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Abstract

The inverse problem of finding sparse initial data from the solutions to the heat
equation is considered. The initial data is assumed to be a sum of an unknown but
finite number of Dirac delta functions at unknown locations. Point-wise values of the
heat solution at only a few locations are used in an L1 constrained optimization to
find such sparse initial data. A concept of domain of effective sensing is introduced to
speed up the already fast Bregman iterative algorithm for L1 optimization. Further-
more, an algorithm which successively adds new measurements at intelligent locations
is introduced. By comparing the solutions of the inverse problem that are obtained
from different number of measurements, the algorithm decides where to add new mea-
surements in order to improve the reconstruction of the sparse initial data.

1 Introduction

Heat source identification problems have important applications in many branches of en-
gineering and science. For example, an accurate estimation of pollutant source [3, 4] is a
crucial environmental safeguard in cities with dense populations. Typically, a recovery of
the unknown source is a reverse process in time. The major difficulty in establishing any nu-
merical algorithm for approximating the solution is the severe ill-posedness of the problem.
It appears that the mathematical analysis and numerical algorithms for inverse heat source
problems are still very limited. For the kind of problem we consider in this paper, where
we want to find the initial condition with known measurements in the future time, existing
methods need many measurements [14] or have stability issues [2]. In this paper, we treat
the source identification problem as an optimization problem. Our goal is to invert the heat
equation to get the sparse initial condition. In other words, the problem is can formulated

1



as an L0 minimization problems with constraints. However, it is difficult to solve the L0

problem since it is a nonconvex and NP-hard problem.

In compressed sensing [7], we can solve an L0 problems by solving its L1 relaxation when the
associated matrix has the restricted isometry property (RIP) [6]. The heat operator does not
satisfy RIP, but we can adopt the idea of substituting L0 with L1 for sparse optimization. We
will show numerical results which indicate the effectiveness of this strategy. Our approach to
this problem is to solve a L1 minimization problem with constraints. We apply the Bregman
iterative method [9, 13] to solve the constrained problem as a sequence of unconstrained
subproblems. To solve these subproblems, we use the greedy coordinate descent method
developed in [11] for solving the L1 unconstraint problem, which was shown to be very
efficient for sparse recovery.

For the heat source identification problem, the theory of compressive sensing does not apply.
It is thus unclear if constrained L1 minimization provides a good solution to our problem. In
other hand, because of the inapplicability of the compressive sensing theory, there is room
for finding specialized measurement locations for better solutions to our inverse problem.
Hence, this paper is our attempt to understand the following questions:

• Is L1-regularization adequate for inverse problems involving point sources?

• In which way can additional data improve the inversion?

In related work, the author [1] discussed optimal experimental design for ill-posed problems
and suggest a numerical framework to efficiently achieve such a design in a statistical manner.

In section 2, we give a more detailed introduction of the heat and related source identification
problem and related source problems. In section 3, we give a complete algorithm for solving
the heat source identification problem and some algorithmic methods for improving efficiency.
In section 4, we show two dimensional examples. In section 5, we obtain a useful stability
estimation for a simple case. In section 6, we consider solving the heat source problem in
a different setting. By using successive samples, we can get better results than random
sampling. Finally, section 7 summarizes and discusses future directions. In the appendix,
we explain about the proof of the stability in detail.

The contributions of this paper are:

• Using L1 minimization for heat source identification

• Prove the stability under a simple case in terms of Wasserstein distance

• Invent a successive sampling strategy

• Propose ideas of exclusion region and support restriction to reduce the problem size
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2 Source Problems

2.1 1D Heat Equation

We begin with a simple case. We consider the 1D heat equation with periodic boundaries.
Consider the heat equation {

ut = ∆u on Ω
u(x, 0) = u0

(1)

where Ω is the unit interval (0, 1). The initial condition u0 is sparse, meaning its form is:

u0(x) =
K∑
k=1

αkδ(x− sk),

where there are K spikes (delta impulses) located at the sk. Physically, this initial condition
describes K hot particles striking a cold plate Ω at the initial time and (1) describes the
ensuing heat evolution.

0 1

u0(x) ∈ L0(Ω)

x
0 1

u(x, T ) ∈ F

1 2 3 4 · · · M

fm ∈ RM

m

Figure 1: Depiction of the source problem: given samples fm = u(xm, T ), recover the sparse
initial condition u0.

The problem we consider is the following: if we observe (possibly noisy) measurements
fm = u(xm, T ), m = 1, . . . ,M , then without knowing K, (αk), or (sk) in advance, can we
recover u0?

Let G denote the linear Green’s operator such that u = Gu0, that is, for the one-dimensional
heat equation with periodic boundaries,

u(x, t) = (Gu0)(x, t) =

∫ 1

0

Gt(x− y)u0(y) dy (2)
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where Gt(x) = 1√
4πt

∑
k∈Z exp

(
− (x+k)2

4t

)
.

We pose the solution of the source problem as the following optimization problem:

arg min
u0∈L0(Ω)

‖u0‖0 subject to fm = (Gu0)(xm, T ), m = 1, . . . ,M. (3)

Or, if the measurements fm are noisy, we instead solve

arg min
u0∈L0(Ω)

‖u0‖0 subject to |fm − (Gu0)(xm, T )| ≤ ε, m = 1, . . . ,M. (4)

As required by the application, we may have the additional constraint u0 ≥ 0. These
sparsity optimizations closely resemble the recovery step in compressed sensing, and we will
use techniques from compressed sensing for their solution.

2.2 Linear PDEs

Our approach applies more generally to problems where u0 is sparse and linearly related to
the the known measurements fm.

Consider on a bounded Lipschitz domain Ω ⊂ Rd source problems of the form ∂tu =
∑
i,j

∂xi

(
ai,j(x)∂xj

u
)

+
∑
i

bi(x)∂xi
u+ c(x)u+ g(x, t)

u(x, 0) = u0(x)

(5)

with periodic or Neumann boundary conditions where the initial condition u0 ∈ L0(Ω) is
unknown and sparse. We suppose that a, b, c, and g satisfy appropriate conditions, so that
u(x, t) belongs to a suitable (linear) function space F on Ω× [0, T ]. The solution is sampled
by a linear operator S : F → RM , for example, sampling point values

fm = u(xm, tm), m = 1, . . . ,M. (6)

Other interesting choices are sampling the derivative values ∂xi
u(xm, tm) or some weighted

local averages (ϕ ∗ u)(xm, tm).

Given f = S(u), the source problem is to recover u0. While u0 is unknown, we suppose that
all other information (Ω, a, b, c, g, S, f) is known.

The initial boundary value problem (5) is inhomogeneous due to the forcing term g. We
decompose as u = up + uh, let up denote the particular solution with u0 ≡ 0 and uh the
homogeneous solution with g ≡ 0. Then there exists a linear operator G : L0(Ω) → F such
that uh = G(u0).
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We solve the source problem as the following optimization problem:

arg min
u0∈L0(Ω)

‖u0‖0 subject to f = S(up + Gu0). (7)

By linearity, the constraint is equivalently SGu0 = f − Sup.

2.3 Sparsity in a Transformed Domain

x
0 1

u0(x)

û0

R

Figure 2: Our approach also applies when u0 sparse under a transformed representation.
Here we show a piecewise smooth function and its Cohen-Daubechies-Feauveau 9/7 wavelet
transform.

Rather than considering u0 itself as sparse, we can also consider u0 as sparse under some
transformed basis or frame. For example, a function like

u0(x) =
K∑
k=1

ck cos(skx) + dk sin(skx)

has a sparse Fourier representation. If u0 is piecewise smooth, it is has an approximately
sparse wavelet representation, see Figure 2. Let R be a linear operator (e.g., inverse Fourier
or inverse wavelet transform) such that u0 = Rû0 for some sparse function û0. Then (7)
becomes

arg min
û0∈L0

‖û0‖0 subject to f = S(up + GRû0). (8)

2.4 Discretization

Discrete approximations of these problems need to be made for numerical implementation.
Partition Ω into N elements so that u0 is approximated as a vector v in RN . Let G, S denote
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linear finite-dimensional approximations of operators G, S such that SGv ≈ SGu0. Then SG
is an M ×N matrix, and the recovery problem is

arg min
v∈RN

‖v‖0 subject to SGv = f − Svp, (9)

where vp is a discrete approximation of up. The term Svp does not change the problem
significantly since it can be absorbed, f ← f − Svp; henceforth we omit Svp.

The matrix SG may be constructed by the following procedure. Set v = (0, . . . , 0, 1, 0, . . .)
with the nth component equal to 1 and zero otherwise. Approximate (5) as Gv, then sample
the solution to obtain f = SGv ∈ RM . This f is the nth column of matrix SG.

Similarly if u0 is sparse in a transformed domain, we solve (9) but with SGR, where R is an
N ×N matrix approximating R.

Let A denote the M × N constraint matrix SG or SGR. In analogy to compressed sensing,
A is the sensing matrix.

3 Solving the CS Problem

While (9) is a natural way to pose the problem, it is not so easy to solve. There are
two challenges in solving (9). First, the L0-norm is nonconvex, meaning the existence and
uniqueness of solutions are not guaranteed, and on a practical level, the nondifferentiability
of the L0-norm precludes the use of gradient-based minimization methods. Second, inverting
the matrix A is an ill-conditioned process since heat diffusion may make two different initial
conditions appear increasingly similar over time, hence the solution is extremely sensitive to
the given measurements.

We try to overcome these challenges is by replacing the L0 by L1,

arg min
v
‖v‖1 subject to Av = f − Svp. (10)

The L1-norm is convex, thus providing existence of solutions, and it is piecewise differen-
tiable. As demonstrated in the compressive sensing literature, the L1-norm tends to favor
sparse solutions and makes for an effective approximation of L0. Furthermore, it has been
shown that under some general conditions [6], L0 minimization and L1 minimization yield
the same solution—though unfortunately, this theory does not apply to (10).

In the following sections, we discuss the solution of (10) using the Bregman iteration algo-
rithm.
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3.1 Bregman Iteration

Bregman iterative techniques consider minimizing a problem of the form

arg min
u
J(u) subject to H(u) = 0 (11)

or
arg min

u
J(u) subject to H(u) ≤ ε (12)

where J and H are two convex functions on a Hilbert space H and minuH(u) = 0.

Define the Bregman distance as

Dp
J(u, ũ) = J(u)− J(ũ)− 〈p, u− ũ〉H , p ∈ ∂J(ũ). (13)

Note that this is not a distance in the usual sense; it is not symmetric. The constrained
minimization (11) is solved by the Bregman iteration algorithm:

Initialize: u0 = 0, p0 = 0

for k = 0, 1, . . .

uk+1 = arg minuD
pk

J (u, uk) + λH(u)

pk+1 = pk − λ∇H(uk+1)

(14)

where λ is a positive parameter. For our application with J(u) = ‖u‖1 and constraint
H(u; f) = 1

2
‖Au− f‖2

2, the Bregman iteration algorithm is
Initialize: u0 = 0, p0 = 0

for k = 0, 1, . . .

uk+1 = arg minu ‖u‖1 −
〈
pk, u

〉
+ λ ‖Au− f‖2

2

pk+1 = pk − λA∗(Au− f)

(15)

Equivalently, by refactoring
〈
pk, u

〉
+ λ ‖Au− f‖2

2, the sequence (pk) is concisely expressed
as adding residuals to f :

Initialize: u0 = 0, f 0 = f

for k = 0, 1, . . .

uk+1 = arg minu‖u‖1 + λ‖Au− fk‖2
2

fk+1 = fk + λA∗(Au− fk)

(16)

The Bregman iteration algorithm can be stopped for example when the ‖uk+1 − uk‖ is less
than a tolerance. Similarly, to solve with an inequality constraint like ‖Au− f‖2

2 ≤ ε, the

algorithm should be stopped for the first k where
∥∥Auk − f∥∥2

2
≤ ε.
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Theorem 1. 1. Monotonic decrease in H:

H(uk+1) ≤ H(uk+1) +Dpk

J (uk+1, uk) ≤ H(uk);

2. Converge to the exact minimizer of H: If ũ minimizes H(·) and J(ũ) < ∞, then
H(uk) ≤ H(ũ) + J(ũ)/k;

3. Convergence with noisy data: Let H(·) = H(·; f) and suppose H(ũ; f) ≤ ε and

H(ũ; g) = 0; then Dpk+1

J (ũ, uk+1) < Dpk

J (ũ, uk) as long as H(uk+1; f) > ε.

3.2 Shrinkage

The Bregman iteration algorithm allows us to solve the constrained minimization problem
(10) by solving a sequence of unconstrained problems,

arg min
u
‖u‖1 + λ‖Au− fk‖2

2. (17)

The subproblem in fact has an efficient closed-form solution.

Consider the one-dimensional case where u is a scalar, then it is easy to solve the problem

u? = arg min
u∈R
|u|+ λ(u− f)2. (18)

The solution to (18) is obtained by shrinkage, also known as soft thresholding:

u? = shrink(f , 1
2λ

) ≡ sign(f)
(
|f | − 1

2λ

)+
. (19)

The shrink operator is illustrated in Figure 3.

f

shrink(f, µ)

−µ +µ

shrink(f, µ) ≡ sign(f)
(
|f | − µ

)+

=


f + µ if f ≤ −µ,
0 if −µ ≤ f ≤ +µ,
f − µ if +µ ≤ f.

Figure 3: Shrinkage

Similarly if u is constrained to be nonnegative, the scalar problem is

arg min
u≥0

u+ λ(u− f)2,
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and the minimizer is u? = (f − 1
2λ

)+.

In the multidimensional case where u is a vector, the Bregman subproblem (17) is much
harder. We lose the explicit expression of the solution. Instead, we apply the coordinate
descent method developed in [11] to solve arg minu ‖u‖1 +λ‖Au− fk‖2

2. Since we ultimately
seek a sparse solution, the process of finding the solution should give preference to sparsity.
Instead of proceeding through all the coordinates, we choose only to update coordinates
most likely to be the spikes and decrease the energy the most. Therefore, we choose a greedy
coordinate algorithm which was introduced in [11], and we also proved the convergence of
the algorithm.

Algorithm (Greedy Coordinate Descent):

Precompute: wj = ‖aj‖2
2;

Normalization: A(·, i) = A(·, i)/wi;
Initialization: u = 0, β = A∗f ;

Iterate until converge:
ũ = shrink(β, 1

2λ
);

j = arg maxi |ui − ũi|,
then uk+1

i = uki , i 6= j,
uk+1
j = ũj;

βk+1 = βk − |ukj − ũj|(A∗A)ej,

βk+1
j = βkj .

In the algorithm, the computation of ũ and β is essential. ũ can be obtained by the shrinkage
formula with O(n) complexity; for efficiency, β should be updated recursively by adding the
difference between two iterations. Every step in the loop has complexity O(n), so combined
with its preference for sparsity, this algorithm is very efficient for our problem.

3.3 Support Restriction

We have two strategies to accelerate the solutions to these heat type equations. The first
idea is to solve for u0 only on its apparent support.

supp(uk)

Sk
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Empirically, we observe that early iterations of Bregman iterations tend to produce blurry
approximations of the solution and later iterations sharpen the initial approximation into
spikes. Therefore, in solving for uk+1, it is reasonable to expect that supp(uk+1) is similar to
supp(uk). Let Sk be a set containing supp(uk) and solve for uk+1 with its support restricted
to Sk,

uk+1 = arg min
{
‖u‖1 + λ ‖Au− f‖2

2 : supp(u) ⊂ Sk
}
. (20)

For example, Sk may be a morphological dilation of supp(uk). It is important that Sk

is strictly larger than supp(uk) to prevent the iteration from becoming trapped within an
incorrect support. If we find a solution which is also the minimizer on its dilated support,
then this solution is a local minimizer and a global minimizer due to the convexity.

Sk has to include supp(uk) as a closed subset. In our numerical examples, we enlarge supp(uk)
by including all its connected neighbors in the discretized sense. That is, we increase supp(uk)
by one pixel in each direction. Then Sk is the smallest set including supp(uk) as a closed
subset in the discretized sense.

3.4 Domain Exclusion

The second idea is to eliminate a region from consideration when a measurement is very
small. Suppose that the stengths of the delta functions in u0 are bounded from below by
αmin > 0. Then, since A is nonnegative, this implies

fm ≡ (Au0)m =

∫
A(m,x)u0(x) dx =

K∑
k=1

αkA(m, sk)

≥ αmin

K∑
k=1

A(m, sk).

(21)

Thus for a spike to exist at location s, we must have fm ≥ αminA(m, s) for all m. The
contrapositive of this statement gives a way to identify regions of the domain that cannot
have spikes:

Ωz ≡
M⋃
m=1

{
s ∈ Ω : fm < αminA(m, s)

}
. (22)

Similarly with noisy measurements |f exact
m − fnoisy

m | ≤ ε,

Ωz ≡
M⋃
m=1

{
s ∈ Ω : fnoisy

m + ε < αminA(m, s)
}
. (23)
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Beware that the validity of this strategy requires that A is nonnegative. Otherwise, cance-
lations could occur such that the bound (21) does not hold.

For the periodic heat equation point-value sampling fm = u(xm, tm), the exclusion condition
simplifies to fm < αminGtm(xm − s), see Figure 4.

αminGtm(x− s)

s xm

fm

x

Figure 4: Exclusion for the periodic heat equation with point-value sampling: a small mea-
surement fm < αminGtm(xm − s) implies that there cannot be a spike at x = s.

The Bregman algorithm (16) including support restriction and exclusion regions is performed
as 

Use (22) to determine Ωz

Initialize: u0 = 0, f 0 = f, S0 = Ω\Ωz

for k = 0, 1, . . .

uk+1 = arg min
{
‖u‖1 + λ‖Au− fk‖2

2 : supp(u) ⊂ Sk
}

fk+1 = fk + λA∗(Au− fk)
Sk+1 =

(
supp(uk+1)⊕B

)
\Ωz

(24)

4 Numerical Examples

4.1 Inverting the Heat Equation

Consider inverting the heat equation problem,{
ut = uxx + uyy, t > 0
u0 =

∑
k ckδ(x− xk, y − yk), t = 0

(25)

on the unit square (0, 1) × (0, 1) with periodic boundary conditions. We suppose that M
point-value samples fm = u(xm, ym, T ), m = 1, . . . ,M , have been observed at some final
time T > 0. The source problem is to recover u0 from these observations.

First, we discretize the region using a uniform N ×N grid and a discrete δ function:

δ(x− xk, y − yk) =

{
N2, (x, y) = (xk, yk)
0, otherwise.

(26)
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Let G be an N ×N matrix such that Gu0 is a finite difference approximation of u(x, y, T ),

(Gu0)k = u(xk, yk, T ).

The constraint matrix A is formed by selecting the rows of G corresponding to the points of
observation (xm, ym). In other words, the observations f are a downsampled version of the
information on the complete grid, f = S(Gu0).

Figure (5) shows an experiment using the linearized Bregman algorithm to recover the sparse
u0 by solving the problem:

min
u
‖u‖1 subject to (Gu)(xm, ym) = fm. (27)

Heat Source u0 Au0 = f fm + noise Recovered Result

Figure 5: Recovery of f(x) at T = 0.01 using 60 randomly selected measurements and 1%
noise on a 32× 32 grid.

If observations fm are obtained at different times, the L1 minimization model for recovery is

min
u
‖u‖1 s.t. (Gtmu)(xm, ym) = fm. (28)

4.2 Inverting with Spatially-Varying Conductivity

Consider the equation with sparse initial condition,{
ut = div(a∇u) x ∈ Ω = (0, 1)× (0, 1)
u=

∑
k ckδ(x− xk) t = 0

with Neumann boundary condition. We sample u at time T = 0.01 and try to recover the
initial condition using compressed sensing.
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Exact u0 f Recovery

Figure 6: The left plot: the orange shows the distribution of a(x); red stars indicate sam-
pling locations and blue dots represents heat source locations. The middle plot: the heat
distribution at time T is shown in blue. The right figure shows the recovery. Here a(x) is a
positive smooth function.

Exact u0 f Recovery

Figure 7: The orange circle indicates the distribution of a(x), and a(x) = 0.2 inside of the
circle and a(x) = 1 elsewhere.

5 Inequality

There is no rigorous proof to ensure that L1 minimization for inverting the heat operator
enhances the sparsity. However, the following inequality suggests it is true under some
limited conditions. In one dimensional space, if the true solution has only one spike, the
L1 minimizer will be very close to the true solution under the Wasserstein distance. This
implies a sense of stability of the spike locations of the solution. Intuitively, two signals that
are close under the Wasserstein distance will also be close after the heat diffusion process.
In our future work, we hope to verify this intuition for more general cases.

Theorem 2. Suppose that u has one spike, u(x) = αδ(x − x1), where α > 0. Let sj,
j = 1, 2, . . . , J denote the sampling locations and suppose there are two samples s1 and s2

such that s1 < x1 < s2 and s2−s1 <
√

2T . Let f(sj) = (Au)sj
and S = [s2−

√
2T , s1 +

√
2T ].

13



For any v of the form

v(x) =
∑
j

βjδ(x− yj) and f̂(sj) = (Av)sj
. (29)

satisfying βj > 0, ‖v‖1 ≤ ‖u‖1, and ‖f̂ − f‖∞ ≤ ε, there exist C ′ > 0 and C ′′ > 0 such that

1 ≥
∑

j:yj∈S βj

α
≥ 1− C ′ε (30)∑

j:yj∈S βj|yj − x1|2

α
≤ C ′′ε. (31)

From ‖v‖1 ≤ ‖u‖1, we know
∑

yj∈S βj ≤ α, and the inequality (31), so

(

∑
yj∈S βj|yj − x1|

α
)2 ≤ (

∑
yj∈S βj

α
)(

∑
yj∈S βj|yj − x1|2

α
) ≤

∑
yj∈S βj|yj − x1|2

α
≤ C ′′ε (32)

So ∑
j:yj∈S βj|yj − x1|

α
≤ C ′′′

√
ε. (33)

We can derive some simple conclusion from the above theorem: when the true sparse solution
has only one spike, the recovery obtained by L1 minimization should be close to the true
solution. They have close L1 norm and Wasserstein distance after normalization.

Theorem 3. Suppose u = αδ(x− x1), Au = f0, ‖f0 − f‖∞ ≤ ε, and

v = arg min ‖u‖1 s.t. ‖Au− f‖∞ ≤ ε. (34)

Let sj, j = 1, 2, . . . , J denote the sampling locations and suppose there are two samples s1

and s2 such that s1 < x1 < s2 and s2 − s1 <
√

2T . Then

‖u‖1 − ‖v‖1 ≤ C1ε (35)

and there are S ⊆ [x1 −
√

2T , x1 +
√

2T ] and C2 > 0, such that∥∥∥‖vS‖1
α
u− vS

∥∥∥
W
≤ C2

√
ε. (36)

Proof. Since both u and v satisfy the constraint, but v is the minimizer, so ‖v‖1 ≤ ‖u‖1,
and

‖Au− Av‖∞ ≤ ‖Au− f‖∞ + ‖f − Av‖∞ ≤ 2ε. (37)

Using the theorem, there are S ⊆ [x1 −
√

2T , x1 +
√

2T ] and C > 0, such that∑
j:yj∈S βj|yj − x1|

α
≤ C
√

2ε. (38)
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Denote v|S = vS, then the Wasserstein distance between
‖vS‖1
α
u and vS is

∥∥∥‖vS‖1
α
u− vS

∥∥∥
W

=

∑
yj∈S |yj − x1|

α
≤ C
√

2ε. (39)

6 Successive Sampling

In the previous sections, we developed a way to solve a heat source identification problem
from a fixed set of observations. Therefore, we consider the random sampling scenario
because it is the best for compressed sensing. However, taking random observations may
not be the best strategy for heat source identification. Random sampling works well for
compressed sensing because of the incoherence of the operator G. The strong patterns in our
operator G suggest that something more structured would be better than random sampling.
For example, if we happened to know a region has very low heat distribution, then it is
certain that it is impossible to have strong heat sources there. When we are choosing our
sample locations, we may want to concentrate in the strong heat distribution area or explore
unsampled areas. Therefore, if we have a chance to pick the next sample location, we should
consider the existing information instead of picking a random location.

Here we consider solving the source problem in an adaptive or online kind of approach
according to the following procedure. We want to come up with a better sampling strategy
than random sampling. Since we want the adopt the information existing for picking the
next sampling location, the whole process for solving our problem is the following:

1. Solve the heat source identification problem with k samples;

2. Use the solution uk to select a (k + 1)th sample;

3. Iterate.

Let us give a mathematical statement of this problem: Let Xk = (x1, x2, . . . , xk), Tk =
(t1, t2, . . . , tk) and the measurements fj = f(xj, tj), j = 1, 2, · · · , k. We denote Fk = f =
(f1, f2, . . . , fk)

T , and Ak : RN → Rk, satisfies Aku = Fk. We denote the solution from k
measurements by uk.

Suppose the spike amplitudes are bounded from below by αmin > 0, which is a plausible
assumption since we can treat small spikes as noise but real heat sources. Define the covering
region of x as the set

{y ∈ Ω : G(αminδy)(x) ≥ threshold}.
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This set describes the domain of dependence of u(x, T ). We define a way to measure to what
extend a point x is covered by samples sj,

V (x) = G
(∑

j δsj

)
.

It is equivalent to place single heat sources on all sample locations as an initial condition, then
computing the total heat distribution. The bigger V (x) is, the more information available
at x.

To choose the next sample location, there are two competing objectives: to refine locally or
to explore further. Our approach is to prioritize local refinement. We need refine locally
since we want to improve the local resolution as we discover a plausible heat source cluster,
usually to locate the accurate heat sources. Also we want to explore further to enlarge the
effective coverage as a necessary stopping condition.

Improving local resolution: If uk varies significantly from uk−1, then we conclude both uk
and uk−1 are not close to the true solution. We need more information to identify the heat
source inside the existing covering region. So we choose the next sampling location xk+1 by
comparing the difference between the two solution uk and uk−1, and pick the one where they
differ the most.

xk+1 = arg max
x:x 6∈Br(xj)

|Gσ ∗ uk −Gσ ∗ uk−1|,

where Gσ is a Gaussian with variance σ. We usually choose σ small and the role of Gσ is as
a smoother. Br(xj) is a ball with center in xj and radius r since we want to exclude small
regions around existing samples. In the other case, we are satisfied with the heat sources
found inside the existing covering region. We then want to discover heat sources outside of
the existing covering region. Therefore, we sample outside the covering region by selecting
a point where V has minimal magnitude.

xk+1 = arg min
x:x 6∈Br(xj)

|V (x)|.

Compared with random sampling, these two criteria use more information in the space
domain, approach the heat source more quickly and does not waste samples in the region
which cannot contain heat sources.

6.1 Numerical Experiment

We consider 2D heat flow with periodic boundaries with the following initial condition u0

and final time f = u(·, T ).

By following our proposed adaptive sampling procedure, we have the following sequence of
solutions:
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Exact u0 f

Figure 8: Left: heat sources at t = 0; right: heat distribution at T .

g7 g8 g9

g14 g15 g16

Figure 9: A simulation of the adaptive sampling and recovery results. We are showing the
7th, 8th, 9th, 14th, 15th, 16th steps. Blue shows the recovery; exclusion region shows in
gray and sampling locations show in red stars.
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g4 g5 g6

g15 g16 g17

Figure 10: An another simulation starts at a different random chosen location under the
same setup. We are showing the 4th, 5th, 6th, 15th, 16th, 17th steps.
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Exact u0 Least square (nonsuccessive) L1 (nonsuccessive)

Figure 11: Random sampling is worse than successive sampling.

The red dots denote sampling locations, the solution value is shown as a blue gradient, and
the exclusion regions are shown in gray.

A comparison: With the same number of random samples, the solutions of least squares and
L1 minimization are not as accurate as the successive greedy solution.

7 Conclusion

The heat source identification problem can be solved by L1 minimization. For two dimen-
sions, numerical experiments suggest that we can recover the sparse initial condition by
using 4 times more measurements than the number of total initial spikes. If we can solve in
a successive manner, then we can use even fewer measurements. As for the stability of our
method, as the noise increases, we need more measurements to obtain accurate solutions. In
the future, we want to work on the error estimation and theoretical analysis. We are also
interested in more general equations and high dimensional problems.

A Inequality

Lemma 1. Consider function W (x) = −g′(s2 − x1)g(x − s1) − g′(x1 − s1)g(s2 − x), we
claim that W (x) has one maximal at x = x1 and W (x1) − W (x) ≥ C||x1 − x||22 as x ∈
[s2 −

√
2T , s1 +

√
2T ].

Proof. When x ≥ 0, g′(x) ≤ 0; when x ≤ 0, g′(x) ≥ 0. Since s1 < x1 < s2, so −g′(s2 − x1)
and −g′(s2 − x1) are positive.

W ′(x1) = −g′(s2 − x1)g′(x1 − s1) + g′(x1 − s1)g′(s2 − x1) = 0. (40)
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So x1 is an extreme.

W ′′(x1) = −g′(s2 − x1)g′′(x1 − s1)− g′(x1 − s1)g′′(s2 − x1) (41)

When |x| ≤
√

2T , g′′(x) ≥ 0 since g(x) is convave. So when x ∈ [s2 −
√

2T , s1 +
√

2T ],
g′′(x− s1) ≤ 0 and g′′(s2 − x) ≤ 0, so

W ′′(x) = −g′(s2 − x1)g′′(x− s1)− g′(x1 − s1)g′′(s2 − x) ≤ 0 (42)

Suppose x1 ∈ [s2 −
√

2T , s1 +
√

2T ], when x ∈ [s2 −
√

2T , s1 +
√

2T ],

W (x) = W (x1) +W ′(x1)(x− x1) +W ′′(θ)(x− x1)2/2, where θ ∈ [x, x1] (43)

Denote M = infθ∈[s2−
√

2T ,s1+
√

2T ]{−W ′′(θ)/2}, then M > 0, then

W (x1)−W (x) ≥M(x− x1)2, where θ ∈ [s2 −
√

2T , s1 +
√

2T ] (44)

If x ≥ s1 +
√

2T , denote p = x− (s1 +
√

2T ) > 0, since g(x) is convex when x ≥
√

2T , so

g(p+
√

2T ) ≤ g(
√

2T ) + pg′(
√

2T ) (45)

W (x) = −g′(s2 − x1)g(p+
√

2T )− g′(x1 − s1)g(p+ (s1 +
√

2T − s2))

≤ −g′(s2 − x1)[g(
√

2T ) + pg′(
√

2T )]− g′(x1 − s1)g(s1 +
√

2T − s2)

= W (s1 +
√

2T )− p(g′(s2 − x1)g′(
√

2T )).

So

W (x1)−W (x) ≥ W (x1)−W (s1 +
√

2T ) + p(g′(s2 − x1)g′(
√

2T ))

≥M(x1 − (s1 +
√

2T ))2 + p(g′(s2 − x1)g′(
√

2T ))

= M(x1 − (s1 +
√

2T ))2 + (x− (s1 +
√

2T ))(g′(s2 − x1)g′(
√

2T ))

Similarly, If x ≤ s2 −
√

2T , denote pp = (s2 −
√

2T )− x > 0, then

W (x1)−W (x) ≥M(x1 − s2 +
√

2T )2 + ((s2 −
√

2T )− x)(g′(x1 − s1)g′(
√

2T )) (46)

Theorem 4. Suppose that u has one spike, u(x) = αδ(x − x1), where α > 0. Let sj,
j = 1, 2, . . . , J denote the sampling locations and suppose there are two samples s1 and s2

such that s1 < x1 < s2 and s2−s1 <
√

2T . Let f(sj) = (Au)sj
and S = [s2−

√
2T , s1 +

√
2T ].

For any v of the form

v(x) =
∑
j

βjδ(x− yj) and f̂(sj) = (Av)sj
. (47)
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satisfying βj > 0, ‖v‖1 ≤ ‖u‖1, and ‖f̂ − f‖∞ ≤ ε, there exist C ′ > 0 and C ′′ > 0 such that

1 ≥
∑

j:yj∈S βj

α
≥ 1− C ′ε (48)∑

j:yj∈S βj|yj − x1|2

α
≤ C ′′ε. (49)

Proof. s1 < x1 < s2, denote g(x) = e−
x2

4T√
4πT

,

αW (x1) = α(−g′(s2−x1)g(x1−s1)−g′(x1−s1)g(s2−x1)) = −g′(s2−x1)f(s1)−g′(x1−s1)f(s2)
(50)∑

βjW (yj) =
∑

βj(−g′(s2 − x1)g(x1 − s1)− g′(x1 − s1)g(s2 − x1))

=− g′(s2 − x1)f̂(s1)− g′(x1 − s1)f̂(s2)

So
αW (x1)−

∑
βjW (yj) ≤ (−g′(s2 − x1)− g′(x1 − s1))ε = C̃ε. (51)

Suppose y1, . . . yl ≤ s2 −
√

2T ; yl+1, . . . , yk ∈ [s2 −
√

2T , s1 +
√

2T ] and yk+1,. . . , ym ≥
s1 +

√
2T , then

αW (x1)−
∑

βjW (yj) ≥ (α−
∑

βj)W (x1) +
∑

βj(W (x1)−W (yj))

≥ (α−
∑

βj)W (x1)

+
l∑

j=1

βj{M(x1 − (s1 +
√

2T ))2 + (x− (s1 +
√

2T ))(g′(s2 − x1)g′(
√

2T ))}

+
k∑

j=l+1

βjM(x1 − yj)2

+
m∑

j=k+1

βj{M(x1 − s2 +
√

2T )2 + ((s2 −
√

2T )− x)(g′(x1 − s1)g′(
√

2T ))}

Denote C1 = min(M(x1 − (s1 +
√

2T )), (g′(s2 − x1)g′(
√

2T ))) and C2 = min(M(x1 − s2 +
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√
2T ), g′(x1 − s1)g′(

√
2T )), then C1 > 0 and C2 > 0, and C = min(C1, C2).

αW (x1)−
∑

βjW (yj) ≥ (α−
∑

βj)W (x1)

+
l∑

j=1

βjC1|x− x1|+
k∑

j=l+1

βjM(x1 − yj)2 +
m∑

j=k+1

βjC2|x− x1|

≥ (α−
∑

βj)W (x1) + C
{ l∑
j=1

βj|x− x1|

+
m∑

j=k+1

βj|x− x1|
}

+M
k∑

j=l+1

βj(x1 − yj)2.

Therefore

(α−
∑

βj)W (x1) +C{
l∑

j=1

βj|x−x1|+
m∑

j=k+1

βj|x−x1|}+M
k∑

j=l+1

βj(x1− yj)2 ≤ αC̃ε (52)

We know that α−
∑
βj ≥ 0, and

l∑
j=1

βj|x− x1|+
m∑

j=k+1

βj|x− x1|

≥
l∑

j=1

βj|x1 +
√

2T − s2|+
m∑

j=k+1

βj|s1 +
√

2T − x1|

≥C3(
l∑

j=1

βj +
m∑

j=k+1

βj)

so

(α−
∑

βj)W (x1) + C3{
l∑

j=1

βj +
m∑

j=k+1

βj}+M

k∑
j=l+1

βj(x1 − yj)2 ≤ αC̃ε (53)

so ∑
βj ≥ α(1− C̃

W (x1)
ε). (54)

and
C3{

∑l
j=1 βj +

∑m
j=k+1 βj}+M

∑k
j=l+1 βj(x1 − yj)2∑

βj
≤ 1

1
C̃
− 1

W (x1)
ε
ε (55)

So ∑k
j=l+1 βj∑
βj

≥ 1− 1
C3

C̃
− C3

W (x1)
ε
ε (56)
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So ∑k
j=l+1 βj

α
≥ (1− 1

C3

C̃
− C3

W (x1)
ε
ε)(1− C̃

W (x1)
ε)

≥ 1− [
1

C3

C̃
− C3

W (x1)
ε

+
C̃

W (x1)
]ε.

and ∑k
j=l+1 βj(x1 − yj)2

α
≤ C̃

M
ε (57)
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