
An Adaptive Inverse Scale Space Method for

Compressed Sensing

Martin Burger∗ Michael Möller∗,† Martin Benning∗ Stanley Osher†

Abstract

In this paper we introduce a novel adaptive approach for solving `1-minimization prob-
lems as frequently arising in compressed sensing, which is based on the recently introduced
inverse scale space method. The scheme allows to efficiently compute minimizers by solving
a sequence of low-dimensional nonnegative least-squares problems.

We provide a detailed convergence analysis in a general setup as well as refined re-
sults under special conditions. In addition we discuss experimental observations in several
numerical examples.

Key words: Compressed Sensing, Inverse Scale Space, Sparsity, Adaptivity, Greedy
Methods.

1 Introduction

Compressed sensing and techniques exploiting sparsity in data analysis, image processing, and
inverse problems recently gained enormous interest. Representing unknowns for (underdeter-
mined) systems of linear equations in appropriate bases or dictionaries can be reformulated as
finding the sparsest solution of a linear system

Au = f, (1.1)

with a matrix A ∈ Rm×n, usually with m much smaller than n. In a natural way sparsity is
measured via the number of nonzero elements in the vector u ∈ Rn (the `0-norm), which however
leads to highly nonconvex problem when trying to find the sparsest solution. In order to avoid
the high complexity of `0-minimization, one uses a convex relaxation to minimize the `1-norm
instead, i.e.,

‖u‖1 → min
u

subject to Au = f. (1.2)

Various important results have been obtained on the equivalence of `0 and `1-minimization under
different conditions, we refer e.g. to [CT04a, CT04a, DE03, D06].

Instead of a nonconvex problem, the `1 approach solves a convex problem with linear equality
constraints, however still with a nonsmooth objective functional. Thus, the efficient numerical
solution is often a challenge, in particular in large dimensions. A similar argument applies to
regularized problems used in the case of noisy data, where one minimizes

Eα(u) =
1

2
‖Au− f‖2 + α‖u‖1. (1.3)

Methods proposed for these problems are e.g. iterative thresholding [BD09, DDD04] and vari-
ants [DTD+06, NV09, TG07]. A method receiving particular attention due to its efficiency for

∗Westfälische Wilhelms-Universität Münster, Institut für Numerische und Angewandte Mathematik, Einste-
instr. 62, D 48149 Münster, Germany ({martin.benning,martin.burger}@wwu.de)
†Department of Mathematics, University of California Los Angeles. Portola Plaza, Los Angeles CA 90095,

USA. ({michaelm,sjo}@math.ucla.edu)

1

many problems is the Bregman iteration [OBG+05, YOG+08] respectively its linearized version
[COS09a, COS09b]. These methods are formulated in general for problems of the form

J(u)→ min
u∈X

subject to Au = f, (1.4)

where J : X → R ∪ {∞} is a convex functional on a Banach space X and A : X → Y is a
bounded linear operator between Banach spaces. The Bregman iteration constructs a sequence
uk as minimizers of

Ek(u) =
λ

2
‖Au− f‖2 + J(u)− 〈pk−1, u〉, (1.5)

where pk−1 is an element of the subdifferential of J at uk−1, pk−1 ∈ ∂J(uk−1) = {p : J(u) −
J(uk−1) − 〈p, u − uk−1〉 ≥ 0 ∀u}. Each step is a penalized least squares problem with the
(generalized) Bregman distance between u and uk−1 being the regularization functional. From
the optimality condition a simple update scheme for the subgradients can be obtained as

pk = pk−1 + λA∗(f −Auk), (1.6)

which also allows to prove equivalence of the Bregman iteration to the well-known augmented
Lagrangian method. The linearized Bregman iteration uses a first-order Taylor expansion of the
least-squares term around the last iterate, i.e. uk is determined from minimizing

Ek(u) =
λ

2
‖Auk−1 − f‖2 + λ〈A(u− uk−1), Auk−1 − f〉+ J(u)− 〈pk−1, u〉. (1.7)

The dual variable is obtained correspondingly from

pk = pk−1 + λA∗(f −Auk−1). (1.8)

The application to compressed sensing appears obvious for J(u) = ‖u‖1, care needs to be taken
however for the linearized Bregman iterations since the functional Ek is possibly unbounded
from below in the `1-case, one therefore frequently uses the elastic net

J(u) =
1

2δ
‖u‖22 + ‖u‖1

with δ large. This does not harm the convergence to an `1-minimizing problem, equivalence can
be shown for δ above a threshold (cf. [Y10]).

Interpreting λ as a time step of an evolution, one observes that the Bregman and linearized
Bregman methods are backward respectively forward time stepping on the evolution equation
(respectively inclusion)

∂tp(t) = A∗(f −Au(t)), p(t) ∈ ∂J(u(t)), (1.9)

which is called inverse scale space method and analyzed in [BGO+06]. The inverse scale space
method appears not to be practical as a minimization technique at the first glance, since it is
a nonlinear evolution equation. However, for total variation regularization it has been observed
already in numerical experiments that the evolution has a discrete nature (also confirmed partly
by theoretical results, cf. [BGO+06, BFO+07, B08]). There seem to be only few time steps where
the solution u actually changes, while the dual variable evolves continuously. This observation
is one of the motivations for this paper, in which we aim to obtain a similar or even more precise
characterization of the inverse scale space for the compressed sensing setup (1.2) in detail and
deduce an efficient numerical scheme.

Our second motivation are adaptive discretizations of operator equations (cf. [CDD01,
CDD02, DDU02]), in particular greedy techniques, which are iterative methods that slowly
but efficiently increase the number of degrees of freedom (often by one in each iteration step). It

2

is rather natural to look for such adaptive discretizations also in the compressed sensing frame-
work, because one looks for solutions with only few degrees of freedom (associated with the
nonzero entries in u). One might hope to construct methods that slowly increase the support
of the iterates towards the one of the sparsest solution, solving only (low-dimensional) linear
problems on the support of the iterates in each step. Usually such adaptive methods are guided
by a-posteriori error analysis and as we shall see below, a simple a-posteriori approach to `1-
minimization indicates that the supremum of A∗(Au−f) should be made small, which is exactly
what the inverse scale space achieves (examine for instance the right-hand side in (1.9) and the
convergence analysis in [BGO+06, BFO+07] reviewed in the next section).

Our motivations suggest that the inverse scale space method applied to the compressed
sensing setup will provide an efficient and adaptive approach when carefully analyzed and im-
plemented, and this is indeed one of our main findings in this paper. We will show that there
exists a discrete set of time steps tk at which the primal solution of the inverse scale space is
changing and where uk = u(tk) can be computed by solving low-dimensional systems of linear
equations with nonnegativity constraints (which can often be even omitted in practice). The
evolution of the dual variable is characterized as linear between the discrete time steps and hence
can be computed explicitly as well. Moreover, the discrete time steps can be obtained from the
supremum norm of the dual variable (respectively the residuum). Finally, the behaviour of p
also provides the key to the adaptive refinement, i.e. the small index sets on which A has to
be considered and the linear equations need to be solved. In addition to the setup in (1.2) we
shall also consider the regularized problem of minimizing the functional in (1.3). This yields an
inverse scale space flow of the form

∂tp(t) = −αp(t) +A∗(f −Au(t)), p(t) ∈ ∂J(u(t)), (1.10)

which has not yet been investigated in detail in literature, but for which we can obtain analogous
results to the case α = 0.

The convergence behavior of the explicit discretization of the inverse scale space flow, also
known as linearized Bregman, has been studied before by Osher et al. in [OMD+10] where it
was discovered that the primal variable alternates between quickly converging to a new solution
and stagnating, i.e. staying constant for long times. This fact was used to determine the
stagnation time and immediately ‘kick’ the primal variable to a time where the next change of
solution happens. Hence, ‘kicking’ is the first work to use the discrete nature of the inverse scale
space flow. However, opposed to the method we propose in this paper, linearized Bregman is a
discretization of (1.9). By analyzing the behavior of the subgradient we will be able to solve the
(continuous) flow (1.9) exactly, without discretization of the underlying differential equation. The
times at which the solution changes can be calculated exactly such that a stagnation is entirely
avoided. Any change in the continuous inverse scale space flow solution happens instantaneously
at discrete times.

Besides linearized Bregman with kicking our approach is also related to the technique of
orthogonal matching pursuit (OMP) (cf. [PRK93, MZ93, TG07]), which is a greedy method to
solving the sparse approximation problem and iteratively adds components to the support of u
whose correlation to the current residual is maximal. To be more precise the pseudo code for
OMP is given in Algorithm 1 below. Although the motivation of OMP is very different than the
one of inverse scale space methods, we will see that the first iteration of OMP coincides with
the first step of our proposed approach to solve (1.9). We will discuss the differences to OMP
in more detail throughout the paper and will furthermore provide a numerical comparison in
Section 5.

3

Algorithm 1 Orthogonal Matching Pursuit

1. Parameters: A, f, threshold > 0
2. Initialization: r0 = f , I0 = ∅
while ‖rk‖ > threshold do

Compute Ik = Ik−1 ∪ i with i such that |(AT rk)i| = ‖AT rk‖∞
Compute uk = arg minu

{
‖APIku− f‖2

}
Update rk+1 = f −APIkuk

end while
return uk

Another technique that aims at iteratively reconstructing the support of a sparse signal is
iterative support detection (ISD) proposed by Wang and Yin in [WY10]. They iteratively solve
a truncated `1 minimization problem on the coefficients that are currently not in the detected
support and update the set of support coefficients by thresholding. Similar to the framework we
propose in this paper, ISD can also change the support of the solution arbitrarily and does not
lead to increasing, nested supports as OMP. However, ISD is not based on the inverse scale space
flow (1.9) and does not aim at solving (1.2), which is a fundamental difference to our method. In
fact, the first iteration of ISD requires to fully solve (1.2) already, such that the method proposed
in this paper could even be combined with ISD.

The remaining part of the paper is organized as follows: In Section 2 we provide a review
of the most important properties and convergence analysis of inverse scale space methods as
well as their extension to the case of regularized variational problems, which allows for a refined
convergence analysis. Section 3 discusses the specialization of inverse scale space methods to
the compressed sensing setup and provides a characterization allowing to adaptively choose time
steps and low dimensional discretizations in each step. In Section 4 we provide some further
convergence analysis and subsequently discuss various numerical test examples illustrating the
behaviour of the methods and a comparison to the well-known OMP method in Section 5.

2 Inverse Scale Space Methods

In the following we provide some basic facts about Bregman iterations and inverse scale space
methods arising as their asymptotic limit. In this section we consider the general case as described
in (1.4). In Section 2.2 we shall further discuss the application to the regularized problem

1

2
‖Au− f‖2 + αJ(u)→ min

u∈X
. (2.1)

Starting point of the analysis is the Bregman distance associated with the functional J . For
a subgradient p ∈ ∂J(u) the Bregman distance is defined as

Dp
J(v, u) = J(v)− J(u)− 〈p, v − u〉. (2.2)

Using the Bregman distance between subsequent iterations as a penalty in the least-squares
problem, we obtain the Bregman iteration (cf. [OBG+05]), computing uk as the solution of

λ

2
‖Au− f‖2 +D

pk−1

J (u, uk−1)→ min
u∈X

. (2.3)

Note that by subtracting constant terms not changing the minimizer this is equivalent to (1.5).
The optimality condition characterizing the minimizer uk is given by

λA∗(Auk − f) + pk − pk−1 = 0. (2.4)

4

Interpreting ∆t = λ as a time step and pk = p(k∆t) we find the equivalent relation

p(t)− p(t−∆t)

∆t
= A∗(f −Au(t)),

which is a backward Euler discretization of the time-continuous flow (1.9), i.e.

∂tp(t) = A∗(f −Au(t)), p(t) ∈ ∂J(u(t)),

called inverse scale space method (ISS). The inverse scale space flow is a differential inclusion,
it can also be formulated as a dual gradient flow using the relation p = A∗q for some q, which
allows to write

∂tq(t) = f −Au(t), u(t) ∈ ∂pJ∗(A∗q), (2.5)

hence
∂tq(t) ∈ −∂E∗(q), (2.6)

with the dual energy functional

E∗(q) = J∗(A∗q)− 〈f, q〉., (2.7)

where J∗ denotes the convex conjugate of J (cf. [ET99]).

2.1 Convergence Properties

As a consequence of the limit from the Bregman iteration and the obvious decrease of the least-
squares functional in the Bregman iteration (cf. [OBG+05]) we find

‖Au(t)− f‖ ≤ ‖Au(s)− f‖, ∀ t ≥ s. (2.8)

A second useful property concerns the decrease of the Bregman distance and the dissipation of
the least-squares functional. If û is a solution of Au = f minimizing J then taking the duality
product with u− û reveals

d

dt
D
p(t)
J (û, u(t)) = −‖Au(t)− f‖2. (2.9)

From this inequalty one can infer the major convergence properties of the inverse scale space
method, namely

‖Au(t)− f‖ = O(t−1/2) (2.10)

and - under appropriate conditions on J - the weak or weak-* convergence of u(t) to solutions of
Au = f with minimal J along subsequences. Improved convergence properties can be obtained
for data satisfying a source condition

∃q̂ : A∗q̂ ∈ ∂J(û). (2.11)

Under such a condition one further obtains (cf. [BRH07])

D
p(t)
J (û, u(t)) = O(t−1/2) (2.12)

and q(t) remains bounded.
In the compressed sensing setup this means that u(t) converges to an `1-minimizing solution

of Au = f (along subsequences if the latter is not unique). Moreover, (2.11) is automatically
satisfied, which can be seen from the optimality condition in finite dimensions (which is the
Lagrange-multiplier corresponding to Au = f). Thus, the Bregman distance with respect to the
`1-norm converges at least at order t−1/2.

In addition to the above properties some regularizing features of the inverse scale space
method have been shown under appropriate stopping rules for noisy data f ; we refer to [BGO+06]
for further discussion.

5

2.2 Inverse Scale Space Methods for Regularized Problems

In the case of regularized problems one aims at minimizing the functional

E(u) =
1

2
‖Au− f‖2 + αJ(u), (2.13)

and corresponding Bregman and inverse scale space methods can be constructed as well by just
replacing the least-squares functional with E. This finally leads to the flow (1.10), i.e.

∂tp(t) = A∗(f −Au(t))− αp(t), p(t) ∈ ∂J(u(t)),

for which analogous reasoning as in the case of the unregularized problem can be carried out,
respectively some results can even be improved due to the presence of p on the right-hand side.
First of all, one obtains a decrease of the objective functional, i.e.

E(u(t)) ≤ E(u(s)), ∀ t ≥ s. (2.14)

Concerning the decrease of the Bregman distance we can show a stronger result:

Proposition 1. Let (u, p) be a solution of (1.10) for α > 0. Then, for ûα being a minimizer of
E, the estimate

D
p(t)
J (ûα, u(t)) ≤ e−αtJ(ûα) (2.15)

holds.

Proof. Taking the duality product of (1.10) with u− ûα yields

d

dt
Dp
J(ûα, u) = −〈A∗(Au−Aûα +Aûα − f), u− ûα〉 − α〈p, u− ûα〉

= −‖Au−Aûα‖2 − α〈p− p̂α, u− ûα〉
≤ −αDp

J(ûα, u),

where we have inserted the optimality condition for ûα with subgradient p̂α ∈ ∂J(ûα) in the
second line. The Gronwall inequality finally yields the assertion.

A similar result can be shown for the dual variable q satisfying p = A∗q. Using

q̂α =
1

α
(f −Aûα)

one can show
‖q(t)− q̂α‖ ≤ e−αt‖q̂α‖,

which by the continuity of A∗ also implies the exponential convergence of p = A∗q.

3 Inverse Scale Space Methods for Compressed Sensing

In the following we are going to investigate the behaviour of inverse scale space methods in the
compressed sensing setup

∂tp(t) = AT (f −Au(t)), p(t) ∈ ∂‖u‖1. (3.1)

Notice that the subdifferential of the `1 norm can be characterized componentwise by

p ∈ ∂‖u‖1 ⇔
{
pi = sign(ui), if ui 6= 0,
|pi| ≤ 1, else.

(3.2)

We start with a simple result that can be shown in a very general way for one-homogeneous
regularization functionals (using a dual norm of the initial residual, cf. [M01, BO11]):

6

Lemma 1. For

t < t1 :=
1

‖AT f‖∞
(3.3)

a solution (u, p) of the inverse scale space flow (3.1) is given by

u(t) = 0, p(t) = tAT f. (3.4)

Proof. We immediately see
∂tp(t) = AT f = AT (f −Au(t))

and
‖p(t)‖∞ = t‖AT f‖∞ < t1‖AT f‖∞ = 1,

thus
p(t) ∈ ∂‖0‖1 = ∂‖u(t)‖1.

The observation in Lemma 1 is the basis for further characterizing the inverse scale space flow
for larger times. We expect changes in the primal variable u only to occur at some discrete time
steps, when some |pi(t)| reaches the value one and that p behaves linearly in the intermediate
times. It remains to characterize u at the discrete time steps tk. This can be understood from
the limit of the Bregman iteration

1

2
‖Au− f‖2 + α(‖u‖1 − p · u) (3.5)

as α → ∞. In order to obtain a minimum we expect the Bregman distance to go to zero, i.e.
p · u = ‖u‖1 (thus p ∈ ∂‖u‖1), and the squared norm to be minimized subject to this constraint.
In this way we can indeed compute the detailed behaviour of the inverse scale space flow:

Theorem 1. There exists a sequence of times

0 = t0 < t1 < t2 < . . .

such that
u(t) = u(tk), p(t) = p(tk) + (t− tk)AT (f −Au(tk)) (3.6)

for t ∈ [tk, tk+1) is a solution of the inverse scale space flow (3.1), where u(tk) is a solution of

‖Au− f‖ → min
u,p(tk)∈∂‖u‖1

. (3.7)

Moreover tk+1 =∞ if and only if ATAu(tk) = AT f .

Proof. Due to Lemma 1 the assertion clearly holds for k = 0 (with t0 = 0), noticing that

p(0) = 0 ∈ ∂‖u(0)‖1 = ∂‖0‖1.

Now we proceed inductively. Given u(tk) and p(tk) we compute

tk+1 = min{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) 6= pj(tk)}, (3.8)

where

pj(t) = pj(tk) + (t− tk)ej ·AT (f −Au(tk)) (3.9)

holds.

7

Now u(tk) minimizes ‖Au−f‖ subject to the constraint p(tk) ∈ ∂‖u‖1, which we can rewrite
as a linearly constrained quadratic problem of minimizing ‖Au− f‖2 subject to

uj ≥ 0 if pj = 1

uj ≤ 0 if pj = −1

uj = 0 if − 1 < pj < 1.

From the optimality condition we obtain:

• uj(tk) > 0 or uj(tk) < 0 implies ej ·AT (Au(tk)− f) = 0, hence pj(t) = pj(tk) = ±1.

• uj(tk) = 0 and pj(tk) = 1 implies ej · AT (Au(tk)− f) ≥ 0, hence −1 ≤ pj(t) ≤ pj(tk) = 1
for t small.

• uj(tk) = 0 and pj(tk) = −1 implies ej ·AT (Au(tk)−f) ≤ 0, hence 1 ≥ pj(t) ≥ pj(tk) = −1
for t small.

• uj(tk) = 0 and pj(tk) ∈ (−1, 1) implies pj(t) ∈ [−1, 1] for t small.

Hence the construction yields a solution in [tk, tk+1) and tk+1 is well-defined. The existence of
u(tk+1) follows from a standard result for quadratic programs.

Theorem 1 provides a direct way to formulate the inverse scale space method as an adaptive
scheme for compressed sensing. We will refer to this method as adaptive inverse scale space
method (aISS):

Algorithm 2 Adaptive Inverse Scale Space Method

1. Parameters: A, f, threshold ≥ 0
2. Initialization: t1 = 1/

∥∥AT f∥∥∞ , p(t1) = t1 A
T f, I1 = {i | |pi(t1)| = 1}

while ‖Au(tk)− f‖ > threshold do

Compute u(tk) = arg minu
{
‖APIku− f‖2

}
subject to u(tk)p(tk) ≥ 0

Obtain tk+1 as the minimal time for which (3.8) holds
Update the dual variable p(t) via (3.9) with t = tk+1

Compute Ik+1 = {i | |pi(tk+1)| = 1}
end while
return u(tk)

We want to mention that the solution of the quadratic programming problem in each step is
a very low-dimensional one, since we can directly set uj(tk) = 0 for |pj(tk)| < 1. Hence we can
minimize the problem on the lower-dimensional index set Ik of components where |pj(tk)| = 1.
In most cases we expect the solution to be the same as (APIk)†f , hence we might try to solve
the low-dimensional least-squares problem first and then check the signs of the solution.

The resulting characterization of the inverse scale space method is reminiscent to greedy
methods for compressed sensing, in particular orthogonal matching pursuit (see Algorithm 1).
We can easily see the differences concerning the structure of the algorithm

• OMP restricts the index set similar to the inverse scale space method, but does not enforce
a sign constraint.

• OMP only adds single indices in each iteration, while it is possible to change the index set
arbitrarily in inverse scale space methods (practical observations confirm however a change
of only one index in a vast majority of cases).

• OMP - brought to the inverse scale space notation - uses the supremum norm of AT (f −
Au(tk)) to select relevant indices, while the inverse scale space method uses sp(tk)+AT (f−
Au(tk)) for varying s (related to t− tk).

8

We expect the last point to be the major change from OMP to inverse scale space methods, the
update of the dual variable encodes some history and improves the convergence behaviour. In
situations where OMP performs well, the first two points are probably no major differences, since
we expect to automatically find correct signs by solving the unconstrained least-squares problem
and we expect the index set to increase by one in each step also in the inverse scale space method.
The sign constraint and the different update of the index set (in particular also the chance to
make it smaller) is expected to yield improved behaviour in situations where OMP does not
perform well (see also the numerical examples in Section 5), it also reflects the convergence of
the inverse scale space method in arbitrary situations.

In analogy to Theorem 1 and Algorithm 2 we can derive similar results for the regularized
inverse scale space (1.10). The major modification is that the update of the dual variable (3.9)
changes to

pj(t) =

(
pj(tk)− 1

α
ej ·AT (f −Au(tk))

)
exp (−α (t− tk))

+
1

α
ej ·AT (f −Au(tk)) .

(3.10)

The related regularized-aISS-algorithm reads as

Algorithm 3 Adaptive Regularized Inverse Scale Space Method

1. Parameters: A, f, threshold ≥ 0
2. Initialization: t1 = − log

(
1− α/

∥∥AT f∥∥∞) /α, p(t1) =
(
AT f

)
(1− exp(αt1)) /α, I1 =

{i | |pi(t1)| = 1}
while ‖Au(tk)− f‖ > threshold do

Compute u(tk) = arg minu
{
‖APIku− f‖2 + α (PIku · p(tk))

}
subject to u(tk)p(tk) ≥ 0

Obtain tk+1 as the minimal time for which (3.8) holds
Update the dual variable p(t) via (3.10) with t = tk+1

Compute Ik+1 = {i | |pi(tk+1)| = 1}
end while
return u(tk)

4 Further Convergence Analysis

In the following we provide some additional analysis confirming the favourable properties of the
method in typical setups for compressed sensing. We shall assume that

f = Aû, PI û = û, û · ei 6= 0, i ∈ I. (4.1)

where û is the sparsest solution of Au = f . Here I denotes an index set, and PI the projection
onto the elements supported on this index set. Hence, the above condition ensures that I is the
index set of nonzero entries of the sparsest solution. In addition we shall assume a normalization
condition on the columns of the matrix A, i.e.,

‖Aei‖ = 1, ∀ i (4.2)

First of all, we can see that each iteration improves the approximation accuracy of the data:

Proposition 2. The approximation error ‖Au(t)− f‖ of the inverse scale space flow is strictly
decreasing at the times tk, i.e.

‖Au(tk+1)− f‖ < ‖Au(tk)− f‖ (4.3)

9

Proof. We will prove the above Proposition in two steps

1. Show that ‖Au(tk+1)− f‖ < ‖Au(tk)− f‖ if p(tk) /∈ ∂|u(tk+1)|1.

2. Show that p(tk) /∈ ∂|u(tk+1)|1 is always satisfied.

First part: Let us assume that p(tk) /∈ ∂|u(tk+1)|1. In this case

Dp(tk)(u(tk+1), u(tk)) > 0. (4.4)

Notice that u(tk+1) is a minimizer of

Q(u) =
1

2
(tk+1 − tk)‖Au− f‖2 +Dp(tk)(u, u(tk)), (4.5)

which can easily be verified by confirming that the formula for p(tk+1) coincides with the opti-
mality condition of the above functional. Using (4.4) this yields the conclusion

1

2
(tk+1 − tk)‖Au(tk+1)− f‖2 < Q(u(tk+1))

≤ Q(u(tk))

=
1

2
(tk+1 − tk)‖Au(tk)− f‖2,

and since (tk+1 − tk) > 0 we have shown ‖Au(tk+1)− f‖ < ‖Au(tk)− f‖.

Second part: By construction, more specific by the choice of tk+1, there exists an index i such
that |pi(tk+1)| = 1 and |pi(tk)| < 1. Let us assume pi(tk+1) = 1, pi(tk) < 1, and i is - without
restriction of generality - the only index at which the value of the subgradient becomes 1 (the
negative case is similar and so is the case of multiple indices). We will show that ui(tk+1) > 0
which then (by the characterization of the subdifferential (3.2)) allows the conclusion pi(tk) /∈
∂|u(tk+1)|1.

Given pi(tk+1) = 1, pi(tk) < 1 we know that

[AT (f −Au(tk))]i =
1

tk+1 − tk
(
pi(tk+1)− pi(tk)

)
> 0

Now we can prove ui(t
k+1) > 0 by contradiction. If we had ui(t

k+1) = 0, we already knew
that u(tk+1) = u(tk). Based on our previous calculation, this would mean that also [AT (f −
Au(tk+1))]i > 0. However, u(tk+1) is determined as the minimizer of

1

2
‖APIk+1

u− f‖2 + λ · u, (4.6)

with Lagrange multipliers λ that enforce the constraint uj ≥ 0, if pj = 1, uj ≤ 0, if pj = −1,
which means that λj ≤ 0 if pj = 1, λj ≥ 0 if pj = −1. Now the optimality condition to (4.6) in
the ith coefficient tells us that

0 ≥ λi = [AT (f −Au(tk+1))]i,

which is a contradiction to [AT (f −Au(tk+1))]i > 0. Therefore, our assumption must have been
wrong and thus ui(t

k+1) > 0, which means pi(tk) /∈ ∂|u(tk+1)|1.

The previous proposition allows us to conclude the finite time convergence of aISS to an `1

minimizing solution:

Theorem 2. Let (u, p) be a solution of the adaptive inverse scale space method as above, then
there exists a K > 0 such that tK+1 =∞ and u(t) is an `1-minimizing solution for t ≥ tK .

10

Proof. Let us denote

Ik1 = {i : pi(tk) = 1}
Ik2 = {i : pi(tk) = −1}
Ik3 = {i : |pi(tk)| < 1}

Notice that the solution u(tk) and therefore the `2 error ‖Au(tk)−f‖ only depends on the index
sets Ik1 , I

k
2 , I

k
3 . If there exists an l 6= k such that Ik1 = I l1, Ik2 = I l2, Ik3 = I l3, then obviously

‖Au(tk) − f‖ = ‖Au(tl) − f‖. However, Proposition 2 shows that this can not happen, i.e.
‖Au(tk) − f‖ < ‖Au(tl) − f‖ for k > l. Since in finite dimensions there are only finitely many
possibilities for Ik1 , I

k
2 , I

k
3 to be different we can conclude that the method has to converge in a

finite number of iterations, i.e. there exists a K > 0 such that tK+1 =∞.
As we have seen in Theorem 1, tK+1 = ∞ implies ATAu(tK) = AT f and since in (4.1) we

have assumed that f is in the range of A, we obtain Au(tk) = f . To show that u(tk) indeed
is an `1-minimizing solution, let ũ be another solution to Au = f . Then the Bregman distance
between ũ and u(tk) is

0 ≤ Dp(tK)(ũ, u(tK))

=
∥∥ũ∥∥

1
−
∥∥u(tK)

∥∥
1
−
〈
p(tK), ũ− u(tK)

〉
=

∥∥ũ∥∥
1
−
∥∥u(tK)

∥∥
1
−
〈 K∑
i=1

(ti − ti−1)AT (f −Au(ti−1)), ũ− u(tK)
〉

=
∥∥ũ∥∥

1
−
∥∥u(tK)

∥∥
1
−
〈 K∑
i=1

(ti − ti−1)(f −Au(ti−1)), Aũ︸︷︷︸
=f

−Au(tK)︸ ︷︷ ︸
=f︸ ︷︷ ︸

=0

〉

=
∥∥ũ∥∥

1
−
∥∥u(tK)

∥∥
1
,

which shows that u(tK) is an `1 minimizing solution.

The above proof of Theorem 2 yields finite time convergence but not much information about
the complexity needed to reach the desired solution. In a reasonable setup we expect convergence
with low complexity, i.e. few iteration steps with small support of the iterates. We shall obtain
further information on the complexity by the following analysis. We start with a simple property
for only one nonzero entry:

Proposition 3. If |I| = 1 and let (u, p) be a solution of the adaptive inverse scale space method
as above. Then u = û for t ≥ t1.

Proof. Let k be the index of the nonzero entry of û. For t < t1 we have

∂tpi = (Aei) · f = ûk(Aei) · (Aek).

From (4.2) and the Cauchy-Schwarz inequality we see

pk(t) = tûk

and for i 6= k
|pi(t)| = t|ûk||(Aei) · (Aek)| < t|ûk| = |pk(t)|.

Hence for t = t1 we have |pi(t1)| < 1 for i 6= k and pk(t1) equals the sign of ûk. Consequently
u(t1) is determined by minimizing ‖Au − f‖ over all u such that only the k-th component is
nonzero and has the same sign of ûk, thus û is the obvious minimizer. Since AT (Au− f) = 0 we
obtain ∂tp = 0 for t ≥ t1, thus u remains unchanged.

11

For more than one nonzero entry we need further properties of the matrix A, several of
which are regularly used in compressed sensing. The most prominent example is the restricted
isometry property (RIP) due to Candes and Tao [CT04a], for which equivalence of `0 and `1

minimization can be shown. Here we shall use a weaker property due to Tropp [T06], the so-
called exact recovery condition (ERC), which can be used to show that also in the noisy case the
exact support can be reconstructed:

‖(API)†Aej‖1 < 1 ∀ j /∈ I. (4.7)

Using the exact recovery condition we can verify that the inverse scale space method only operates
on the support of the exact solution:

Proposition 4. Let f = API û and let condition (4.7) be satisfied. Moreover let (u(t), p(t)) be
the solution of the inverse scale space method as above. Then |pj(t)| < 1 for all j /∈ I and all
t > 0.

Proof. We look for a solution u = PIu and project the equation

∂tp = AT (f −Au) = ATAPI(û− u)

onto I and with the regularity of (API)
TAPI we find

PI(û− u) = (PIA
TAPI)

−1∂tPIp

and hence
API(û− u) = A(PIA

TAPI)
−1∂tPIp = ((API)

†)T∂tPIp.

Now let j /∈ I, then

∂tpj(t) = ej ·ATAPI(û− u) = (Aej) · ((API)†)T∂tPIp.

Since all initial values are zero we can integrate this identity to obtain

pj(t) = ((API)
†Aej) · PIp.

Now (4.7) and ‖PIp‖∞ ≤ 1 imply |pj(t)| < 1 for all t.

With (4.7) we can also obtain a result further confirming the optimal behaviour for a very
small index set:

Proposition 5. Assume |I| = 2, (4.7), and let (u, p) be a solution of the adaptive inverse scale
space method as above. Then u = û for t ≥ t2.

Proof. Without restriction of generality let |û1| ≥ |û2| > 0 be the nonzero elements. We already
know that uj(t) = 0 for all t > 0 and j > 2, thus it suffices to consider the two-dimensional
subspace. In the following, let Ai denote the ith column of A.If û1 > 0 then for 0 < t < t1 we
have

1

t
p1(t) = [AT f]1 = A1 · f = A1 ·Aû = A1 · (A1û1 +A2û2)

= (A1 ·A1)︸ ︷︷ ︸
=1

û1 + (A1 ·A2)︸ ︷︷ ︸
>−1

û2

> û1 − û2 ≥ 0

while for û1 < 0 we can show in a similar fashion that

p1(t) < 0.

12

Hence, p1 has the same sign as û1 and by considering the different cases of signs for û1 and û2
one can easily verify that |p1(t)| ≥ |p2(t)|. If equality holds, then it is easy to see that |û1| = |û2|
and thus, u(t1) is obtained by minimizing the residual on the two-dimensional subspace with
indices I. Since the signs of ui(t1), i = 1, 2, are the same as the signs of ûi, we obviously have
u(t1) = û and thus u(t) = û for all t ≥ t1.

If |p1(t)| > |p2(t)| the residual is minimized over the one-dimensional subspace with index 1
and sign constraint. It is easy to verify that u1(t1) = 0 cannot be the minimizer, thus

A1 · (Au(t1)− f) = 0

and consequently p1 remains constant in (t1, t2). Due to Proposition 4 we must have |p2(t2)| = 1
and it is easy to check that the sign of p2 equals the sign of û2. Hence, the minimization of
the residual at time t2 is carried out over the two-dimensional subspace I with same signs as û,
which implies u(t2) = û and thus, u(t) = û for t ≥ t2.

5 Numerical Results

In the following we provide some numerical investigations of the adaptive inverse scale space
method in different setups and discuss the comparison with OMP.

5.1 Random Matrix

To get a better understanding of the behavior of the inverse scale space flow, let us look at the
simple case of generating a matrix A ∈ Rm×n, n << m, with random values between 0.5 and
-0.5. We normalize each column with respect to the two-norm and generate a signal utrue which
has random values between -5 and 5 at s random indices, where the sparsity level s is small in
comparison to the size n of the signal. The data is generated as f = Autrue. Figure 1 shows
the aISS iterations as well as utrue for an example of n = 50, m = 1000, and s = 5. We can see
that on the first seven iterations aISS reconstructs one peak at a time. The first three peaks are
indeed peaks of the true solution. The peaks reconstructed in iteration four and five are not part
of the true solution. However, in the course of the iteration aISS does find the remaining two true
peaks and immediately eliminates the three false peaks in the last iteration as the subgradient
of the last missing peak (at index 310) reaches 1 and therefore is included in the support.

For more complicated examples our method changes its support more frequently. It can
remove indices from the support not only on the last iteration and might also change more than
one index at a time. We expect the ability to arbitrarily change the support to be an advantage
over OMP.

5.2 Comparison with OMP

In this subsection we compare aISS and OMP in two steps. First, we will describe the problem of
monotonic increase of the support of OMP and present an algorithm to construct a sensing matrix
A and a signal f for which OMP fails. Second, we will compare aISS and OMP on different types
of matrices including random matrices, combined wavelet matrices, and ill-conditioned matrices
arising in dynamic positron emission tomography (PET) to see how frequently the problem setup
we present in the next subsection occurs in realistic, practical settings.

5.2.1 A counter example for OMP

As discussed before, a major difference between OMP and aISS is that OMP never decreases
the support of the solution and (in the terminology of aISS) resets the dual variable/subgradient
after each iteration, whereas aISS is able to decrease its support and continuously evolve the
subgradient, taking the information of all previous iterations into account. In this subsection

13

Figure 1: Example iteration of the aISS method for a random matrix. The true input signal is
shown in the upper left.

we will show that this difference can have a major effect on the reconstruction results leading to
arbitrarily non-sparse results of OMP while aISS can still recover the exact solution.

We can construct an example for which OMP fails as follows: Assume we have data f which
can be written as f = c(v1 + v2) for two normalized vectors v1, v2 and a constant c. In the
end, we will include v1 and v2 in our matrix A, since this will guarantee the sparsest solution of
Au = f to be 2-sparse. We start the construction of A by choosing a small ε, setting A0 = ∅,
and define an r0 = f , which will correspond to the residual in the construction. Let f ∈ Rn then
we iteratively choose for i = 1, ..., n

1. Ai = [Ai−1, ri−1 − εei]

2. ri = f −Ai((Ai)†f),

where (Ai)† denotes the generalized inverse of the current matrix Ai. The first step takes the
current residual and deflects it by a small ε in the direction of the ith unit normal vector. This
will make OMP select this vector in the ith step since for ε small enough, the correlation of
this vector to the current residual will be maximal. However, the small disturbance will lead to
OMP not having converged yet. Therefore, we compute the next residual ri that will come up
in the OMP algorithm and again provide a column in Ai that has a very high correlation to this
residual but does not enable the method to solve Aiu = f exactly. Iteratively we construct n
such vectors. Note that n is the least sparse vector one can get for the description of f ∈ Rn,
since any additional vector would automatically be linearly dependent. Finally, we add v1 and

14

v2 as the last two columns to obtain the final A = [An, v1, v2], which we normalize afterwards.
Although v1 and v2 are sufficient to describe f they will likely not have the highest correlation
to any residual of OMP.

Figure 2 shows some iterations of the OMP algorithm on an A constructed as described
above with n = 50 and v1 = en, v2 = en−1, f = 0.5v1 + 0.5v2, ε = 0.15. As we can see OMP
indeed adds one component after the other until at the 50th iteration it finally has the maximum
number of linearly independent vectors in Rn and can therefore reconstruct f exactly. The OMP
answer is as non-sparse as possible although the input signal was 2-sparse (which is the sparsest
possible without being reconstructed in 1 iteration by either of the two methods aISS or OMP).

(a) Iteration 10 (b) Iteration 40

(c) Iteration 50 (d) True 2-sparse solution

Figure 2: Iterates of OMP on constructed example. Red dots indicate the coefficients at which
the current solution is non-zero.

Now let us take a look at the iteration of aISS for the same example. Figure 3 shows not
only the solution at each iteration but also the corresponding subgradient since this is crucial
for understanding the difference between the two methods.

We can see that the first three iterations coincide with the OMP method, and components
corresponding to a high correlation with the residual are added to the set of non-zero elements.
However, the subgradient shows that aISS ‘sees’ that the last two components in the matrix
A also have a good correlation to the signal f . Their correlation is not as high as for the

15

Figure 3: Iterates of aISS on constructed example. Red dots indicate the coefficients at which
the current solution is non-zero.

first columns of A which is why neither aISS nor OMP added them immediately. However,
OMP basically resets the subgradient at each iteration and includes the vector with the highest
correlation to the residual. aISS on the contrary, does not reset the subgradient and keeps adding
to the correlation of the last 2 vectors until, at iteration 4, the subgradient of components 51
and 52 hits 1, which immediately leads to the right, 2-sparse answer. aISS converged in only 4
iterations to the correct answer while OMP converged in 50 iterations to the least sparse answer
possible.

16

5.2.2 Random Matrices and Combined Wavelet Basis

In this subsection we will investigate how aISS and OMP compare on noise free data. The
criteria for our comparison will be

1. Frequency of exact recovery of the sparsest signal.

2. Sparsity of the solution each algorithm found, i.e. number of non-zero elements |u|0.

3. Number of iterations each algorithm took.

4. Runtime of each algorithm.

The tests will be based on cases, where neither of the two algorithms is guaranteed to converge
to the sparsest solution (for theoretical guarantees for this kind of convergence see for instance
[NTV08]). Notice, that aISS will always converge to the `1 minimizing solution of Au = f . The
criteria of frequency of exact recovery as well as sparsity of the solution are therefore rather based
on the question whether the `1 minimizing solution coincides with the `0 minimizing solution
than a convergence/quality property of our algorithm in particular. The examples where aISS
does not reconstruct the sparsest solution are therefore a violation of the requirements we need
for the `1 minimizing solution to be the sparsest solution.

In the first experiment we generate a matrix A ∈ R128×512 with random entries between -0.5
and 0.5. Then, we normalize each column of A and generate a signal utrue also with random
values between -0.5 and 0.5 at s random indices. s is the sparsity level of the true, sparsest
solution. We vary s from 10 to 60, run each algorithm 50 times per s, and record the comparison
metrics described above. Figure 4 shows the results among all sparsity levels.

We can see that the greedy approach to `0 minimization works much better in this example.
The frequency of exact recovery is higher, and even for the cases where the sparsest solution is
not recovered exactly, the sparsity of the OMP solution is much better than for the aISS solution.
Furthermore, OMP obtained its results in fewer iterations and less runtime.

Despite the very good results OMP gave in this example, we will see that this is not the case
in general. In our second example, we create the random matrix A in the same fashion as in
the previous experiment. The only change is that we generate the signal utrue as a random sign
function at s coefficients, i.e. we set s values in utrue randomly to -1 or +1. As we can see in
Figure 5 this changes the results dramatically.

In this case, aISS clearly outperforms OMP regarding the quality of the results, yielding
better frequency of recovery and sparser solutions. It is interesting to see that the aISS recovery
frequency stays almost the same as in the previous example, whereas the recovery frequency of
OMP dropped significantly. Note that the number of iterations of OMP and aISS is very similar
up to a sparsity of 32 of the input signal. The runtime is almost the same up to a sparsity of
28. After that, aISS pays for the higher accuracy and higher sparsity with more computational
afford - however, even for the most complex example the runtime is below 0.5 seconds using a
Laptop with 2Ghz dual core processor and 3GB memory.

We obtain similar results on more structured, over-complete basis like the combination of
Matlabs ‘Haar’ and ‘Daubechies4’ basis for a level 6 decomposition. With A being generated
as the normalized combination of those two bases, again using 128 to be the number of rows of
A, we choose a signal utrue also with random values between -0.5 and 0.5 at s random indices.
Figure 6 shows the comparison of OMP and aISS in this test case.

First of all we can see that this example was more challenging for both algorithms yielding a
lower frequency of recovery at earlier iterations in comparison to the random matrices. Again,
aISS outperforms OMP in terms of frequency of exact recovery and sparsity of the recovered
signal. In this case, even the number of iterations is similar, whereas the runtime is similar up
to iteration 20, then increasing stronger but still being relatively fast.

As mentioned earlier, aISS finds the `1 minimizer which might not be the sparsest solution.
Thus, we could also compare two other cases: If among all examples mentioned above, we

17

(a) Frequency of exact recovery (b) Number of non-zero coefficients

(c) Number of iterations (d) Runtime

Figure 4: Comparison of OMP and aISS on random matrices and input signals with random
values. The plots show the comparison matrics with respect to the sparsity level of the input
signal.

compare OMP and aISS only on the cases where both methods reconstruct the sparsest solution
exactly, OMP gives the correct result faster only needing about 0.0045 seconds whereas aISS
needs 0.027 seconds on average. This difference in speed is also due to the average number of
iterations needed to find the solution which is 16.2 for OMP and 30.3 for aISS. Comparing the
methods only for the cases where the `1 minimizing solution coincides with the `0 minimizing
solution we have a sparsest signal recovery rate of 100% for aISS and about 75.8% for OMP.
In these examples the average OMP solution is much more dense with an average number of
non-zero coefficients of 32.4 opposed to 17.3 for the aISS solutions.

To also compare OMP and aISS on matrices A used in practical applications we will discuss
temporal basis functions for dynamic PET in the next subsection.

5.2.3 Temporal Basis Functions for Dynamic PET

In [RMS+07] an exponential basis operator has been introduced in order to improve dynamic
Positron Emission Tomography (PET) images. For applications like e.g. myocardial perfusion

18

(a) Frequency of exact recovery (b) Number of non-zero coefficients

(c) Number of iterations (d) Runtime

Figure 5: Comparison of OMP and aISS on random matrices and input signals with random +1
and -1 values. The plots show the comparison metrics with respect to the sparsity level of the
input signal.

quantification (see for instance [BKW+08]) it is a standard assumption that the measured dy-
namic signal is a composition of a so-called input function (which we assume to be known)
and a Laplace-convolution of that input function with a specific exponential function. In this
short computational example we therefore intend to solve the inverse problem Au = f with the
operator A given as the linear combination

(Au) (t) := u0h(t) +

N∑
n=1

unb̃n(t) , (5.1)

of basis functions b̃n(t) defined as

b̃n(t) :=

∫ t

0

h(τ) exp (−bn (t− τ)) dτ , (5.2)

for a given positive input function h : [0, T]→ R∪{∞} and a given vector b = (bn)n∈{1,...,N} con-
taining non-negative real values. For the sake of simplicity, we focus on a one-dimensional setting;

19

(a) Frequency of exact recovery (b) Number of non-zero coefficients

(c) Number of iterations (d) Runtime

Figure 6: Comparison of OMP and aISS on a matrix of combined ‘Haar’ and ‘Daubechies4’
wavelet basis and input signals with random values. The plots show the comparison metrics
with respect to the sparsity level of the input signal.

To simulate input data realistically, we sample the time t ∈ [0, T], with T = 320s, at 26 discrete
points {20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 140, 160, 180, 200, 230,
260, 290, 320}. The basis functions b̃n were computed on a finer grid via a simple Euler-scheme,
for N = 61 given values bn ∈ [0, 6] with step size 0.1, and were subsequently sampled at the

discrete temporal points. The underlying function h is defined as h(t) := t
64 exp

(
−−t

2

128

)
and

normalized with respect to the ‖·‖∞-norm. Hence, we obtain a fully discrete matrix A ∈ R26×62,
for which it’s columns (which are the discrete analogue of the basis functions b̃n) can be seen in
Figure 7. As in the previous examples we are going to normalize the columns of A in order to
weight the basis functions correctly and not to distort reconstructions. Figure 7 makes already
clear that the considered matrix is very ill-conditioned, since the columns appear to be very
similar to each other.

As described above it is very natural to assume the exact signal g to be a composition of
the function h and one single basis function. We therefore define an example such that the true

20

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

Basis Functions

(a) Basis Functions

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

Normalized Basis Functions

(b) Normalized Basis Functions

Figure 7: The columns of A as defined in this section. The left-hand-side shows the columns,
representing the basis functions (5.2). The right-hand-side shows the normalized columns with
respect to the 2-norm.

coefficients are given as the vector

ujtrue :=


≈ 0.931 if j = 0

≈ 1.270 if j = 15

0 else

, (5.3)

and the exact data g = Autrue. Moreover, we compute a set of noisy datum f , for which we
disturb g with normal-distributed noise with mean zero and standard-deviation σ. In Table

Noise Level σ = 0 σ = 0.0075 σ = 0.0125 σ = 0.03
Method aISS OMP aISS OMP aISS OMP aISS OMP
Runtime 0.004041 0.0008346 0.004103 0.0005302 0.004306 0.0005242 0.004577 0.0005098
`0-norm 2 12 2.27 4.971 2.099 4.611 2.073 4.152
`1-norm 2.201 3.198 2.199 3.473 2.198 3.378 2.189 3.217
‖ũ−utrue‖`1
‖ũ‖`1

0 1.607 0.3493 1.744 0.5658 1.739 0.9673 1.721

‖Autrue − g‖`2 0 0 0.002058 0.003509 0.00364 0.005829 0.009601 0.01206
‖Autrue − f‖`2 0 0 0.007254 0.006916 0.01215 0.01158 0.02939 0.02789

No. of iter. 22 12 22.58 4.971 23.77 4.611 25.11 4.152

Table 1: Comparison of aISS and OMP for the matrix A as defined in (5.1) with normalized
columns in terms of runtime, sparsity of u (`0), `1-norm, error to utrue, standard-deviation
between Au and g and standard-deviation between Au and f . All computations have been made
on a laptop with a 2.53 GHz dual core processor and 4 GB memory.

1 we have listed the results of several computations with metric values similar to the ones
of the previous comparisons. We have compared the runtime, the total number of non-zero
coefficients, the `1-norms as well as a normed `1-difference between u and utrue (with u denoting
the reconstruction), and the standard-deviations between Au and g and Au and f , respectively,
for different noise levels σ. The results are average values over 1000 computations for each
value of σ. In the case of σ 6= 0 we have stopped the aISS- and OMP-computations according
to the discrepancy principle that if the standard-deviation between Au and f is below σ the
computation is stopped.

21

10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

coefficients

co
ef

fi
ci

en
t

va
lu

es
σ = 0

uexact
uiss
uomp

(a) σ = 0

10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

coefficients

co
ef

fi
ci

en
t

va
lu

es

σ = 0.0072963

uexact
uiss
uomp

(b) σ ≈ 0.073

10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

coefficients

co
ef

fi
ci

en
t

va
lu

es

σ = 0.012408

uexact
uiss
uomp

(c) σ ≈ 0.0124

10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

coefficients

co
ef

fi
ci

en
t

va
lu

es
σ = 0.025884

uexact
uiss
uomp

(d) σ ≈ 0.0260

Figure 8: Comparison of particular aISS and OMP reconstructions with the true coefficients
in the noise-free- (Figure 8(a)) and in the noisy case (Figure 8(b) - 8(d)), for varying standard
deviation σ.

It can be seen that for any σ the OMP algorithm needs less iterations and therefore less run-
time than the aISS algorithm. However, regarding the quality of the results the aISS outperforms
OMP for each σ-value, which we would also expect since the matrix is highly ill-conditioned. In
the noise-free case aISS perfectly recovers the two desired coefficients after 21 iterations, while
OMP recovers 12 coefficients in order to somehow approximate the exact data without recon-
structing a sparse solution. In the presence of noise and by applying the discrepancy principle
(which might not guarantee the algorithm to stop at the iteration that produces the best re-
sult) we see that aISS is not always computing the sparsest approximation, since the average
`0-value is larger than two. But in comparison to OMP the results are significantly closer to
two-sparsity as the results with OMP. The `1-norms of the computed aISS-solution are closer
to the `1-norm of the true signal, and the weighted `1-norm between reconstruction and exact
solution is also lower for aISS- than for OMP-computations. In addition, the standard-deviation
of Au to Autrue(= g) is smaller in the case of aISS than for OMP; the OMP solutions better
approximate the noisy data f .

22

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

σ = 0

g
f

(a) σ = 0

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

σ = 0.0072963

g
f

(b) σ ≈ 0.0073

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

σ = 0.012408

g
f

(c) σ ≈ 0.0124

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

σ = 0.025884

g
f

(d) σ ≈ 0.0260

Figure 9: The function g and different noisy functions f , for which the noise attains standard
deviation σ.

Moreover, we have plotted exemplary reconstructions in Figure 8 for particular noisy func-
tions f that can be seen in Figure 9. For moderate noise aISS is able to recover the true support
of the exact solution. Note that there is no additional positivity constraint in the computation
of aISS. In the presence of more severe noise neither OMP nor aISS can obtain the true support,
which surely is a result of the severely ill-conditioned matrix A, but might also be a consequence
of the early stopping due to the discrepancy principle.

Finally, we also run several tests for Algorithm 3, computing a solution of the regularized
inverse scale space flow (1.10). We compute the average values over 1000 reconstructions for α
varying between 0.001 and 1, for different noise levels with standard deviation σ. In Figure 10
we plot almost the same attributes as we have compared in Table 5.2.3 (except for the standard
deviation between Au and f , which is similar to the standard deviation between Au and g),
for varying α and the different noise levels. Obviously the runtime as well as the number of
iterations decreases for increasing α, which seems to be very natural since a more regularized
solution should become sparser. This is indeed the case if we take a look at Figure 10(b).
Moreover, the `1-norm (which is ≈ 2.201 for utrue) is monotonically decreasing for increasing

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

α = 0..1

R
u

n
ti

m
e

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(a) Runtime

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

α = 0..1

N
um

be
r

of
 N

on
−Z

er
o

E
le

m
en

ts

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(b) `0-norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

α = 0..1

l1 −n
or

m

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03
|| u

exact
 ||

1
 = 2.201

(c) `1-norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α = 0..1

W
ei

g
h

te
d

 D
ev

ia
ti

o
n

 t
o

 T
ru

e
S

o
lu

ti
o

n

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(d)
‖utrue−u‖

`1

‖utrue‖`1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

α = 0..1

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 b
et

w
ee

n
 A

u
 a

n
d

 g

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(e) std(Au− g)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

α = 0..1

N
u

m
b

er
 o

f
It

er
at

io
n

s

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(f) Number of iterations

Figure 10: The average attributes runtime, `0-norm, `1-norm, weighted `1-deviation between u
and utrue, standard deviation between Au and g and the number of iterations, over 1000 compu-
tations per α- and σ-value, for α ∈ [0.001, 1] and σ ∈ {0, 0.0075, 0.0125, 0.03}. All computations
have been made on a computer with 2.83 GHz quad core processor with 8 GB memory.

α, which we also would expect. The weighted `1-difference reveals interesting insights, since for

24

increasing α in the noiseless case the difference first increases (up to an α-value of about 0.57)
and then decreases again; in the case of noisy data, the behaviour is similar, except for a slight
decrease for small α, indicating that the optimal α seems to be somewhere in between 0.001 and
0.05. The standard deviation between Au and g is almost monotonically increasing, which is not
surprising but rather expectable.

6 Conclusions & Outlook

We have investigated inverse scale space methods and proposed a new algorithm for solving
the inverse scale space flow of `1 regularization, which converges in finite time by iteratively
solving low dimensional non-negative least squares problems, and in addition bears an interest-
ing resemblance to the well-known orthogonal matching pursuit method. Several convergence
properties have been shown and extensive numerical comparisons to the OMP algorithm have
been presented. The new adaptive ISS method seems to provide robust and qualitatively better
results in particular for ill-conditioned problems, while still being very efficient.

In future research we will extend the aISS model to regularization functionals other than `1

and also investigate inverse scale space flows corresponding to data fidelity terms different from
`2.

Acknowledgements

The work of MB and MB has been supported by the German Research Foundation DFG through
the project Regularization with Singular Energies. MM and SO were supported by NSF grants
DMS-0835863, DMS-0914561, DMS-0914856 and ONR grant N00014-08-1119. MM also ac-
knowledges the support of the German Academic Exchange Service (DAAD).

References

[BKW+08] M. Benning, T. Kösters, F. Wübbeling, K. Schäfers, M. Burger, A Nonlinear Varia-
tional Method for Improved Quantification of Myocardial Blood Flow Using Dynamic
H215O PET, IEEE Nuclear Science Symposium Conference Record (2008), 4472 - 4477.
19

[BD09] T.Blumensath, M.Davies, Iterative hard thresholding for compressed sensing, Appl.
Comput. Harmonic Anal. 27 (2009), 265274. 1

[B67] L.M.Bregman, The relaxation method for finding the common point of convex sets and
its application to the solution of problems in convex programming, USSR Comp. Math.
Math. Phys. 7 (1967), 200-217.

[B08] M.Burger, A note on sparse reconstruction methods, J. Phys. Conference Series (2008)
012002. 2

[BFO+07] M.Burger, K.Frick, S.Osher, O.Scherzer, Inverse total variation flow, SIAM Multi-
scale Modelling and Simulation 6 (2007), 366-395. 2, 3

[BGO+06] M.Burger, G.Gilboa, S.Osher, J.Xu, Nonlinear inverse scale space methods, Comm.
Math. Sci. 4 (2006), 179-212. 2, 3, 5

[BO04] M.Burger, S.Osher, Convergence rates of convex variational regularization, Inverse
Problems 20 (2004), 1411-1421.

[BO11] M.Burger, S.Osher, A Guide to TV Zoo I: Models and analysis, in: Level Set and
PDE-based Reconstruction Methods, Springer, 2011, to appear 6

25

[BRH07] M.Burger, E.Resmerita, L.He, Error estimation for Bregman iterations and inverse
scale space methods in image restoration, Computing 81 (2007), 109-135. 5

[COS09a] J.Cai, S.Osher, Z.Shen, Linearized Bregman iterations for compressed sensing, Math.
Comp. 78 (2009), 1515-1536. 2

[COS09b] J.Cai, S.Osher, Z.Shen, Convergence of the linearized Bregman iteration for `1-norm
minimization, Math. Comp. 78 (2009), 2127-2136. 2

[CT04a] E.J.Candes, T.Tao, Decoding by linear programming, IEEE Trans. Inform. Theory 51
(2004), 4203-4215. 1, 12

[CT04a] E.J.Candes, T.Tao, Near-optimal signal recovery from random projections: universal
encoding strategies, IEEE Trans. Inform. Theory 52 (2004), 5406-5425. 1

[CDL+98] A.Chambolle, R.DeVore, N.Y.Lee, B.Lucier, Nonlinear wavelet image processing:
Variational problems, compression, and noise removal through wavelet shrinkage, IEEE
Trans. Image Proc., 7 (1998), 319–335.

[CS05] T.Chan, J.Shen, Image Processing and Analysis (SIAM, Philadelphia, 2005).

[CDD01] A.Cohen, W.Dahmen, R.DeVore, Adaptive wavelet schemes for elliptic operator equa-
tions Convergence rates, Math. Comp. 70 (2001), 2775. 2

[CDD02] A.Cohen, W.Dahmen, R.DeVore, Adaptive wavelet methods II Beyond the elliptic
case, Found. Comput. Math. 2 (2002), 203245 2

[DDU02] S.Dahlke, W.Dahmen, K.Urban, Adaptive wavelet methods for saddle point problems
Optimal convergence rates, SIAM J. Numer. Anal., 40 (2002), 12301262 2

[DDD04] I.Daubechies, M. Defrise, C. DeMol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Commun. Pure Appl. Math. 57 (2004),
14131457, 2004. 1

[DE03] D.L.Donoho, M.Elad, Optimally sparse representation in general (nonorthogonal) dic-
tionaries via `1 minimization, Proc. Natl. Acad. Sci. USA 100 (2003), 21972202. 1

[D06] D.L.Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), 1289 1306.
1

[DTD+06] D.L.Donoho, Y.Tsaig, I.Drori, J.L.Starck, Sparse solution of underdetermined linear
equations by stagewise orthogonal matching pursuit (StOMP), Stat. Dept. Tech. Rep.
2006-02 (Stanford Univ., 2006). 1

[ET99] I.Ekeland, R.Temam, Convex analysis and variational problems, Corrected Reprint
Edition, SIAM, Philadelphia, 1999. 5

[LST10] D.A. Lorenz, S. Schiffler, D. Trede, Beyond convergence rates: exact inversion with
tikhonov regularization with sparsity constraints, submitted 2010, arXiv:1001.3276v2

[MZ93] S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE
Transactions on Signal Processing Issue 12 (1993), 3397-3415 3

[M01] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equa-
tions: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, American Mathe-
matical Society, 2001. 6

[NTV08] D.Needell, J.A.Tropp, R.Vershynin, Greedy signal recovery review, In: Proc. 42nd
Asilomar Conf. Signals, Systems and Computers (2008) 17

26

[NV09] D.Needell, R.Vershynin, Signal recovery from incomplete and inaccurate measurements
via regularized orthogonal matching pursuit, IEEE J. Sel. Topics Signal Process 4
(2009), 310316. 1

[OBG+05] S.Osher, M.Burger, D.Goldfarb, J.Xu, W.Yin, An iterative regularization method
for total variation-based image restoration, SIAM Multiscale Model. Simul. 4 (2005),
460-489. 2, 4, 5

[OMD+10] S.Osher, Y.Mao, B.Dong, W.Yin Fast linearized Bregman iteration for compressive
sensing and sparse denoising, Commun. Math. Sci., 8 (2010), 93-111. 3

[PRK93] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad, Orthogonal Matching Pursuit: Recursive
Function Approximation with Applications to Wavelet Decomposition, Proceedings of
the 27 th Annual Asilomar Conference on Signals, Systems, and Computers, (1993),
40-44. 3

[RMS+07] A. J. Reader, J.C. Matthews, F. C. Sureau, C. Comtat, R. Trébossen, I. Buvat, Fully
4D image reconstruction by estimation of an input function and spectral coefficients,
IEEE Nuclear Science Symposium Conference Record (2007), 3260-3267. 18

[ROF92] L.Rudin, S.Osher, E.Fatemi, Nonlinear total variation based noise removal algorithms
Physica D, 60 (1992), 259-268.

[T09] D. Trede, Inverse Problems with Sparsity Constraints: Convergence Rates and Exact
Recovery, Logos Verlag Berlin (2009)

[T06] J.A.Tropp, Just relax: Convex programming methods for identifying sparse signals in
noise, IEEE Trans. Inform. Theory 52 (2006), 1030-1051. 12

[TG07] J.A.Tropp, A.C.Gilbert, Signal recovery from random measurements via orthogonal
matching pursuit, IEEE Trans. Inf. Theory 53 (2007), 46554666. 1, 3

[WY10] Y.Wang, W.Yin. Sparse signal reconstruction via iterative support detection, SIAM J.
Imaging Sci., 3 (2010), 462-491. 4

[YOG+08] W.Yin, S.Osher, D.Goldfarb, J.Darbon, Bregman iterative algorithms for `1-
minimization with applications to compressed sensing, SIAM J. Imaging Sci. 1 (2008),
143-168. 2

[Y10] W.Yin, Analysis and generalizations of the linearized Bregman method, Preprint (2010).
2

27

	Introduction
	Inverse Scale Space Methods
	Convergence Properties
	Inverse Scale Space Methods for Regularized Problems

	Inverse Scale Space Methods for Compressed Sensing
	Further Convergence Analysis
	Numerical Results
	Random Matrix
	Comparison with OMP
	A counter example for OMP
	Random Matrices and Combined Wavelet Basis
	Temporal Basis Functions for Dynamic PET

	Conclusions & Outlook

