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1. INTRODUCTION

The ability to cut and paste objects in photographs is a prerequisite
for photo editing. While many effective approaches for segmenting
and matting objects from a single image exist [Li et al. 2004; Rother
et al. 2004; Wang and Cohen 2008], these approaches assume the
foreground objects are opaque. In many of these approaches, a user
marks a trimap that consists of definite foreground, definite back-
ground, and uncertain region. The opacity assumption simplifies the
matting problem in the uncertain regions by reducing the recovery
of the foreground object to an estimation of each pixel’s fractional
contribution of its color to the foreground (with the remainder being
the background).

Transparent and refractive objects, on the other hand, have three
properties that complicate their extraction and pasting. First, the
fractional alpha associated with the transparent object is distributed
over the whole object, as opposed to opaque objects where the frac-
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tional alpha values are mostly at the boundaries. Second, transparent
objects commonly exhibit light attenuation through the object that
affects each color channel differently. As a result, the conventional
matting equation involving only a single scalar per pixel is insuf-
ficient. Finally, the refractive nature of these objects results in a
warped appearance of the background. Since the object’s 3D shape
is typically unknown, this warping function is also unknown. To
produce realistic composites, the refractive and transparent proper-
ties of these objects must be taken into consideration.

This article describes a new approach for matting transparent and
refractive objects from a photograph and compositing the extracted
object into a new scene. To accomplish this task we have modified
the opaque image matting and compositing equation to fuse refrac-
tive deformation, color attenuation, and foreground estimation. We
term this extracted information the Attenuation-Refraction Matte
(ARM). In general, a single photograph is insufficient to extract
accurate refractive properties of a transparent object. Our approach
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Fig. 1. Attenuation-Refraction Matte (ARM). From left to right: input image (courtesy of Francesco Dazzi), casual markup, ARM, and the composite
completed with simulated Fresnel effect and caustic shadow.

Fig. 2. Examples on compound compositing using multiple objects. All results are entirely image based; in our photo editing application, no 3D models are
available. Input images for ARM extraction for the preceding and other examples are shown on the bottom row. We acknowledge the input images lion and
dragon by Francesco Dazzi and dolphin by Asif Thaj.

instead recovers plausible light-transport properties of the matted
object, exploiting our visual system’s tolerance to inaccuracies in
refractive phenomena as previously demonstrated by work targeting
image-based material editing [Khan et al. 2006].

We show how user markup can be used to extract each compo-
nent of the ARM. By employing the unique properties of an object’s
ARM, the specular and attenuation components of the ARM can
be optimized efficiently. Plausible refractive deformations are spec-
ified via control lines that are drawn on the image. One benefit
of targeting plausible versus accurate light refraction is that our
refractive markup need not be accurate.

Once the ARM has been extracted, we show how to produce
a range of effects when compositing the object into a new back-
ground. These effects include a Fresnel effect to enhance boundary
realism, scene depth, multiple-object pasting, and the simulation
of caustic shadows. To our knowledge, this is the first approach to
address the matting of transparent objects and their plausible re-
fractive properties directly from a photograph. Figure 1 shows an
example of a glass lion’s ARM and a composited result. Figure 2
shows a few examples that demonstrate compound compositing by
overlapping multiple ARMs of the transparent and refractive ob-
jects we extracted. In both applications, the ARM is extracted from
a single input image and no 3D models are used in the composited
result.

Because no comparable systems are able to provide similar mat-
ting and compositing capabilities, we perform comparisons between
transparent objects transferred using Photoshop and those using the

ARM representation. To evaluate the quality of ARM composites
compared with real images of the same transparent objects, we per-
formed a user study on different object and background scenarios.
Our results show that object extraction using ARM is faster than
Photoshop and visually more favorable. In addition, our composite
results are deemed perceptually valid in most cases when compared
with the ground truth.

2. RELATED WORK

The basic challenge for opaque object image matting is to minimize
user involvement without sacrificing output quality. Several tech-
niques have been proposed and a survey can be found in Wang and
Cohen [2008]. Our task shares similar goals but targets the mat-
ting of specularities and foreground pixels, with the vast majority
of the object being either transparent or attenuated background. In
addition, the need for color attenuation is not considered in opaque
matting.

The process of characterizing the light transport properties of
transparent and refractive objects has been referred to as envi-
ronment matting. Techniques for environment matting use either
objects with known backgrounds [Zongker et al. 1999; Chuang
et al. 2000; Peers and Dutre 2003] or multiple images [Wexler
et al. 2002] to extract the light transport properties. For example,
Matusik et al. [2002] used a turntable, multiple cameras, multiple
lights, and monitors (as backgrounds) to capture an environment
matte all around a transparent object. Our approach differs in that
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we target matting directly from an input photograph and use “plau-
sible light transport” to produce visually similar results.

Khan et al. [2006] demonstrated an effective material editing
technique that approximated light transport through coarse 3D ob-
ject reconstruction. Using the object’s approximated 3D shape, the
object’s material properties were changed, including the simulation
of transparent and refractive effects. This technique, however, re-
quires the original object to be opaque in order to approximate the
3D shape. Furthermore, material editing is applied on the original
image itself; matting and compositing are not performed.

If the shape of the transparent object is known, rendering the
object with refractive effects in a given scene is well studied [Foley
et al. 1995]. However, obtaining a real object’s 3D shape and corre-
sponding refractive properties is not a trivial task. Recent techniques
for shape recovery of transparent objects are available, for example,
Ben Ezra and Nayar [2003], Miyazaki and Ikeuchi [2007], and Mor-
ris and Kutulakos [2007]. In addition, refractive deformation can be
computed from a video [Agarwal et al. 2004]. However, these exist-
ing approaches operate under specific conditions, such as multicam-
era capture and custom calibration, and often assume restrictions in
3D shape. This makes them inapplicable in our tool that is designed
to operate entirely on photographs with no explicit 3D information.

Given a matted opaque object and a new background, multiple
approaches exist for minimizing the object-background seam when
compositing the object (e.g., Pérez et al. [2003] and Jia et al. [2006]).
As previously mentioned, these existing matting and compositing
approaches assume an opaque object with fractional pixel contri-
butions at the object boundary. Compositing in our case requires
more consideration due to the refractive and transparent nature of
the object.

To produce a compelling composite, the boundary of the matted
object must be enhanced with the Fresnel effect. While this effect
is inherently captured by environment matting approaches, in our
case it needs to be imitated. In addition, compositing a transparent
object without its caustic shadow will make the result look unre-
alistic. Traditional shadow matting techniques are not applicable
here because a video is required [Chuang et al. 2003], or the single-
image formulation does not account for caustic shadows [Wu et al.
2007]. In Gutierrez et al. [2008], caustic shadows are simulated
from a single image by detecting phase symmetry on the 3D depth
map recovered from the image using the “dark is deep” assumption,
which is not applicable to transparent objects.

3. ATTENUATION-REFRACTION MATTE (ARM)

We begin by defining a new matting and compositing equation
that accounts for the appearance of the transparent and refractive
object observed from an image. We start with a light scattering
model similar to that proposed in Matusik et al. [2002]. Assuming
a distant scene, the amount of light recorded at the camera is

C =
∫

�

W (ω)L(ω)dω, (1)

where L(ω) is the illumination from direction ω, W (ω) is the
contributing weight, and � is the entire hemisphere. Note that∫

�
W (ω)dω < 1 because of transmission loss or attenuation due to

material absorption of light.
Consider a transparent object in the image bounded by a mask M .

Within this object, we make the simplifying assumption this object
CM consists of two items:

CM =
∫

I

W (p)L(p)dp +
∫

�−I

W (ω)L(ω)dω = CI + CS, (2)

where p is the continuous 2D coordinate of the image. More specifi-
cally, we assume that the warped color seen through the transparent
object comes from locations within the camera’s field of view I .
This is represented by the term CI . Next, we assume that the spec-
ularities S are caused by illumination not directly visible to the
camera (i.e., �− I ). The specularities on the object are represented
by the term CS .

For an object in the discrete image, we decompose these terms as

CS = αS, CI = (1 − α)βBG, (3)

where α ∈ [0, 1] is the relative contribution of the appearance
of specularities to the object’s image (specular matte), S is the
3-channel specularity, β is 3-channel color transmission factor (< 1
in each channel because of attenuation), and BG is the warped back-
ground. In discrete form, we write the image formation equation as

CM (x) = α(x)S(x) + (1 − α(x))β(x)B(G(x)). (4)

Here, x is pixel location within object M , B(x) the appearance
of the background without the object, and G(x) the warping func-
tion. The terms M , α, β, and G, collectively make up an object’s
Attenuation-Refraction Matte, or ARM. For an object in the input
image, the terms of ARM are all unknowns.

4. ARM EXTRACTION

The ARM extraction from a single image of a transparent object
is an ill-posed problem. Even without considering the nonlinear
deformation G, we have seven unknowns (one for α, three for S,
and three for β) to solve in the equation. We therefore make the
following simplifying assumptions on our ARM extraction.

(1) Strong, white specular highlights are observed on the transpar-
ent object. This simplifies the computation of α.

(2) The transmission factor distribution is piecewise smoothly-
varying within a refractive medium. This simplifies the com-
putation of β.

(3) The refractive deformation G need only be plausible.

These assumptions are also consistent with Eq. (3), where the CS

component incorporates highlights which are largely white and
opaque, while the CI component mostly accounts for the trans-
parency observed. Moreover, some ARM components are indepen-
dent of others. As a result, it is possible to simplify the complex
extraction problem by breaking it into several steps while achieving
high-quality results.

Figure 3 shows the overview of ARM extraction. Specifically, we
first extract M which defines the processing region for the extraction
of α, β, and G. Since α and β are related to pixel color whereas G
concerns pixel movement, we assume that the extraction of (α, β)
is independent of that of G. Table I summarizes the user interaction
and the processing time for all the ARM examples in this article. In
the following, we discuss the extraction of each component.

4.1 M-Extraction

M specifies the “footprint” of the object in the image as a binary
mask. We use lazy-snapping [Li et al. 2004] to extract M (other
techniques such as grab-cut [Rother et al. 2004] may be used as
well). The user draws scribbles on the inside and outside of the
object, shown respectively in red and blue in Figure 3. Although
the color samples inside and outside the object can be similar due
to transparency, color inconsistency at the object border allows
the technique to work. M can be further partitioned to mask out
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Fig. 3. Overview of Attenuation-Refraction Matte (ARM) extraction.

Table I. Summary of User Interaction (number of strokes or stroke pairs marked) and Processing Time for Extracting the ARMs Shown in
This Article

image M α β G total
size #strokes time (sec) #strokes time (sec) #pairs time (sec) #pairs time (sec) time (sec)

glass 602 × 400 2 1 0 6.3 1 10 12 14 31.3
jug 183 × 286 3 1 2 5.1 2 14 6 6 26.1
elephant 495 × 295 5 2 5 18 1 17 16 18 55
chandelier 339 × 451 2 1 0 7.3 1 15 13 15 38.3
dolphin 463 × 306 2 1 5 11.5 1 46 8 8 66.5
lion 359 × 294 3 1 5 3.8 0 0 14 16 20.8
fish 416 × 457 1 1 16 22.7 1 24.8 9 10 58.5
swan 266 × 512 2 1 2 2.6 0 0 6 6 9.6
dragon 353 × 269 4 2 5 3.5 0 0 9 10 15.5
globe 308 × 213 4 0.5 0 3.2 0 0 2 1 4.7

It typically takes 1–5 seconds to add a stroke. Short times are sufficient for specifying an acceptable object’s context M . In general, for M and G, processing after each interaction
(stroke or curve pair markup) takes less than 1 second. For α and β, processing is done once after all user markups are made. The program is run on a 3.6GHz PC with 2G RAM.
The paper’s supplemental materials show the actual interaction of some examples recorded in real time.

nontransparent regions, and separate different refractive mediums or
deformation regions. It typically takes from seconds to two minutes
to specify a region mask; the region mask corresponding to each
example can be found in supplementary material.

4.2 (α, β)-Extraction

We extract α and β within M . Eq. (3) shows that we have more
unknowns than equations to solve.

However, note that S (specularities) is largely white and opaque,
and β (attenuation) is largely transparent and homogeneous within
each refractive medium. S contributes to the “foreground colors”
and β attenuates the “background colors” of the input image re-
spectively. The extraction of α and S is therefore relatively easier
and largely insensitive to the extraction of β, which is smooth and
transparent. The extraction of β can be improved after specular and
opaque highlights are removed.

Solving for α and S. To solve α and S, a trimap is automati-
cally generated. S is considered as “foreground” in the conventional
matting problem and its contribution can be removed by multiply-
ing it with the corresponding α. Because the “definite foreground”
consists of specular highlight, given the object mask M , definite
foreground shown as white within M in Figure 3 can automatically
be labeled by thresholding (we set the threshold as all the RGB
values > 220, where input pixels range 0–255). “Definite back-
ground” is taken as pixel outside the mask (shown as black), with
all remaining pixels within the mask labeled as “uncertain” (shown
as gray). This automatic trimap construction is amenable to ob-
jects with a great deal of subtle structures that result in many small
highlights. Additional strokes within M can be marked to spec-

ify definite background (black) or foreground (white) if necessary.
Poisson matting [Sun et al. 2004] is performed using the trimap as
input to extract the α. Occasionally, strong highlights in the back-
ground are extracted in the resulting α component. Such unwanted
artifacts usually come in blocks, and can be easily edited away.
The mattes before and after editing of swan, elephant, chandelier,
jug, and fish are provided in the supplementary material, show-
ing that the amount of additional editing of the specular mattes is
acceptable.

Solving for β. To solve β, S’s contribution will first be removed
from the input image using α. The user then marks up on the image
to collect a number of attenuated and unattenuated background
color samples, within and outside of the object’s mask M . This is
done using simple scribbles (red and green), as shown in Figure 3,
where we assume that the scribbled background colors on the object
are not severely affected by refractive deformation. To collect color
statistics that are primarily affected by β-attenuation, the user should
mark up sample pairs that are similar in texture. Here, the problem
is translated into one similar to natural shadow matting [Wu et al.
2007], except that we do not need to handle hard boundaries.

Removing S’s contribution using α leads to CI = (CM−αS)/(1−
α) = βB. The term CI can be regarded as the color-attenuated
version of the image background B. This can be solved using the
following Bayesian optimization:

β∗ = arg max
β

P (B̂|β) + P (β), (5)

where P (B̂|β) is the likelihood, and P (β) is the prior and B̂ is a
rough estimation of the unattenuated background B, which can be
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Fig. 4. Object cue. Three basic markups of refractive light-transport: (a)
no markup, (b) markup for simulating light convergence, (c) markup for
simulating light divergence. cref is in red and ctarget is in cyan. ctarget is
where cref is perceived to distort.

estimated using the technique outlined in, Wu et al. [2007]. The
likelihood is defined as

P (B̂|β) = exp

(
−

∑
x∈M ||CI (x) − β(x)B̂(x)||2

2σ 2
1

)
, (6)

where σ 2
1 is the variance of the measurement error (σ1 = 1000 for

β = [0, 255] in our experiments). The smoothness prior of P (β) is
defined by

P (β) = exp

(
−

∑
(x,y)∈N ||β(x) − β(y)||2

2σ 2
2

)
, (7)

where σ 2
2 is the variance on the smoothness of β, and N is the set of

first-order pixel neighbors in M . (σ2 = 5000 in our experiments.)

4.3 G-Extraction

We describe how to specify the markup to simulate plausible refrac-
tion. A typical input image consists of a transparent object placed
in front of a background with the refractive deformation observable
within the object. When marking up the refractive deformation,
G, visual cues from either the object or the background can be
exploited. We refer to these as object cue and background cue,
respectively.

Object cue. When a background region is largely homogeneous
or the deformed structure/texture is too complex to mark up, the
shape of the transparent object itself provides the main cue for the
user to mark up G. We first consider three basic cases of refractive
light-transport (Figure 4):

(1) No change (planar object requires no markup), Figure 4(a)
(2) Convergence (convex object), Figure 4(b)
(3) Divergence (concave object), Figure 4(c)

Depending on whether the perceived shape is convex or concave,
the user first draws a rough line (cref ), then draws a curve (ctarget) that
roughly follows the 2D shape of the object (refer to Figure 4). This
object cue markup is quite effective in producing visually plausible
deformation of the background. These basic cases when combined
can be used to markup complex shapes. In addition, such markup
can be combined with markup specified based on background cues
which is described next.

Background cue. Deformed background structure in the refractive
object can also serve as a cue as shown in Figure 5. In this case,
the user can draw cref to roughly indicate how this structure looks
before deformation (e.g., a straight line), and then draw ctarget to

Fig. 5. Background cue. (a) Markup drawn using the background as a cue.
As with object cue, ctarget (cyan) is where cref (red) is perceived to distort.
(b) Example of the resulting deformation.

Fig. 6. Left: markups on globe, where the two corresponding curve pairs
are labeled. Right: composite; note the inverted furry toy.

follow the deformed structure in the object as shown in Figure 5(a).
Figure 5(b) shows the effect of this stroke pair on the deformation
field. While automatic approaches such as deploying the object’s
mask to produce a simple blob-like 3D shape which refracts rays
through it can model the deformation warp, in the following we
describe an interactive approach that allows direct and easy user
control.

4.4 Deformation Warping Implementation

When a cref and ctarget curve pair is drawn, 2D points along the curves
are sampled and serve as the input landmark-pairs for Thin-Plate-
Spline (TPS) warping [Bookstein 1989]. We use TPS because it is
computationally efficient and is amenable to a 2D editing interface.
Also, TPS requires no manual tuning and has a closed-form solution.
TPS warping can easily simulate an image inversion effect based on
the markup as shown in Figure 6. As demonstrated in the companion
video (accessible at the ACM Digital Library), after each curve-pair
markup, the deformation map (shown as a checkerboard pattern) is
updated in real time to provide instant visual feedback.

Depending on the input image, markup for G typically involves
stroke pairs drawn using both object and background cues. The
markup does not need to be that accurate. In fact, many different
markups of an object can produce visually plausible refraction ef-
fects. This is attributed to our visual system’s tolerance to errors in
complex refractive light-transport as noted by Khan et al. [2006].

Figure 7 shows several versions of an ARM with different refrac-
tive deformation, G. Figure 8 shows the rough scribbles marked
on the input image produce the corresponding “fakes” shown in
Figure 7. This markup is casually performed and uses both object
and background cues. Although our simulated results are visually
dissimilar, each result is sufficiently plausible to make it difficult to
detect refractive inaccuracies due to the inherent complexity.

4.5 Examples of Extracted ARMs

Figure 9 shows several example input images (column 1), markups
(column 2), and the extracted ARMs (column 3). How to composite
the ARMs onto a new background (column 4) will be explained
in the next section. In Figure 9, the images elephant and dragon
have very complex shapes. The chandelier has a complex surface
with both opacity and transparency. A simple mask for separating
opaque and transparent parts is available. The opaque part of the
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Fig. 7. Can you spot the original? We captured two images: one without the glass (I0, (a)), and another with the glass (I1, one of (b–g)). We extract the glass’
ARM directly from I1. Several versions of the glass’ ARM are extracted using different user markup. We paste the ARMs onto I0 in (a) to produce the other
“fake” images in (b–g). All the edited examples look visually compelling and are not easy to distinguish from the real one. See Figure 8 to see which (b–g)
is I1.

Fig. 8. Simple markups are sufficient for producing visually plausible
results. Here, we show different scribbles marked on the original input image
(b) and the corresponding ARM composites on the same background.

chandelier is extracted by conventional matting. In the fish example,
the internal orange material is extracted as opaque colors. There is
apparent color attenuation in the fish image and some in elephant
and chandelier images. The images of colorless transparent objects
(e.g., dragon) do not require the corresponding markup for β.

5. ARM COMPOSITING

A wide range of compositing effects can be produced from the
extracted ARMs.

5.1 Fresnel Effect

The occluding boundary of a transparent object produces a silhou-
ette that exhibits rich reflection behavior. This phenomenon is char-
acterized by the Fresnel effect. The Fresnel effect happens along
the object’s silhouette, when the viewing angle to the transparent
object becomes minimal and light glancing off this boundary makes
it look as if it is opaque to the viewer [Hecht 1987]. Without the
proper simulation of the Fresnel effect, the composited object often
does not appear solid, as shown in Figure 10(c).

In our image-based approach, the target background image can be
regarded as the surrounding light. Hence, the resultant appearance
due to the Fresnel effect depends on both the transparent object
and the background image. To simulate the Fresnel effect, we apply
Poisson blending [Pérez et al. 2003] along boundaries to incorporate
information from both the input and target background image.

Our approach amounts to solving a Poisson equation by taking
into consideration: (1) the image gradient, ∇C∂M

in , along the silhou-
ette boundary (∂M) of the input image (Cin) as the guidance field
(Figure 10(a)), and (2) Dirichlet boundary condition derived from
the pixel colors of the composited image surrounding ∂M (Fig-
ure 10(b)). In addition to the silhouette, this technique can also be
applied along parts boundaries observed within the same object.

We define the pixel colors surrounding ∂M in the composite im-
age to be C∂2M

cp , where ∂2M is the pixel location surrounding ∂M .

The idea is to maintain the image structure in ∂M from the input im-
age, and adapt the color from the composite image. Mathematically,
it is equivalent to solving the minimization problem

min
C∂M

cp

∫ ∫
∂M

∣∣∣∇C∂M
cp − ∇C∂M

in

∣∣∣2
with Ccp

∣∣∣
∂2M

= C∂2M
cp

∣∣∣
∂2M

, (8)

where C∂M
cp is the color within ∂M in the composite image. The

solution is the unique solution of the following Poisson equation
with Dirichlet boundary conditions.

�C∂M
cp = div∇C∂M

in over ∂M, with Ccp|∂2M = C∂2M
cp |∂2M (9)

The width of the ∂M boundary can be adjusted given the image
resolution and object shape. We found that widths from 4–6 pixels
produced good results.

5.2 Scene Depth

Although we have no 3D or depth information, we can simulate dif-
ferent scene depth when compositing the transparent object. Keep-
ing the size of the object unchanged, we can make the background
scene appear farther or closer to the object (shown in Figure 11(a)
and 11(b)), by scaling the G component of the object’s ARM. Al-
ternatively, if we want to animate the object by moving it towards
the background (see Figure 11(c) and the accompanying video), a
scale factor is applied to all components of the ARM (M,α, β,G)
at its desired scene location. This scaling also simulates a change
in the object’s apparent distance from the scene.

5.3 Compound Compositing

To produce the effect of compound refraction involving multiple
objects, the user assigns a depth order for each object. Each object’s
ARM will be scaled as described in the previous section. Eq. (4)
can be generalized to allow compound compositing of multiple and
overlapping transparent objects, by writing it as a recurrence rela-
tion: Let Sn, αn, βn, and Gn be respectively the S, α, β, and G for
object n, n = 1, . . . N and N is the total number of overlapping
transparent objects, and Mn be the corresponding object mask. By
letting B = CN+1 be the original background without any transpar-
ent object, we have

Cn(x) = αn(x)Sn(x) + βn(x)Cn+1(Gn(x)) (10)

for x ∈ Mn. Figure 12 illustrates the recurrence relation where
N = 3. The final composite is given by C1. Figure 2 shows several
examples on compound compositing. Some of these examples show
the extracted objects with different colors. This was achieved by
rotating the hue of the input and the extracted β.
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Fig. 9. ARM extraction and compositing. From left to right: Input, markup (from left in clockwise direction: M , α, G, and β), ARM, and composite. The
examples are (from top to bottom): elephant, dragon (courtesy of Francesco Dazzi), chandelier (courtesy of Tery Melville), fish. All the markup for M, α, β,
and G shown here are complete. Refer to Table I for total number of stroke markups, and review the companion/supplemental videos for actual user interaction.

5.4 Caustic Shadows

Since our ARM generation is nongeometric (no 3D model or ex-
plicit depth distribution), we exploit the availability of the refractive
deformation G to aid in our shadow construction. Our method is
intended only to add an additional touch of realism and cannot
compete with accurate simulation of caustic shadows that use 3D
models.

The procedure is as follows: at each pixel location inside M , the
number of pixels mapped from the background based on refractive
deformation G is accumulated. This estimates how light converges

or diverges from the background to each pixel in the foreground
object. The simulated shadow T is given by

T = p + βH (x, G)q, (11)

where p is a small constant serving as the ambient intensity for the
shadow, H (·) is a histogram function for tabulating at each pixel x
the number of pixels mapped to x via the deformation warp G, and
q is a user-supplied constant to control the apparent amount of light
passing through the object. The β is the extracted attenuation map
to give the shadow the same color as the transparent object.
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Fig. 10. Simulating Fresnel effect using Poisson boundary blending. (a) The image gradient in ∂M (green) in the input image serves as the guidance field.
(b) Dirichlet boundary condition derived from the pixel colors of the composited image excluding ∂M (red). (c) Solving the Poisson equation on ∂M using (a)
and (b) produces a Fresnel effect that helps make the composited object looks like a 3D transparent solid.

Fig. 11. Simulating scene depth without 3D. In (a) and (b), the object
size is fixed. The G is scaled to make the background appear farther away
and closer to the object, respectively. In (c), all the ARM’s components are
scaled to simulate object movement toward the background.

Fig. 12. Compositing three overlapping image-based transparent objects.

Fig. 13. Two results for simulating caustic shadows using our procedure.
In one result (a), markup (left) is added to produce deformation G (middle)
and the simulated shadow (right). In the result (b), a new deformation G′ is
created by simulating the convergent lens effect.

In practice, the histogram H in Eq. (11) can be regarded as a High-
Dynamic-Range (HDR) version of the caustic shadow. Directly
using it will result in a shadow very bright at a few points but very
dark overall. We find it useful to remap the histogram by applying a
nonlinear logarithmic compression (other remapping functions may
be used as well) commonly used in tone reproduction methods.

While the original G marked up for the ARM can be used, the
user can also specify a new G′ for a more realistic caustic shadow
effect, as shown respectively in Figure 13(a) and 13(b). In our
examples, the fish, jug, globe, lion, and swan have new G′ specified

for the caustic shadows. The simulated shadows are warped by
projective transformation before compositing. The transformation
is a simple heuristic involving 2D translation, scaling, and shearing.
The shadow’s contrast can also be adjusted to match the background
image.

6. COMPARISON WITH PHOTOSHOP

We are not aware of any comparable matting and compositing sys-
tem for editing transparent objects. The closest tool is Photoshop,
which is used to perform a comparison with our results. In addition,
a user study is used to assess the preference for our results or those
produced by a Photoshop expert.

Our ARM system is easy enough for a novice to be able to gen-
erate plausible results. Unfortunately, this is not so for Photoshop.
As a result, we enlisted the help of a graphic artist professional.
We contacted four professional agencies, with only two responding
(they characterized our task as a “challenge”). In the end, only one
was able to complete our request. This particular person was an ac-
complished veteran digital artist in addition to a Photoshop expert.
We also asked an intermediate Photoshop user (who has 5 years of
experience) to generate results.

Both persons were given the original elephant and glass input
image and the new backgrounds (same input used to produce our
ARM composites). They were also shown our results merely to
indicate the level of realism to achieve or exceed. Note that we did
not ask them to replicate our results. The side-by-side comparisons
are shown in Figure 14.

Photoshop expert. Interestingly, similar to our ARM represen-
tation, layers were used by the Photoshop expert to produce the
transparent object transfer (Figure 15). However, unlike the ARM
representation where each component has a semantic meaning
(specular highlight, attenuation, deformation), the layers produced
by the Photoshop expert are ad hoc in nature, involving several lay-
ers of color range selection that were subsequently blended with the
background. There were approximately 10 layers for each example,
as shown in Figure 15. The silhouettes of the objects were drawn
manually. Refraction was performed using the “liquify” filter in
both examples and has roughly the same effect for both results. The
Fresnel effect is not apparent around the elephant legs and trunk. The
Photoshop expert did not attempt caustics in the elephant shadow.

With the majority of time spent on the elephant example, it took
the Photoshop expert approximately two hours to produce results
comparable to our ARM results. In several places, our Photoshop
expert painted in pixels that were not extracted from the original.
In addition, the layer mixing is tuned for the given background.
Unlike our ARM representation, the results by our artist would
need to be tuned for each new background. This is demonstrated
in Figure 16 that shows the comparison of the Photoshop expert’s

ACM Transactions on Graphics, Vol. 30, No. 1, Article 2, Publication date: January 2011.



Matting and Compositing of Transparent and Refractive Objects • 2:9

Fig. 14. An expert and an intermediate user of Photoshop were asked to produce comparable ARM results. The ARM extraction requires significantly less
time (the times shown here include interaction time and overheads such as looking at the photo and deciding what to do). No caustic shadow and Fresnel effect
were simulated by both Photoshop users. Notice that the glass produced by our intermediate Photoshop user is the poorest despite requiring the largest amount
of effort.

Fig. 15. Layers derived by the Photoshop expert to transfer the transparent
object (the backgrounds have been made lighter to make the layers more
apparent). As opposed to ARM extraction, the derived layers rely on the
expert’s artistic sense and color perception on seeing the input and the
background photo we provided; thus the approach may vary from other
Photoshop experts.

Fig. 16. Comparison of the ARM and Photoshop expert’s results when
composited onto another background. Note in the ARM result the apparent
Fresnel effects in the elephant legs and trunk, which are automatically
generated when our ARM adapts to a new background image. The Photoshop
expert’s layers do not blend naturally and require manual fine-tuning.

extracted elephant placed onto a different background. As opposed
to the Photoshop expert’s layers, our ARM representation does not
require fine-tuning for a new background.

Intermediate Photoshop user. For our intermediate Photoshop
user, 5 hours were spent on the elephant and 2 hours on the glass.
This user’s photo editing approach was first to remove pixels from
the input image which were considered as background pixels using
the eraser brush. The hues of the remaining pixels were then rotated

Fig. 17. Survey result on 147 subjects. Their preferences are indicated by
A: ARM result, P: Photoshop expert’s result, and S: both look similar.

to adapt to the new background. Because of the complex shape and
illumination effects, a great deal of manual editing was necessary to
make the result visually acceptable. Similar to the Photoshop expert,
the liquify filter was applied to simulate the refractive deformation,
however, the effect by the intermediate user is not as visually ap-
pealing as that done by the Photoshop expert. The caustic shadow
was not attempted either.

User study. A user survey was performed to evaluate viewers,
preference between the composited results generated by our ARM
approach or the Photoshop expert. In our study we did not include
the results produced by the intermediate Photoshop user because
they were not comparable in terms of visual quality, as shown in
Figure 14.

We sent a distribution list via email to invite people in our inter-
national campus community to participate in our survey. They were
also invited to forward our invitation to their relatives and friends. A
total of 147 persons in different age groups and genders responded
to our online survey.

In our online survey, the elephant and glass images produced
by the ARM approach and the Photoshop expert were presented
to a viewer. The images pair in each example were shown side by
side for direct comparison, and we randomized the order shown for
elephant to glass across different subjects to avoid bias. Each subject
was asked to make a decision within a time limit of 30 seconds on
each of the following questions: (1) “Please select your preferred
image of a transparent and refractive elephant standing on a sandy
beach.” (2) “Please select your preferred image of a glass placed
in front of a background.” The user could also indicate that both
results were visually similar, indicating no preference for either.
Additional comments could be input in a text box available in the
survey.

The statistics of our user study were collected and plotted in
Figure 17, which indicates that our results are preferred. Comments
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Table II. Input Images IA for ARM Extraction

Six transparent objects over different backgrounds are tested for ground-truth comparison. The transparent objects tested have different
geometric complexities and attenuation properties.

by subjects indicate that the shadow and the refraction of the legs of
the elephant in the Photoshop expert’s result look artificial. Some
suggested that our results look clearer and are more pleasing. Some
commented that results may depend on certain material properties
and thus difficult to tell which one is better.

7. PERCEPTION VALIDATION

The Photoshop comparison serves to show our ARM matting and
compositing approach outperforms current available image editing
tools. To evaluate the realism of the ARM composites we performed
a perception study. The experiment was conducted using a subjec-
tive two-alternative forced-choice preference approach similar to,
Jimenez et al. [2009]. The research hypothesis was that an ARM-
composited image produces as high a degree of visual realism as
the real image of the same object against the same background.

7.1 Participants

Twenty participants were recruited for the validation experiment.
This number of participants is comparable with similar valida-
tions [Jagnow et al. 2008; Jimenez et al. 2009] in which sixteen
users were recruited. The participants consist of 15 males and 5 fe-
males whose ages range from 20–42. All subjects reported normal
or corrected-to-normal vision with no color-blindness. The partic-
ipants were volunteers and not aware of the purpose of the ex-
periment. Fourteen subjects reported that they did not have any
expertise in image processing beyond simple photo editing. It is
expected that participants with knowledge in photorealistic render-
ing may be better at distinguishing the real images from the “fake”
images.

7.2 Data

We took photographs of six transparent objects to serve as input
images. These objects were photographed on two different types

of background one with structure and one that is homogeneous.
Table II shows these images which we refer to as IA. These images
are used to extract the ARM for the objects. The different back-
grounds represent the different types of “visual cue” that would be
available for the refractive deformation markup.

For ground truth, these same objects were imaged on new back-
grounds shown in Table III where the real images for each back-
ground is I1. For each background, two fake images (I2 and I3)
were generated by extracting the ARMs from two IA images (one
with a structured background and the other with a homogeneous
background), and then compositing them respectively onto the new
backgrounds. The resulting decoy images I2 and I3 are respectively
compared to the real image I1 in the forced-choice comparison of
the user study. I1 on background 3 is equivalent to IA (structured
background).

Transparent objects with a variety of shape complexities were
tested. Some of the objects are relatively simple as exhibited by the
martini glass and the jug. The shapes of the wine glass and glass-
Color are moderately complex. For complex objects, we have the
horse and the flask. In particular, the flask has an internal structure
which is colored and transparent. Recall that Table II shows the input
images IA where these objects were captured and their ARM com-
ponents were extracted. The left column shows IA with structured
background, where both the object and background cues are avail-
able; the right column shows IA with homogeneous background,
where only the object cue will be used. It is therefore expected to
be more difficult for participants to identify the real image I1 from
an I1/I2 pair than from an I1/I3 pair.

Table III shows a total of 54 images, arranged into 18 object
and background scenarios, consisting of 18 real images (I1; 6 ob-
jects on 3 backgrounds) and 36 ARM composites (the correspond-
ing I2 and I3) used in our user study. Our extracted ARMs were
composited onto different background images as revealed here,
which can be structured (backgrounds 1 and 3) and patterned
(background 2). Compositing onto homogeneous background is
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Table III. A Total of 18 Scenarios Were Used in Our User Study

Comparison with ground-truth real images. Background 1 has dominating salient linear structures; background 2 is a patterned background with no dominating structures;
background 3 exhibits the same background used in capturing one of the input images (that is, IA) for ARM extraction. I1 is real; I2 and I3 are ARM composites.

skipped here because it produces little apparent deformation. To
make the comparison fair, the lighting condition was kept constant
during all image captures. We do not compare caustic shadows in
our experiments.

7.3 Procedure

Each participant viewed 72 trials in total (2 paired compar-
isons ×18 scenarios ×2 trials). Participants were encouraged to
ask any questions before the study. After filling in a consent
form and questionnaire, they were given a sheet of the task
description.

“This test is about selecting one image from an image pair, and
there are 72 pairs in total. You will be shown the images side-by-side
with a grey image displayed between each evaluation.

Your task is to select the image that looks more realistic in each
evaluation (that is, most like a transparent object placed in front of
a background) by clicking on the image. You can view the image
pair for an unlimited amount of time, but we suggest that you spend
around 10 seconds on each image before your selection.”

In each trial, the participants assessed the realism of the presented
images. Since our goal is to evaluate how realistic our ARM decoy
images compared to real images, a reference condition was not used
(in contrast to Jagnow et al. [2008]). This no reference condition
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Table IV. Chi-Square Analysis (degree of freedom = 1, level of
significance = 0.05)

I1/I2 I1/I3

object χ2-value p-value χ2-value p-value

ba
ck

gr
ou

nd
1 martini 1.225 0.268 9.025 0.003

wine 7.225 0.007 3.025 0.082
jug 0.025 0.874 2.025 0.155
glassColor 4.225 0.040 5.625 0.018
horse 1.225 0.268 7.225 0.007
flask 3.025 0.082 0.625 0.429

ba
ck

gr
ou

nd
2 martini 0.025 0.874 0.225 0.635

wine 3.025 0.082 0.025 0.874
jug 0.025 0.874 0.025 0.874
glassColor 3.025 0.082 0.225 0.635
horse 0.025 0.874 2.025 0.155
flask 0.025 0.874 0.025 0.874

ba
ck

gr
ou

nd
3 martini 1.225 0.268 1.225 0.268

wine 9.025 0.003 11.025 0.001
jug 3.025 0.082 4.225 0.040
glassColor 1.225 0.268 0.625 0.429
horse 1.225 0.268 13.225 0.000
flask 1.225 0.268 0.225 0.635

I1, I2 and I3 are the respective images in Table III. Values shown in boldface indicate
no significant difference with ground truths.

was also adopted in Jimenez et al. [2009]. The image pairs were
presented in a different random order for each participant. Counter-
balancing was used to avoid any order bias: each paired comparison
was assessed twice by each participant, where in half of the trials
the real image is displayed as the left image and in the other half as
the right image.

7.4 Results and Analysis

The primary goal of the experiment is to validate the quality of our
ARM compositing results against realism. If the real photograph is
not a clear winner over our results, then our objective in producing
visually plausible composites using the ARM model is considered
successful.

We analyzed the results statistically to determine in any statisti-
cally significant trend exists. To find out whether the number of par-
ticipants who selected the real image is what would be expected by
chance, or if there was a pattern of preference, we adopted the Chi-
square nonparametric analysis technique. A one-sample Chi-square
includes only one dimension, such as the case in our experiments.

The obtained (I1/I2 and I1/I3) frequencies were compared to
an expected 20/20 (40 for each comparison) result to ascertain
whether this difference would be significant. The Chi-square values
were computed and then tested for significance. Table IV shows
the results. Overall, the survey results indicate that the real image
is not a clear preference over the other two fake images. For the
I1/I2 pairs, among the 18 scenarios, only 3 of them show significant
difference (p < 0.05), that is, most participants managed to identify
the real image in these cases. It means that in most cases, there was
no significant difference between our ARM composites and the real
images (p > 0.05).

Background. An interesting finding is that given the same ARM,
the background plays an important role to the perception outcome.
For ARMs composited on patterned background without salient
or curvilinear structures (background 2 in Table III), the scores
between the pair are relatively close (that is, Chi-square values
are small) in all of the examples, or in other words, they look
equally plausible. Shown in the I1/I2 column of Table IV, for ARMs

composited on a structured background (background 3) the real and
the decoy are statistically indistinguishable except for the wine
glass. In most cases users commented that it is not easy to select the
real image from a given pair. On the other hand, when the ARM is
extracted from a homogeneous background where no background
cue is available for deformation markup, and then composited onto a
background image with salient curvilinear structures, it is easier for
the user to detect deformation error, as reflected by the particularly
high Chi-square values (refer to the I1/I3 column of Table IV:
martini, glassColor, and horse on background 1, wine, jug, and
horse on background 3.

Object. Concerning object attenuation, we found that it does
not produce noticeable difference on the user’s preference. On the
other hand, the object’s shape and its corresponding cues for ARM
extraction do matter. In general, our ARM composites are preferred
if both the object cue and the background cue are available for
marking up deformation. This is evidenced by the fact that only 3 out
of 18 I1/I2 pairs show significant difference, while the number rises
to 7 out of 18 for I1/I3 pairs. Referring to the three I2 images shown
in Table III, they are quite acceptable except that the deformed
structures look a bit unnatural, which become more apparent when
the images are placed side by side with real photos. As for the
relatively poor performance of I3 images, recall that they were
composited using ARMs extracted from homogeneous background
where only object cues are available for markup. Among all of
the scenarios, the ARMs of the horse and the wine glass extracted
from a homogeneous background produced the worst results with
Chi-square values 13.225 and 11.025, respectively, where we are in
lack of salient background cues for marking up the complex shape
deformation.

8. DISCUSSION

While 3D object reconstruction requires measurement against
ground truth for validation, our ARM approach targets plausible
refraction effects. This can be a subjective matter; in this article
we showed numerous examples and conducted user evaluations to
demonstrate that our system is successful in achieving this goal.
Our efficient system provides interactive photo editing capability
with almost instant feedback for each stroke the user marks up on
the image, thereby allowing the user to easily experiment with the
effects of different deformations.

Because we make some simplifying assumptions in our single-
image scenario to facilitate the ARM extraction, our technique can-
not be readily applied to extract complex transparent objects from
photos. Examples include multicolored transparent objects (that is,
violation of the smooth β assumption). In addition, specularities
on the transparent object extracted cannot be adapted to a different
lighting environment where the background image was captured.
This limitation is inherent in all matting and compositing techniques
using single images.

Our ARM cannot handle translucent objects which scatter light
(e.g., jade). For such objects, they can be regarded as largely re-
flective and conventional matting is sufficient for their extraction if
their apparent foreground colors are known. For objects with both
transparency and opacity (e.g., chandelier) or consisting of different
refractive mediums (e.g., jug), a rough segmentation on M (object
mask) is needed to separate the processing regions.

While transparent object transfer can be performed by an ex-
perienced Photoshop user, our ARM representation has several
advantages. First, its extraction is significantly faster and geared
towards novice users. In addition, the ARM produces a meaning-
ful and complete transparent object representation that can be used
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to paste onto a new background without fine-tuning. The explicit
ARM representation also allows for effects such as multiple object
compositing, depth manipulation, and a procedural mechanism for
producing caustic shadows.

Finally, knowing the 3D shape of the object offers many more
opportunities for producing more realistic compositing effects, how-
ever, we emphasize that our work operates directly on a single image
without 3D shape information and demonstrates a significant first
attempt at photo editing for transparent and refractive objects.

9. SUMMARY AND CONCLUDING REMARKS

We have introduced the Attenuation-Refraction Matte (ARM)
which provides an image-based model to encode the visual effects
associated with transparent and refractive objects. In this article, we
described how the ARM can be extracted from a single image, and
how to use the ARM to paste the object into a new background.
We show that plausible refractive deformation suffices in produc-
ing visually compelling results. We believe our work is the first to
allow photo editing of transparent and refractive objects in cases
where only a single image is available. In addition, we have shown
a variety of compositing results that cannot be easily replicated us-
ing existing single-image editing tools. Our perception validation
experiment indicates that ARM works very well with more struc-
tured backgrounds, and these should be preferred to homogeneous
backgrounds if physical realism is desirable. Our future directions
include investigating issues described in Section 8.
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