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ABSTRACT

We propose a novel piecewise hyperbolic operator for rapid
upsampling of natural images. The operator uses a slope-
limiter scheme that conveniently lends itself to higher-order
approximations and is responsible for restricting spatialoscil-
lations arising due to the edges and sharp details in the image.
As a consequence the upsampled image not only exhibits en-
hanced edges, and discontinuities across boundaries, but also
preserves smoothly varying features in images. Experimen-
tal results show an improvement in the PSNR compared to
typical cubic, and spline-based interpolation approaches.

Index Terms— interpolation, edge-preserving, slope-
limiter

1 Introduction
Interpolation is a frequently needed tool for many imaging

applications ranging from image zooming, resizing, retouch-
ing, formatting, manipulation, and compositing. Aside from
applications aiming to aesthetically manipulate images, one
routinely needs image resampling for the purpose of image
matching and registration for computer vision applications.
Often times, high throughput machine vision tasks such as
scene reconstruction and warping utilize simple but fast tech-
niques such as bilinear, bicubic, and occasionally b-spline in-
terpolation for single images. These methods implicitly as-
sume a smoothness prior in the image resampling process.
For example, bilinear interpolation assumes that the resam-
pled intensity value arises from first order local averaging
of neighboring intensities of the image, whereas higher or-
der methods such as bicubic, and b-spline assume that local
intensities are estimated by imposing smoothness constraints
by fitting high-order polynomials to the intensity functionof
the image. While bilinear interpolation restricts signal over-
shoots at discontinuities, bicubic, b-spline and other higher
order methods introduce ringing, and haloing artifacts in im-
ages. Furthermore, the performance of many vision appli-
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cations rely on accurate preservation and detection of edges
from images. Thus a compromise needs to be achieved be-
tween edge fidelity and processing latency.

There are several approaches for image upsampling, espe-
cially for preserving edges [1, 2, 3] during the interpolation
process. Our approach focuses on single image upsampling,
and is different from image super-resolution approaches [4]
that typically involve either fusion of multiple images, orinte-
gration of example-based constraints along with sub-pixelho-
mologies. Conventionally, the problem of image upsampling
is approached by initially formulating a degradation model
specified by a convolution kernel as well as a downsampling
operator. The high resolution image is then reconstructed by
solving the inverse problem of image reconstruction that as-
signs intensity values to the desired image. In this paper, in-
stead of explicitly optimizing over the degradation model,we
directly focus on the upsampling operator that yields a one-
step interpolation of the observed image. Our resampling ap-
proach borrows from methods in fluid dynamics [5, 6] that
attempt to construct total variation diminishing (TVD) solu-
tions from high resolution numerical schemes for modeling
shocks and discontinuities in fluid flows. Our interpolation
method does not require iterative optimization; instead itpro-
vides a one-step up/downsampling of the original image. It
relies on higher order derivatives of the image, and limits spa-
tial oscillations at edges and discontinuities, and at the same
time, satisfies the dual requirement of speed and edge accu-
racy.

2 Edge-Preserved Sampling
This section formulates the upsampling problem, and intro-

duces the edge-preserving operator based on a slope-limiter
function. The single frame degradation model is usually ex-
pressed as a convolution of the high resolution image with
a blur kernel operator, followed by a down-sampling process.
Thus a low resolution imagef is written asf = D(h∗u)+η,
whereD is a downsampling operator, andη is zero-mean
Gaussian noise. Previously Marquina et al. [7] have proposed
a TV regularization solution for high resolution image recon-
struction given bŷu = argminu{TV (u) + λ

2 [||f − D(h ∗
u)||2

L2 − σ2]. They iteratively construct a high resolution im-



age by solving the Euler Lagrange equation under homoge-
neous Neumann boundary conditions. In this paper, instead
of solving the regularization problem, we are only interested
in seeking a minimum for the error condition

E = ||u− SD(h ∗ u)||2, (1)

whereS is an upsampling operator, andD◦S = I, an identity
matrix. Here, the operation of downsampling followed by
upsampling is not reversible, and thusD ◦ S 6= S ◦D. The
observed imagef is confounded by both the down sampling
process, and the blur operator. Assuming that the operators
D andh, are fixed, and independent of the imageu in Eq.
1, there are a variety of upsampling operatorsS, that seek to
minimize the cost in Eq. 1. For example, it can be shown that
for piecewise smooth images, a bilinear interpolant operator
yields a lower estimate for the errorE in equation 1 when
compared with a nearest neighbor interpolant. In this paper,
instead of proposing a variational formulation to solve Eq.
1, our goal is to seek specific upsampling operatorsS that
preserve or enhance edges in the image.

2.1 Higher-order Piecewise Hyperbolic Oper-
ator

In order to fix notation, we consider a two-dimensionalm×
n image, and set up a pixelujk : 1 ≤ j ≤ m, 1 ≤ k ≤ n,
whereujk is an average of the true signal intensityg(x, y) in
the pixel, and is written as

ujk =
1

hxhy

∫ xj+hx/2

xj−hx/2

∫ yk+hy/2

yk−hy/2

g(x, y)dxdy, (2)

wherehx andhy are the pixel step sizes along theX and
Y dimension of the image. Furthermore, we assume that
the domain of the pixel functionujk, centered at(xj , yk) is
given by (xj − hx

2 , xj + hx

2 ) × (yk −
hy

2 , yk +
hy

2 ), and
denote the divided differences in the image by∆x

+ujk =
uj+1k−ujk

hx
, ∆x

−ujk =
ujk−uj−1k

hx
, and∆y

+ujk =
ujk+1−ujk

hy
,

and∆y
−ujk =

ujk−ujk−1

hy
.

Our goal is to approximate the functiong(x, y) in each
pixel by means of an elementary functionHjk(x, y), such
that Eq. 2 is satisfied. While there are several different
edge-preserving forms for the functionHjk, following Mar-
quina [6] we restrict our focus to special type of functions
also known as slope-limiters. The idea here is to choose a
slope-limiter form such that the interpolant ensures accu-
rate spatial approximation, and prevents excessive increase
in the total variation in the pixelujk. There is a wide vari-
ety of such nonlinear functions [8] that preprocess divided
differences and enforce the order of accuracy. In this pa-
per, we propose a third order approximation to the function
H(x, y) using a piecewise hyperbolic form. Additionally
we will use the harmod limiter function [6] that uses the
notion of a harmonic mean instead of an absolute mean of
the divided differences. The harmod limiter operator is given

by harmod(α, β) =
sgn(α)+sgn(β)

2 · 2αβ
α+β . The interpolant

function can then be defined as

Hjk = ujk +
ajk

x− xj + cjk
+

bjk
y − yk + djk

, (3)

where the parametersajk, bjk are given byajk = harmod
(ujk−uj−1k

hx
,

uj+1k−ujk

hx

)

, andbjk = harmod
(

ujk−ujk−1

hy
,
ujk+1−ujk

hy

)

. In

order to represent a functionH of the form given in Eq. 3,
we consider the following ansatz [6]

Hjk(x, y) = ujk + ajk
hx

α2
x

[

log(
2− αx

2 + αx
)−

hx

x− xj −
hx

αx

]

+

bjk
hy

α2
y

[

log(
2 − αy

2 + αy
)−

hy

y − yj −
hy

αy

]

, (4)

where the parametersajk andbjk are defined above. In order
to defineαx andαy, we first defineex = harmod(|∆x

+ujk|), |∆
x
−ujk|),

andey = harmod(|∆y
+ujk|), |∆

y
−ujk|). Then the parameters

αx andαy are defined as

αx = 2

[

√

ex
∆x

+ujk
− 1

]

, if |∆x
+ujk| ≤ |∆x

−ujk|

αx = 2

[

1−

√

ex
∆x

+ujk

]

if |∆x
+ujk| > |∆x

−ujk|

αy = 2

[

√

ey
∆y

+ujk
− 1

]

, if |∆y
+ujk| ≤ |∆y

−ujk|

αy = 2

[

1−

√

ey
∆y

+ujk

]

if |∆y
+ujk| > |∆y

−ujk| (5)

We now define the upsampling operatorS at the center of
half-size pixels in each dimensions as

S(xj(θx), yk(θy)) = Hjk(xjθx), yk(θy), (6)

wherexj(θx) = xj + θxhx, andyk(θy) = yk + θyhy, and
θx, θy ∈ [−1/4, 1/4]. Similarly, the downsampling operator
D is defined asD(v)jkl = 1

4 [
∑

v(xj(θx), yk(θy))]. On ac-
count of the higher-order approximation, it is noted that the
upsampling criteria is given byD ◦ S(u) = u+O(((hxhy)),
and no longer identity. However, from a practical standpoint,
the errors are negligible, and the signal is not degraded in a
significant way.

3 Results
In this section, we present results of upsampled images by

applying the operator specified in Eq. 6. Figure 1 shows
upsampled images obtained using bilinear, b-spline, and the
edge-preserved upsampling operators. The respective PSNR
values are quantified in Table 1. In order to calculate the
PSNR, the original images were downsampled using bilinear
interpolation and then upsampled using each of the upsam-
pling operators. The edge-preserving piecewise hyperbolic



operator not only outperforms bicubic, and b-spline interpo-
lation, but the resulting upsampled images appear sharper,
and show better edges. Finally, the edge-preserving opera-

Image Bilinear Bicubic B-Spline Edge-preserved
Moon 49.59 dB 51.24 dB 51.37 dB 51.77 dB
Math 73.85 dB 77.73 dB 79.16 dB 82.44 dB
Text 39.18 dB 40.83 dB 41.38 dB 43.61 dB

House 47.02 dB 48.58 dB 48.84 dB 49.50 dB

Table 1. Comparison of PNSR (10 log( 2552

||Iupsampled−Iorig ||2
))

calculated from theL2 norm between the upsampled and the
original image for each of the interpolation operators.

tor is also used to upsample color images as shown in Fig.
2. Here, the color image was first separated into luminance
(Y), and the two chrominance channels (UV), and each inter-
polation operator was applied separately to each channel, and
then converted back to the RGB colorspace. It is observed
that the edge-preserved upsampled images resolve sharpness
and detail better compared to the bilinear, and spline based
approaches.

4 Discussion
The proposed piecewise hyperbolic operator ensures that

the reconstructed upsampled functions are smooth inside each
pixel, and limits oscillations and jump discontinuities located
at the pixel interfaces. The operator is simple to implement,
and executes in 0.2 s in MATLAB on an Intel 2.4 GHz plat-
form. We anticipate the usefulness of this operator in routine
image processing as well as computer vision tasks, where the
preservation of edge quality is of primary importance.
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Fig. 1. Upsampled images (×2) resulting from bilinear, b-spline, and edge-preserving interpolation applied to the downsampled
image.
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