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Abstract

We consider the inverse problem of finding sparse initial data from the sparsely
sampled solutions of the heat equation. The initial data are assumed to be a sum of
an unknown but finite number of Dirac delta functions at unknown locations. Point-
wise values of the heat solution at only a few locations are used in an `1 constrained
optimization to find the initial data. A concept of domain of effective sensing is intro-
duced to speed up the already fast Bregman iterative algorithm for `1 optimization.
Furthermore, an algorithm which successively adds new measurements at specially
chosen locations is introduced. By comparing the solutions of the inverse problem
obtained from different number of measurements, the algorithm decides where to add
new measurements in order to improve the reconstruction of the sparse initial data.

1 Introduction

Heat source identification problems have important applications in many branches of engi-
neering and science. For example, an accurate estimation of a pollutant source [7, 12] is a
crucial environmental safeguard in cities with dense populations. Typically, a recovery of
the unknown source is a reverse process in time. The major difficulty in establishing any
numerical algorithm for approximating the solution is the severe ill-posedness of the prob-
lem. It appears that the mathematical analysis and numerical algorithms for inverse heat
source problems are still very limited. For the kind of problem we consider in this paper,
where we want to find the initial condition with known measurements in the future time,
existing methods either need many measurements [5] or have stability issues [13]. In this
paper, we treat the source identification problem as an optimization problem. Our goal is
to invert the heat equation to get the sparse initial condition. In other words, the problem
can be formulated as an `0 minimization problems with PDE constraints.

It is difficult to solve the `0 problem since it is a nonconvex and NP-hard problem. In
compressed sensing [6], we can solve an `0 problems by solving its `1 relaxation when the
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associated linear operator has the restricted isometry property (RIP) [4]. The heat operator
does not satisfy RIP, but we can adopt the idea of substituting `0 with `1 for sparse opti-
mization. We will show numerical evidence that indicates the effectiveness of this strategy.
To solve a constrained `1 minimization problem we apply the Bregman iterative method
[1, 18], which solves the constrained problem as a sequence of unconstrained subproblems.
To solve these subproblems, we use the greedy coordinate descent method developed in [11],
which was shown to be very efficient for sparse recovery.

Since the theory of compressive sensing does not apply to the heat operator, it is unclear
if constrained `1 minimization provides a good solution to our problem. However, this also
means that there is room for finding specialized measurement locations for better solutions to
the inverse problem. Hence, in this paper we attempt to understand the following questions:

• Is `1-regularization adequate for inverse problems involving point sources?

• In which way can additional data improve the inversion?

In related work, the author [9] discussed optimal experimental design for ill-posed problems
and suggested a numerical framework to efficiently achieve such a design in a statistical
manner. In [2], the authors used reciprocity and maximum principle for discovery of a
single point source in partially known environments. In [10], the authors considered point
source discovery for the Helmholtz equation with partially known obstacles. There, the
authors introduced an L1 optimization algorithm for reconstructing incoming wave fronts
at measurement locations, and an imaging functional to image point sources. In the same
paper, the authors also proposed an algorithm to successively explore the partially known
domain in order to discover the point sources. In [8], the authors applied and generalized
the reciprocity algorithm of [2] for multiple point source discovery from measurements which
comes from line integrals of solution to an atmospheric model. Finally, in [15], the authors
generalized a reciprocity approach for multiple point source discovery for nonlinear systems
of advection-diffusion-reaction equations.

The paper is organized as follows. In section 2, we give a more detailed introduction
of the heat and related source identification problems. A useful stability estimate for a
simple case is obtained in section 2.4. In section 3, we present our algorithm for solving
the heat source identification problem and some methods for improving the efficiency. The
performace of the algorithm is evaluated in the numerical experiments in section 3.5 in the
case of two spatial dimensions. In section 4 we consider the successive sampling. Finally,
section 5 summarizes and discusses future directions. The details of the proof of the stability
estimate are given in appendix A.

The main contributions of this paper are:

• Using `1 minimization for heat source identification.

• Proving the stability estimate in terms of Wasserstein distance for a simple case.

• Introducing a successive sampling strategy.

• Proposing the ideas of exclusion region and support restriction for reducing the problem
size.
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2 Source Problems

2.1 1D Heat Equation

We consider first a simple case of a heat equation in 1D with periodic boundary conditions
ut(x, t) = ∆u(x, t), x ∈ (0, 1), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],
u(0, t) = u(1, t), t > 0.

(1)

The initial condition u0(x) is assumed to be sparse in the sense that

u0(x) =
K∑
k=1

αkδ(x− sk), (2)

where αk > 0 and δ(x− sk) are Dirac δ-functions concentrated at location sk.

0 1

u0(x)

x
0 1

u(x, T )

1 2 3 4 · · · M

fm ∈ RM

m

Figure 1: Heat source identification problem in 1D: given the samples fm = u(xm, T ),
m = 1, . . . ,M , recover the sparse initial condition u0.

The heat source identification problem that we consider is the following: if we observe
(possibly noisy) measurements fm = u(xm, T ), m = 1, . . . ,M , then without knowing K, αk,
or sk in advance, can we recover u0?

We propose to recover the point sources via discretizing (1) and looking for sparse so-
lutions of the discretized problem. We proceed as follows: partition [0, 1] into N elements
so that u0 is approximated by vector v ∈ RN . Let G denote a linear solution operator of
the discretized problem; i.e. w = Gv solves the discretized problem and approximates the
solution of (1). The discrete solution w is sampled by a linear operator S : RN → RM . For
example, in this paper, we take the pointwise measurements of the solution:

fm = wj(m), m = 1, . . . ,M, (3)
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where wj(m) is the j(m)th component of the vector w which approximates u(xm, T ). So we
can write Sw = SGv = f with f = (f1, · · · , fM)T ∈ RM .

Thus, we may pose the heat source identification problem in the optimization framework
as

arg min
v∈RN

‖v‖0 subject to SGv = f. (4)

Since this problem is known to be NP-hard, we ultimately replace it by the proposed recovery
problem:

arg min
v∈RN

‖v‖1 subject to |SGv − f | < ε, (5)

where ε > 0 is a small parameter which may be related to the level of noise or errors in the
measurements.

While there is no continuum analogue of (4), one may also consider a continuum regu-
larized L1 optimization problem, an analogue of (5):

arg min
v∈L1(Ω)

‖v‖L1(Ω) subject to |SGv − f | < ε, (6)

where G is the solution operator of (1), which generates the solution at time T , starting
from initial condition v, and S is the linear sampling operator at points xm, m = 1, . . . ,M .
Obviously, G and S are the discrete approximations of G and S. Note that (6) is not
guaranteed to produce a true solution u0 of the heat source identification problem, because
u0 /∈ L1(Ω).

2.2 General Linear Parabolic Equations

Our approach applies more generally to problems where u0 is sparse and linearly related to
the known measurements fm. Let us consider on a bounded Lipschitz domain Ω ⊂ Rd a
parabolic problem of the form ∂tu =

∑
i,j

∂xi
(
ai,j(x)∂xju

)
+
∑
i

bi(x)∂xiu+ c(x)u+ g(x, t)

u(x, 0) = u0(x)

(7)

with periodic or Neumann boundary conditions, and sparse initial condition of the form (2)
with sk ∈ Ω. We suppose that a, b, c, and g satisfy appropriate conditions, so that u(x, t)
belongs to a suitable (linear) function space F on Ω × [0, T ]. The solution is sampled by a
linear operator S : F → RM , for example given by

fm = u(xm, tm), m = 1, . . . ,M. (8)

Other interesting choices include sampling the derivative values ∂xiu(xm, tm) or some weighted
local averages (ϕ ∗ u)(xm, tm). Then, the heat source identification problem if to recover u0

given f = S(u), assuming that all other information (Ω, a, b, c, g, S, f) is known.
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As in the previous section, we discretize (7) on a grid and formulate the corresponding `1

minimization problem for source recovery. With the same notation for the discrete solution
operator and sampling operator, we pose:

arg min
v∈RN

‖v‖1 subject to |S(Gv + up)− f | < ε. (9)

Here, up refers to a particular solution to the inhomogeneous equation, and it can be con-
structed quite easily through the application of Duhamel’s principle. If we denote by Gt the
solution operator of (7) with g ≡ 0, then Duhamel’s principle gives the solution to (7) with
any g as

u(x, t) = Gtu0 +

∫ t

0

Gt−sg(x, s)ds. (10)

Therefore, at the discrete level, we may take up to be an approximation of the second term
above.

Finally, we remark that with a similar formulation, we can also solve source identification
problems where g takes the form

g(x) =
K∑
k=1

αkδ(x− sk).

2.3 Sparsity in a Transformed Domain

Rather than considering u0 itself as being sparse, we can also consider u0 as being sparse
when represented in some basis or frame. For example, a function like

u0(x) =
K∑
k=1

ck cos(skx) + dk sin(skx)

has a sparse Fourier representation. If u0 is piecewise smooth, it has an approximately
sparse wavelet representation, see Figure 2. Let R be a linear operator (e.g., inverse Fourier
or inverse wavelet transform) such that u0 = Rû0 for some sparse function û0. Then (9)
becomes

arg min
û0∈`0

‖û0‖0 subject to f = S(GRû0), (11)

where G is the solution operator of (7).

2.4 Inequalities

There is no rigorous proof to ensure that `1 minimization for inverting the (discretized)
heat operator enhances the sparsity. However, the following inequalities, proven in the one
dimensional, continuous setting (6), suggest that it is true under some limited conditions. In
one dimensional space, if the true solution has only one spike (i.e. positively weighted Dirac
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Figure 2: Our approach also applies when u0 is sparse under a transformed representation.
Here we show a piecewise smooth function and its Cohen-Daubechies-Feauveau 9/7 wavelet
transform.

delta function), the minimizer will be very close to the true solution under a Wasserstein
distance. Wasserstein distance is designed to compare probability measures, and it comes
from the theory of optimal transport. Under proper normalization, it may be used to compare
sparse initial data that we consider in this paper. In one dimension, Wasserstein distance that
we use can be defined and evaluated easily as follows. Suppose that f and g are nonnegative
functions on [0, 1] with

∫
f dx =

∫
g dx, and let F and G denote their primitives,

F (x) :=

∫ x

0

f(t) dt, G(x) :=

∫ x

0

g(t) dt. (12)

Then the (first) Wasserstein distance between f and g is

W1(f, g) :=

∫ 1

0

|F (x)−G(x)| dx. (13)

The inequalities shown below imply a sense of stability of the solution’s spike locations.
Intuitively, two spikes that are close under the Wasserstein distance will also be close after
the heat diffusion process. In our future work, we hope to verify this intuition for more
general cases.

Theorem 1. Suppose that u(x) = αδ(x − s1), where α > 0. Let xj denote the sampling
locations, j = 1, 2, . . . , J, and fj = (Gu)(xj, T ) denote the measurements taken at these
locations. Suppose further that and S = [x2 −

√
2T , x1 +

√
2T ], x1 < s1 < x2 and x2 − x1 <√

2T . For any v of the form

v(x) =
∑
j

βjδ(x− s̃j) and f̂j = (Gv)(xj, T ). (14)

satisfying βj > 0, ‖v‖1 ≤ ‖u‖1, and ‖f̂ − f‖∞ ≤ ε, there exist C ′ > 0 and C ′′ > 0 such that

1 ≥
∑

j:s̃j∈S βj

α
≥ 1− C ′ε, (15)
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∑
j:s̃j∈S βj|s̃j − s1|2

α
≤ C ′′ε. (16)

We present a proof of the above theorem in the appendix A.
We can derive some simple conclusion from the above theorem: when the true sparse

solution has only one spike, the recovery obtained by `1 minimization should be close to the
true solution. They are close in `1 norm and under Wasserstein distance after normalization.

Theorem 2. Suppose u? = αδ(x− s1), SGu? = f0, ‖f0 − f‖∞ ≤ ε, and

v = arg min
u
‖u‖1 s.t. ‖SGu− f‖∞ ≤ ε. (17)

Let xj, j = 1, 2, . . . , J denote the sampling locations and suppose there are two samples x1

and x2 such that x1 < s1 < x2 and x2 − x1 <
√

2T . Then

‖u?‖1 − ‖v‖1 ≤ C1ε (18)

and there are S ⊆ [s1 −
√

2T , s1 +
√

2T ] and C2 > 0, such that

W1

(
‖vS‖1
α
u? − vS

)
≤ C2

√
ε. (19)

Proof. Since both u? and v satisfy the constraint, but v is the minimizer, so ‖v‖1 ≤ ‖u?‖1,
and

‖SGu? − SGv‖∞ ≤ ‖SGu
? − f‖∞ + ‖f − SGv‖∞ ≤ 2ε. (20)

Using Theorem 1, there are S ⊆ [s1 −
√

2T , s1 +
√

2T ] and C > 0, such that∑
j:s̃j∈S βj|s̃j − s1|

α
≤ C
√

2ε. (21)

Denote v|S = vS, then the Wasserstein distance between
‖vS‖1
α
u? and vS is

W1

(
‖vS‖1
α
u? − vS

)
=

∑
s̃j∈S |s̃j − s1|

α
≤ C
√

2ε. (22)

3 Solving the `1 Minimization Problem

While (4) is a natural way to pose the problem, it is hard to solve. There are two challenges
in solving (4). First, the `0-norm is nonconvex, thus the existence and uniqueness of solutions
are not guaranteed, and on a practical level, the nondifferentiability of the `0-norm precludes
the use of gradient-based minimization methods. Second, inverting the matrix A = SG is an
ill-conditioned process since heat diffusion may make two different initial conditions appear
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increasingly similar over time, hence the solution is extremely sensitive with respect to
perturbations of the measurements.

We attempt to overcome these challenges by replacing `0 by `1,

arg min
v
‖v‖1 subject to Av − f = 0. (23)

By convexity of the `1-norm, solutions of (23) exist. As demonstrated in the compressive
sensing literature, the `1-norm tends to favor sparse solutions and makes for an effective
approximation of `0. Furthermore, it has been shown that under some general conditions [4],
`0 minimization and `1 minimization yield the same solution—though unfortunately, this
theory does not apply to (23).

In the following sections, we discuss the solution of (23) using the Bregman iteration
algorithm.

3.1 Bregman Iteration

Bregman iterative techniques minimize the problems of the form

arg min
u
J(u) subject to H(u) = 0 (24)

or
arg min

u
J(u) subject to H(u) ≤ ε (25)

where J is convex and H is convex and differentiable on a Hilbert spaceH when minuH(u) =
0.

Define the Bregman distance as

Dp
J(u, ũ) = J(u)− J(ũ)− 〈p, u− ũ〉H , p ∈ ∂J(ũ). (26)

Note that this is not a distance in the usual sense as it is not symmetric. The constrained
minimization (24) is solved by the Bregman iteration algorithm:

Initialize: u0 = 0, p0 = 0

for k = 0, 1, . . .

uk+1 = arg minuD
pk

J (u, uk) + λH(u)

pk+1 = pk − λ∇H(uk+1)

(27)

where λ is a positive parameter. For our application the objective is J(u) = ‖u‖1 and the
constraint is H(u; f) = 1

2
‖Au− f‖2

2. In this case Bregman iteration algorithm takes the
form 

Initialize: u0 = 0, p0 = 0

for k = 0, 1, . . .

uk+1 = arg minu ‖u‖1 −
〈
pk, u

〉
+ λ

2
‖Au− f‖2

2

pk+1 = pk − λA∗(Auk+1 − f)

(28)

8



Equivalently, by refactoring
〈
pk, u

〉
+ λ ‖Au− f‖2

2, the sequence {pk} is concisely expressed
as adding the residuals to f :

Initialize: u0 = 0, f 0 = f

for k = 0, 1, . . .

uk+1 = arg minu‖u‖1 + λ
2
‖Au− fk‖2

2

fk+1 = fk + (f − Auk+1)

(29)

The Bregman iteration algorithm can be stopped for example when the ‖uk+1 − uk‖ is less
than a chosen tolerance. Similarly, to solve the minimization problem with an inequality
constraint like ‖Au− f‖2

2 ≤ ε, the algorithm should be stopped for the first k such that∥∥Auk − f∥∥2

2
≤ ε.

The following general properties of the Bregman iterative algorithm are proved in [16]:

Theorem 3. (Bregman iteration properties)

1. Monotonic decrease in H:

H(uk+1) ≤ H(uk+1) +Dpk

J (uk+1, uk) ≤ H(uk);

2. Convergence to the exact minimizer of H: If ũ minimizes H(·) and J(ũ) < ∞, then
H(uk) ≤ H(ũ) + J(ũ)/k;

3. Convergence with noisy data: Let H(·) = H(·; f) and suppose H(ũ; f) ≤ ε and

H(ũ; g) = 0; then Dpk+1

J (ũ, uk+1) < Dpk

J (ũ, uk) as long as H(uk+1; f) > ε.

3.2 Shrinkage

The Bregman iterative algorithm allows us to solve the constrained minimization problem
(23) by solving a sequence of unconstrained problems,

arg min
u
‖u‖1 + λ

2
‖Au− fk‖2

2. (30)

The one-dimensional subproblem has an efficient closed-form solution.
Consider the one-dimensional case where u is a scalar, then it is easy to solve the problem

u? = arg min
u∈R
|u|+ λ

2
(u− f)2. (31)

The solution to (31) is obtained by shrinkage, also known as soft thresholding [17]:

u? = shrink(f , 1
λ
) ≡ sign(f)

(
|f | − 1

λ

)+
. (32)

The shrink operator is illustrated in Figure 3.
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f

shrink(f, µ)

−µ +µ

shrink(f, µ) ≡ sign(f)
(
|f | − µ

)+

=


f + µ if f ≤ −µ,
0 if −µ ≤ f ≤ +µ,
f − µ if +µ ≤ f.

Figure 3: Shrinkage operator.

Similarly if u is constrained to be nonnegative, the scalar problem is

arg min
u≥0

u+ λ
2
(u− f)2,

and the minimizer is given by u? = (f − 1
λ
)+.

In the multidimensional case where u is a vector, the Bregman subproblem (30) is a lot
more difficult to solve. In particular, we lose the explicit expression for the solution. Instead,
we can apply the coordinate descent method developed in [11] to solve

arg min
u
‖u‖1 + λ‖Au− fk‖2

2.

Since we ultimately seek a sparse solution, the process of finding the solution should give
preference to sparsity. Instead of proceeding through all the coordinates, we choose only to
update coordinates most likely to be the spikes and decrease the energy the most. Therefore,
we choose a greedy coordinate algorithm which was introduced in [11].

Algorithm (Greedy Coordinate Descent):

Precompute: wj = ‖aj‖2
2;

Normalization: A(·, i) = A(·, i)/wi;
Initialization: u0 = 0, β0 = A∗f ;

Iterate until converge:
ũ = shrink(βk, 1

2λ
);

j = arg maxi |uki − ũi|,
then uk+1

i = uki , i 6= j,
uk+1
j = ũj;

βk+1 = βk − |ukj − ũj|(A∗A)ej,

βk+1
j = βkj .

In the algorithm, the computation of ũ and β is essential. To obtain ũ, the shrinkage
formula with O(N) complexity can be used; for efficiency, β should be updated recursively by
adding the difference between two iterations. Every step in the loop has complexity O(N),
so combined with its preference for sparsity, this algorithm is very efficient for our problem.
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3.3 Support Restriction

We have two strategies to accelerate the solutions to the heat source identification problem.
The first idea is to solve for u0 only on its apparent support.

supp(uk)

Sk

Figure 4: An illustration of a dilation of supp(uk)

Empirically, we observe that early iterations of Bregman iterations tend to produce blurry
approximations of the solution and later iterations sharpen the initial approximation into
spikes. Therefore, in solving for uk+1, it is reasonable to expect that supp(uk+1) is similar to
supp(uk). Let Sk be a set containing supp(uk) and solve for uk+1 with its support restricted
to Sk,

uk+1 = arg min
{
‖u‖1 + λ ‖Au− f‖2

2 : supp(u) ⊂ Sk
}
. (33)

For example, Sk may be a morphological dilation of supp(uk). It is important that Sk is
strictly larger than supp(uk) to prevent the iteration from getting trapped within an incorrect
support. If we find a solution which is also the minimizer on its dilated support, then this
solution is a local minimizer and a global minimizer due to the convexity.

The set Sk has to include supp(uk) as a closed subset. In our numerical examples, we
enlarge supp(uk) by including all its connected neighbors in the discretized sense. That is,
we increase supp(uk) by one pixel in each direction. Then Sk is the smallest set including
supp(uk) as a closed subset in the discretized sense.

3.4 Domain Exclusion

The second idea is to eliminate a region from consideration when a measurement is very
small. Suppose that the stengths of the sources in u0 are bounded from below by αmin > 0.
Then, since A is nonnegative, this implies

fm ≡ (Gu0)(xm, tm) =

∫
Gtm(xm, y)u0(y) dy =

K∑
k=1

αkGtm(xm, sk)

≥ αmin

K∑
k=1

Gtm(xm, sk).

(34)
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Thus for a spike to exist at location s, we must have fm ≥ αminGtm(xm, s) for all m. The
contrapositive of this statement gives a way to identify regions of the domain that cannot
have spikes:

Ωz ≡
M⋃
m=1

{
s ∈ Ω : fm < αminGtm(xm, s)

}
. (35)

Similarly, for noisy measurements |f exact
m − fnoisy

m | ≤ ε we have

Ωz ≡
M⋃
m=1

{
s ∈ Ω : fnoisy

m + ε < αminGtm(xm, s)
}
. (36)

Note that the validity of this strategy requires A to be nonnegative. Otherwise, cancelations
could occur such that the bound (34) does not hold.

For the periodic boundary conditions with the point-value sampling fm = u(xm, tm), the
exclusion condition simplifies to fm < αminGtm(xm − s), see Figure 5.

αminGtm(x− s)

s xm

fm

x

Figure 5: Domain exclusion for the case of periodic boundary conditions with point-value
sampling: a small measurement fm < αminGtm(xm − s) implies that there cannot be a spike
at x = s.

When support restriction and domain exclusion are added, the Bregman iterative algo-
rithm (29) takes the following form.

Use (35) to determine Ωz

Initialize: u0 = 0, f 0 = f, S0 = Ω\Ωz

for k = 0, 1, . . .

uk+1 = arg min
{
‖u‖1 + λ

2
‖Au− fk‖2

2 : supp(u) ⊂ Sk
}

fk+1 = fk + λA∗(Au− fk)
Sk+1 =

(
B ⊕ supp(uk+1)

)
\Ωz

(37)

Here B⊕ denotes dilation by a structure element B. In the examples below, B is the 3× 3
structure element

B =

1 1 1
1 1 1
1 1 1

 . (38)
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3.5 Numerical Examples

In this section we show the numerical results for source identification using Bregman iterative
algorithms applied to problems (6) or (9). The solutions are computed on a computer with
Intel Dual-Core T9550 2.66GHz CPU and 4GB RAM.

3.5.1 Source Identification for the Heat Equation

In the first example we conside the heat equation{
ut = uxx + uyy, t > 0
u0 =

∑
k ckδ(x− xk, y − yk), t = 0

(39)

on the unit square (0, 1) × (0, 1) with periodic boundary conditions. We observe M point-
value samples fm = u(xm, ym, T ), m = 1, . . . ,M , of the solution at a final time T = 0.01.
The heat source identification problem is to recover u0 from these observations.

(a) Heat source u0 (b) Au0 = f (c) f + noise (d) recovered u0

Figure 6: Recovery of the heat source u0 from 60 randomly selected measurements with 1%
noise on a 32× 32 grid. Runtime: 24.6s.

We discretize the domain (0, 1) × (0, 1) using a uniform N × N grid. The following
approximation for the δ-function is used

δ(x− xk, y − yk) =

{
N2, if (x, y) = (xk, yk)
0, otherwise.

(40)

We introduce G to be an N2 ×N2 matrix such that Gu0 is a finite difference approximation
of u(x, y, T ),

(Gu0)k ≈ u(xk, yk, T ).

The constraint matrix A is formed by selecting the rows of G corresponding to the observation
points (xm, ym). In other words, the observation vector f is a downsampled solution on the
whole grid f = S(Gu0), where S ∈ RM×N2

is the downsampling operator.
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Figure (6) shows an experiment using the Bregman iteration algorithm from the previous
section to recover the sparse u0 by solving the problem:

min
u
‖u‖1 subject to Au = f, (41)

where A = SG.

3.5.2 Source Identification with Spatially Varying Conductivity

In case of a spatially varying thermal conductivity a(x, y), we consider a parabolic equation{
ut = div

(
a(x, y)∇u

)
(x, y) ∈ (0, 1), t > 0,

u=
∑

k ckδ(x− xk, y − yk) t = 0,

with Neumann boundary conditions. Similarly to the case of an ordinary heat equation, we
sample u at time T = 0.01 and try to recover the initial condition using compressed sensing.
In Figures 7 and 8 we show the results of source recovery for smooth and piecewise constant
thermal conductivities respectively.

(a) Exact u0 (b) f (c) Recovered u0

Figure 7: Source recovery with a smooth spatially varying thermal conductivity. Left: dis-
tribution of a(x, y) (shades of orange); sampling locations are red stars, heat source locations
are blue dots. Middle: heat distribution at time T (shades of blue). Right: recovered source.
Runtime: 14.4s.

4 Successive Sampling

In the previous sections we developed a way to solve a heat source identification problem
from a fixed set of observations. Therefore, we considered the random sampling scenario, as
it is better suited for the compressed sensing setting. However, taking random observations
may not be the best strategy for the heat source identification. Random sampling works
well for compressed sensing if some incoherence is present in the operator G. In our case
the coherence in G is strong, because of the smoothness of the solution of the heat equation.
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(a) Exact u0 (b) f (c) Recovered u0

Figure 8: Source recovery with a piecewise constant spatially varying thermal conductiv-
ity. Left: distribution of a(x, y) (shades of orange); sampling locations are red stars, heat
source locations are blue dots. Middle: heat distribution at time T (shades of blue). Right:
recovered source. Runtime: 15.8s.

This suggests that more structured observations may work better than random sampling.
For example, if we happened to know a region of very low heat distribution, then it is
certain that it is impossible to have strong heat sources there. When we are choosing our
sample locations, we may want to concentrate in the strong heat distribution area or explore
unsampled areas. Therefore, if we have a chance to pick the next sample location, we should
consider the existing information instead of picking a random location.

Here we consider solving the source identification problem in an adaptive or online kind of
approach according to the following procedure. We want to come up with a better sampling
strategy than random sampling. Since we want the adopt the existing information for picking
the next sampling location, the whole process for solving our problem is the following:

1. Solve the heat source identification problem with k samples;

2. Use the solution uk to select a (k + 1)th sample;

3. Iterate.

Let us give a mathematical statement of this problem: Let Xk = (x1, x2, . . . , xk), Tk =
(t1, t2, . . . , tk) and the measurements fj = f(xj, tj), j = 1, 2, · · · , k. We denote Fk = f =
(f1, f2, . . . , fk)

T , and Ak : RN → Rk, satisfies Aku = Fk. We denote the solution from k
measurements by uk.

Suppose the spike amplitudes are bounded from below by αmin > 0, which is a plausible
assumption since we can treat small spikes as noise but not real heat sources. Define the
covering region of x as the set

C(x) = {y ∈ Ω : G(αminδy)(x) ≥ threshold}.

This set describes the domain of dependence of u(x, T ). We define a way to measure to what
extend a point x is covered by samples xj,

V (x) = G
(∑

j δ(x− xj)
)
.
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It is equivalent to placing a single heat source on all sample locations as an initial condition,
then computing the total heat distribution. The bigger V (x) is, the more information is
available at x.

To choose the next sample location, there are two competing objectives: to refine locally
or to explore further. Our approach is to prioritize local refinement. Local refinement is
needed since we want to improve the resolution if we discover a possible heat source cluster.
Also, we want to explore further to enlarge the effective coverage as a necessary stopping
condition.

The local resolution can be improved as follows. If uk varies significantly from uk−1, then
we conclude that both uk and uk−1 are not close to the true solution. Thus, we need more
information to identify the heat source inside the existing covering region. So we choose the
next sampling location xk+1 by comparing the difference between the two solution uk and
uk−1, and picking the location where they differ the most. We define the (k+ 1)th sampling
location xk+1 as

xk+1 = arg max
x : x 6∈Br(xj)

|Gσ ∗ uk −Gσ ∗ uk−1|,

where Gσ is a Gaussian with variance σ. The role of Gσ is to act as a smoother, and we
typically choose σ to be small. The balls Br(xj) with center xj and radii r are introduced
to exclude small regions around the existing samples.

In the other case, we are satisfied with the heat sources found inside the existing cover-
ing region. We then want to discover heat sources outside of the existing covering region.
Therefore, we sample outside the covering region by selecting a point where V has minimal
magnitude. The (k + 1)th sample location xk+1 is

xk+1 = arg min
x : x 6∈Br(xj)

|V (x)|.

Compared to a random sampling, these two criteria approach the heat source faster and
without wasting the samples in the region which cannot contain heat sources.

4.1 Numerical Experiments

For the recovery with successive sampling we consider the 2D heat flow over a unit square
with periodic boundaries and an initial condition u0 shown in Figure 9. The sources in this
example are grouped into two relatively well separated clusters. The cluster in the upper
right is formed by three nearby point sources with variable strengths, and the cluster in the
lower right has two point sources. The difficulty of the source recovery in this case lies in
the need to not only resolve the neighboring sources, but also in detecting the clusters. The
measurements are taken from f = u(·, T ) which is also shown in Figure 9.

In Figures 10 and 11 we show the recovered sources for a number of steps of the successive
sampling algorithm. The sources are recovered from the noiseless data. The difference
between the experiment in Figures 10 and 11 is in the sampling locations chosen initially.
However, we observe that for both choices our procedure recovers the source successfully. We
see that in both simulations, the algorithm automatically determines measurement locations
that surround the two clusters of sources.
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Figure 9: The source used in testing of the successive sampling approach. Left: initial
condition u0; right: heat distribution at time T .

In Figure 12 we show the result of successive sampling with 0.1% Gaussian noise added.
The recovery process is very sensitive to noise. This is illustrated in Figure 13, where a failed
attempt to recover the source is shown.

We conclude by showing in Figure 14 the comparison between the proposed successive
sampling strategy, the least squares and `1 minimization approaches. With the same number
of random samples, the solutions of least squares and `1 minimization are not as accurate as
the solution obtained with the successive sampling approach.

5 Conclusion

The heat source identification problem can be solved by `1 minimization. For two dimensions,
numerical experiments suggest that we can recover the sparse initial condition by using 4
times more measurements than the number of total initial spikes. If we can solve in a
successive manner, then we can use even fewer measurements. As for the stability of our
method, as the noise increases, we need more measurements to obtain accurate solutions. In
the future, we want to work on the error estimation and theoretical analysis. We are also
interested in more general equations and high dimensional problems.
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(a) Step 7 (b) Step 8 (c) Step 9

(d) Step 14 (e) Step 15 (f) Step 16

Figure 10: Source recovery with successive sampling. The kth measurement is added in
step k. The estimate of the source term is in blue, the exclusion region is in gray, sample
locations are shown as red stars.

A Proof of Theorem 1

In the following, we shall denote the heat kernel at time T as g for convenience; that is,

g(x) =
1√
4πT

exp

(
− x

2

4T

)
.

Lemma 1. Assume that x1 < s1 < x2 and x2 − x1 <
√

2T .

1. The functionW (x) = −g′(x2−s1)g(x−x1)−g′(s1−x1)g(x2−x) has only one maximum
at x = s1.

2. W (s1)−W (x) ≥ C|s1 − x|2 for x2 −
√

2T ≤ x ≤ x1 +
√

2T for some constant C > 0.

3. If x > x1 +
√

2T , then W (s1)−W (x) > W (s1)−W (x1 +
√

2T ).

4. If x < x2 −
√

2T , then W (s1)−W (x) > W (s1)−W (x2 −
√

2T ).

Proof. We first observe that s1 is a critical point of W since W ′(s1) = 0. Since g′(s1−x1) < 0
and g′(x2 − s1) < 0 for x1 < s1 < x2, and g′′(x− x1) < 0 and g′′(x2 − x) < 0 if x2 −

√
2T <

x < x1 +
√

2T , we have that

W ′′(s1) = −g′(x2 − s1)g′′(s1 − x1)− g′(s1 − x1)g′′(x2 − s1) < 0
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(a) Step 5 (b) Step 6 (c) Step 7

(d) Step 15 (e) Step 16 (f) Step 17

Figure 11: Source recovery with successive sampling. Starting sampling locations differ
from those in the previous example. The kth measurement is added in step k. The estimate
of the source term is in blue, the exclusion region is in gray, sample locations are shown as
red stars.

Thus, W reaches a local maximum at s1. We will show that there are no other maxima.
Performing Taylor expansion of W around s1, we have

W (x) = W (s1) +W ′′(θ)(x− s1)2/2, where θ ∈ [x, s1] (42)

Denote C = infθ∈[x2−
√

2T ,x1+
√

2T ]{−W ′′(θ)/2}, then C ≥ 0. Now we want to prove C > 0.

Since g′(x) = −( x
2T

)g(x) and g′′(x) = − 1
2T

(1− x2

2T
)g(x), we can write

W ′′(x) =
((x− x1)2 − 2T )(x2 − s1)

8T 3
g(x− x1)g(x2 − s1)

+
(s1 − x1)((x2 − x)2 − 2T )

8T 3
g(x2 − x)g(s1 − x1).

Denoting G1 = min{g(
√

2T ), g(x2 − x1), g(x1 +
√

2T − x2))} > 0, then for x ∈ [x2 −√
2T , x1 +

√
2T ] and x1 < s1 < x2, we have g(x − x1) ≥ G1, g(x2 − x) ≥ G1, and with

G2 = min{ s1−x1
4T 2 ,

x2−s1
4T 2 } > 0 we obtain

−W ′′(x) ≥ G2
1G2

(
1− (x− x1)2

2T

)
+G2

1G2

(
1− (x2 − x)2

2T

)
= G2

1G2

(
2− (x2 − x)2 + (x− x1)2

2T

)
.
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(a) Step 4 (b) Step 8 (c) Step 12

(d) Step 16 (e) Step 20 (f) Step 24

Figure 12: Successful source recovery with successive sampling in the presence of noise in
the measurements. The kth measurement is added in step k. The estimate of the source
term is in blue, the exclusion region is in gray, sample locations are shown as red stars.

Since x ∈ [x2 −
√

2T , x1 +
√

2T ], (x2 − x)2 + (x− x1)2 ≤ 2T + (x1 +
√

2T − x2)2, hence

−W ′′(x) ≥ G2
1G2

(
2− (x2 − x)2 + (x− x1)2

2T

)
≥ G2

1G2

(
1− (x1 +

√
2T − x2)2

2T

)
> 0.

This implies that C > 0. Combined with (42) this gives statement 2 of the Lemma.
Finally, we consider statements 3 and 4. For x > x1 +

√
2T , since g(x) is decreasing as

x > 0,

g(x− x1) < g(x1 +
√

2T − x1) = g(
√

2T ),

g(x2 − x) = g(x− x2) < g(x1 +
√

2T − x2).

Therefore, W (x) < W (x1 +
√

2T ) for x > x1 +
√

2T . In the same way, we can prove that
W (x) < W (x2 −

√
2T ) for x < x2 −

√
2T .

Theorem 1. Suppose that u(x) = αδ(x − s1), where α > 0. Let xj denote the sampling
locations, j = 1, 2, . . . , J, and fj = (Gu)(xj) denote the measurements taken from these
locations. Suppose further that and S = [x2 −

√
2T , x1 +

√
2T ], x1 < s1 < x2 and x2 − x1 <√

2T . For any v of the form

v(x) =
∑
j

βjδ(x− s̃j) and f̂(xj) = (Gv)(xj). (43)
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satisfying βj > 0, ‖v‖1 ≤ ‖u‖1, and ‖f̂ − f‖∞ ≤ ε, there exist C ′ > 0 and C ′′ > 0 such that

1− C ′ε ≤
∑

j:s̃j∈S βj

α
≤ 1 (44)

∑
j:s̃j∈S βj|s̃j − s1|2

α
≤ C ′′ε. (45)

Proof. The solution to the heat equation with initial data
∑
δ(x − σj) is

∑
g(σj − x).

Therefore, we have

αW (s1) = −g′(x2 − s1)f(x1)− g′(s1 − x1)f(x2),

∑
βjW (s̃j) =

∑
βj(−g′(x2 − s1)g(s̃j − x1)− g′(s1 − x1)g(x2 − s̃j))

=− g′(x2 − s1)f̂(x1)− g′(s1 − x1)f̂(x2).

=⇒ αW (s1)−
∑

βjW (s̃j) ≤ (−g′(x2 − s1)− g′(s1 − x1))ε = C̃ε. (46)

Suppose s̃1, . . . s̃l ≤ x2−
√
T ; s̃l+1, . . . , s̃k ∈ [x2−

√
T , x1 +

√
T ] and s̃k+1,. . . , s̃m ≥ x1 +

√
T ,

then

αW (s1)−
∑

βjW (s̃j) ≥ (α−
∑

βj)W (s1) +
∑

βj(W (s1)−W (s̃j))

≥ (α−
∑

βj)W (s1) +
l∑

j=1

βj{(W (s1)−W (x2 −
√
T ))}+

k∑
j=l+1

βjM(s1 − s̃j)2 +
m∑

j=k+1

βj{(W (s1)−W (x1 +
√
T ))}

Denote C = min(W (s1)−W (x2 −
√
T ),W (s1)−W (x1 +

√
T )).

αW (s1)−
∑

βjW (s̃j) ≥(α−
∑

βj)W (s1) +
l∑

j=1

βj(W (s1)−W (x2 −
√
T ))+

k∑
j=l+1

βjM(s1 − s̃j)2 +
m∑

j=k+1

βj(W (s1)−W (x1 +
√
T ))

≥(α−
∑

βj)W (s1) + C
{ l∑
j=1

βj +
m∑

j=k+1

βj

}
+M

k∑
j=l+1

βj(s1 − s̃j)2.

Therefore

(α−
∑

βj)W (s1) + C{
l∑

j=1

βj +
m∑

j=k+1

βj}+M
k∑

j=l+1

βj(s1 − s̃j)2 ≤ αC̃ε. (47)

21



We know that α−
∑
βj ≥ 0, so

(α−
∑

βj)W (s1) + C3{
l∑

j=1

βj +
m∑

j=k+1

βj}+M
k∑

j=l+1

βj(s1 − s̃j)2 ≤ αC̃ε, (48)

∑
βj ≥ α(1− C̃

W (s1)
ε). (49)

Moreover,

C3{
∑l

j=1 βj +
∑m

j=k+1 βj}+M
∑k

j=l+1 βj(s1 − s̃j)2∑
βj

≤ 1
1
C̃
− 1

W (s1)
ε
ε. (50)

Therefore, ∑k
j=l+1 βj∑
βj

≥ 1− 1
C3

C̃
− C3

W (s1)
ε
ε, (51)

and hence we have ∑k
j=l+1 βj

α
≥ (1− 1

C3

C̃
− C3

W (s1)
ε
ε)(1− C̃

W (s1)
ε)

≥ 1− [
1

C3

C̃
− C3

W (s1)
ε

+
C̃

W (s1)
]ε

and ∑k
j=l+1 βj(s1 − s̃j)2

α
≤ C̃

M
ε. (52)
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(a) Step 9 (b) Step 11 (c) Step 13

(d) Step 15 (e) Step 17 (f) Step 19

(d) Step 21 (e) Step 23 (f) Step 25

(d) Step 27 (e) Step 29 (f) Step 31

Figure 13: Failed source recovery attempt with successive sampling in the presence of noise
in the measurements. The kth measurement is added in step k. The estimate of the source
term is in blue, the exclusion region is in gray, sample locations are shown as red stars.
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(a) (b) (c)

Figure 14: Comparison of the successive sampling to random sampling approaches. (a) The
sources found by the proposed successive algorithm match the exact initial condition u0; (b)
The sources found by a least square algorithm using measurements from randomly chosen
locations; (c) The source found by an `1 minimization algorithm using measurements from
randomly chosen locations. Same number of measurements is used for all three examples.
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