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Abstract

We propose a new constraint optimization energy and an iteration scheme for image seg-

mentation which is connected to edge-weighted centroidal Voronoi tessellation (EWCVT).

We show that the characteristic functions of the edge-weighted Voronoi regions are the

minimizers (may not unique) of the proposed energy at each iteration. We propose a

narrow banding algorithm to accelerate the implementation, which makes the proposed

method very fast. We generalize the CVT segmentation to hand intensity inhomogeneous

and texture segmentation by incorporating the global and local image information into

the energy functional. Compared with other approaches such as level set method, the

experimental results in this paper have shown that our approach greatly improves the

calculation efficiency without losing segmentation accuracy.

Key words: Image Segmentation, Constraint Optimization, Centroidal Voronoi

Tessellation, Texture Segmentation, Intensity Inhomogeneous, Fast Algorithm

1. Introduction

Image segmentation plays a very important role in many practical applications, such

as computer vision, artificial intelligence, medical images analysis and so on. The aim of

image segmentation is to find a partition of an image into its constituent parts.

Many methods have been proposed for image segmentation. They can be classified in

different groups including 1) region based and edge based segmentation (e.g.[1, 20, 17]),
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2) soft-threshold and hard-threshold segmentation (e.g.[2, 3, 4, 17, 20]), 3) paramet-

ric and nonparametric segmentation (e.g. [17, 20, 5]), 4) supervised and unsupervised

segmentation (e.g. [6, 7]), etc..

Level set method is one of the most successful segmentation method due to its flex-

ibility and a well-grounded theory. The well-known Mumford-Shah model for image

segmentation [19] had been successfully extended to a wide range of applications. One

of the simplified variant of Mumford-Shah model is Chan-Vese model [20], which is well

suited for segmenting an image with nearly constant intensity. However, the level set

method (e.g. Chan-Vese model) needs to update the level set function by solving some

nonlinear partial differential equations (PDE). In order to improve its efficiency and

also overcome some of the difficulties with non-convexity and non-differentiability, some

piecewise constant level set method (PCLSM) was proposed in [21, 22, 23, 24], to deal

with multi-class classification by representing any number of phases with one single label

function. In addition, numerical scheme based on graph cut method can be used to get

fast implementations (see [9, 10]). In the graph cut approach of [9], to deal with n clus-

ters, it needs to add extra n−1 layers vertices to the graph. For large images such as 3D

CT images, this will consume large amounts of memory and the implementation is also

time-consuming. Domain decomposition methods have been used to reduce the memory

cost and also computing time [11, 12]. Recently, primal-dual approaches have been used

to find global minimizers for for some related models in [44, 13, 14]. Compared with

[21, 22, 23], we are using the characteristic functions to identify the sub-regions. The

idea of using characteristic functions has aslo been used in [44, 13, 14, 25, 47, 26, 27] for

multi-labelling problems and some other earlier work related to phase field.

Centroidal Voronoi Tessellation (CVT) for image segmentation was proposed in [17].

In its simplest form, the basic CVT algorithm is known as the k-means clustering, which

is widely used in many applications. The standard CVT clustering is sensitive to noise

and may fail to provide the accurate segmentation results when the image is contam-

inated by noise. To address this issue, a natural alternative is to add a length term

(regularization term) in the energy, such as the length term of Mumford-Shah model

[19], Chan-Vese model [20], piecewise constant level set method [21, 22, 23]. However,

the regularization term makes this minimization problem difficult to solve. In [18], the au-
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thors extend CVT clustering to Edge-weighted Centroidal Voronoi tessellation (EWCVT)

clustering by incorporating the image intensity information together with the length of

cluster boundaries. In EWCVT, pixels with its neighbors belong to different clusters

are penalized and the approximate length regularization term is the same as that in

[4]. Relatively speaking, this smoothness term can be more efficiently implement than

Total-variation regularization. Compared with the level set method, the CVT based

segmentation has certain advantages, such as the exact minimizer of the energy can be

found without solving a partial differential equation (PDE). However, the EWCVT lacks

of image edge information and may fail to provide the exact segmentation in some cases.

Moreover, it can not handle the intensity inhomogeneous problem since it lacks of the

local information in the data term.

Intensity inhomogeneous is common in natural images. Existing methods to tackle

this problem include the piecewise smooth Mumford-Shah model [35] and local binary

fitting (LBF) method [36, 37]. In these models, the active contour is driven by local

information of the image. Another alternative is to add the local information to the

segmentation functional by estimating the brightness of the background, such as [3, 38].

There are many unknown variables in these methods and it is a very time-consuming to

solve them.

In this paper, we propose a method for image segmentation by minimizing the seg-

mentation energy with some constraint conditions. This constraint optimization problem

has an explicit solution which is connected with the Voronoi tessellation. To be precise,

the characteristic function of the Voronoi region is the exact minimizer of the proposed

energy. Even more, we can use narrow-band type of technique to speed up the comput-

ing. We aslo extend the CVT based image segmentation to treat images with intensity

inhomogeneities by combining it with local histogram equalization. In addition, as an

application of the proposed method, a texture segmentation model is also proposed. We

theoretically show that the proposed algorithm is energy descent, and thus it is at least

locally converged. Experimental results and comparisons with other methods have shown

the high efficiency of the proposed approach. Especially, we want to emphasis that our

proposed algorithm has the following advantages:

• Due to special linearization, there is no need to solve any partial differential equa-
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tion in our algorithm. The iterative schemes is fast and stable.

• The proposed model can treat the length regularization term properly and accu-

rately. It is known that ”curve length” and ”surface area” is crucial for a number of

interface problem beside image segmentation. The algorithm proposed here offers

a fast approach for the computation of these problems.

The rest of the paper is organized as follows: in section 2, the CVT and EWCVT

for image segmentation is briefly introduced; The proposed energy, algorithm, some

analytical results for the algorithm and model, and its applications are presented in

section 3; section 4 contains the experimental results and some comparisons with other

approaches; finally, some conclusion remarks are drawn in section 5.

2. Previous Work

2.1. CVT

Throughout this paper, we denote the label set L = {1, 2, · · · , M}. Suppose f : Ω ⊆

R
2 7→ R denotes a gray-valued image which is defined on a bound domain Ω. Then

the image segmentation corresponds to divide the image domain Ω into several non-

overlapping subregions Ωk, such that the image data in each Ωk share some similarities,

such as the similar intensity values, textures, or structures. First, let us recall some

concepts of centroidal Voronoi tessellation [15, 16, 17] for image segmentation.

Given a set of distinct image intensity values {ck}
M
k=1 ∈ R, then the Voronoi region

Ωk in Ω corresponding to each ck, is defined by

Ωk = {x ∈ Ω : d(f(x), ck) ≤ d(f(x), ci), ∀i ∈ L}, (1)

where k = 1, 2, · · · , M , d is a distance measure, and {ck}
M
k=1 are referred as Voronoi gen-

erators. On the other hand, for any given Voronoi tessellation denoted by {Ωk}
M
k=1, one

can usually define the centroid c̃k of each region Ωk by solving the following minimization

problem

c̃k = argmin
ck

∫

Ωk

ρ(x)d2(f(x), ck) dx, (2)

where ρ : Ω 7→ R
+ is a given density function.
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Generally speaking, the Voronoi generators {ck}
M
k=1 which generate the Voronoi tes-

sellation {Ωk}
M
k=1 are not the centroids {c̃k}

M
k=1. Centroidal Voronoi tessellation (CVT)

[15] is a special Voronoi tessellation whose generators satisfy

ck = c̃k, ∀k ∈ L,

which means the generators of the Voronoi regions {Ωk}
K
k=1 coincide with the corre-

sponding centroids {c̃k}
M
k=1.

In [15, 17], the authors define an energy for Voronoi tessellation, and they show that

the CVT can be constructed by finding a minimizer of the following energy (Prop. 3.1,

[15])

E1({(Ωk, ck)}M
k=1) =

M
∑

k=1

∫

Ωk

ρ(x)d2(f(x), ck) dx.

In image segmentation, ρ is often chosen as a probability density function of the

uniform distribution, i.e. ρ = 1
|Ω| , where | · | represents the area. Then in [17], an

iterative algorithm (Lloyds Method) is employed to solve the minimization problem for

image segmentation:

Algorithm 1 (CVT clustering, [17]). Given the number of classes M , choosing an

initial set {ck}
M
k=1,

step 1. Find the Voronoi tessellation {Ωk}
M
k=1 by (1).

step 2. Determine the centroids {c̃k}
M
k=1 through (2).

step 3. ∀k ∈ L, if c̃k = ck, end the algorithm; else let ck = c̃k and go to the step 1.

As mentioned earlier, the CVT clustering is sensitive to noise. EWCVT [18] is a

robust CVT and it can provide good segmentation result under noise. We will give a

brief introduction on EWCVT in the next subsection.

2.2. EWCVT

In [18], the authors defined a discrete energy for image segmentation which is robust

to noise. We can rewrite this clustering energy in the continuous form as follows:

E2({(Ωk, ck)}M
k=1) = E1({(Ωk, ck)}M

k=1) + λEL

=

M
∑

k=1

∫

Ωk

d2(f(x), ck) dx + λ

∫

Ω

∫

B(x;ω)

χk(x, y) dy dx.
(3)
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Here λ > 0 is a regularization parameter that controls the tradeoff between the CVT

clustering energy and the length of the cluster boundaries. B(x; ω) stands for a neigh-

borhood centered at x with parameter ω, e.g. B(x; ω) can be a disk centered at x with

radius ω or a ω×ω square centered at x. The characteristic function χk : Ω×Ω 7→ {0, 1}

for Ωk is defined as:

χk(x, y) =







0, x ∈ Ωk and y ∈ Ωk,

1, else.

It was shown in [18] that

EL ∝ length(Γ)

in the case of two clusters. Here Γ is the boundary curve of a partition {Ωk}
2
k=1.

By considering the variation of the energy E2 when one transfers a pixel located at x

from its current Voronoi region Ωk1
to another Voronoi region Ωk2

, the authors proposed

an algorithm based on edge-weighted Voronoi region to find the minimizer of the above

energy. Firstly, they defined an edge-weighted distance d̃ from a pixel located at x to a

generator ck as

d̃(f(x), ck) =
√

d2(f(x), ck) + 2λñk(x), (4)

where ñk(x) = |B(x; ω)| − |B(x; ω) ∩ Ωk|.

Then similar to [15, 17], an edge-weighted Voronoi region can be given as:

Ωk = {x ∈ Ω : d̃(f(x), ck) 6 d̃(f(x), ci), ∀i ∈ L.}. (5)

The EWCVT algorithm can be described as follows. For more details, please refer to

[18].

Algorithm 2 (EWCVT clustering, [18]). Given the number of classes M , choosing

an initial set {ck}
M
k=1,

step 1. Find the edge-weighted Voronoi tessellation {Ωk}
M
k=1 by (5).

step 2. Determine the centroids {c̃k}
M
k=1 through (2).

step 3. ∀k ∈ L, if c̃k = ck, end the algorithm; else let ck = c̃k and go to the step 1.

The only difference between the CVT clustering algorithm and the EWCVT clustering

algorithm is the different distance functions d and d̃ in the Voronoi tessellation. EWCVT
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can provide a better result than the standard CVT for noisy images. However, like many

other models, the EWCVT does not consider image edge information. Edges in images

usually can provide useful information for segmentation.

3. The Proposed Method

3.1. A constrained optimization for image segmentation

In this section, we present a constrained energy minimization problem for CVT-based

image segmentation. Let us begin with the following proposition:

Proposition 1. Given two vector functions D,u : Ω ⊂ R
2 7→ R

M , D(x) = (D1(x), D2(x), · · · , DM (x))T,

u(x) = (u1(x), u2(x), · · · , uM (x))T. We assume that u(x) satisfies
M
∑

k=1

uk(x) = 1, and

uk(x) > 0. At each x, we denote Kx = {k ∈ L : Dk(x) 6 Di(x), ∀i ∈ L}. Let

E(u) ,

∫

Ω

D(x) · u(x) dx, then the following conclusions hold:

a)û = (û1, û2, · · · , ûM ) with component function

ûk(x) =







0, k /∈ Kx,

ûk(x), k ∈ Kx, s.t.
∑

k∈Kx
ûk(x) = 1,

where k ∈ L, is a minimizer of E(u).

b) Specially, if ∀x, |Kx| = 1, then we have

ûk(x) =







0, k /∈ Kx,

1, k ∈ Kx,

where k ∈ L, is the unique minimizer of E(u). Here, | · | is the cardinality of the set Kx.

c) The binary function û = (û1, û2, · · · , ûM ) with component function

ûk(x) =







1, k = min{k1 : k1 ∈ Kx},

0, else,

where k ∈ L, is a minimizer of E(u).

The proof of this proposition is given in Appendix A. The conclusion of this obser-

vation is also the key ingredient in finding global minimizers for the model proposed in

[44].
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Similar as in [44, 47], let us introduce a vector-valued characteristic function u =

(u1, u2, · · · , uM )T and each uk : Ω 7→ {0, 1} is defined as

uk(x) =







0, x ∈ Ωk,

1, x /∈ Ωk,

then (3) can be rewritten as follows:

E2(u, c)

=

M
∑

k=1

∫

Ω

d2(f(x), ck)uk(x) dx + λ

M
∑

k=1

∫

Ω

uk(x)

∫

B(x;ω)

M
∑

j=1,j 6=k

uj(y) dy dx,

=

∫

Ω

M
∑

k=1









d2(f(x), ck) + λ

∫

B(x;ω)

M
∑

j=1,j 6=k

uj(y) dy



uk(x)







dx,

,

∫

Ω

D(x) · u(x) dx.

(6)

In the last equation, the k-th component of the vector function D = (D1, D2, · · · , DM )T

is given by:

Dk(x) = d2(f(x), ck) + λ

∫

B(x;ω)

M
∑

j=1,j 6=k

uj(y) dy. (7)

We shall consider the following constrained optimization problem

(u∗, c∗) = arg min
u,c

{

E2 ,

∫

Ω

D(x) · u(x) dx

}

s.t.

M
∑

k=1

uk(x) = 1, uk(x) > 0.

Note that the function D(x) is different from the one in the proposition 1. It depends

on function u. Thus the conclusion of proposition 1 can not directly used to solve this

minimization problem. Instead, we shall use an iterative scheme to solve this problem.

Starting from an initial guess u0, c0, we compute a series of minimizers

u1, c1,u2, c2, · · · ,uν+1, cν+1, · · ·

such that

uν+1 =argmin
u

Ẽ2(u, cν ;uν), s.t.

M
∑

k=1

uk(x) = 1, uk(x) > 0, (8)

cν+1 =argmin
c

Ẽ2(u
ν+1, c;uν+1), (9)

ν =0, 1, 2, · · · (10)
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Here

Ẽ2(u, c;uν) =

∫

Ω

M
∑

k=1









d2(f(x), ck) + λ

∫

B(x;ω)

M
∑

j=1,j 6=k

uν
j (y) dy



 uk(x)







dx,

=

∫

Ω

D(x, c,uν(x)) · u(x) dx,

and ν is the iteration number. Due to the linearization, one can use proposition 1 to get

uν+1, i.e. the function given by:

uν+1
k (x) =







1, k = min{k1 : k1 ∈ Kx},

0, else.
(11)

is a minimizer of (8). Here

Kx = {k : Dk(x, cν ,uν) 6 Di(x, cν ,uν), ∀i ∈ L}

=
{

k :
√

Dk(x, cν ,uν) 6
√

Di(x, cν ,uν), ∀i ∈ L

}

=
{

k :
√

d2(f(x), cν
k) + λñk(x) 6

√

d2(f(x), cν
i ) + λñi(x), ∀i ∈ L

}

.

(12)

The last equation in (12) is derived from (7)

Dk(x, cν ,uν) = d2(f(x), cν
k) + λ

∫

B(x;ω)

M
∑

j=1,j 6=k

uν
j (y) dy

= d2(f(x), cν
k) + λ

∫

B(x;ω)

(1 − uν
k(y)) dy

= d2(f(x), cν
k) + λ(|B(x; ω)| − |B(x; ω) ∩ Ωk|).

Comparing (11)–(12) with (4)–(5), it is clear that the function uk in equation (11) is the

characteristic function of the Voronoi region Ωk determined by (5). Therefore, the iter-

ative solutions from (8)–(9) is equivalent to the one from EWCVT clustering algorithm

2. In section 3.4, we will show that the iteration scheme (8)–(9) has the property:

E2(u
ν , cν) > E2(u

ν+1, cν+1),

which implies the energy E2 does not increase during this iteration.

3.2. The Proposed Models

In this section, we generalize CVT-based method in several ways.
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3.2.1. Improved EWCVT

As mentioned earlier, even though the spatial smoothness of the clusters is considered

in EWCVT, it still lacks image edge information. We introduce the following energy

which combines the image intensity, the spatial smoothness of each cluster, and the

image edge information together:

E3(u, c) =

∫

Ω

M
∑

k=1

{[

d2(f(x), ck) + λ

∫

B(x;ω)

g(y)(1 − uk(y)) dy

]

uk(x)

}

dx. (13)

Here g is an edge detection function and is often taken as g = 1
1+|∇f | . We will introduce

a nonlocal version of the edge function later. Compared with EWCVT, minimizing the

above energy can improve the segmentation results such that the segmented objets have

more accurate edges. For convenience, we refer this model as IEWCVT hereafter.

3.2.2. The intensity inhomogeneous image segmentation with Constraint Optimization

Intensity inhomogeneity always appears in nature images. It is difficult to extract

the objects accurately from the images with intensity inhomogeneity. However it can

often still be recognized by human eyes. The reason is that the pixels in the object are

still different from these in their neighborhoods. Thus local information may help us to

overcome this difficulty. There are some methods (e.g. [35, 36, 37, 38, 42, 44]) to handle

the intensity inhomogeneity problem. The method we will propose is very fast and can

handle egde information as well.

For real images, the brightness of an object is often varied. The contrast between the

target and the background is always greater than the contrast inside the bright or the dark

areas. Thus it is advantageous to enhance the local contrast of the images with intensity

inhomogeneity. An efficient tool for sharpening the contrast is the histogram equalization.

Contrast-limited adaptive histogram equalization (CLAHE) [39] is a variant of histogram

equalization which operates on small regions in the image, called tiles, rather than the

entire image. Each tile’s contrast is enhanced, so that the histogram of the output

region approximately matches the histogram specified by the given distribution (usually

is the uniform distribution). Compared with the standard histogram equalization, the

sharpened contrast in the CLAHE, especially in homogeneous areas, can be limited to

avoid amplifying any noise that might be present in the image. There is a function called
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”adapthisteq” for CLAHE implementation in the image processing toolbox of Matlab.

We will use this function.

Let us denote f̃ as the output of CLAHE. In Figure 1, we display one test example by

CLAHE. As can be seen from this test, the contrast of the original image in the top half

has been improved through CLAHE. However, the brightness of the circles in the lower

part of the image is still higher than that in the top. Generally speaking, segmenting f̃

directly would still produce undesirable results (c.f. Figure1(e)). On the hand, h = f̃ −f

is an image which has the contrary contrast relative to f . This means that the areas with

high contrast in the original image would have low contrast in h. A result for segmenting

h is illustrated in Figure1(f). We can see that the semi-circles with low contrast in the

original image can be well segmented, but the others have failed.

Based on the above observation, we suggest to use the following energy E4 to segment

images with intensity inhomogeneity:

E4(u, c, c̃)

=

∫

Ω

M
∑

k=1

{[

d2(f(x), ck) + βd2(h(x), c̃k) + λ

∫

B(x;ω)

g(y)(1 − uk(y)) dy

]

uk(x)

}

dx,

(14)

where β is a parameter which controls the balance between f and h. In order to balance

the different scales equally, the images f and h are usually both normalized in [0, 1]. The

segmentation results by minimizing the proposed energy with different regularization

parameters are displayed in Figure1(g) and Figure1(h). More experimental results and

comparisons with other methods will be given in section 4.

3.2.3. Texture Segmentation with CVT

For texture image segmentation, a key step is to define a proper texture descriptor.

There are many different texture feature description methods in the literatures, including

Gabor filters [28], structure tensor [29, 30], Beltrami framework [31, 32, 33]. For simplic-

ity and efficiency, we choose the semi-local region texture descriptor which is proposed

in [33] to describe the image texture feature in this paper. The semi-local region texture

descriptor, says T , is defined as follows: an image f : Ω ⊂ R 7→ R
d can be viewed as a

hypersurface in R
d+2 with a parametric representation (the parameter is x = (x1, x2)

T.)

S : (x1, x2) 7→ (x1, x2,Px(f))T, where Px is a (2r + 1) × (2r + 1) square neighborhood
11



(a) f (b) f̃ (c) h (d) CPU time:0.14s

(e) CPU time:0.17s (f) CPU time:0.21s (g) CPU time:0.70s (h) CPU time:1.96s

Figure 1: The effects of CLAHE and different segmentation results with IEWCVT (image size: 447×447,

2 clusters). (a) the original image f ; (b) the output of CLAHE, i.e. f̃ =adapthisteq(f,’NumTiles’,[2

2],’ClipLimit’,0.2); (c) h = f̃−f ; (d)-(f) segmentation results for f , f̃ , and h respectively. ω = 3, λ = 1.5;

(g)-(h) segmentation results with the proposed energy (14) but with different parameters. ω = 3 for (g)

and ω = 19 for (h), for both of the two cases, we have used β = 1, λ = 1.5.

12



centered at x = (x1, x2), i.e. Px(f) = {f(x1 + τ, x2 + τ) : τ ∈ [−r, r]}. Then the first

fundamental form of this hypersurface is given by

I =





dx1

dx2









E F

F G





(

dx1, dx2

)

,

where

E = Sx1
· Sx1

, F = Sx1
· Sx2

, G = Sx2
· Sx2

,

and

Sx1
= (1, 0, ∂x1

Px)T, Sx2
= (0, 1, ∂x2

Px)T.

The texture descriptor T in [33] is defined as

T = exp{−
EG − F 2

σ2
}.

Here we choose

T =
1

EG − F 2
=

1

1 +

r
∑

τ=−r

|∇f(x + τ)|2
(15)

as the texture descriptor. Clearly, if r = 0, then EG − F 2 = 1 + |∇f |2 and T is the

often used edge detector function g = 1
1+|∇f |2 . In fact, the texture descriptor T is

equivalent to smooth the gradient image with the (2r + 1)× (2r + 1) square kernel, thus

for larger r, there are more discriminative information between the texture object and the

background. However a larger patch would cause a loss of accuracy in the segmentation.

We will propose a CVT-based model to improve the accuracy of the segmentation result

by adding the edge information of the original texture image. Let us first introduce a

nonlocal edge detector function. Inspired by the definition of T , we choose Px as the

nonlocal version

Px(f) = {W (x, y)f(y) : y ∈ Nx},

where Nx stands for a searching window centered at x = (x1, x2) with size n1 × n2, and

the weighting function W (x, y) is known and given by (see e.g. [34]),

W (x, y) = c0 exp

{

−||Px − Py||
2

σ2
2

}

.

Here || · || denotes the norm between two n2 × n2 image patches P (x) and P (y), which

are centered at x = (x1, x2) and y = (y1, y2) respectively, σ2 is a parameter, and c0 is a

normalizing factor such that

∫

W (x, y)dy = 1.
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Then, the nonlocal edge detector function can be defined as

g(x) =
1

EG − F 2
=

1

1 +
∑

y

W 2(x, y)|∇xf(y)|2
. (16)

Combining the texture feature descriptor T , we propose the following energy for

texture segmentation:

E5(u, c) =

∫

Ω

M
∑

k=1

{[

d2(T (x), ck) + λ

∫

B(x;ω)

g(y)(1 − uk(y)) dy

]

uk(x)

}

dx,

where T, g are defined by (15) and (16) respectively.

3.2.4. Block-Based CVT Image Segmentation

The segmentation methods we have just discussed are point-based. The energy can

be naturally extended to block-based one with:

E6(u, c) =

M
∑

k=1

∫

Ω

∫

Ω

k(x − y)d2(f(y), ck)dyuk(x) dx, (17)

where k is always a Gaussian kernel or a compactly supported function such as k(x) =

1
|B(x;ω)|χB(x;ω).

Let us analysis this energy. Suppose d is the often used L2 norm, i.e d2(f(y), ck) =

|f(y) − ck|
2. Denote f̄(x) =

∫

Ω k(x − y)f(y) dy. We know that
∫

k(y)dy = 1. Thus

∫

Ω
k(x − y)d2(f(y), ck)dy =

∫

Ω
k(x − y)|f(y) − f̄(x) + f̄(x) − ck|

2dy

=
∫

Ω k(x − y)|f(y) − f̄(x)|2dy + |f̄(x) − ck|
2.

The value of the first term in the above equation is often very small, and if we ignore

this term in the energy, then (17) becomes

E6(u, c) =

M
∑

k=1

∫

Ω

|f̄(x) − ck|
2uk(x) dx.

As f̄ is a denoised image with a smoothing kernel k, the minimization of the energy (17)

is equivalent to segment the denoised image. Thus, it is natural that it is more robust

to noise than the standard CVT clustering.

An interesting observation has been observed for this block-based segmentation model.

When the center ck is a function, namely

E6(u, c) =

M
∑

k=1

∫

Ω

∫

Ω

k(x − y)d2(f(y), ck(y))dyuk(x) dx, (18)
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(a) Original image (b) CVT [17] (c) EWCVT [18] (d) by (18) (e) c1(y) and c2(y)

Figure 2: A comparison of the results obtained by CVT, EWCVT, and minimizing the energy (18)

(2 clusters). (a) the original image; (b) segmentation result with CVT; (c) segmentation result with

EWCVT, λ = 0.02, ω = 5; (d) segmentation result by minimizing (18), k = 1
|B(ω)|

χB(ω) and B(ω) is

token as a 21 × 21 square; (e) the finally estimated c1(y) and c2(y) respectively (size 21 × 21).

the model can produce segmentation results that can connect broken fringes in a regular

fringe image. See Figure2 for the experimental results.

3.3. A Fast Narrow Banding Algorithm

In this section, we explain some details about a fast algorithm for minimizing the

proposed energy.

Consider the following constraint optimization problem:

(u∗, c∗) = arg min
u,c

{

E(u, c) =
∫

Ω D(x,u(x), c) · u(x)dx
}

s.t.
∑M

k=1 uk = 1, uk > 0.

(19)

As we have discussed, we can use the following iterative scheme to solve it:

uν+1 =argmin
u

Ẽ(u, cν ;uν), s.t.
M
∑

k=1

uk(x) = 1, uk(x) > 0, (20)

cν+1 =argmin
c

Ẽ(uν+1, c;uν+1), (21)

ν =0, 1, 2, · · · , (22)

where

Ẽ(u, c;uν) =

∫

Ω

D(x,uν , c(x)) · u(x)dx.

The above two minimization problems are both easy to solve with close-form solutions.

Applying Proposition 1, we obtain the following algorithm for this model:

Algorithm 3. Given the number of classes M , choosing an initial cluster centers {ck}
M
k=1,

and obtain an initial label function l(x) by a CVT scheme:
15



Step 1, update l(x) from (20) using the values of ck: ∀k = 1, 2, · · · , M, compute Dk(x)

and find the smallest Dk(x) at each x; if the smallest Dk(x) is not unique, choose the

smallest index with respect to k among them; let us denote it as Dk1
(x); then assign

l(x) = k1, i.e. l(x) = min{k1 : k1 ∈ Kx}, where Kx = {k : Dk(x) 6 Di(x), ∀i ∈ L}.

Step 2, update ck according to l(x) and equation (21).

Step 3 if converged, end the algorithm; else, go to step 1.

This algorithm has some special properties. When a pixel x and all of its neighbor-

hood pixels in B(x; ω) can be initially assigned to the same j-th cluster by the standard

CVT algorithm, then we have d2(f(x), cj) 6 d2(f(x), ci), i ∈ L \ {j}. In this case, the

smoothness term ñj(x) = 0 and ñi(x) = |B(x; ω)|. Obviously,

d2(f(x), cj) + λñj(x) < d2(f(x), ci) + λñi(x),

i.e. Dj(x) < Di(x) holds for any λ > 0. Thus according to algorithm 3, x will be still

assigned to the j-th cluster independent of the value of λ. This means that we do not

need to calculate Dk and reassign the label function l(x) for these pixels. Therefore the

speed of the algorithm can be accelerated by using a narrow band technique.

We use the following method to detect the narrow band: let l̃(x) = |(Gσ ∗ l)(x)− l(x)|,

where Gσ(x) = 1
2πσ2 exp{− ||x||2

2σ2 } is a Gaussian kernel with the standard deviation σ,

if l̃(x) > ε, then x can be regarded as an boundary points near the boundaries of the

clusters. The width of the narrow band is controlled by the parameters σ and ε. A larger

σ will be used for the wider computational band. As for ε, a smaller value will give a wider

band. In this paper, unless otherwise specified, we set the parameter σ = 3.0, ε = 0.01.

To summarize, the narrow band algorithm for the proposed models can be written as

follows:

Algorithm 4 (Narrow Band Algorithm). Given the number of classes M , choosing

an initial cluster centers {ck}
M
k=1, and obtain an initial label function l(x) by any CVT

iteration, calculate l̃(x) = |(Gσ ∗ l)(x) − l(x)|. Let energy Eold = +∞:

Step 1, set energy Enew = 0. For all x ∈ Ω, if l̃(x) > ε, then compute Dk(x) and

set l(x) = min{k1 : k1 ∈ Kx}, where Kx = {k : Dk(x) 6 Di(x), ∀i ∈ L}. Update

Enew = Enew + Dl(x)(x); Otherwise, do nothing.
16



Step 2, update ck according l(x).

Step 3, if |Enew −Eold|
2 < 0.01Eold , end the algorithm; else let Eold = Enew and go to

step 1.

We want to emphasis that this algorithm is very easy to implement and it is very

fast. Its high efficiency will be demonstrated by numerical experiments given later.

3.4. Some Analytical Results for the Algorithm and Model

The proposed algorithm has some very nice properties. The analysis of these prop-

erties will be given in the appendixes. We state these properties in the following two

propositions.

Proposition 2 (Energy descent). The sequence (uν , cν) generated by (20),(21) sat-

isfies E(uν , cν) > E(uν+1, cν+1), where ν = 0, 1, 2, · · · .

Corollary 1. The algorithm 3 and the narrow band algorithm 4 are both convergent.

Proposition 3 (The existence of the binary solution). if (u∗, c∗) is a global min-

imizer of (19), then there must exist a binary û such that E(û, c∗) = E(u∗, c∗), i.e.

(u∗, c∗) is also a global minimizater of (19).

Proofs of the propositions will be given in Appendix B and C. Similar conclusions

also can be found in [18].

4. Experimental Results

In this section, we use several experiment example to show the properties and effi-

ciency of the models and algorithms. The implementation of all the algorithms is done

in Matlab (mex files) on a laptop with Intel 2.40G CPU.

In all the experiments, the original images f are all normalized in [0,1] and the

neighborhood B(x; ω) in the regularization term is taken as a circle with radius ω.
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4.1. Tuning of the Parameters

There are several parameters that need to be tuned. The parameter ω in the reg-

ularization term is determined by noise and the scale of the objects that need to be

eliminated. It should always be larger than the radius of the undesired objects. The λ

controls the ratio between the data driven term and smoothness term. For the choice of

λ, one can refer to [18].

For intensity inhomogeneity model, two of the most important parameters in the

”Contrast-limited adaptive histogram equalization” (Matlab function “adapthisteq”) are

the number of tiles “NumTiles” and the contrast enhancement limit parameter “Cli-

pLimit”. Generally speaking, larger parameter values of “NumTiles” and “ClipLimit”

can be more accurate in finding details such as weak edges in the image. For more details

about how to choose these parameters, one can refer to the help documents of matlab.

β is a parameter to control the weights of the original image information and enhanced

local information. In most cases, we choose β to be around 1.0. If the image has little

intensity non-uniformity, then β should be decreased. r used in the texture model should

always be bigger than the scale of the texture structure. For natural images used in this

paper, it can be set to be 9 or 11.

4.2. Experiment I: Comparison between EWCVT and IEWCVT

The main difference between EWCVT and IEWCVT (13) is the regularization term.

We shall show effect of this term with different regularization parameters. There are

two parameters λ, ω in both models to control the smoothness of the clusters. We fix λ

with a relatively large value λ = 100 in this experiment. In addition, the edge detector

function g in IEWCVT is still selected as the traditional one g = 1
1+|∇f |2 to improve the

computation efficiency. For the purpose of unifying the scale, we normalize g in [0, 1].

In Figure3, we show some segmentation results with EWCVT and IEWCVT. In

this experiment, the synthetic image need to be segmented into 4 groups. When ω

is very small (ω = 3), both of the models can provide good results (see Figure3(b)

and Figure1(e)). However, there are still some burrs on the boundaries, especially in

Figure3(b). One can choose a larger ω to remove these burrs. We show the segmentation

results produced by both models with parameter ω = 9 in the middle column. Compared
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with the first choice, there is a bifurcation appeared in the center of Figure3(c), even

though the boundaries of the clusters in Figure3(c) and Figure3(f) are more straighter

than before. When we increase the neighborhood parameter to ω = 15, this bifurcation

would be enlarged (c.f. Figure3(d)). On the other hand, the IEWCVT can accurately

find the clusters with increased ω. In the following, we will give a theoretical explanation

about this phenomenon observed with EWCVT in this experiment.

First of all, the regularization term EL =
M
∑

k=1

∫

Ω

uk(x)

∫

B(x;ω)

M
∑

j=1,j 6=k

uj(y) dy dx ∝

length(Γ) if Γ is the boundary curve of the clusters, c.f. [18]. Thus we only need to show

that the length of the clusters boundaries produced by EWCVT in Figure3(d) is shorter

than the length of the real boundaries. As shown in Figure4, we only need to prove that:

(AP + BP + OP ) + (CQ + DQ + OQ) < AC + BD.

The above inequality holds when P, Q are the Fermat points of the △ABO and △CDO

respectively, i.e. when

∠APB = ∠BPO = ∠APO = 120o, ∠CQD = ∠CQO = ∠DQO = 120o.

In fact the angles between boundaries of the clusters in Figure3(c) and Figure3(d) are all

nearly 120o. It is amazing to see that our algorithm is able to get the angles correctly.

This is difficult for many algorithms designed in the literature.

4.3. Experiment II: image segmentation with intensity inhomogeneity

In this experiment, we test the model described in section 3.2.2 and also compare

it with other approaches. In [36, 37], the authors proposed a level set method driven

by local binary fitting (LBF) energy to hand the intensity inhomogeneous problem, we

compare our method with theirs.

In Figure5, we display the segmentation results obtained by EWCVT [18], LBF [37],

and our method for images with intensity inhomogeneities. EWCVT can not find the

correct segmentation. Both of LBF in [37] and our method can produce good results

with similar quality. From Table2, which records the CPU time for both method, one

can see clarly that our method is much faster than LBF. In addition, all the parameters

values used in this experiment are given in Table 1.
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(a) Synthetic image, size 268 ×

269.

(b) EWCVT [18], ω = 3 (c) EWCVT [18], ω = 9 (d) EWCVT [18], ω = 15

(e) IEWCVT, ω = 3 (f) IEWCVT, ω = 9 (g) IEWCVT, ω = 15

Figure 3: Comparison between EWCVT [18] and the proposed IEWCVT. (a) Original image; (b)-(d)

the clustering results by EWCVT; (e)-(g) the clustering results by IEWCVT.
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Figure 4: A diagram for explaining the results in Figure3(c) and Figure3(d)

.
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Unlike the popular level set based method which is cannot be easily generalized to

cases with more than two clusters (such as LBF [36, 37]), another superiority of the

CVT-based approach is that it can handle multi-clusters easily. In Figure6, we give a

3-clusters result for brain MR image with intensity inhomogeneity. The CPU time usage

for this test is listed in Table2. One can see that our method is very efficient in term of

CPU time usage and has great potential for real-time applications.

Our method can be easily applied to 3-D image segmentations. MR images are usually

corrupted by a spatially varying bias field, which results in inhomogeneous intensity in the

images. We test our algorithm on a 3-D data set downloaded from the BrainWeb (http:

//mouldy.bic.mni.mcgill.ca/brainweb/). Three slices of the original data with 40%

intensity non-uniformity and 5% noise are displayed in the first column of Figure7. In

this experiment, both the proposed model and EWCVT are used for brain segmentation.

We use some skull striping technique to get the 1922592 (about 124× 124× 124) voxels.

Then we segment the brain into 3 clusters. The control neighborhood B(x; ω) is taken as

a ball with radius 2. The other parameters values used in the experiment and the CPU

time cost are listed in Table1, Table2. The segmentation results are shown in the last

two columns of Figure7. As it can be seen, the results with model (14) are much better

than EWCVT [18], especially in the dash line ellipse area. Since the ground truth data

of this brain data is available in BrainWeb, then we can use a segmentation precision

p = ncorrect

ntotal

to indicate the segmentation quality for these two methods. Here we only

take white matter to evaluate and ncorrect is the number of white matter voxels which

are segmented correctly and ntotal corresponds to the number of the white matter in the

ground truth. For EWCVT and the proposed methods, p = 84.9%, 94.2% respectively.

Finally, in order to show the algorithms performed on different regions, the results on

multiple slices on one direction are displayed in Figure8.

4.4. Experiment III: texture image segmentation

The nonlocal edge detector function (16) is often slightly better than the conventional

edge function when the images contaminated by noise and have repeatable structures.

However, it is time-consuming to calculate the nonlocal weighting function. For the

comparison between the nonlocal regularization and local regularization for image seg-

mentation, we refer to [40]. In this experiment, we still use the conventional edge function
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(a) f (b) h (c) EWCVT [18] (d) proposed (e) LBF [37]

(f) f (g) h (h) EWCVT [18] (i) proposed (j) LBF [37]

(k) f (l) h (m) EWCVT [18] (n) proposed (o) LBF [37]

(p) f (q) h (r) EWCVT [18] (s) proposed (t) LBF [37]

Figure 5: The results of intensity inhomogeneous image segmentation (2 clusters) obtained the proposed

model (14) and other connected methods. Form left to right: first column, the original images f ; second

column, the preprocessed images h; third column, the results with EWCVT [18]; fourth column, the

results obtained by the proposed method in section 3.2.2; fifth column, the results by LBF [37].
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(a) f (b) h (c) EWCVT [18] (d) proposed

Figure 6: An example of 3-clusters segmentation with intensity inhomogeneous. (a), the original image;

(b) the preprocessed image h; (c)clusters obtained by EWCVT; (d) clusters provided by the proposed

method.

Table 1: The parameters values used in experiment II (Figure5,6,7).

Figure CLAHE Regularization

“NumTiles” “ClipLimit” β λ ω

Fig.5(a) 2 × 2 1E − 03 1.0 1.0 3

Fig.5(f) 2 × 2 5E − 04 0.7 1.0 5

Fig.5(k) 2 × 2 5E − 04 1.0 1.0 5

Fig.5(p) 2 × 2 5E − 04 1.0 1.0 5

Fig.6(a) 4 × 4 1E − 03 1.1 0.01 3

Fig.7 4 × 4 1E − 02 1.0 0.05 2

Table 2: A comparison of the the CPU time in experiment II (Figure5,6,7).

Figure image size EWCVT[18] proposed LBF[37]

CLAHE segmentation total time

Fig.5(a) 85 × 88 0.015s 0.006s 0.014s 0.020s 0.593s

Fig.5(f) 96 × 127 0.021s 0.005s 0.047s 0.052s 7.312s

Fig.5(k) 110 × 111 0.044s 0.005s 0.036s 0.041s 1.934s

Fig.5(p) 131 × 103 0.052s 0.006s 0.044s 0.050s 3.494s

Fig.6(a) 261 × 217 0.147s 0.018s 0.182s 0.200s -

Fig.7 181 × 217 × 181 17.75s 20.02s 18.93s 38.95s -
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Figure 7: Intensity non-uniformity and noisy 3-D MR medical image segmentation with EWCVT and

the proposed method (size:181×217×181, 3 clusters). First column, the slices of original image; Second

column, segmentation results with EWCVT [18]; Third column, the results with ours. The white line

represents the computation area, the blue and red lines are the boundaries of the segmented 3 clusters.
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Figure 8: The results on multiple slices on ’z’ direction for the 3D segmentation in Figure7. First row:

the EWCVT results. Second row: the proposed results. From left to right, the images are x-y view with

z = 40, 80, 130, respectively.

for the sake of computational efficiency.

To show the good properties of our algorithms, we shall compare it with some recently

proposed efficient and global minimization techniques. Recently, some efficient and global

minimization techniques has been proposed for segmentation [41, 42, 44]. In these models,

the regularization term is a total variation of the minimization function, which is different

from the one employed in this paper. These models can be minimized by many algorithms

such as [43, 45]. In [33], the authors extended the models to texture segmentation. We

shall compare our algorithm with that of [33].

Figure9 shows some results for texture segmentation. Comparing with the results

between our method and the method of [33], one can see that the segmentation results

obtained by the method of [33] are less accurate near the borders (See Figure10 for more

details). It’s easy to understand since the texture feature image T is dilated in the object

boundaries relative to the original image when calculate T according (15). We add the

edge information of the original image into the energy functional and thus could avoid

this problem.

In addition, we plot the convergence of the energy functional in Figure11. This
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Table 3: The CPU time and parameters values in experiment III (Figure9, image size 321 × 481).

Figure parameters CPU time

r ω λ calculate T proposed [33]

Fig.5(a) 11 7 0.4 0.06s 0.61s 2.03s

Fig.5(d) 11 7 0.5 0.06s 0.36s 2.37s

Fig.5(g) 9 9 0.133 0.05s 1.95s 5.44s

Fig.5(j) 11 7 0.15 0.06s 0.55s 2.15s

numerical verify that proposition 2 is correct. Finally, the values of parameters use this

this experiment and the CPU time usage are displayed in Table3. Again, one can clearly

see that the CPU time cost of our proposed segmentation method is much less than that

of [33]. Let us mention the segmentation model in [33] is based on a probability density

function, and it is often more time-consuming than Chan-Vese model [20]. Due to this,

we will make some comparisons between the split Bregman iteration for Chan-Vese model

[43] and our algorithm in the next experiment.

4.5. Experiment IV: a comparison between the split Bregman method for the Chan-Vese

model and our proposed algorithm 4

The Split Bregman method of [43] is an efficient and fast algorithm for TV minimiza-

tion. Let us mention again that the regularization term used in the Chan-Vese model [20]

and our model is different. Though the TV term
∫

Ω |∇u|dx can be rewritten formality as

−
∫

Ω
∇·( ∇u

|∇u| )udx ,
∫

Ω
D ·udx according to the divergence theorem, the iteration scheme

(20), (21) can not be applied to it since we can not guarantee that the energy descends

with the iterations. Thus, proposition 2 will not be valid and the proposed algorithm

can not used. For TV regularization, a good connections between the Gaussian mixture

model and CVT model for image segmentation has been observed in [44] for multi-phase

clustering.

All the comparisons between algorithm 4 and the split Bregman method for the Chan-

Vese model [43], including the segmentation results and CPU time cost, are shown in

Figure 12 and Table 4. Again, the accuracy and efficiency of our proposed algorithm is

easy to see.
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(a) f (b) proposed (c) [33]

(d) f (e) proposed (f) [33]

(g) f (h) proposed (i) [33]

(j) f (k) proposed (l) [33]

Figure 9: Comparisons between the proposed method and the model in [33] on texture segmentation.
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(a) proposed (b) [33]

Figure 10: Partial enlarged views of Figure9(b) and Figure9(c) respectively.

(a) The energy changes of Figure9(b) (b) The energy changes of Figure9(e)

(c) The energy changes of Figure9(h) (d) The energy changes of Figure9(k)

Figure 11: The variations of the energies during the iteration. x-axis: number of iterations; y-axis: the

energy E.
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(a) Original image (b) proposed Alg. 4 (c) Chan-Vese [43]

Figure 12: Results obtained by the proposed algorithm and the Chan-Vese model with split Bregman

iteration [43].
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Table 4: Comparisons between Alg. 4 and split Bregman iteration [43] (Figure12).

Fig. No. image size parameters CPU time

(from top to bottom) ω λ Alg.4 [43]

1 337 × 407 7 0.15 0.421s 0.905s

2 210 × 210 3 0.1 0.031s 0.032s

3 403 × 481 7 0.1 0.140s 2.402s

4 253 × 256 3 0.1 0.047s 0.062s

4.6. Experiment V: Triple junctions

One essential advantage of our method is that it is efficient and at the same it can

regularize the segmentation boundaries. Many methods have been proposed in the liter-

ature for interface problems. To show that a method can regularize the the boundaries

according to their lengths, it is a tradition to test them for triple junction problems. In

these tests, one takes away the fidelity term from (13) and only minimizes the regulariza-

tion term with some proper boundary conditions for the label functions uk. If a method

can treat the length term correctly, then internal junctions must be triple junctions and

must have 120o between the boundaries at junctions [44, 46, 47]. This is a very challeng-

ing problem and it has been analysed intensively in the literature. It is closely related to

the so-called ”Steiner tree problem”. It has many applications where one needs to find

interfaces to minimize surface tensions. There are not so many interface methods that

can solve this problem accurately and efficiently [47, 44, 46].

In all the experiments, the total number M of clusters is given. As in [46], we fix the

values of uk, k = 1, 2, · · ·M on ∂Ω and minimize E3 with g = 1 and without the data

fidelity term, i.e. we minimize

EL =

∫

Ω

M
∑

k=1

uk(x)

∫

B(x;ω)

(1 − uk(y)) dy dx (23)

with given boundary values for uk, k = 1, 2, · · ·M. As uk is a label function, its values on

∂Ω can only be 0 or 1.

In Figure 13, some numerical results with different phase number M are shown. The

boundary condition used for the uk’s is clear from the plots in the figure. It is important

to note that all the junctions are triple junctions and the angles around the junctions are
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120o. All the boundaries between the clusters are straight lines. We want to emphasis

that the solution is not unique and the energy functional has many local minimums for

M > 3. There are not so many known methods that can solve this problem efficiently

for multiphase problems. Our method can get the correct solution for rather big phase

number M . As the solution is not unique, our final solution could differ with different

initial values.

To further valid our method, we test in on a junction problem with M = 4. This

problem has two solutions that are analytically known, see Figure 14.(e)-(f). In this test,

we assume that label functions uk, k = 1, 2, 3, 4 are known outside the circle shown in

Figure 14.(a). We need to find the values of uk inside the circle that minimizes the length

term E3. This is equivalent to take Ω to be the disk in Figure 14.(a) and minimize the

length term with fixed boundary values of uk on the circle. With different initial values,

our algorithm is alway able to converge to one of the solutions, see Figure 14.(b)-(g).

This is remarkable. The algorithms proposed in [44, 47] are able to find triple junctions

when M = 3 as in Figure 13.(b), but cannot find true solutions for this test example due

non-uniqueness of the solution and local minimums for the energy functional.

5. Conclusion

In this paper, we proposed a new method to segment images with inhomogeneous

intensity values with texture. These approaches are all based on minimizing a constrained

optimization energy. An iterative scheme is used. It is guaranteed that the energy is

decreasing. Moreover, all the subproblem during the iteration have closed form solutions.

We can regularize the minimization problem with the length of the interface boundaries,

yet no partial differential equation need to be solven during the iterations. A narrow

band technique is derived for the iterations. The algorithm is very fast. It is remarkable

that the algorithm can find global minimizers for triple junction problems with large

phase number M .

We mention that many of the level set based models can be easily extended to mul-

tiphase clustering and effectively implemented with the proposed framework. As future

work, we would like to improve the denoising method in [48] with CVT framework. In

addition, nonparametric segmentation with the proposed functional is also our future

32



(a) 2-phases (b) 3-phases (c) 4-phases

(d) 5-phases (e) 6-phases (f) 10-phases

Figure 13: Multi-phase junctions obtained by our method.
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(a) original

(b) initial labels (case 1) (c) initial labels (case 2) (d) initial labels (case 3)

(e) result 1 (f) result 2 (g) result 3

Figure 14: Complete the white circle: the solutions with different initial values. In this experiment, we

let the parameter ω = 35.
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A. The proof of proposition 1

For each x, let us denote D̄(x) = min{D1(x), D2(x), · · · , DM (x)}, then for all u > 0

and

M
∑

k=1

uk(x) = 1

E(u) =

∫

Ω

D(x) · u(x) dx =

∫

Ω

M
∑

k=1

Dk(x)uk(x) dx >

∫

Ω

D̄(x) dx.

On the other hand, it is easy to check û in a) or c) satisfies

E(û) =

∫

Ω

M
∑

k=1

Dk(x)ûk(x) dx =

∫

Ω

D̄(x) dx,

Thus û is a minimizer of E, which implies a) and c) hold.

Moreover, suppose b) fails, that is to say there exists another minimizer u 6= û. Let us

write Ω̃ = {x : u(x) 6= û(x)}, then

E(u) =

∫

Ω

M
∑

k=1

Dk(x)uk(x) dx =

∫

Ω−Ω̃

M
∑

k=1

Dk(x)ûk(x) dx +

∫

Ω̃

M
∑

k=1

Dk(x)uk(x) dx

>

∫

Ω−Ω̃

D̄(x) dx +

∫

Ω̃

D̄(x) dx =

∫

Ω

D̄(x) dx.

It contradicts the fact that u is a minimizer of E, which completes the proof. See aslo

[44] for another proof for this proposition.

B. The proof of proposition 2

First, we have

Ẽ(uν , cν ;uν) > Ẽ(uν+1, cν ;uν),

Ẽ(uν+1, cν ;uν+1) > Ẽ(uν+1, cν+1;uν+1),
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according to (20) and (21) respectively. In the next, we prove Ẽ(uν+1, cν ;uν) > Ẽ(uν+1, cν ;uν+1).

Let us recall

Ẽ(u, c;uν) =

∫

Ω

D(x,uν(x), c)·u(x)dx =

∫

Ω

M
∑

k=1

{[

d2(f(x), ck) + λ

∫

B(x;ω)

g(y)(1 − uν
k(y)) dy

]

uk(x)

}

dx.

Now, we consider the following minimizer of the energy

Ẽ(uν+1, cν ;u) =

∫

Ω

M
∑

k=1

{[

d2(f(x), cν
k) + λ

∫

B(x;ω)

g(y)(1 − uk(y)) dy

]

uν+1
k (x)

}

dx,

such that uk(x) > 0,
∑M

k=1 uk(x) = 1. Without loss of generality, we denote

ũν+1(x) = max{uν+1
1 (x), uν+1

2 (x), · · · , uν+1
M (x)},

then we have ∀u

Ẽ(uν+1, cν ;u) >

∫

Ω

M
∑

k=1

{[

d2(f(x), cν
k) + λ

∫

B(x;ω)

g(y) dy

]

uν+1
k (x)

}

dx−λ

∫

Ω

ũν+1(x)

∫

B(x,ω)

g(y) dy dx,

please note uν+1
k (x) is binary and satisfies

∑M

k=1 uν+1
k (x) = 1, thus it is not difficult to

check uν+1 is a minimizer of Ẽ(uν+1, cν ;u). Therefore one can get

Ẽ(uν+1, cν ;uν) > Ẽ(uν+1, cν ;uν+1).

In addition, we have

E(uν , cν) = Ẽ(uν , cν ;uν),

E(uν+1, cν+1) = Ẽ(uν+1, cν+1;uν+1),

and thus E(uν , cν) > E(uν+1, cν+1).

C. The proof of proposition 3

As before, we write

Ẽ(u, c∗;u∗) =

∫

Ω

M
∑

k=1

{[

d2(f(x), c∗k) + λ

∫

B(x;ω)

g(y)(1 − u∗
k(y)) dy

]

uk(x)

}

dx.

Let us consider the minimizer of Ẽ(u, c∗;u∗) with the constraint conditions uk(x) >

0,
∑M

k=1 uk(x) = 1. According to proposition (1), the binary û with component functions

ûk(x) =







0 k ∈ Kx

1 k /∈ Kx
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is a minimizer of Ẽ(u, c∗;u∗), and then one can get

Ẽ(û, c∗;u∗) 6 Ẽ(u∗, c∗;u∗). (24)

On the other hand, we may write

Ẽ(û, c∗;u) =

∫

Ω

M
∑

k=1

{[

d2(f(x), c∗k) + λ

∫

B(x;ω)

g(y)(1 − uk(y)) dy

]

ûk(x)

}

dx.

As in the proof of proposition 2, one can get û is a minimizer of Ẽ(û, c∗;u) with the

constraint conditions, and thus

Ẽ(û, c∗; û) 6 Ẽ(û, c∗;u∗). (25)

Combining (24) and (25), we get

E(û, c∗) = Ẽ(û, c∗; û) 6 Ẽ(u∗, c∗;u∗) = E(u∗, c∗).

Thus E(û, c∗) is a global minimization of (19).
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