness

of u is measured by the H1 semi-norm,

u = arg min

∫
Ω

(f −Ku)2 + ν

∫
Ω

|∇u|2 .

It is also called Wiener Filter [2]. The minimizer u is a solution of the Euler-Lagrange

equation

K∗(Ku− f)− ν∆u = 0 ,

where ∆u is the Laplacian of u and ν is a parameter. If a gradient descent is applied, it

boils down to the heat equation, which performs poorly on singular parts of u, namely

edges or textures, where the Laplacian of the image is large. Another popular regular-

ization is total variation (TV). Due to its virtue of preserving edges, TV is widely used

in the many applications of image processing, such as blind deconvolution [27, 70, 93],

inpainting [26] and super-resolution [94]. However, these TV-based methods tend to

create a taxonomy of artifacts: “blur” in the texture regions, “staircase effect” and

“checkerboard effect” etc.

With the emergence of the compressive sensing, the concept of sparsity has gained

popularity in image processing and computer vision. It is based on the assumption

2



that any signal can be accurately represented with a few atoms from an over-complete

dictionary. Due to the over-completeness, the dimension of signals considered here

can not be the same as natural images, but has to reduce to a small image patch, for

example, 8× 8. Surprisingly, the sparse representation of local patches yields very ap-

pealing restoration results, such as denoising [46], color image restoration (denoising,

inpainting and demosaicing) [90] and super-resolution [138, 36]. Our contribution,

image deconvolution via sparsity, is addressed in Chapter 3. In particular, we devise a

deblurring algorithm that (a) explicitly takes into account the “sparse” natural statistics

of the image as a regularizer, and (b) does not suffer from the numerical conditioning

issues associated with solving an inverse diffusion PDE. We also extend the method to

blind deconvolution by simply augmenting our dictionary to include several different

blurring kernels.

Neighborhood filters consider to average the pixels which have higher similarity

with, instead of closer to, the pixel being processed. Referred to as nonlocal means

(NLM), the idea proposed by Buades et. al. [20] is to replace every pixel with a

weighed average of its neighborhood. The weight is measured in terms of similarity

between image patches centered around the center pixel. Since similar pixels can be

located far from each other, leading to an essentially nonlocal filtering. On the other

hand, however, due to the computational complexity, the similarity is not calculated

between any two pixels on the whole image domain, but within a searching window;

hence the term is “nonlocal”, but not “global”. Such kind of filters includes the SUSAN

filter [121], bilateral filter [129] and UINTA filter [4]. Inspired by graph theory [149],

Gilboa and Osher formalize a systematic and coherent framework [61] using nonlocal

operators. It provides an effective mechanism for general image restoration, as elab-

orated on Chapter 4. Our contribution is to design two particular ways of computing

the weight. In the original NLM, image patches in the weight function are invariant

only up to translation, while we extend this into a more general transformation, i.e.,

3



invariant to similarity. In addition, a key step for nonlocal methods to work in a gen-

eral inverse problem is to use a crude solution of the inverse problem to construct the

weight. It is especially important for applications such as tomographic reconstruction

when the observed data and the image lie in different spaces.

Global smoothness is usually proposed in the transform domain. For example,

Tikhonov regularization [128], which is to minimize the L2 norm of the image, can

be formulated as a one-step filter via Fourier transform, in the case of image deconvo-

lution. However, this procedure tends to amplify the high frequencies where noise is

conspicuous. In addition, global image characteristics may prevail over local ones, thus

creating the “ringing” artifact. In Chapter 5, we consider a different global approach. It

aims at denoising multiple images, any two of which are related by homography. The

main technical objection is to register globally the images of a burst (to take multiple

images of the same object). Once the registration is done, denoising follows naturally

by simple averaging.

The dissertation is organized as follows. Chapter 2 provides literature review in

the area of denoising, image (blind) deconvolution and super-resolution. In Chapter 3,

we develop a local sparsity scheme for image deconvolution. A nonlocal framework

is studied in Chapter 4 with two extensions on the ways of computing the weight

function. The global approach for multi-image denoising is discussed in Chapter 5.

Finally our conclusions are given in Chapter 6.
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CHAPTER 2

Literature Review

2.1 Image Denoising

Image “denoising” refers to a series of inference tasks whereby the effects of various

nuisance factors in the image formation process are removed or mitigated. Like all

inference tasks, denoising hinges on an underlying model – implicit or explicit – where

nuisance factors are processes that affect the data, but whose inference is not directly

of interest. The generic term “noise” then refers loosely to all unmodeled phenomena,

so illumination could be treated as noise in one application, or signal in another.

A simple example, used in most classical work in image processing, is the additive

model, where the scene underlying the image is the image itself, and “noise” is just a

realization of an additive process independent and typically characterized in terms of

simple statistics such as its local mean and standard deviation, or its norm. The mea-

sured data is just a sampled version of the image plus noise. This model corresponds

to assuming that the scene is flat, Lambertian, with diffuse albedo exhibiting piecewise

smooth statistics, without an explicit model of illumination. The “noise” term lumps

together everything else, and the resolution is determined by the sampling rate.

A variety of methods are available for image denoising, such as wavelet-based

approaches [110, 98] and statistical filters [129, 4]. A popular denoising model is
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proposed by Rudin, Osher and Fatemi, so-called ROF model,

u = arg min
u

∫
Ω

|∇u|+ λ

2

∫
Ω

(f − u)2, (2.1)

where λ > 0 is Lagrange multiplier. One way of solving this minimization problem is

to evolve a PDE, whose steady state corresponds to the local minima of (2.1),
ut = ∇ ∇u

|∇u|
+ λ(f − u) in Ω ,

∂u

∂n
= 0 on ∂Ω .

There are fast methods to minimize (2.1) such as [25, 63, 64].

The nonlocal means filter [20] recently emerged as a generalization of the Yaroslavsky

filter [139], but also taps on “exemplar-based” methods in texture synthesis [45] and

super-resolution [60], as well as on “procedural methods” in computer graphics [136,

29]. Its advantage is to exploit similar patches in the same image, without an ex-

plicit model of the image formation process. The approach is taken one step further in

[17], where similarity is computed hierarchically and efficiently. Another accelerating

method is proposed by Mahmoudi and Sapiro [89] via eliminating unrelated neighbor-

hoods from the weighted average. There are several other methods based on the idea

of nonlocal means filter [20]. For example, Kervrann and Bruckner [75] improve it

by using an adaptive window size. Gilboa and Osher [61, 76] formalize a variational

nonlocal framework motivated from graph theory [149]. Chatterjee and Milanfar [28]

generalize nonlocal means to high-order kernel regression.

Another trend in image denoising is to use sparse representation of signals. The ba-

sic assumption is that any signal x can be sparsely represented by a linear combination

of atoms in an over-complete dictionary D ∈ Rn×K i.e., x = Dα where the coefficients

α has only a few non-zero elements. The over-completeness of the dictionary refers to

the fact that K > n. If the data y is a corrupted version of x by the additive Gaussian
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noise, then the “denoised” signal x is given by Dα̂, where

α̂ = arg min
α
||α||0 s.t. ||Dα− y||22 6 T ,

where T is dictated by standard deviation of the additive noise. In this way, denois-

ing is achieved. There are several caveats for sparsity applied to image denoising.

First, due to the over-completeness of the dictionary, the dimension of atoms in the

dictionary can not be very large. Therefore, the signal considered in the sparse repre-

sentation is limited to small image patches. Second, the dictionary can be either chosen

from a prespecified set of functions, such as wavelets of various sorts, or designed by

adapting its content to fit a given set of signal examples. In [1], authors introduce the

K-SVD algorithm to learn a dictionary iteratively from training samples using orthog-

onal matching pursuit (OMP) [92, 131]. The follow-up work [46] claims that their

denoising algorithm achieves the best results when using K-SVD to learn a dictionary

from the noisy image itself. The extension to color images is discussed in [90] by

adapting the OMP inner-product definition. A multiscale framework is proposed in

[91] for the use of different sizes of atoms simultaneously.

2.2 Deconvolution

Deblurring refers to the task of “undoing” the effects of convolving the data with

a known kernel. A common instance occurs when an image is taken with a finite-

aperture system that is not well focused, so the measured image is a blurred version

of the “ideal image,” convolved with the point-spread function of the lens. Ideally,

one would like to recover, or “restore,” the image as would be captured by a well-

focused lens. Unfortunately, deblurring is well-known to be an ill-posed inverse prob-

lem, so small perturbations in the data (for instance noise or quantization errors in

the measured “blurred” image) lead to large errors in the reconstruction. These arti-
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facts are usually kept at bay by means of regularization, following the classical work

of Tikhonov [128]. Several choices of such generic regularizers have been proposed,

mostly made for mathematical convenience, some based on empirical observations on

the quality of the reconstruction. Recently, there has been some convergence towards

regularizers that enforce the statistics of natural images, which are well-known to pos-

sess highly kurtotic behavior [71] due to the presence of large homogeneous regions

bounded by sharp discontinuities at visibility boundaries such as occlusions and cast

shadows. Some classic regularizers, such as the Total Variation, implicitly favor these

kind of solutions, and remain among the most competitive deblurring algorithms to

this day. Nevertheless, deblurring in this context involves solving an inverse diffusion

partial differential equation (PDE). In [52], Favaro et. al. have approached the problem

of deblurring using a “direct” method: Rather than deconvolving the measured image

and the noise that goes with it, they convolve the “model image,” which is noiseless by

definition, with the known kernel. This yields a simple diffusion PDE whose (space-

varying) stopping time encodes the value of the kernel. They do not, however, exploit

the statistics of natural images in their solution.

Deconvolution is mainly solved by regularization. For example, the Wiener fil-

ter [2] uses the H1 semi-norm of the solution, which favors smooth reconstructions.

Total Variation (TV) [114], as already mentioned, favors piece-wise constant solu-

tions, whereas many wavelet-based deconvolution method do not directly enforce a

regularizer, but rather enforce regularization through complexity bounds, see e.g.,

[107, 39, 54, 55, 57]. One exception is discussed in [40]. Segmentation-based reg-

ularization is discussed in [97]. Deconvolution is also directly extended from denois-

ing algorithms, such as BLS-GSM [110, 66], kernel regression [122, 123] and BM3D

[33, 31].

Blind deconvolution is to decompose the data f as f = g∗u, where both g and u are
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unknown. One undesired solution is the no-blur explanation: g is the identity kernel

and u = f . Additionally, in order for blind deconvolution algorithms to work, one im-

portant assumption is that the image and PSF must be irreducible [78]: an irreducible

signal cannot be exactly expressed as the convolution of two or more component sig-

nals of the same family, on the understanding that the two-dimensional delta function

is not a component signal. However, the Gaussian function as a widely utilized PSF or

approximation to the real PSFs in many applications is reducible and not covered by

the methods in [79]. In recent paper [80], Levin et. al. explain the failure of the naive

maximum-a-posteriori (MAP) approaches by demonstrating that they mostly favor the

no-blur solution. It also follows from their analysis that modern natural image priors

[113, 137] do not help to overcome the MAP limitation. Fortunately, satisfactory re-

sults are achieved in some special applications, such as bar code reconstruction [48]

and motion deblurring [53, 117, 23].

2.3 Super-Resolution

A single-frame super-resolution is often referred to as interpolation. Recently a direc-

tional interpolation [141, 142] is computed by estimating sparse image mixture models

in a wavelet frame. Its idea is to use cubic spline interpolation for the low-frequency

image of wavelet decomposition, and a directional interpolation for the high-frequency

ones according to local orientation. Baker and Kanade derive analytical results in [6]

to show that the reconstruction constraints and smoothness prior provides less useful

information for larger magnification factors. They also propose a solution, which is

to introduce a recognition-based prior in the context of face or text images. Similarly,

example-based approaches [60] use a nearest-neighbor search to find the best match

for local patches, and replace them with corresponding high-resolution patches in the

training set, thus enhancing the resolution. To make the neighbors compatible, they
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use a belief-propagation algorithm linked to the Markov network. In another work,

Datsenko and Elad [36] consider a weighted average by surrounding pixels (analogue

to NLM). Instead of the nearest-neighbor search, Yang et. al. [138] propose to in-

corporate sparsity in the sense that each local patch can be sparsely represented as a

linear combination of low-resolution image patches; and a high-resolution image is re-

constructed by the corresponding high-resolution elements. Example-based video en-

hancement is discussed in [11], where a simple frame-by-frame approach is combined

with temporal consistency between successive frames. Also to mitigate the flicker

artifacts, a stasis prior is introduced to ensure the consistency in the high frequency

information between two adjacent frames.

Multi-frame super-resolution usually consists of two steps: registration and image

fusion. A review [13] in 1998 further categorizes super-resolution methods into two

divisions: those in the frequency domain and those in the spatial domain. Knowledge

of the affine motion in sub-pixel accuracy is required for frequency methods, while

spatial methods highly rely on regularization and optimization techniques.

Super-resolution and motion deblurring are combined in the work [8]. First the

object is tracked through the sequence, which gives a reliable sub-pixel segmentation

of a moving object [7]. Then a high-resolution image is constructed by merging mul-

tiple images with motion estimation. The deblurring algorithm, which mainly deals

with motion blur [74], is applied only to the region of interest. In [118, 119], super-

resolution is performed simultaneously in time and in space. Authors introduce a

directional space-time regularization term to enforce smoothness only in directions

within the space-time volume where the derivatives are low. The algorithm can be

applied directly to revolve motion blur, which is caused by temporal blurring and not

by spatial blurring. The recent paper by Baboulaz and Dragotti [5] presents several

methods of registration and image fusion to solve the super-resolution problem. The
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registration can be performed either globally by continuous moments from samples or

locally by step edge extraction. Besides, they merge the set of registered images into

a single image and then apply either Wiener filter or the iterative Modified Residual

Norm Steepest Descent (MRNSD) [106] to remove the blur and the noise.

2.3.1 Focus on Registration

In terms of image registration, most of the existing SR methods rely either on a com-

putationally intensive optical flow calculation, or on a parametric global motion esti-

mation. In [148], Zhao et. al. discuss the effects of multi-image alignment on super-

resolution, which addresses two issues: flow consistency (flow computed from frame

A to frame B should be consistent with that computed from B to A) and flow ac-

curacy. The flow consistency can be generalized to multiple frames by computing a

consistent bundle of flow fields. Global motion, on the other hand, can be estimated

either in the frequency domain or by feature-based approaches. For example, Vande-

walle et. al. [133] consider the problem of registering a set of images based on their

low-frequencies, aliasing-free part. They assume a planar motion, and as a result, the

rotation angle and shifts between any two images can be precisely calculated in the

frequency domain. As for the feature-based approaches, the standard procedure is to

detect the feature points via Harris corner detector [24, 5] or SIFT [144, 116] and then

match the corresponding points by RANSAC to fit a proper transformation such as

homography.

The Harris corner detector [67] finds the local maximum of the points using a large

corner response function. On the other hand, SIFT [87] is short for Scale Invariant

Feature Transform (SIFT). This is one of the most successful methodologies to match

regions up to a similarity transformation. The main steps in computing SIFT are

• Scale-space extrema detection: Scale is identified by searching for extrema in
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the scale-space of the image via a difference-of-Gaussian convolution.

• Keypoint localization: Keypoints are selected based on the stability of fitting a

3-D quadratic function (obtained via Taylor expansion in the scale-space).

• Orientation assignment: A rotation with respect to a canonical reference frame

is computed based on local image gradients.

• Keypoint descriptor: A vector composed of local image gradients is built, so that

it is not sensitive to similarity transformations and, to some extent, changes in

illumination.

More details on how each step is implemented in practice can be found in [87].

Both the Harris corner detector and SIFT will produce a large number of outliers

which are inconsistent with the desired homography. The RANSAC algorithm [56]

is applied to simultaneously estimate the homography and a set of consistent match-

ing points. RANSAC is an abbreviation for “RANdom SAmple Consensus.” It is

composed of two steps in an iterative fashion. First, a subset of samples points are

randomly selected to fit the parameters of the homography model. In the second step,

RANSAC checks which elements of the entire dataset are consistent with the model.

The set of such elements is called a consensus set.

2.3.2 Focus on Reconstruction

There are a number of papers that focus on image fusion by assuming the motion

between two frames is either known or easily computed. Elad and Feuer [47] formulate

the super-resolution of image sequences in the context of the Kalman filter. They

assume the matrices, which define the state-space system, are known. For example,

the blurring kernel can be estimated by a knowledge of the camera characteristics,
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and the warping between two consecutive frames is computed by a motion estimation

algorithm. But due to the curse of dimensionality of the Kalman filter, they can only

deal with small images, e.g. of size 50 × 50. The work [94] by Marquina and Osher

limits the forward model to be spatial-invariant blurring kernel with the down-sampling

operator, while no local motion is present. They solve a TV-based reconstruction with

Bregman iterations.

A joint approach on demosaicing and super-resolution of color images is addressed

in [49], based on their early super-resolution work [50]. The authors use the bilateral-

TV regularization for the spatial luminance component, the Tikhonov regularization

for the chrominance component and a penalty term for inter-color dependencies. The

motion vectors are computed via a hierarchical model-based estimation [9]. The ini-

tial guess is the result of the Shift-And-Add method. In addition, the camera PSF is

assumed to be a Gaussian kernel with various standard deviation for different sets of

experiments.

2.3.3 Implicit Motion Estimation

Inspired by NLM, researchers nowadays turn their attention into super-resolution with-

out motion estimation [43, 44, 111]. Similar methodologies include the steering kernel

regression [124], BM3D [33] and so forth. The forward model in [35] does not assume

the present of the noise, so the authors prefilter the noisy low-resolution input by V-

BM3D [30]. They upsample each image progressively several times, and at each time,

the initial estimate is obtained by zero-padding the spectra of the output from the pre-

vious stage, followed by filtering.
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CHAPTER 3

Local Constraints via Sparsity

There are relatively fewer works addressing the use of sparse priors for deblurring,

which is the goal in this chapter. Although super-resolution is a close relative to deblur-

ring (the point-spread function corresponds to block-averaging of neighboring pixels),

the latter has not been addressed directly in a sparse setting. There are a few papers

on image deblurring using global sparse transforms [88, 23], while we focus on local

sparsity.

A related literature stream encodes the image as a discrete array of positive num-

bers, approximated by linear combinations of local overcomplete bases, where the

natural statistics are captured by the fact that the vector of coefficients is sparse, so at

any location only few bases contribute to the approximation [81]. In this case, there is

no need for an explicit regularizer, due to the finite dimensionality of the representa-

tion, but there is still a trade-off between fidelity of the approximation and complexity

of the model. While the measured image is undoubtedly a discrete object, with quanti-

zation of both the domain and the range, the object of inference, or the “ideal image,”

is best represented in the continuum, with the final discretization left only for the nu-

merical implementation of the optimization scheme. We therefore take the continuum

approach, and explicitly write cost functionals that have the ideal image as an infinite-

dimensional unknown.

Since we use the sparse image denoising algorithm [46] as a building block, we

will briefly review it in Sect. 3.1 to make this chapter self-contained. We will then
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extend it to the continuum and apply it to deblurring in Sect. 3.2 with the discussion of

the details on the implementation. Finally, Sect. 3.3 contains numerical experiments.

We discuss some caveats in Section 3.4.1.

3.1 Prior Work on Sparse Denoising

If we consider discrete image patches, i.e. positive-valued matrices of size
√

n ×
√

n

pixels, ordered lexicographically as column vectors x ∈ Rn, then the sparsity assump-

tion corresponds to assuming the existence of a matrix D ∈ Rn×K , the “dictionary,”

such that every image patch x can be represented as a linear combination of its columns

with a vector of coefficients with small L0 norm. If we measure y, a version of x cor-

rupted by additive Gaussian noise that is spatially white (independent and identically

distributed) with standard deviation σ, then the maximum a-posteriori (MAP) estima-

tor of the “denoised” patch x is given by Dα̂, where

α̂ = arg min
α
||α||0 s.t. ||Dα− y||22 6 T , (3.1)

where T is dictated by σ. If one wishes to encode a larger image X of size
√

N ×
√

N

(N � n), with a combination of columns of the low-dimensional dictionary D, a

natural approach is to use a block-coordinate relaxation.

X̂ = arg min
X,αij ,D

||X− Y||22 + λ
∑
i,j

||αij||0

+µ
∑
i,j

||Dαij −RijX||22 . (3.2)

The first term measures the fidelity between the measured image Y and its denoised

(and unknown) version X. The second term enforces sparsity of each patch; the n×N

matrix Rij extracts the (i, j)th block from the image. A simple denoising algorithm

[46] based on sparse coding goes as follows,
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1. Initialization: Set X = Y, D = an overcomplete discrete cosine transform

(DCT) dictionary.

2. Repeat until it converges:

• Sparse Coding: fix X and D, compute the representation vectors αij for

each patch RijX

α̂ij = arg min
α
||α||0 (3.3)

s.t. ||Dα−RijX||22 6 T .

• Dictionary Update: fix X and {αij}, compute D via K-SVD [1] one col-

umn at a time.

3. Set:

X =
Y + µ

∑
ij RT

ijDαij

Id + µ
∑

ij RT
ijRij

, (3.4)

which is a simple averaging of shifted patches.

One could also fix the dictionary and only perform sparse coding in the iteration. Al-

ternatively, the dictionary can be learned from a large number of patches in natural

images via K-SVD [1] so that it is tailored to the data.

3.2 Direct Sparse Deblurring

The idea of direct sparse deblurring is simple and can be illustrated in three steps.

First, we assume that the image is square-integrable and sparse in some basis de-

fined on the entire real plane. This is a common assumption underlying most image

compression algorithms, in particular those based on over-complete bases, or “dictio-

naries” {dk} ∈ L2(R2 → R), k = 1, · · · , K where K is the number of atoms in the
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dictionary. A dictionary can be used to approximate the original image u to an arbi-

trary degree by a sparse linear combination u
.
=

∑K
k=1 dkαk + n

.
= Dα + n where

‖α‖0 is small1 and so is ‖n‖2 [46]. For the sake of illustration, let us pretend that this

representation is exact, that is ‖n‖ = 0, and u = Dα with ‖α‖0 ≤ L, where L is the

bound of L0 norm. We will discuss the role of n later.

Now, convolving an image with a shift-invariant kernel g yields a blurred image

f = g ∗u = g ∗Dα; this shows that the coefficients α that represent the sharp image u

relative to the clear basis {dk} are the same that represent the blurred image f relative

to the blurred basis {bk}
.
= {g ∗ dk}.

But while we do not have access to the sharp image u, we do have access to the

original basis elements {dk}. Therefore, all we need to recover the encoding of the

sharp image are the coefficients of the encoding of the blurred image relative to the

blurred basis. The ensuing algorithm is as follows:

1. Take a dictionary {dk}, either from a generic over-complete basis or learned

form the image using any of a variety of sparse coding algorithms, for instance

[1]. Convolve the basis with the kernel g to obtain a “blurred basis” {bk}
.
=

{g ∗ dk}.

2. Perform sparse coding of the blurred image f relative to the blurred basis {bk}

to obtain α̂ with ‖α̂‖0 small such that ‖f −
∑K

k=1 bkα̂k‖ is also small.

3. Reconstruct the original (deblurred) image directly via û =
∑K

k=1 dkα̂k.

Note that this algorithm performs deblurring without solving a backward diffusion or

other numerically ill-conditioned procedure. Instead, it solves the inverse problem by

“direct methods”, an approach sometimes referred to as “analysis by synthesis” [65]

1∀ ε ∃ K̄ = K(ε) such that if M > K̄, then ‖f −
∑M

k=1 dkαk‖ < ε.
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whereby an explicit generative model is used to match the statistics of the measured

data, and the model itself provides both the necessary regularization and the solution

to the desired inverse problem.

Now a few caveats. In practice, no image fits the model u = Dα exactly, sparsely

or otherwise. Therefore, one typically looks for the optimal representation α̂, defined

as the solution of the following optimization problem

α̂ = arg min
α

{∫
‖n‖2

2dx | u = Dα + n, ‖α‖0 ≤ L

}
,

where the integral is on all of R2. Following the prescription outlined above to extend

the algorithm to blurred images, one would get f = g ∗ u + g ∗ n = g ∗ Dα + g ∗ n.

Therefore, the algorithm we have suggested does not solve the problem

α̂ = arg min
α

{∫
‖n‖2

2dx | f = g ∗Dα + n, ‖α‖0 ≤ L

}
,

where the constraint f = g ∗ u + n describes the image formation model. Instead, we

solve the modified problem

α̃ = arg min
α

{∫
‖g ∗ n‖2

2dx | f = g ∗Dα + g ∗ n, ‖α‖0 ≤ L

}
,

Note that, in principle, α̃ 6= α̂. However, the blurring kernel g is zero-mean (lest

images would get brighter and dimmer as the focus changes), and therefore∫
‖n‖2

2dx ≥
∫
‖g ∗ n‖2

2dx.

So, at least to first approximation, we indeed have that α̃ = α̂. The benefit of this

approach is a considerably simpler “direct” algorithm, and the cost is having changed

the terms of the problem, or equivalently the model and the underlying assumption,

from minimizing the residua error n, to minimizing a blurred version of it.

Of course, the devil is in the details, as real images and dictionaries are not defined

on the entire real plane, and if we wish to keep the complexity of the coding step
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manageable we will have to break down the image into patches, which raises the issue

of boundary effects and scale, which causes α̃ 6= α̂. However, there is no reason why

α̂ should be “better” than α̃; they just represent different modeling assumptions. In the

words of Box, “all models are wrong, some are useful.” Ours is useful in the sense of

yielding a particularly simple, direct algorithm, which we now derive for a partition of

the image, explicitly taking the issues of boundaries and scale into account.

3.2.1 Continuum Formulation

In this section we formalize the problem of direct sparse deblurring. We find the

formalization to be clearer when written in the continuum, so one knows on what

domain each function is calculated. The previous claim, that the blurred image can

be sparsely represented in the blurred basis by the same coefficients that the “ideal”

image would have on the original basis, will become clear.

Let u : Ω ⊂ R2 → R+; x 7→ u(x) be the “ideal image”, corresponding to X in

the discrete model. The procedure of extracting a small patch from an epsilon ball

centered at x can be represented by

ux(y) = {u(y) : y ∈ Bε(x)} = {u(x + y) : y ∈ Bε(0)}.

The function ux(·) describes a mapping from an epsilon ball to a patch centered at x,

which can be expressed by an indicator function χε(x− y) acting on the image u(x).

Let dk : Bε(0) ⊂ R2 → R, k = 1, . . . , K be a given overcomplete basis of

Lloc(Bε(0) → R), and αk(x) be the kth sparse coefficient of the patch centered at x.

Then the sparse representation of one image patch is given by

ux(y) = χε(y)u(x + y) (3.5)

=
K∑

k=1

dk(y)αk(x)
.
= d(y)α(x) ,
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Figure 3.1: Diagram of the continuum formulation.

where d(y) = [d1, d2, · · · , dK ](y), y ∈ Bε(0) and α(x) = [α1, α2, · · · , αK ](x), x ∈ Ω.

Fig. 3.1 illustrates the dictionary elements and how they match to local patches.

We want to use this local sparsity to enforce a global reconstruction prior in the

sense that u(x) is the minimizer of the sparse representation error for all the local

patches.

û(x) = arg min J(u) ,

where J(u) is defined to be∫
x∈Ω

∫
y∈Bε(0)

‖χε(y)u(x + y)− d(y)α(x)‖2dydx

=

∫∫
Ω×Ω

χε(y)‖u(x + y)− d(y)α(x)‖2dydx (3.6)

=

∫∫
Ω×Ω̄

χε(z − x)‖u(z)− d(z − x)α(x)‖2dzdx .

where z = x + y and Ω̄ = Ω + Bε(0).
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To solve for u(x), we compute its Euler-Lagrange equation

∂uJ(u)(z) (3.7)

=

∫
χε(z − x)

(
u(z)− d(z − x)α(x)

)
dx

=
[ ∫

χε(z − x)dx
]
u(z)−

∫
χε(z − x)d(z − x)α(x)dx .

There is a closed-form solution for u(x) w.r.t α(x) that minimizes the objective func-

tion J(u). It is obtained by setting the Euler-Lagrange equation to zero:

û(x) =
1

ω

∫
χε(x− y)d(x− y)α(y)dy , (3.8)

where ω =
∫

χε(x − y)dy is the area of the ε−ball. Now, the measured image is, by

assumption

f(x)
.
=

∫
g(x− x̄)u(x̄)dx̄ + n(x) (3.9)

=
1

ω

∫
g(x− x̄)

∫
χε(x̄− y)d(x̄− y)α(y)dx̄dy + n(x)

=
1

ω

∫∫ [
g(x− x̄)χε(x̄− y)d(x̄− y)dx̄

]
α(y)dy + n(x) ,

where g is a space-invariant blurring kernel and n(x) is the additive noise, whose

variance is σ2. The blurred basis is easily defined as

bk(z)
.
=

∫
g(z − x̄)χε(x̄)dk(x̄)dx̄ .

The characteristic function χε implies that the boundary condition for the convolution

is zero-padding. Denote with r the support of the blurred basis, in particular r =

ε+supp(g). Therefore the measured image is a sparse representation under this blurred

basis:

f(x) =
1

ω

∫
χr(x− y)b(x− y)α(y)dy + n(x) .

We solve for the sparse coefficients in the following,

α̂(x) = arg min

∫
‖α(x)‖0dx , (3.10)

s.t.
∫
‖f(x)− ω−1

∫
χr(x− y)b(x− y)α(y)dy‖2dx 6 T .
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This optimization problem (a) is finite-dimensional (the only unknown is α) and (b)

does not involve de-blurring. All that is required is to find the finite-dimensional sparse

set of coefficient that best approximates the given image. Note that this is accom-

plished by blurring the base. In other words, one is only required to solve a direct

problem, rather than the inverse problem of deblurring. Once the coefficients α̂ are ob-

tained, we can compute the “deblurred” image û via eq. (3.8). Note that the deblurred

image is a sparse combination of the (original, non-blurred) basis, and therefore – by

construction – one should expect the reconstruction to exhibit the same spatial fre-

quencies of the original (unblurred) data from which the overcomplete basis has been

learned.

3.2.2 Boundary Issues

In practice, solving for α from (3.10) is not an easy task, since α at different y con-

tribute to one value. Instead we minimize an upper bound.∫
‖

∫
χε(x− y)f(x)dy −

∫
χr(x− y)b(x− y)α(y)dy‖2dx

6
∫∫

χε(z)‖f(z + y)− b(z)α(y)‖2dzdy .

The above equation suggests coding the blurry patch centered at y in terms of the

blurred basis {bi}. Furthermore, the characteristic function indicates that the blurry

patch has to be zero-padded in order to be consistent with the dimension of the blurred

basis. However, these two terms cannot match due to the boundary issue of convolu-

tion, as shown in Fig. 3.2. Instead we match them in the region where the convolution

is computed without the zero-padded edges. In particular, we refine our blurred basis

to be

b̃k(z) =

 bk(z) |z| < ε− supp(g)
.
= ε0

0 otherwise.
(3.11)
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Figure 3.2: Left: the blurry patch with zero-padding. Right: the blur basis. The red

square indicates the region for our refined dictionary.

Experimentally we find that it is better to tailor the clear basis to have the same

domain size as the blurred one. Therefore we have a two step algorithm for sparse

deblurring

1. Solve the coefficients from the measured image

α̂(x) = arg min ‖α‖0 , (3.12)

s.t.
∫

χε0(z)‖f(z + y)− b(z)α‖2dy 6 T .

2. Stitch all the patches by averaging

û(x) =

∫
χε0(x− y)d(x− y)α̂(x)dy∫

χε0(x− y)dy
. (3.13)

3.2.3 From Continuum to Discrete

In the discrete case, we assume the clear basis {dk} to be of size a × a and the blur

kernel h be of size c × c. It follows from (3.11) that the blurred basis {b̃k}, which is

the inner part of {bk}, is of size a0× a0, where a0 = a− c+1. We crop the clear basis

to be a0 × a0 as well, denoted as {d̃k}.
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The first step (3.12) amounts to sparse coding for every x, or pixel (i, j) in the

discrete sense. We use the Orthogonal Matching Pursuit (OMP) algorithm [131] to

solve α̂ from (3.1) with y being the patch centered at (i, j) of size a0×a0 and dictionary

D being comprised of {b̃k}. The second step is to replace the blurred patch with

the clear basis {d̃k} multiplying the sparse coefficient α̂. Finally, since each pixel is

covered by different patches, the restored value is chosen to be the mean.

We use the L0 solver OMP over a million of methods on L1 minimization for two

reasons. First, there is no additional parameter for L0 and it has a natural stopping cri-

terion, i.e. stops when the residual is smaller than the standard deviation of the addition

noise. Second, it takes more iterations for L1 to get reasonable sparse coefficients.

3.2.4 Weighted Averaging

One drawback is that the averaging of overlapping patches also degrades the recon-

struction. As an alternative, one could use a weighted average or median to combine

the results from local sparse coding. Accordingly, we perform sparse coding as de-

scribed to get the coefficients α(y), then use weighted averaging to combine the results

û(x) =

∫
y∈Bε(x)

d(x− y)α(y)w(y)dy∫
y∈Bε(x)

w(y)dy
.

When the dictionary is rich enough, each patch can be ideally represented by single

atom. It is reasonable to assume that the smaller the L0 norm of the sparse coefficients,

the better representation of this patch. Therefore, the weight is chosen to penalize large

L0 norm of the coefficients, for example,

w(y) = exp

{
−|α(y)|0

s

}
,

where s is a control parameter.
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3.3 Experiments

In this section we compare our algorithm to alternate methods such as ROF [114], the

wavelet-based “ForWaRD” approach [107], regularized kernel regression-based de-

blurring (AKTV) [123] and BM3D-based image restoration [31]. The optimal method

parameters for both ROF and ForWaRD are chosen from a series of values with wide

range. Publicly available code was used for comparison with AKTV and BM3D, in-

cluding the suggested parameter values. The parameters in our algorithm are deter-

mined by the data: the size of the dictionary is proportional to the width of the blurring

kernel and the stopping criterion for the sparse coding stage is when the residual is

below the variance of the noise.

We use root-mean-square (RMS) as a means of judging performance, RMS(u, I) =√∫
x∈Ω

(u(x)− I(x))2 dx , where I(x) is the original image and u(x) is the recovery.

3.3.1 Binary Text Images

We synthesize a template with all the alphanumeric characters and common punctua-

tion as well as 5 text images from different categories of CNN news. The dictionary

is comprised of 10 × 10 image patches randomly sampled from the three images and

the template, all shown in Fig. 3.3. The template contains all individual characters,

while the training images serve to represent meaningful pairs. We test the deblurring

on the other two text images. The data are corrupted by convolution with a 5× 5-pixel

Gaussian kernel with σ = 1 and additive noise whose standard deviation is 5. For

direct sparse deblurring, the visual quality is for the most part satisfactory except for

the smoothing effects around some letters. This is mostly attributed to the limitations

of the dictionary.

We also measure the effect of the number of the elements in the dictionary on
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Figure 3.3: The training data. The dictionary is obtained by randomly sampling raw

10 × 10 patches from the text images as well as the template shown on the top left.

All the text images are from different categories of CNN news.

the deblurring performance. Fig. 3.5 shows the results averaged from ten different

experiments of randomly sampled elements in the dictionary. In general, increasing

the number of elements in the dictionary improves the results, but with a diminishing

return.

3.3.2 Blind Deconvolution of the Text Images

For blind deconvolution, we convolve the clear basis with 3 different Gaussian kernels

(same size, different σdict). Now the blurred basis has 3 times more elements than in

the non-blind case. There still exists correspondence between blurred basis and clear

basis. Therefore, sparse deblurring follows the same procedure as the non-blind case.

The blurry noisy data is obtained by convolving the image with 5×5 Gaussian ker-
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Original Image Blurry noisy input Our method

ROF model AKTV BM3D

Original Image Blurry noisy input Our method

FoWaRD model AKTV BM3D

Figure 3.4: Text Deblurring with 20,000 dictionary elements.
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Figure 3.5: Influence of the number of the elements in the dictionary on the deblur-

ring performance. The average of 10 experiments for each column is reported.

nel with σdata = 1 plus noise. The clear dictionary is comprised of randomly sampling

10,000 patches from the training set. There are two cases for the blurring kernels to

construct the blurred basis.

Case A σdict = 0.5, 1, 1.5: one of them happens to be the exactly same as σdata.

Case B σdict = 0.6, 0.9, 1.2.

The results for both cases are presented in Fig. 3.6, along with the non-blind deconvo-

lution. Case A is almost as good as non-blind with slightly worse RMS.

3.3.3 General Case

As in the case of super-resolution [138], the dictionary consists of random samples

from the training images, which have statistics similar to the test image. Here we con-
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original blurry noisy input

non-blind blind case A blind case B

RMS = 15.07 RMS = 16.53 RMS = 21.37

Figure 3.6: Blind deconvolution with comparison to non-blind case.

sider three images: “Rose,” “Koala,” and “Castle.” The training images are taken from

the image datasets of flowers, animals and architecture respectively, while excluding

the test ones. Fig. 3.7 shows several examples in each training set. Flower images are

from the Internet, while the other images are from the Berkeley Segmentation Dataset

[95]. For each category we randomly sample 20,000 patches of size 16 × 16 to form

the dictionary.

The input data are corrupted by convolving with a 9× 9 Gaussian kernel of σ = 1

with additive noise whose standard deviation is 5. As shown in Fig. 3.8, ROF re-

turns piecewise constant images, while ForWaRD produces noticeable artifacts in the
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Figure 3.7: Examples in the training images.

reconstruction.

3.3.4 Trained Dictionary

We conduct a deblurring experiment of a trained dictionary. We cut a texture image

into half, one as training and the other as testing. We take all the overlapping 16× 16

patches in the training image to train a dictionary that has 1024 atoms. The dictionary,

as shown in Fig. 3.9, is trained via KSVD [1]. We blur the test image with a Gaussian

kernel of σ = 2 plus additive noise. As a comparison, we also construct a generic

dictionary, which is comprised of 20,000 random samples from the training image.

Fig. 3.10 summarizes the results. Our method using either dictionary improves upon

traditional methods, with the generic dictionary providing further improvement over

the trained one. This is because that training a dictionary introduces blurring effects
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Original Images

Blurry noisy input

ForWaRD

BM3D

Our method

Figure 3.8: Grayscale image deblurring with 20,000 dictionary elements.
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Table 3.1: RMS errors for different methods. (G) and (T) indicate what kind of

dictionary to use for our method with (G) for generic and (T) for trained. In some

case, BM3D is marginally better than our method (by about 10%), while in other

cases our method fares significantly better (three times better in the Text examples

and 50% better in the Texture).

Image ROF ForWaRD AKTV BM3D Our method

Text 1 65.43 62.75 60.68 69.87 14.60

Text 2 63.59 61.78 57.93 70.33 13.81

Rose 6.68 5.75 4.90 4.83 5.62

Koala 9.80 8.98 8.45 7.97 8.64

Castle 14.23 12.82 12.51 11.77 13.62

Texture 14.46 14.54 12.91 12.13 8.72 (G) 10.37 (T)

on the dictionary elements.

A quantitative comparison is provided in Table 3.1. In some case, BM3D is

marginally better than our method (by about 10%), while in other cases our method

fares significantly better (three times better in the Text examples and 50% better in the

Texture).

3.4 Discussion

3.4.1 Coherence

The precision and stability of our “direct” approach depends on the smoothness of the

blurring kernel and the geometry of the dictionary. The latter is roughly measured by

the concept of coherence, which is defined to be the maximum absolute inner product
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Training Testing

Figure 3.9: The dictionary is trained using all the 16 × 16 patches in the training

image (top left), which has a similar structure to the test one.
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Original Image Blurry noisy input

ROF AKTV our method (trained)

ForWaRD BM3D our method (generic)

Figure 3.10: The dictionary is either trained or generic (comprised of random sam-

ples from the training image). Our method using either dictionary improves upon

traditional methods, with the generic dictionary providing further improvement over

the trained one.
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between two distinct vectors in the dictionary [131]. If the coherence of a dictionary

is large, it is difficult for the sparse coding algorithms to choose the best atoms.

The coherence of a clear dictionary is usually larger than the one of the blurred

dictionary. For example, it is very likely that two blurred atoms bi and bj are similar

or even identical, but their clean versions di and dj are completely different. In this

case, the algorithm may confuse di with dj , leading to a large deblurring error. As a

result, the coefficients α̂ recovered by sparse coding the blurred image f relative to

the blurred basis {bk} could be very different from the true coefficients α of the clean

image, and the deblurring estimation error can be thus inaccurate.

The amount of blur we can handle is limited by how distinctive the dictionary

atoms are. For example, deblurring text images and texture yields very good results,

since the dictionaries of these two cases are distinctive and the coherence of the blurred

dictionary is more or less the same to the one of the clear dictionary. On the other hand,

the results of “Rose,” “Koala,” and “Castle” imply that the associated dictionaries can

only deal with smaller smoothing kernels.

3.4.2 Domain Overlapping

We want to point out the problem in minimizing the upper bound to the original for-

mulation. Ideally, pixels that overlap with many blobs should be jointly coded, but it

is computationally expensive. Instead, we adapt the procedure in [1, 91] to code the

pixels multiple times and average each encoding. However, it is the averaging that

in turn degrades the image reconstruction. One could code non-overlapping patches

independently, but there is no guarantee for the smooth transition between neighbor-

ing patches. Yang et. al. [138] process the patches in a raster-scan order with one

additional constraint in the sparse coding step, that is, to enforce the overlap between

the current target patch to match with previously reconstructed ones. This amounts to
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adding a linear equation into the optimization, thus easy to solve. However, it is not

satisfactory since the results depend on the order of the scan. A better approach would

consist in using a partition of unity of the domain of the image to trade off boundary

artifacts while avoiding multiple encoding of the same pixel. We intend to pursue this

approach as part of our future work.
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CHAPTER 4

A Nonlocal Framework

In computer vision, we are used to more explicit models of the underlying scene,

and even simple ones such as “cartoon models” [104, 140], occlusion “layers” [135],

multi-resolution and scale-space processes [82] have ramifications in image process-

ing. However, one could argue that the image formation process is unduly complex,

and modelling it explicitly just to remove noise or increase the resolution is overkill.

This philosophy is at the core of so-called “exemplar-based methods,” [60]: Instead

of explicitly modelling the image-formation process, one can just “sample” its ef-

fects and manipulate the samples to yield the desired inference result. In the simpler

forward problem, that of image synthesis, this philosophy has yielded so-called “pro-

cedural methods” in computer graphics, that have been rather successful especially in

synthesizing complex textures (see [136] and references therein). The basic idea is that

– given a sample in the form of an image patch – one can generate new textures, or

expand the sample, by searching portions of it that match the periphery, then translat-

ing them and “appending” them to the given sample. In the inverse problem of image

analysis, one would search for patches similar to a given one, then transform them to

overlap and then compute some statistic out of these samples, for instance the average

or median, to perform denoising, or to resample the grid to obtain a super-resolution

image. This is the basic idea underlying nonlocal image denoising approaches that

have recently surged in popularity in the image processing community [20]. Its advan-

tage is to exploit similar patches in the same image, without an explicit model of the
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image formation process.

In order to denoise a pixel, it is better to average the nearby pixels with similar

structures (patches). The resemblance is regarded in terms of a patch centered at each

pixel, not just the intensity of the pixel itself. The mathematical formula of nonlocal

means (NLM) is given as follows,

NLv(x) :=
1

C(x)

∫
Ω

wv(x, y)v(y)dy, (4.1)

where v is the reference image, the weight function wv(x, y) and the normalizing factor

C(x) have the form:

wv(x, y) = exp

(
−(Ga ∗ |v(x + ·)− v(y + ·)|2)(0)

h2

)
, (4.2)

C(x) =

∫
Ω

wv(x, y)dy, (4.3)

where Ga is the Gaussian kernel with standard deviation a and h is a filtering pa-

rameter. The parameter a defines the dimension of the patch where we measure the

similarity of two patches, while the parameter h regulates how strict or relaxed we

are in considering patches similar. In general h corresponds to the noise level; usu-

ally we set it to be the standard deviation of the noise. The weights are significant

only if the window around y looks like the corresponding window around x. Thus

self-similarity is used to reduce the noise. Aimed at denoising, the authors [20] con-

sider using the noisy data f as the reference image to construct the weight and by

this weighed averaging, the structures, e.g. edges, are reinforced, while the noise gets

canceled out. There are several variants based on the idea of the nonlocal means filter

such as [89, 76, 75, 61, 17, 28]. Nonetheless, all the methods interpret the concept

of “similarity” only up to translation, while we extend it to a more general similarity

transformation, i.e., scaling and rotation in Sect. 4.2.1.

The application of the non local means filter to different image processing tasks is

an active research area [21, 62, 14]. However, it remains challenging to extend previ-
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ous non local models to general inverse problems successfully. For example, the same

authors use neighborhood filters to stabilize the inverse heat equation [21], follow-

ing the direction in the PDE community to formulate Gaussian blurring as diffusion

[77, 72, 73]. But this method does not work very well, since observed data and orig-

inal images do not necessarily have same similarity distribution and structures. We

propose a key step for nonlocal methods to work efficiently in the general inverse

problem, which is to use a crude solution to build the weight function. In addition, we

follow the framework [62] using nonlocal operator to solve the general problem.

This chapter is organized as follows. A mathematic framework for nonlocal oper-

ators is studied in Sect. 4.1. Sect. 4.2 is devoted to the weight computation, which

involves two extensions to the original NLM. Finally Sect. 4.3 contains experiments

from various applications including denoising, super-resolution, image deconvolution

and tomographic reconstruction.

4.1 Nonlocal Operators

Here we review the work from [62]. Let Ω ⊂ R2, x, y ∈ Ω, w(x, y) be a weight func-

tion, which is nonnegative and symmetric. Assuming the weights are pre-determined

and considered as constants, we define

• nonlocal gradient ∇wu : Ω → Ω× Ω

(∇wu)(x, y) := (u(y)− u(x))
√

w(x, y).

• nonlocal divergence divw
−→v : Ω× Ω → Ω

(divw
−→v )(x) :=

∫
Ω

(v(x, y)− v(y, x))
√

w(x, y)dy.

It reduces to traditional gradient and divergence when the weight is the inverse square

distance between neighboring pixels.
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Two types of regularization functionals are designed based on the nonlocal opera-

tors.

JNL/H1(u) =
1

4

∫
|∇wu|2 =

∫∫
Ω×Ω

(u(x)− u(y))2w(x, y)dxdy, (4.4)

JNL/TV (u) =

∫
|∇wu| =

∫
Ω

√∫
Ω

(u(x)− u(y))2w(x, y)dydx. (4.5)

Note that the functional in (4.4) is analogous to the standard H1 semi-norm, so it is

denoted as NL/H1; similarly the one in (4.5) is denoted as NL/TV .

We calculate the Euler-Lagrange of the functionals above, thus obtaining

LNL/H1u = −
∫

Ω

(u(y)− u(x))w(x, y)dy, (4.6)

LNL/TV u = −
∫

Ω

(u(y)− u(x))w(x, y)

[
1

|∇wu(x)|
+

1

|∇wu(y)|

]
dy. (4.7)

We use the nonlocal regularization functionals in (4.4) and (4.5) to perform image

reconstruction by defining the total energy as

E(u) = J(u) +
λ

2

∫
(Ku− f)2, (4.8)

As usual, one can resort a steepest descent method to compute the solution,

ut = −Lu + λK̃∗(f −Ku), (4.9)

where the operator L is the corresponding gradient flow with respect to the functional

J , that is either (4.6) or (4.7), and K∗ is the adjoint of K. There are a lot of solvers

for this minimization, such as [146] and similar technique to split Bregman for L1

minimization [64].

The basic properties of the linear operator LNL/H1 are studied in [61], making

it a continuous generalization of graph Laplacian. Therefore, most well-established

methods in the PDE community can be extended naturally to a nonlocal manner. In

fact, JNL/TV is the nonlocal extension of total variation.
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This nonlocal framework is associated with a fixed weight. The dependence of w

on the unknown image u is possible to adapt. The difficulty lie in the complicated

expression of gradient operator L. Several groups of researchers develop optimization

schemes to update the weight during the iteration, such as [17, 18, 14]. Although

computing the weight is the most time-consuming part, it is worth the effect especially

in the applications of compressed sensing [146].

4.2 Computing the Weights

The weight computation is crucial in the nonlocal framework. We will discuss two

independent approaches to compute the weights, as extension to the original Non-

local means [20]. Sect. 4.2.1 considers a similarity-invariance weight, while in Sect.

4.2.2 preprocessed data is used to compute the weights in the applications of image

deconvolution and tomographic reconstruction.

4.2.1 Similarity-Invariant Weights

It is standard to consider the reference image v in eq. (4.2) to be the input data f in

the application of image denoising. In the next section, we discuss an alternative. In

the discrete case, the weight can be interpreted as the L2−norm of the difference of

fx (i.e., f centered in x) and fy (i.e., f centered in y), weighted against a Gaussian

window Ga. In other words, the distance ‖fx − fy‖ measures how similar are two

patches of f centered at x and y. If two patches are similar, then the corresponding

weight wf (x, y) will be high. Vice versa, if the patches are dissimilar, the weight

wf (x, y) will be small (but positive). The final result of the nonlocal means filter is

that several (similar) patches are used to reconstruct another one.

Notice that the similarity of patches is defined up to translation. In other words,
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we can only match patches that are simply in different locations, but otherwise un-

changed – with the same orientation and scale. This motivates us to consider the larger

class of similarity measures that discounts scale and rotation changes, i.e., a similarity-

invariant measure. In theory, defining this measure is just a matter of introducing two

more integrals and an inverse similarity-transformation in eq. (4.2) to align the patches

being averaged. In practice, however, because this similarity has to be computed multi-

ple times for each patch, this introduces considerable computational burden that makes

the ensuing algorithm all but impractical. One way to address this problem is to find a

function that estimates a rotation and a scale at each patch with respect to a common

reference system, so that each patch can be transformed into a “canonical” patch. Once

this is done, one can apply the original nonlocal means filter.

The idea of determining when two regions are similar up to a similarity trans-

formation has been widely explored in the past to solve several tasks including ob-

ject recognition, structure from motion, wide-baseline matching, and motion tracking

[115, 87, 132, 96, 134]. We will exploit the same idea of matching similarity-invariant

regions for the purpose of image denoising.

One of the most successful methodologies to match regions up to a similarity trans-

formation is the Scale Invariant Feature Transform (SIFT) [87] (Please refer to Chapter

2.3.1). There is a fundamental difference in how SIFT is commonly used and how it

is employed in our algorithm. In our case the keypoint localization step is not imple-

mented as we are interested in computing a SIFT descriptor and in obtaining some

consistent estimate of scale and orientation at each pixel. From now on, therefore,

we will define our SIFT filter to estimate scale ρ(x) : Ω 7→ [0,∞) and orientation

θ(x) : Ω 7→ [0, π] respectively.

In Figure 4.1, we illustrate step-by-step how we align the patch to its canonical

form: for each pixel x,
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1. Take a patch with size ∼ 10ρ(x) around the pixel;

2. Rotate this patch with the angle θ(x);

3. Extract the middle part of size ∼ 7ρ(x) for the boundary problem after rotating;

4. Down-sample to a uniform size (the smallest size among all patches) and save

as P (x).

In this way we can extract more meaningful patches than in previous nonlocal means

methods, as shown in Figure 4.2. Since we assume additive Gaussian white noise,

noise is invariant to rotation and scaling if the image is considered to be a continuous

function. When aligning the patches, there are interpolation errors, but they are neg-

ligible two-pixels away from the center, if bilinear interpolation is used. We mitigate

scale errors by using only patches that are larger, and therefore at higher resolution,

than the reference patch.

We reformulate the weight function to be similarity-invariant,

wf (x, y) = exp{−‖P (x)− P (y)‖2

h2
} , (4.10)

where P (x) is the canonical form of the patch center at x and h is a parameter as in

the Non-local means.

4.2.2 Preprocessing the Data by Linear Models

The application of nonlocal means to a general inverse problem is not direct since

observed data and original images do not necessarily have same similarity distribu-

tion and structures. In the case of deconvolution, based on the hypothesis that the

deblurred image must maintain the same similarities as the blurry image, Buades et.

al.. proposed a non-local deblurring model in [21]:

u = arg min
u

∫
(u−NLf (u))2 +

λ

2

∫
(f −Ku)2,
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where NLf is defined in eq. (4.1) with the reference to be the blurry noisy data, i.e.

v = f . This hypothesis has a strong limitation since it forces the deblurred image to

maintain the same coherence as the given blurred one.

We propose a key step for nonlocal methods to work effectively in the general

case, which is to use a crude solution of the inverse problem to construct the weight.

This solution can be obtained by any fast image restoration method, e.g. Tikhonov

regularization [128] for image deconvolution and Filtered Back Projection (FBP) [3]

for tomography. This step amounts to preprocessing the data to exploit the useful

spatial information in image. It is more important for tomography, since the observed

data and the image lie in different spaces.

We consider the weight function as eq. (4.2), which is the same formula in [20]

and [21], except that we use a preprocessed image as the reference to construct the

weight. Another difference is that we do not require normalization of the weight since

we formulate a minimization problem. The details of the preprocessing are given

separately, since it varies from applications.

4.2.2.1 Image deconvolution

In this case, the general modelKu amounts to the convolution between the image u and

a circular shift-invariant blur kernel g. Furthermore, periodic boundary conditions for

the convolution are assumed, thus the fast Fourier transform can be applied to realize

the convolution.

A better way to construct the weight function (4.2) is to use a preprocessed im-

age instead of the blurry and noisy data f . Ideally the preprocessed image should

be sharper than the blurry image and easy to compute. For example, there are two

common examples of linear regularizations to solve the image recovery problem. One

is called Tikhonov regularization with identity [128], which is to solve the following
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minimization problem:

u = arg min

∫
(f − g ∗ u)2 + µ

∫
u2 , (4.11)

where µ > 0 is a regularizing parameter. The variational formulation gives us

g∗ ∗ (g ∗ u− f) + µu = 0 ,

where ∗ is the conjugate operator. An alternative regularization is to replace the L2

norm in the last term in (4.11) with H1 semi-norm. The second approach is called

Wiener filter [2] for image deconvolution:

u = arg min

∫
(f − g ∗ u)2 + ν

∫
|∇u|2 . (4.12)

These linear methods are very simple and fast to implement, since they only in-

volve one step of calculation, e.g., the fast Fourier transform. However, in order to

compensate for the noise, a large regularizing parameter µ or ν is necessary, which

tends to smear out the edges.

Although these methods suffer from amplifying the noise frequencies, the nonlocal

framework can automatically handle their side-effects. Since the noise statistics of the

preprocessed image is changed, we should alter the parameter h in the weight function

to compensate for the noise accordingly. We choose Tikhonov regularization to be the

preprocessor considering that it produces sharper results than Wiener filter, which is to

minimize the H1 semi-norm.

The minimizer of the linear model eq. (4.11) can be obtained in the frequency

domain (ξ, η) :

û(ξ, η) =
ĝ∗(ξ, η)f̂(ξ, η)

|ĝ|2(ξ, η) + µ
, (4.13)

where ∧ denotes the Fourier transform.

In the case where we know some statistics of additive noise, e.g. the standard

deviation of noise, a proper parameter µ is chosen such that the restored image u in eq.
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(4.13) satisfies ∫∫
(f − g ∗ u)2dxdy =

∫∫
n2dxdy = σ2 .

By Parseval’s theorem, this is equivalent to finding µ satisfying

σ2 =

∫∫
(f − g ∗ u)2dxdy =

∫∫
|f̂ − ĝû|2dξdη =

∫∫
µf̂(ξ, η)

|ĝ|2 + µ
dξdη .

Notice that the right-hand side is monotonically increasing function in µ, hence there

exist a unique solution µ, which can be determined via bisection.

Since the above procedure describes a linear operator applied to f , we can denote

Invg. It follows from the image degradation model (1.1) that

f̃ = Invg ◦ f = Invg ◦ (g ∗ u + n) . (4.14)

Note that after preprocessing the data, the noise has L2 norm

||Invg ◦ n||L2 6 ||Invg||L2||n||L2 = σ||Invg||L2 .

Hence a good choice is

h = σ||Invg||L2 . (4.15)

In summary, the reference image in the weight function (4.2) is f̃ defined in eq.

(4.14), and the parameter h is in eq. (4.15).

4.2.2.2 Tomographic reconstruction

We provide another example of the non-local functional model in the context of Com-

puterized Tomography (CT). In a simplified parallel tomographic problem, an ob-

served body slice is modelled as a two-dimensional distribution (x, y) 7→ u(x, y) of

the x-ray attenuation constant, and a line integral called projection p(r, θ) represents

the total attenuation of a beam of x-rays parameterized by (r, θ), where r ∈ R is the

signed perpendicular distance from the line to the origin and θ ∈ [0, π) is the angle
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between the perpendicular vector and the x-axis. As shown in Fig. 4.3, a projection

obtained by illuminating the object along the line is given by

Ru : p(r, θ) =

∫∫ ∞

−∞
u(x, y)δ(x cos θ + y sin θ − r)dxdy,

where δ denotes the Dirac delta-distribution. The linear operator R : u(x, y) 7→ p(r, θ)

is called Radon transform. The tomographic reconstruction problem is to estimate the

distribution u(x, y) from a finite number of measured line integrals p(r, θ). The stan-

dard reconstruction algorithm in clinical applications is the Filtered Back Projection

(FBP), which is a direct discretization of an analytical formula for the inverse of the

Radon transform. As the name indicates, this method can be decomposed into two

steps: (1) the one-dimensional projection data along each orientation θ is applied via a

ramp filter; (2) each pixel of the image u is obtained by summing on those filtered pro-

jections passing through this pixel. In fact, the last step is actually an adjoint transform

of the Radon transform [3], which is called back projection. In the presence of noise,

this problem becomes extremely unstable since the inverse of the Radon transform is

unbounded. Traditionally, a low-pass filter has to be applied to compensate the noise

amplification by ramp filter. However this step smears out edges, where important

structures are located.

The weight function w(x, y) is required to measure the similarity of image features

between pixels x and y. Since the observed projection data are in the Radon domain,

which do not directly reflect the similarity information of the image, we need a more

accurate reference image to compute the weight (4.2). We consider the FBP image as

a crude and fast solution to build the weight. Moreover, we choose the filter parameter

h to be the estimated noise variance in the filtered back projection image. Here we

use a wavelet-based noise estimation model introduced by Donoho et. al. [41] in

1994. More precisely, we first apply a wavelet transform on the filtered back projection

image, then the noise variance of this image is estimated by using the medial absolute
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deviation of the wavelet coefficients at its finest scale, i.e.:

σ̂2 =
median(|yi|)

0.6745
, (4.16)

where yi are wavelet coefficients in the finest subband of the filtered back projection

image. Therefore, the parameter h is chosen to be h = σ̂. An alternative choice is to

compute the norm of an discrete inverse of the Radon transform.

4.3 Applications

We will discuss various applications of this nonlocal framework including image de-

noising, super-resolution, image deconvolution and tomographic reconstruction. The

first two are solved by the similarity-invariant weight as established in Sect. 4.2.1,

while the rest are based on the preprocessing data as in Sect. 4.2.2.

4.3.1 Denoising

The total energy for the denoising model is defined in the following

û = arg min
u

J(u) +
λ

2

∫
(f(x)− u(x))2 dx , (4.17)

where J is the NL/H1 functional in (4.4) for simplicity. To minimize the energy

(4.17), we apply a gradient descent flow:

ut(x) = −
∫

(u(x)− u(y))w(x, y)dy + λ(f(x)− u(x)) .

Notice that the above equation is linear in u(x), so it is easy to implement an implicit

time difference scheme, which makes the iterations more stable.

un+1(x)− un(x)

dt
=

−
∫

(un+1(x)− un(y))w(x, y)dy + λ(f(x)− un+1(x)) .
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We can also extend this model to color image denoising in which the input image

f := (fR, fG, fB) is a three-channel signal. In a similar way, we can compute the

weight wf (x, y) using high-dimensional patches so that the weight is the same for all

color channels. We express the total energy as follows,

û = arg min
u

∑
j=R,G,B

∫ (
uj(x)− uj(y)

)2
wf (x, y)dxdy +

λ

2

∫ (
f j(x)− uj(x)

)2
dx .

Notice that we can perform color image denoising by treating the three color channels

independently.

We first compare the performance of our method to that of the PDE-based method

[25], the wavelet-based method [110] and the original nonlocal means [20]. Other

denoising methods are examined and compared in [20].

We present the nonlocal similarity filtering on two synthetic images which are

corrupted by additive Gaussian noise with standard deviation σ = 20 (Fig. 4.4) and

σ = 40 (Fig. 4.5) respectively. For each method, the residual image f − u is shown.

The residual is called method noise in [20]. It is a visual measurement of the denoising

scheme, since it should be as similar to a white noise as possible. Both the PDE-based

method [25] and the wavelet based method [110] fail to preserve structures as they are

left in the residual image. The traditional nonlocal method fails to denoise the central

part in Fig 4.4 since these regions in the residual image are almost flat.

In Fig. 4.6 we also compare our approach with NLM and its iterated version by

T. Brox and D. Cremers [17]. We crop the noisy image and the results of iterated

nonlocal mean directly from their paper and perform denoising on this noisy input

by the original nonlocal means and our approach. We do a better job on the fish and

lena examples, however we cannot beat them for textured images since the scale and

orientations are inaccurate in this case.

An example of color image denoising is presented in Fig. 4.7. In computing the
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Table 4.1: RMS errors for the input images and different denoising methods.

RMS Input PDE- wavelet- NLM ours Iterated

based [25] based[110] [20] NL [17]

fish 30.24 17.31 13.03 17.34 14.53 16.01

Lena 30.95 17.82 17.21 12.65 11.97 12.57

brodatz 39.77 32.06 23.35 21.92 23.66 22.93

testpat 20.00 14.65 12.56 9.80 6.74 N/A

letter 40.00 20.05 13.57 12.42 11.66 N/A

flag (color) 40.00 13.44 12.83 10.43 9.11 N/A

weight, the L2 distance between 3-D patches (RGB) is used. As for denoising, we treat

the three color bands independently. The results are presented in Fig. 4.7, which shows

that our approach works better for stripes, while it is comparable to the original NLM

for the stars. We compare the quantitative evaluation of various denoising methods.

Table 4.1 lists the root mean square (RMS) error of each method.

4.3.2 Super-resolution

In this section, we investigate super-resolution as an application of our similarity non-

local model. The low resolution noisy image fLR is corrupted by

fLR(x) = D ◦ u(x) + n(x) , (4.18)

where u is the original image, n is white noise and D is the downsampling operator.

Our goal is to reconstruct a high resolution image u from the low resolution noisy one.

We use linear interpolation of fLR to get a high resolution image fHR. We take the same

procedure as denoising to build the weight function wfHR(x, y). Now the data fidelity
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term becomes

Edata =

∫
ΩL

(fLR(x)−D ◦ u(x))2dx , (4.19)

where ΩL is the low resolution image domain. Its Euler-Lagrange equation is calcu-

lated

∂Edata = 2S ◦ (fLR(x)−D ◦ u(x)) , (4.20)

where S is the transpose of the operator D, i.e., upsampling. Notice that S ◦ fLR is

nothing but fHR. Defining T = S ◦D, the overall gradient flow is

ut(x) = −
∫

(u(x)− u(y))wfHR(x, y)dy + λ(fHR(x)− T ◦ u(x)) , (4.21)

and its steady state yields a high resolution and denoised image.

We present the results of super-resolution by both the original nonlocal means and

the similarity nonlocal filtering in Figure 4.8. The low-resolution noisy image is down-

sampled by a factor of two and then corrupted by additive Gaussian noise with σ = 20.

Our method returns sharper edges than the original NLM.

4.3.3 Image deconvolution

In this section we present some numerical results using the nonlocal functionals: NL/H1

and NL/TV . We compare these to traditional methods, such as Tikhonov regulariza-

tion [128], ROF [114] and the NL-means deblurring model [21]. As for the nonlocal

weight, we compute it from either the noisy blurry image or the preprocessed image.

We define the total energy as

E(u) = J(u) +
λ

2

∫
(g ∗ u− f)2, (4.22)

We use gradient descent to update the solution by the Euler-Lagrange of (4.22)

ut = −Lu + λg̃ ∗ (f − g ∗ u), (4.23)
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Table 4.2: The statistics of blur and noise we add to the images.

Image blur kernel Gaussian noise

Shape Gaussian with σb = 2 σn = 10

Barbara Gaussian with σb = 1 σn = 5

Cameraman 9× 9 box average σn = 3

where the operator L is the corresponding gradient flow with respect to the functional

J , that is either (4.6) or (4.7), and g̃ is the adjoint of g.

We use signal-to-noise ratio (SNR) as a means of judging performance

SNR(u, f) = 20 log10

{
||f − f̄ ||L2

||f − u||L2

}
,

where u is the original image, f is the recovery and f̄ is its mean value.

We test all the methods on three images: a synthetic image, Barbara and Camera-

man with various kinds of blur and noise as listed in Tab 4.2. The synthetic one is

referred to as Shape since it contains geometric features. The Cameraman image is

high contrast and has many edges, while the image of Barbara contains more textures.

We use Tikhonov regularization to preprocess the data with the method parameter

µ determined by the standard deviation of the noise. Then we use this preprocessed

data to compute the weight function with filter parameter h chosen to compensate the

amplified noise. Please refer to Sect. 4.2.2 for details. Once we have the weight, we

solve the minimizer of (4.22) with either NL/H1 or NL/TV as regularization via

gradient descent. For each method, we present our result with an optimal parameter λ

chosen from a series of values with wide range.

Regardless of which way we compute the nonlocal weights, visually NL/H1 re-

turns a smoother image than NL/TV does. We list the SNR of all the methods in Tab.

4.3. For Fig. 4.9 and Fig. 4.11, the best reconstruction is the one that combines a
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Table 4.3: SNR for different methods

Image Shape Barbara Cameraman

noisy input 11.6213 10.0363 8.4600

Tikhonov [2] 13.1970 10.5680 11.2940

ROF [114] 14.2192 11.4257 12.3448

NLM deblur [21] 16.3289 12.0903 12.4269

NL/H1 16.8084 11.7952 12.4599

NL/TV 17.5251 12.0066 12.7495

Tikhonov + [21] 17.5269 12.7369 13.5099

Tikhonov + NL/H1 19.6982 12.1182 13.5185

Tikhonov + NL/TV 20.9401 12.4616 13.6194

preprocessor by Tikhonov filter with NL/TV regularization functional both in terms

of SNR and direct inspection as well. Although Tikhonov+NLM deblur achieves the

highest SNR in Barbara example, Tikhonov+NL/TV restores most textures especially

in the bottom left corner as zoomed in Fig. 4.10.

For computational time, it takes about 2.9 seconds for a dual core desktop with

2.99GHz processor and 1.99GB memory to construct the weight function of a 256 ×

256 image in MATLAB. Once we have constructed the weight, the iteration of NL/H1

and NL/TV is comparable to ROF in speed (NL/H1 is more efficient than NL/TV ).

The computation speed depends on the number of iterations. In general, it takes around

200 seconds for 500 iterations. For some examples, the energy converges very quickly.

Also, codes could be further optimized.
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4.3.4 Tomographic reconstruction

We have tried the algorithms on a synthetic Shepp-Logan head phantom and a real

brain image, for which projection data have been computed using a Radon transform

matrix.

The size of each image is 128× 128. The number of projection angles is chosen to

be the size of the image and there are
√

2 ∗ 128 ≈ 185 X-ray parallel beams for each

angle in order to cover the whole image domain. Therefore the size of projection data

for both images is 185× 128. Then we add white noise of σn = 100 to the projection

data of both images. Since the projection data lies in a different space to the image

does, [21] can not be directly applied in this case. Therefore, the weight function for

the non local methods is estimated from the image reconstructed by FBP, which is also

used as the initial guess for all the variational models. As we discussed above, we

compute the weight function w(x, y) from an initial filtered back projection image and

estimate noise level to determine the value of parameter h in the weight.

Fig. 4.12 and Fig. 4.13 show the simulation results in the presence of Gaussian

white noise in the projection of a phantom and a brain image. The output of FBP is very

poor. TV-regularization performs well but the details of the images are slightly blurred.

Similar to deconvolution, NL/H1 gives a visually smoother image than NL/TV does,

but NL/TV archives a slightly better SNR. Furthermore, NL/H1 gives smoother re-

sults but details are well-preserved. For both images, non local functionals outperform

the traditional methods.
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Figure 4.1: Procedure to align patches. Three patches are selected to illustrate the

alignment, as shown in the first row. From top to bottom: (1) noisy patches whose

size corresponds to the scale of its center; (2) rotate the patch with the angle as-

signed by SIFT; (3) crop the black boundary due to the rotation; (4) down-sample to

a uniform size patch 7× 7.
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Figure 4.2: Fifteen most similar patches to the target one (red square on the left)

are selected (middle) and aligned via similarity (right). On the right, the pose of the

patch corresponds to the scale and orientation of its center as obtained by SIFT.

Figure 4.3: Radon transform in R2.
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Original noisy

PDE-based Residual

NLM Residual

NL similarity Residual

Figure 4.4: Experiment with Gaussian noise: σ = 20. The flat regions in the residual

of NLM show that the central part has not been denoised.
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Original noisy

Wavelet-based Residual

NLM Residual

NL similarity Residual

Figure 4.5: Experiment with Gaussian noise: σ = 40. The flat regions in the residual

of NLM show that the serifs of the A characters have not been captured.
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Figure 4.6: Denoising examples in T. Brox’s paper [17]. From top to bottom: origi-

nal image, noisy image (cropped from his paper), nonlocal means, iterated NL (his),

NL similarity (ours).
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(a) (c) (e)

(b) (d) (f)

Figure 4.7: Color image denoising with Gaussian noise with σ = 40. From left to

right, top to bottom: (a) original image, (b) noisy input f , (c) nonlocal means u1, (d)

nonlocal Similarity u2, (e) NL method noise f − u1 and (f) NL similarity method

noise f − u2. The stripes tend to be restored better in (f) than in (e).
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(a) (b)

(c) (d)

Figure 4.8: Super Resolution. From top to bottom and left to right: (a) original

image, (b) low-resolution noisy image), (c) standard nonlocal means and (d) nonlocal

similarity (ours). The characters are sharper in (d) than (c).
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Original Image Blurry and noisy Tikhonov

ROF NLM deblur Tikhonov+NLM deblur

Blurry+NL/TV Tikhonov+NL/H1 Tikhonov+NL/TV

Figure 4.9: A 150 × 150 image with Gaussian blur σb = 2 and Gaussian noise

σn = 10.
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Original Image Blurry and noisy Tikhonov

ROF Blurry+NLM Tikhonov+NLM

Blurry+NL/TV Tikhonov+NL/H1 Tikhonov+NL/TV

Figure 4.10: A 200 × 200 image with Gaussian blur σb = 1 and Gaussian noise

σn = 5 cropped to 75× 75 pixels.
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Original Image Blurry and noisy ROF

Tikhonov+NLM deblur Tikhonov+NL/H1 Tikhonov+NL/TV

Figure 4.11: A 256× 256 image with box average kernel 9× 9 and Gaussian noise

σn = 3.
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ROF, SNR=20.22 NLM deblur, SNR=19.33

NL/H1, SNR=20.33 NL/TV, SNR=21.36

Figure 4.12: Results of reconstruction from noisy projection data with SNR=28.1db.
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Original Image FBP, SNR=9.68 ROF, SNR=14.77

NLM deblur, SNR=15.37 NL/H1, SNR=15.44 NL/TV, SNR=15.67

Figure 4.13: Results of reconstruction from noisy projection data with

SNR=26.04db. On the last row is the enlarged central part of each reconstruction.
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CHAPTER 5

A Global Approach for Multi-image Denoising

It is a frustrating experience, even for professional photographers, to take pictures

under bad lighting conditions with hand-held camera. If the camera is set to a long

exposure time, the photograph gets motion blur. If it is taken with short exposure, the

image is noisy. This dilemma can be solved by taking a burst of images, each with

short-exposure time, as shown in Fig. 5.1. But then, as classical in video processing,

an accurate registration technique is required to align the images. Denote by u(x) the

ideal non noisy image color at a pixel x. Such an image can be obtained from a still

scene by a camera in a fixed position with a long exposure time. The observed value

for a short exposure time τ is a random Poisson variable with mean τu(x) and standard

deviation proportional to
√

τu(x). Thus, the SNR increases with the exposure time

proportionally to
√

τ . The core idea of the burst denoising method is a slight extension

of the same law. The only assumption is that the various values at a cross-registered

pixel obtained by a burst are i.i.d.. Thus, averaging the registered images amounts to

averaging several realizations of these random variables. An easy calculation shows

that this increases the SNR by a factor proportional to
√

n, where n is the number of

shots in the burst. (We call SNR of a given pixel the ratio of its temporal variance

to its temporal mean). Fig. 5.1 summarizes the possibilities offered by an image

burst. A long exposure image is exposed to motion blur. The short exposure image is

noisy, but sharp. Finally, the image obtained by averaging the images of the burst after

registration is both sharp and noiseless. In this real example the burst taken in a gallery
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Figure 5.1: From left to right: one long-exposure image (time = 0.4 sec, ISO=100),

one of 16 short-exposure images (time = 1/40 sec, ISO = 1600) and the average after

registration. All images have been color-balanced to show the same contrast. The

long exposure image is blurry due to camera motion. The middle short-exposure

image is noisy, and the third one is some 4 times less noisy, being the result of

averaging 16 short-exposure images.

had 16 images. The noise should therefore be divided 4.

The idea of combining multiple images to get a desired one is called image fu-

sion. Most recent works on fusion use a pair of pictures taken with different camera

parameters. Yuan et. al. [143] combine a blurred image with long-exposure time,

and a noisy one with short-exposure time for the purpose of both denoising the second

and deblurring the first. Beltramio and Levine [10] propose on the similar direction

that two images (one underexposed and one overexposed) are combined into the one

with the bright color in the overexposed image and sharp details contained in the un-

derexposed one. Combining two snapshots, one with and the other without flash, is

investigated by Eisemann et. al. [101] and Fattal et. al. [51]. Both papers report

spectacular results. In contrast, we shall only consider classic image bursts, taken with

the very same camera parameters. The number of images ranges from 9 to 36, thus

promising a division of the noise by 3, 4 or 6. As is apparent in the above numbers,

the denoising power of burst denoising is eventually hemmed by the low growth of the
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square root. On the other hand, dividing the noise by the mentioned factors and getting

an artifact free image is in no way a negligible ambition. Indeed, even the best state

of the art denoising methods can create slightly annoying artifacts, such as adhesion

effects and shocks in NL-means [20] or patterns in the transform thresholding meth-

ods [42], [32]. Simple accumulation instead is the essence of photography. The first

Nicephore Niepce photograph [22] was obtained after a several hours exposure. The

only objection to long exposure is the variation of the scene. The more this variation

can be compensated, the longer the exposure can be.

There is a strong argument in favor of denoising by simple averaging of the reg-

istered samples instead of block-matching strategies. If a fine non-periodic texture is

present in an image, it is virtually indistinguishable from noise, and actually contains

a flat spectrum part which has the same Fourier spectrum as the white noise. Such fine

textures can be distinguished from noise only if several samples of the same texture are

present in other frames and can be accurately registered. Now, state of the art denois-

ing methods are based on nonlocal block matching. In the case of a burst, the block

matching would ideally find only one block in each image. But it doesn’t. Precisely

because of the noise, low contrasted textures are at risk of being mismatched across

frames. The experimental section will show that this can cause a loss of resolution for

such textures. A registration process more global than block matching, using strong

features elsewhere in the image, should permit a safer denoising by accumulation.

Yet, this method rises serious technical objections. The main technical objection is:

how to register globally the images of a burst? Fortunately, there are several situations

where the series of snapshots are indeed related to each other by a homography, and

we shall explore these situations first. The homography assumption is actually valid if

one of the assumptions is satisfied:

1. the only motion of the camera is an arbitrary rotation around its optic center;

69



2. the photographed objects share the same plane in the 3D scene;

3. the whole scene is far away from the camera.

In those cases, image registration is equivalent to computing the underlying image

homography. But this registration should be sub-pixel accurate. To this aim we will

introduce a precise variant of SIFT [87] and a generalization of ORSA (Optimized

Random Sampling Algorithm, [102]) to register all the images together.

Yet, in general, the images of 3D scene are not related by a homography, but by

an epipolar geometry [68]. Even if the camera is well-calibrated, 3D point-to-point

correspondence is impossible to obtain without knowing the depth of the 3D scene.

Therefore, we should not expect that a simple homography will work everywhere in

the image, but only on a significant part. On this part, we shall say that we have a

dominant homography.

To go further, we shall need several tools whose list follows. The main one is the

accurate estimation of the noise model from a partial registration.

• High accurate keypoint detection: By canceling the subsampling in SIFT, a

subpixel precision of the key point detection will be reached. As a result, the

dominant homography will be computed accurately from the matching points.

• Noise estimation: At each pixel that is well-registered, the registered samples

are i.i.d. samples of the same underlying Poisson model. As a result, a signal

dependent noise model will be accurately estimated for each colour channel.

This model simply is a curve of image intensity versus the standard deviation of

the noise.

• Color equalization However, the noise estimation will require an extra step,

the histogram equalization of all images. Indeed, the images taken with indoor
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lights often show fast variations of the contrast and brightness. It is only after

this equalization that the empirical standard deviation of the samples becomes a

measurement of the noise standard deviation.

• Hybrid denoising scheme: Averaging does not work at the mis-registered pix-

els, and block matching methods are at risk on the fine image structures. Thus

they will be combined. The simple combination used here will be a convex com-

bination of them, the weight function being based on the noise curve and on the

observed standard deviation of the values for the accumulation at a certain pixel.

If this standard deviation is compatible with the noise model, the denoised value

will be the mean of the samples. Otherwise, the standard deviation test will

imply that the registration at this point is inaccurate, and a conservative denois-

ing will be preferred at the pixel. (More prudently, the denoised value will be a

weighted average of both denoised values, the weights being steered by the test.)

References and preliminaries on the used techniques are given in Sect. 5.1. The ten-

tative algorithm is described in Sect. 5.2 including how to register all the images,

estimate the noise and combine two denoising schemes. Experiments on various kinds

of real data sets are examined in Sect. 5.3.

5.1 Preliminaries, Anterior Works

5.1.1 Image Matching

To find key points in images and match them is a fundamental step for many computer

vision and image processing applications. One of the most robust is the Scale Invariant

Feature Transform (SIFT) [87]. There are other attempts to match key points in a more

invariant fashion [99, 100, 96, 59, 105, 103]. Applications of image matching include
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scene parsing[85], object/image retrieval [120] and motion estimation [86]. The image

stitching [15, 16] generates a panorama from several images of the same landscape.

The underlying technical problems are basically the same as for the burst denoising

problem. In particular, the registration accuracy is a key issue in image stitching. In

[15], bundle adjustment is used to minimize the homography projection error. This

technique requires a knowledge of the camera internal parameters for initialization.

Because wrong matches occur in the SIFT method used here for the registration, an

accurate estimate of the dominant homography will require the elimination of outliers.

The standard method to eliminate outliers is RANSAC (RANdom SAmple Consensus)

[56]. However, it is efficient only when outliers are a small portion of the whole

matching set. There are other variants of RANSAC to improve the performance of

outlier elimination and the estimation of fundamental matrix, such as [125, 147, 130,

108]. We choose the method based on a contrario model proposed by Moisan and

Stival [102]. It has zero parameter and is effective even the matching set contains up

to 90% of outliers.

5.1.2 Noise Estimation

Most computer vision algorithms should adjust their parameters to the image noise

level. Surprisingly, there are few papers dealing with the noise estimation problem

and most of them only estimate a signal-independent noise. The standard procedure

is the following: (1) compute the mean and standard deviation for each N ×N block

in the image (N is small, e.g. N = 3 or N = 5); (2) classify the standard deviations

according to their mean, and (3) take the median value of all standard deviations for

each mean. Instead of computing the variance of patches, Olsen [109] and posteriorly

Rank et. al. [112] consider the patches of the image derivative, since it is more robust

to the noise. As a variant, Donoho et. al. [42] propose to estimate the noise standard
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deviation as the median of absolute values of wavelet coefficients at the finest scale. All

the algorithms mentioned above usually give a reasonable estimation of the standard

deviation when the noise is uniform. Yet, when applying these algorithms to estimate

signal dependent noise, the results are poor. An exception is the work of C. Liu et.

al. [84], which estimates the upper bound on the noise level from a single image.

However, the real CCD camera noise is not simply additive, neither is it uniform over

the gray levels. For obvious compression requirements, our experiments will treat

JPEG bursts that have undergone an unknown contrast change (gamma-correction).

As we shall see, the resulting estimated curve model is strongly image dependent and

cannot be estimated by a parametric method.

5.1.3 Image/Video Denoising Algorithms

Image denoising methods are based on various models of the original noise-free image,

which permit to separate it from noise. One of the assumptions is the sparsity in an

basis, orthogonal or over-complete. Sparsity is widely used in the many applications

of image processing, such as denoising [46], color denoising and inpainting [90] and

super-resolution [138, 36]. Non-Local means [20] assumes an image self-similarity

and restores an unknown pixel using other similar pixels. The similarity is considered

in terms of a patch centered at each pixel, not just the intensity of the pixel itself. In

order to denoise a pixel, it is better to average the nearby pixels with similar structures

(patches). This idea is extended to movie denoising [19, 127, 126]. The denoising

algorithm by Dabov et. al. [33] combines self-similarity block matching, and threshold

in the transform domain. The sparse representation is enhanced in transform domain

by grouping similar 2D image patches into a 3D block. The weighted averaging of

all the block-wise estimates are aggregated for the final output. Extensions to other

applications are discussed by the same group of the authors, such as color denoising
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[32], grayscale video denoising [30], image sharpening [34] and restoration [31]. So

far BM3D represents the state of the art for stand alone denoising. G. Boracchi and

A. Foi [12] extend BM3D or V-BM3D to signal-dependent noise. They assume a

parametric noise model, in which the parameters can be estimated using [58]. Then

BM3D is applied on the images after a variance-stabilizing transformation to make

noise homogeneous and post-processing follows.

The present chapter can be understood as an extension and explanation of the mul-

tiple image denoising attempt by Zhang et. al. [145]. These authors propose a global

registration of an image burst before applying a block matching multiimage strategy

to the registered images. They remark that their denoising performance stalls when

the number of frames grows and write that this difficulty should be overcome. Yet,

their observed denoising performance 3 curves grow like the square root of the num-

ber of frames, which indicates that their algorithm relies on accumulation. Thus, this

performance is in fact optimal. The only non-synthetic experiments are made by these

authors on a flat static real scene, actually a white board. The method proposed here

is definitely an extension: It uses a hybrid scheme which chooses the best of accu-

mulation or block denoising, depending on the reliability of the match. Without the

accurate nonparametric noise estimation, this strategy would be unreliable.

5.2 The Main Tools of the Burst Denoising Chain

In this section, we discuss how to register all the images into one in the image se-

quence, which is taken as template. The average of the registered images gives a

desired denoising result, but this only works at well-registered pixels. As for the pixels

that are not well-registered, classic state of the art denoising (NLM, BM3D) will be

tested. The decision maker, i.e. whether to use averaging or a denoising algorithm,

will be based on the noise model, which will be estimated from the samples of each

74



well-registered pixel along time. Thus having an accurate noise model obtained from

the burst itself in crucial in the strategy. In summary, burst denoising is a relatively

complex chain that:

• registers the images of the burst by subpixel accurate SIFT and estimation of the

best dominant homography;

• equalizes the histograms of the registered images to remove lighting effects;

• estimates accurately from the many samples offered after registration the noise

for each channel and at each level;

• thanks to this estimation, proceeds to denoising by averaging at all pixels where

the correct registration is confirmed, and applies a state of the art denoising

elsewhere.

Short preliminary discussion: is that safe? In spite of its complexity the chain is

safe. Indeed, the dominant registration yields many samples permitting robust estima-

tion of the noise. The averaging is applied only at pixels where the observed standard

deviation after registration is close to the one predicted by the noise model. Thus,

there is no risk whatsoever with averaging. At the other pixels, standard state of the art

video denoising is applied. Block matching is only made safer by the previous regis-

tration and equalization, even if inaccurate. The experimental section will confirm the

safety of the method by showing that the final result always is better than classic video

denoising alone.

5.2.1 Registration of an Image Sequence

We shall use SIFT as the tool for the key point detection. A sub-pixel precision for

denoising is required but, unfortunately, the precision of the SIFT points decreases
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through the octaves. Indeed, SIFT simulates the scale space by sub-sampling the im-

ages by factor two through each octave. Thus the sub-pixel key point detection, which

is sub-pixel accurate in the first octave, can be several pixels inaccurate in the last oc-

taves. To maintain a constant precision through the octaves, the SIFT sub-sampling

between the octaves was simply canceled.

This cancelation of the sub-sampling entails two adjustments of SIFT. The first

one is to adjust the Laplacian threshold, an important parameter in the SIFT method

removing key points due to noise. Canceling the sub-sampling between octaves is

equivalent to up-sampling the images by a power of two. Thus the Laplacian of the

pixel on the twice up-sampled image is four times smaller than the corresponding one

on the original image, because

M
(
u(

x

2
,
y

2
)
)

=
1

4
M u(x, y) (5.1)

where u(x, y) is the image and M is the Laplace operator.

The second adjustment after the cancelation of the SIFT sub-sampling is the con-

struction of the descriptors. In our case, the blur is increasing through octaves, and so

is the size of the domaing associated with each descriptor. To keep the scale invari-

ance, the domain of each descriptor in the n-th octave is therefore sub-sampled by a

2n−1 ratio.

In summary, the precision of SIFT key points is improved by canceling the sub-

sampling through octaves. The SIFT descriptor construction and the Laplacian thresh-

old are adapted to keep them as in the original SIFT. As will be proved in simulations,

the accurate SIFT retains a rather constant precision through octaves.
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5.2.2 Reliable Dominant Homography Estimation

An adaptation to multi-images of the Moisan-Stival ORSA algorithm [102] will be

used. We adapt their notations here. Assume the set of match pairs is

S =
(
xi = (xi, yi),x

′
i = (x′i, y

′
i)
)

i=1...n
,

We are interested in the homography matrix H, that is best compatible with these

matches (and not in the fundamental matrix itself [69, 68]). Also, we want to keep a

safe subset of inliers T in S, with size k (4 < k ≤ n). Following [102] define the

rigidity of T associated with H by

αH(T ) =
π

A′

(
max

(x,x′)∈T
dist(x′,Hx)

)2

, (5.2)

where A′ the area of the second image domain. The rigidity is in fact a geometric

probability. It is obtained by dividing the area of a disk with radius the maximal H-

projection error for T , by the image area A′. Following the a contrario method, if

the rigidity is too small to be explained by randomness, the deduction is that there are

only “inliers” in T . It is difficult to compute the probability P (infH αH(T ) < t) to

select the best subset T , even if we assume all the points are uniformly distributed in

images. Instead of computing this probability directly, Moisan and Stival [102] use

a Bonferroni-like estimate, namely the expected number of false alarms (NFA), also

referred to as the meaningfulness:

ε(α, n, k) := (n− 4) · n
kC · k

4C · α(k−4). (5.3)

This number incorporates the size of the matching set, the size of the subset and the

rigidity. This algorithm has zero parameter and does not require any assumptions on

the camera motion or the estimation of noise variance.

In burst denoising, the ideal way would be to partition the image domain into dif-

ferent regions, each of which shares the same homography, compute homography on
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each of them and finally register each image to the reference one by inverting the ho-

mography for each region. But, if we apply directly ORSA on each pair of two images,

it is not guaranteed that the same region with a dominant homography will be chosen

for each pair. A natural solution is to find a region and a homography common to all

pairs of images. Therefore, ORSA is adapted by defining a “joint meaningfulness” as

indicated in Algorithm 1.

Algorithm 1 multiple ORSA
Input The set S0 of the common SIFT points in the template and the corresponding

matching points in the j−th image, denoted as Sj .

Set ε = +∞

while the number of trials does not exceed N do

Pick up 4 random points from S0

for (each j > 0) do

Compute the homography using these 4 points and the corresponding ones in

Sj

Find the most meaningful subset of S with respect to Sj under this homogra-

phy, save the meaningfulness parameter as εj

end for

Compute the joint meaningfulness εjoint =
∑

εj

If εjoint < ε, then ε = εjoint, and save the meaningful subset for each pair of

images as Tj and the 4 points, P4.

end while

Return εjoint, Tj and P4.

It is impossible to try all 4-points combinations. Instead, an optimized random

sampling algorithm (ORSA)is used as suggested in [102]. The algorithm stops once

εjoint < 1.0. Then it is iterated for a small number of trials, typically N/10.
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5.2.3 Video Equalization

There still is an extra step before noise estimation: the burst equalization! The images

taken under indoor lights usually consist of fast variations of the contrast and bright-

ness. We want to make them consistent through all the images, so that the standard

deviation along time is indeed due to the noise, not to the changes of lights. This is

done by a joint histogram equalization of all images. The best exponent of joint equal-

ization is the Midway method [37, 38] which is summarized in a simple and elegant

formula. Let v : Ω → [0, 1] be an image and h its intensity histogram. The cumulative

histogram of v is

H(x) =

∫ x

0

h(s)ds.

Starting with a series of images vj, j = 1, · · · , N with cumulative histogram Hj(x),

the Midway cumulative histogram H is defined as a compromise of all Hj by H =(
1
N

(
∑

j H−1
j )

)−1

. Once H is computed, each image vj is replaced by φj(vj) =

H−1(Hj(vj)). The necessity of histogram equalization to get a reliable noise model is

illustrated in Fig. 5.4.

5.2.4 Signal-Dependent Noise Estimation

Here is the crucial step of the chain. The sequence of registered images is used to

estimate the signal-dependent noise curve. If one pixel is well-registered, its values

along the time give samples permitting to estimate the noise model. Therefore the

standard deviations are classified according to their mean. The main question is to

have an estimate robust to the wrongly registered pixels. The histogram of the mean

of each pixel along time is constructed, with n = 100 uniform bins. Inside each bin,

the median value of the standard deviations of all pixels is computed. This yields a

curve of mean versus standard deviation. The median is robust to outliers by itself,
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but several precautions can be taken to make the estimate still more reliable. First,

all edge points on which the interpolation error is stronger are simply ruled out. This

can be done by Canny edge detector. Second, the pixels whose standard deviation is

too large are also ruled out. The threshold is set to be the double of the peak value in

the histogram of all standard deviations. Finally, bins that contain less than 100 items

are simply not retained. The noise curves for the three color channels are estimated

separately, but show a striking coincidence up to a multiplicative factor.

5.2.5 Hybrid Denoising Scheme

The noise estimate is crucial to meet a safe decision about which kind of denoising

can be applied at each pixel. Suppose we have two denoising results: the one from

averaging uA and the other from NLM or BM3D, uBM3D, the hybrid scheme will return

uH = α · uBM3D + (1− α) · uA

For each registered pixel x in the template image, the average u(x) of its samples

after registration is looked up in the noise model. The noise curve gives the expected

standard deviation σ(x) := σ(u(x)). At the same registered pixel the empirical stan-

dard deviation σ̂(x) of the samples is also computed. If this pixel is correctly regis-

tered, σ̂ should close to σ, in which case a small value should be given to the weight

α. A simple choice for α uses the sigmoid function:

α(x) :=
1

1 + exp(c− σ̂(x)/σ(x))
.

To avoid any impulse noise created by a local conflict between estimates, the weight

function α(x) is slightly smoothed out by a 3 × 3 spatial average. Algorithm. 2 sum-

marizes the steps of the proposed multi-image denoising.
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Algorithm 2 multi-image denoising
Input: ImageSequence V = {V0, · · · , VN}

compute SIFT points on V0, saved as CommonSIFTpts

for (j > 0) do

compute SIFT points on Vj

save the matching points in Vj and V0 as currSIFTpts

update CommonSIFTpts = CommonSIFTpts ∩ currSIFTpts

end for

Apply multiple ORSA (Algo. 1) on the set of CommonSIFTpts to get the most

meaningful 4 points P4

for (j > 0) do

compute homography between Vj and V0 using P4

V regj = register Vj back to V0 by this homography

end for

Video equalization

Noise estimation

Hybrid denoising scheme combining the average and BM3D applied on V reg

5.3 Experiments

5.3.1 Accurate SIFT

A check was made on the accuracy gain of the accurate SIFT described in Sect. 5.2.1.

We applied SIFT and accurate SIFT on two images respectively. One of the images

was generated from the other image by a simple rotation+translation, as shown in

Fig. 5.2. The key points in both images were matched by using Lowe’s classic match-

ing method. After eliminating the outliers by ORSA the homograghy from one image

to the other image was estimated. This homography allows us to project the key points
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Figure 5.2: Two images used to test the accurate SIFT. The right image is generated

from the left one by a translation+rotation.

of one image on the other image, and to estimate the average error. Table. 5.1 shows

the average error estimated in each octave in the scale space underlying SIFT. The ex-

periment confirms that the precision for the classical SIFT decreases when the octave

index increases. For accurate SIFT, the precision remains stable through octaves.

5.3.2 Multi-image Registration

Video data provided by the company DxO Labs capture a series of images of a rotating

pattern with a fixed pedestal. We show three images from the sequence and the ones

after registration in Fig. 5.3. In this easy case the dominant homography is on the plane

of the rotationing pattern, which contains more SIFT points than the pedestal region.

As a result we observe the rotating pedestal and its background after registration.

5.3.3 Video Equalization

Fig. 5.4 shows the efficiency of video histogram equalization. The images were taken

under ceiling lights with changing illumination.

82



average error

classical SIFT improved SIFT

octave −1 0.036 0.036

octave 0 0.064 0.032

octave 1 0.263 0.033

octave 2 no keypoints 0.040

Table 5.1: The average error in each octave for Lowe’s classical SIFT and for ac-

curate SIFT. The precision decreases for Lowe’s classical SIFT, while accurate SIFT

remains stable through octaves. This is essentially obtained by removing the sub-

sampling step in the SIFT method.

5.3.4 Noise Estimation

In the real scenario, the noise is inherent to the image, each pixel being modelled as a

Poisson process. This model is valid except in the very dark regions where thermal and

electronic noise dominate, and in the bright regions because the sensor gain is anyway

nonlinear. The original image was simulated as a Poisson noise whose mean was

a good quality image, after geometric homographies simulating the camera shaking.

The noise estimation algorithm is demonstrated on three examples: Barbara, Couple

and Hill. As shown in Fig. 5.5, the standard deviation (Y-axis) of the noise curves

follows nicely the square root of the intensity (X-axis). The noise curves of the real

datasets are given in Fig. 5.6.

5.3.5 Multi-image Denoising

For the experiments on synthetic data, the quantitative measurement of the denoising

performance will be measured by the root-mean-square (RMS) errors of different de-
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Figure 5.3: Multi-image registration. Top: three frames from an image sequence

with a rotating pattern and a fixed pedestal. Bottom: the corresponding ones after

registration. The dominant homography we find is on the plane of the rotating pat-

tern, since it contains more SIFT points than the pedestal region. As a result we

observe the rotating pedestal and its background after registration. The images are a

courtesy of DxO Labs, Boulogne.

noising methods in Tab. 5.2. The accumulation is based on 16 images, thus yielding a

theoretical noise reduction by 4. A 3.5 noise reduction is experimentally attained in the

images. In all cases, the difference between the theoretical factor 4 and the observed

one is probably due to the fact that the simulated images are seriously aliased, which

caused interpolation errors after registration.

The denoising results are now given for several real data sets, each of which con-

sists of 16 JPEG images bursts. For a better illustration, the comparison shows the

intermediate steps: the simple average, Non-Local Means on the registered images,
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Figure 5.4: Video Equalization. Top: three frames from an image sequence with

different illuminations. Bottom: after registration and equalization.

BM3D on the registered images, and the result of the hybrid scheme. These results are

shown on several well-chosen zoomed-in regions.

Since the proposed algorithm only finds a dominant homography, which is the

rotating pattern in Fig. 5.3, the simple average fails to denoise the region of the fixed

pedestals. It also fails to remove some dust that was incidentally stick to the camera

objective, as zoomed-in and shown in Fig. 5.7. On the other hand, fine texture details

are dramatically lost by Non-Local Means, which instead gives good denoising on

contrasted regions such as the pedestals. The hybrid scheme with NLM, combining

both averaging and NLM captures the virtue of each method. As expected the result

is still better with a hybrid scheme using BM3D: Indeed BM3D is the best denoising

algorithm and is actually quite close in performance to the direct averaging, as has

been shown in Table 5.2.

The images in Fig. 5.4 captured a 3D scene with a single-lens reflex (SLR) camera,

Canon EOS 30D. The scene consists of 2 books, a newspaper and a moving mouse.

We enlarge three illustrative parts in Fig. 5.8, in which the structure lines on the book
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Figure 5.5: Noise curve. From top to bottom: the original image, one of the sim-

ulated images by moving the image and adding Poisson noise, and the noise curve

from our algorithm using 16 images. The standard deviation of the noise (Y-axis) fits

to the square root of the intensity (X-axis).

and letters in the newspaper are smoothed out by non-local means. In contrast, the

letters turn out to be readable when averaging. As for the moving mouse, the average

fails completely, while block-matching succeeds, since it uses the similarity patches in

the template image itself.

Finally we show a burst of images of a painting. This is a good direct application

for our algorithm, since the images of the painting are in principle related by homog-
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Table 5.2: RMS for different methods

Barbara Couple Hill

noisy 11.30 11.22 10.27

NLM 10.83 5.43 6.73

BM3D 4.33 3.39 3.90

AR 3.55 3.03 2.73

GT 2.85 2.89 2.63

Table 5.3: RMSE on synthetic data with 16 images. AR and GT stand for “average

after registration” and “ground-truth” in the sense of registration back by the ground-

truth motion. In principle GT divides the RMSE by 4, while AR is very close but

higher than GT due to misregistration and interpolation errors. In all cases video

BM3D gets close to the ratio 4 limit, but still is overcome by AR for all the images.

raphy if the painting is flat and the camera distortion-free. As a result, the average is

always favored by the hybrid scheme. The details are compared in Fig. 5.9, where the

dynamics of the patches are equalized for a fair comparison.

87



Figure 5.6: Noise curves of the real data sets. Left: one of the images in the se-

quence; right: the noise curves of the three color channels.
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Noisy data

Non-local Means after registration

The average after registration

Hybrid scheme

Figure 5.7: Real dataset from DxO Labs, Boulogne. Due to mis-registration, the

simple average fails to denoise the region of the pedestals. In the middle example, it

does not remove some dust stick to the camera objective. The hybrid scheme works

everywhere and gives roughly the same result with NLM and BM3D.
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noisy data

Non-local Means after registration

Video BM3D after registration

The average after registration

Hybrid method, averaging and BM3D

Figure 5.8: Real dataset of an indoor setting. The average fails completely with the

moving mouse on the right example, while block matching succeeds since it uses the

similarity patches in the template image itself.
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Noisy data

Non-local means after registration

Video BM3D after registration

The average after registration

Hybrid method, averaging and BM3D

Figure 5.9: A burst of images of a painting. The last two results are almost identical,

which indicates that the registration has been detected correct almost everywhere.
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CHAPTER 6

Conclusion

We have presented a simple deblurring/deconvolution algorithm that exploits the as-

sumption of sparse representation for natural image statistics. It is a “direct” algorithm,

in the sense that it performs inference by synthesis relative to an explicit generative

model (which acts as a regularizer), without the need to solve an ill-conditioned in-

verse problem.

Nonlocal functionals have recently been introduced for the case of image denois-

ing. We have extended their utility to more general inverse problems. We discuss

two applications of the general model: image deconvolution and tomographic recon-

struction. We found the nonlocal functionals to give superior results, provided that the

data is preprocessed using older simple techniques to construct the nonlocal weight.

Furthermore, we extended the nonlocal means filtering by a more general similarity

measurement. In particular, we applied SIFT to estimate a rotation and a scale at

each patch so that it can be transformed to a canonical form. Then we construct the

weight based on the canonical form so that we could exploit more similar patches to

help denoising. We also investigated a super-resolution model as an application of the

nonlocal framework. Not only does the reconstruction enhance the resolution, but it

denoises the image as well.

Image deblurring is discussed using both local sparsity and nonlocal similarity. The

comparison between these two methods is described as follows. First, natural images

usually contain repetitive patterns, and thus similarity may result in a more reliable
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regularizer than sparsity. Second, it takes time to compute the weight function, while

enforcing the local sparsity constraints is highly parallelizable. Finally similarity relies

on the data fidelity term, while sparsity itself is a very strong assumption. Therefore,

blind deconvolution can be achieved as long as the dictionary is good enough.

Although the main purpose of Chapter 5 is denoising, it involves a series of useful

techniques. We modified SIFT for keypoint detection with sub-pixel precision and

adapted a multi-image ORSA for reliable homography estimation. On the technical

side, the method can already be used to estimate a non parametric camera noise model

from any image burst. Possible future work is to partition the image domain into

different regions, each of which shares the same homography. It will involve image

segmentation and depth map estimation of the 3D scene.
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