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Abstract. We study the existence and uniqueness of nontrivial stationary solutions
to a nonlocal aggregation equation with quadratic diffusion arising in many contexts in
population dynamics. The equation is the Wasserstein gradient flow generated by the
energy E, which is the sum of a quadratic free energy and the interaction energy. The
interaction kernel is taken radial and attractive, nonnegative and integrable, with further
technical smoothness assumptions. The existence vs. nonexistence of such solutions is
ruled by a threshold phenomenon, namely nontrivial steady states exist if and only if
the diffusivity constant is strictly smaller than the total mass of the interaction kernel.
In the one dimensional case we prove that steady states are unique up to translations
and mass constraint. The strategy is based on a strong version of the Krein-Rutman
theorem. The steady states are symmetric with respect to their center of mass x0,
compactly supported on sets of the form [x0 − L, x0 + L], C2 on their support, strictly
decreasing on (x0, x0+L). Moreover, they are global minimizers of the energy functional
E. The results are complemented by numerical simulations.

1. Introduction

Phenomena with long-range aggregation and short-range repulsion arise in many in-
stances in population biology such as chemotaxis of cells, swarming or flocking of animals.
A variety of mathematical models has been proposed for such situations, at the particle
as well as at the continuum (mean field) level. In particular, if nonlocal repulsion acts at
a smaller scale with respect to nonlocal attractive forces in the large particle limit, then
a nonlocal repulsion term can be replaced by a local term with nonlinear diffusion, we
refer to [42, 11, 51, 52, 20, 22, 31, 49, 10, 36] for several examples. A prototype model,
which we shall also investigate further in this paper, is given by

∂tρ = div (ρ∇ (ερ−G ∗ ρ)) (1.1)

where the convolution is carried out with an aggregation kernel G such that G(x) = g(|x|)
with g′(r) > 0 as r > 0. This model arises in a natural way as the limit of a stochastic
interacting particle model with pair interactions (cf. [43, 44] respectively [26] for general
background). Models with the same structure have been recently used to model opinion
formation, cf. [48, 50]. Here we shall restrict to the case in which (1.1) is posed on the
whole space Rd.

In case G is λ-convex, then the equation (1.1) can be formulated as a gradient flow in
the Wasserstein metric (cf. [1, 54, 55]) of the energy (or entropy) functional

E[ρ] :=
ε

2

∫
Rd

ρ2(x)dx− 1
2

∫
Rd

∫
Rd

G(x− y)ρ(y)ρ(x)dydx, (1.2)
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see [41, 3, 17, 18]. Models of the above form have been investigated with respect to
several aspects, e.g. existence and uniqueness in the context of entropy solutions [12, 8],
well-posedness in the context of Wasserstein gradient flows as a special case of the theory
developed in [1], and - in particular in connection with the classical Patlak-Keller-Segel
model for chemotaxis [47, 32] - with respect to blow-up vs. large-time existence, cf. e.
g. [30, 27, 9, 21] for models with linear diffusion and [33, 15] for models with nonlinear
diffusion.

An interesting and important question is the characterization of large-time behavior
of solutions to equations of the form (1.1), which is related with the possible existence
of nontrivial steady states, even when the quadratic diffusion is replaced by a more
general nonlinear diffusion. This issue is solved in detail for purely diffusive equations,
in which solutions decay to zero with a prescribed rate for large times and behave like
the (compactly supported) Barenblatt profiles, cf. the classical works of Vazquez on the
self-similar behavior of the porous medium equation, which are nicely collected in the
book [53], as well as the papers [45, 19]. In the purely nonlocal case, namely when ε = 0,
this issue has been studied extensively in many papers [37, 13, 35, 5, 4, 16, 6, 7, 29, 25,
24], combined with the study of the regularity of solutions compared to the attractive
singularity of the interaction kernel. In particular, solutions are known to concentrate to
a Dirac delta centered at the initial center of mass (invariant) either in a finite or in an
infinite time, depending on the properties of the kernel G at x = 0. When the kernel G
is supported on the whole space, the Dirac delta is the unique steady state of (1.1) with
unit mass and zero center of mass.

The asymptotic behavior in the general case with both nonlinear diffusion and nonlo-
cal interaction has been only partially addressed. A first attempt in this direction was
performed in [13], in which the existence of steady states of (1.1) for sufficiently small
ε and the non-existence for large ε in the one-dimensional case was proven by means of
the pseudo-inverse representation of the Wasserstein distance. More refined results in a
similar model derived in [28, 46] with cut-off density have been found in [14, 34]. Parallel
to their work, the authors of the present paper recovered the results in [2], in which a
quasi sharp result of existence of minimizers for the energy E[ρ] in a multi dimensional
framework has been proven.

A key open (to our knowledge) problem in this context is the uniqueness of steady
states under mass and center of mass constraint, its main difficulty being the fact that
the functional E is neither convex in the classical sense nor in the displacement convex
sense [41] (except when G is concave on Rd, see [17]) when ε <

∫
G with G ≥ 0.

In this paper we further investigate the detailed structure of steady states in one
space dimension. We remark that our work does not go into the direction of providing
sharp regularity conditions on the kernel G. Roughly speaking, G is smooth, radial
(with decreasing profile), nonnegative, integrable and supported on the whole space. The
precise assumptions on G are stated at the beginning of Section 2. We found out that
for a kernel G decreasing on x > 0, the L1-norm of G compared to ε marks a threshold:

• If ε ≥
∫
G, then there exists no steady state.

• If ε <
∫
G, there exists a stationary state.

The same results are recovered in [2], except for the critical case ε =
∫
G.

The main result of our paper deals with the case d = 1. Here we can give a detailed
characterization of the stationary states in the case ε <

∫
G. If G′ only vanishes at zero,
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then there exists a unique stationary state (up to translation), which is a minimizer of
the energy E at fixed mass. The stationary states have compact support, which increases
with ε. Moreover, such steady state is symmetric with a single maximum at the center of
mass, and monotone on both sides of the center of mass. The precise statement can be
found in Theorem 4.13. If ε is small enough, the stationary states are concave on their
support. The main tool in the proof of the main result is the statement of the stationary
equation as an eigenvalue problem, see formula (4.10), together with the use of a strong
version of Krein-Rutman theorem (cf. Theorem 4.10), which allows to characterize the
steady states as eigenfunctions corresponding to a simple eigenvalue.

The uniqueness of the stationary state is somewhat surprising, since the energy func-
tional E is not convex for ε <

∫
G and thus one might expect other stationary points of

E. On the other hand also in the case ε = 0 one can see that there is a unique (measure)
stationary state concentrated at the center of mass if G has global support. Adding the
squared norm for positive ε makes the functional closer to convex, and thus probably
does not lead to additional stationary points.

The paper is organized as follows. In Section 2 we recall the statement of the problem
and provide some preliminary regularity results. In Section 3 we complement our results
with those proven in [2] and provide sharp conditions on ε and

∫
G for the existence of

non trivial steady states. In Section 4 we prove our main results about the uniqueness
of steady states in one space dimension. Finally, in Section 5 we complement our results
with some numerical simulations.

2. Preliminaries

We consider the evolution equation

∂tρ = div (ρ∇ (ερ−G ∗ ρ)) (2.1)

and its stationary version
0 = div (ρ∇ (ερ−G ∗ ρ)) (2.2)

posed on the whole space Rd. Due to the applied setting of the model, we shall consider
here only nonnegative solutions ρ ≥ 0.

Assumptions on the kernel G. We shall assume throughout the paper that the
interaction kernel G satisfies

(1) G ≥ 0, and supp(G) = Rd,
(2) G ∈W 1,1(Rd) ∩ L∞(Rd) ∩ C2(Rd),
(3) G(x) = g(|x|) for all x ∈ Rd,
(4) g′(r) < 0 for all r > 0,
(5) g′′(0) < 0,
(6) limr→+∞ g(r) = 0.

We emphasize here that providing sharp conditions on the regularity of G is not a
purpose of the present paper. Let us recall that the equation (2.1) preserves the total
mass

M =
∫
ρ(x)dx

and center of mass

CM [ρ(t)] :=
∫
xρ(x, t)dx.
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Moreover, it is easily seen that, for a given stationary state ρ solving (2.2), Mρ and
ρ(·+ x0) are still stationary states for all M > 0 and x0 ∈ R.

We shall therefore assume M = 1 for simplicity. For future use we introduce the space
P =

{
ρ ∈ L1

+(Rd) :
∫

Rd ρ(x)dx = 1
}

.
Moreover, from now on we shall assume for simplicity

‖G‖L1 =
∫
G(x)dx = 1.

This is not restrictive since the kernel G can always be normalized by modifying the
diffusion constant and the time scale as follows

∂τρ = div
(
ρ∇(ε′ρ− G̃ ∗ ρ)

)
, τ = ‖G‖L1(Rd), G̃ = G/‖G‖L1(Rd), ε′ = ε/‖G‖L1(Rd).

Let us recall the following results on the existence and uniqueness of gradient flow
solutions to (2.1), which follows from the theory developed in [1]. In this sense, let us
introduce one of the most important tool related with the study of the evolution equation
(2.1) and in particular with the stationary version (2.2), namely the energy functional

E[ρ] :=
ε

2

∫
Rd

ρ2(x)dx− 1
2

∫
Rd

∫
Rd

G(x− y)ρ(y)ρ(x)dydx.

Theorem 2.1 ([1]). Let ρ0 ∈ L2 ∩P such that ρ ≥ 0 and E[ρ0] < +∞. Let G satisfy the
above assumptions. Then there exists a unique weak solution ρ to (2.1) with

• E[ρ(t)] < +∞ for all t ≥ 0.
• √ρ∇(ερ−G ∗ ρ) ∈ L2([0, T ]× R2) for all T > 0

such that the following energy identity is satisfied

E[ρ(t)] +
∫ T

0

∫
Rd

ρ |∇(ερ−G ∗ ρ)|2 dxdt = E[ρ0]. (2.3)

In particular, the equation (2.1) produces the following regularizing effect.

Lemma 2.2 (Regularity of L2 ∩ P steady states). Let ρ0 ∈ L2 ∩ P. Then, the corre-
sponding solution ρ(t) to (2.1) satisfies∫

ρ |∇ρ|2 dx < +∞, (2.4)

for almost every t > 0. In particular, let ρ be an L2 ∩ P steady state to (2.1), then ρ
satisfies (2.4) and ρ ∈ C2 on supp[ρ].

Proof. Due to (2.3), the quantity

ε

∫
ρ |∇ρ|2 dx− 2ε

∫
ρ∇ρ · ∇G ∗ ρdx+

∫
ρ |∇G ∗ ρ|2 dx

is finite for almost every t > 0, and therefore, in view of Cauchy-Schwarz inequality, we
have

ε

2

∫
ρ |∇ρ|2 dx− C(ε)

∫
ρ |∇G ∗ ρ|2 dx+

∫
ρ |∇G ∗ ρ|2 dx < +∞,

and thanks to the smoothness assumptions on G we have the assertion (2.4). Let ρ be
a steady state, then ρ satisfies (2.4) too. This implies in particular that ∇ρ is almost
everywhere finite on R2. The energy identity (2.3) implies then

ρ |∇(ερ−G ∗ ρ)|2 = 0
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for almost every x ∈ R2. This means that

ερ−G ∗ ρ = constant

almost everywhere on every connected component of the support of ρ. By convolution
with standard mollifiers, one can easily see that ερ−G ∗ ρ = C for a given C depending
on the connected component of supp[ρ]. Since G is C2, this easily implies ρ ∈ C2 on
supp[ρ]. �

Corollary 2.3 (1d regularity). Let ρ be an L2 ∩P solution to (2.2) in one space dimen-
sion. Then ρ is continuous on R.

Proof. Apply the result in Lemma 2.2 to the case d = 1. Since d
dxρ

3/2 ∈ L2, the one
dimensional Sobolev embedding implies that ρ3/2 is continuous. �

3. Stationary solutions in multiple dimensions

In this section we state the necessary and sufficient conditions on ε and ‖G‖L1 such
that there exists non trivial steady states

ρ∇(ερ−G ∗ ρ) = 0 (3.1)

in the set L2 ∩ P. During our work, we realized that Jacob Bedrossian has obtained
similar results in [2], based on ideas and strategies developed in [38] and [40]. In order to
simplify the coverage of the paper, we shall state the result in [2, Theorem 1] and prove
all other results. Notice that the critical case ε = ‖G‖L1 was not covered in [2].

Let us start by focusing on the interplay between the solutions to (3.1) and the varia-
tional calculus on the energy functional

E[ρ] := ε

∫
Rd

ρ2(x)dx− 1
2

∫
Rd

∫
Rd

G(x− y)ρ(y)ρ(x)dydx.

In the next proposition we prove that being a minimum for the entropy functional is a
sufficient condition for being a solution to (3.1).

Proposition 3.1 (Stationary solutions via energy minimization). Let ρ ∈ L2(Rd) be a
minimizer for the energy functional

E[ρ] :=
1
2

∫
Rd

ρ (ερ−G ∗ ρ) dx

on P. Then
ρ∇ (ερ−G ∗ ρ) = 0 a. e. in Rd.

Proof. Let V ∈ C1
c (Rd) be an arbitrary vector field and let u(x, s) be a local solution to

the continuity equation
∂su(x, s) + div(u(x, s)V (x)) = 0

with initial datum
u(x, 0) = ρ(x)

with ρ being the minimizer for E given in the hypothesis. Such a u can be constructed
by solving the characteristic ODE

d

ds
X(x, s) = V (X(x, s))
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coupled with the initial datum
X(x, 0) = x

locally in s = 0, with the local solution X(x, s) being C1, and by taking u(x, s) :=
[(X(·, s))]ρ](x, s), i. e. u(x, s) defined via∫

φ(x)u(x, s)dx =
∫
φ(X(x, s))ρ(x)dx, for all φ ∈ C1

c (Rd)

(cf. for instance [1, Chapter 8, Lemma 5.5.3]). For all s in the interval of existence of u
we have ∫

u(x, s)dx = 1, u(x, s) ≥ 0 a.e.

and therefore the map s 7→ E[u(·, s)] has a local minimum at s = 0. Hence

0 ≤ d

ds
E[u(·, s)]|s=0 =

∫
(εu−G ∗ u)∂sudx|s=0

= −
∫

(εu−G ∗ u) div(uV )dx|s=0 =
∫
ρ∇(ερ−G ∗ ρ) · V dx

and replacing V with −V we obtain

0 ≥
∫
ρ∇(ερ−G ∗ ρ) · V dx

and therefore∫
ρ∇(ερ−G ∗ ρ) · V dx = 0, for an arbitrary V ∈ C1

c (Rd)

which is the desired assertion. �

Let us now compute the first and the second order Gateaux derivatives of E.

Lemma 3.2. Let ρ ∈ L2 ∩P be a solution to (3.1). Then, ρ is a stationary point for the
energy functional E. Moreover, the second order Gateaux derivative of E on ρ satisfies

d2

dδ2
E[ρ+ δv]|δ=0 = ε

∫
Rd

v2(x)dx−
∫
v(x)G ∗ v(x)dx, (3.2)

for all v = div(ρV ) and V ∈ C1
c (Rd).

Proof.
Suppose ρ ∈ L2 ∩ P satisfies (3.1). Let us compute

lim
δ→0

1
δ

(E[ρ+ δv]− E[ρ])

with v = div(ρV ) for an arbitrary vector field V ∈ C1
c , which implies

∫
v(x)dx = 0. We

obtain
1
δ

(E[ρ+ δv]− E[ρ])

=
ε

2δ

∫
supp(ρ+δv)

(ρ+ δv)2dx− ε

2δ

∫
supp(ρ)

ρ2dx

− 1
2δ

∫
supp(ρ+δv)

(ρ+ δv)G ∗ (ρ+ δv)dx+
1
2δ

∫
supp(ρ)

ρG ∗ ρdx.
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Therefore we easily get

lim
δ→0

1
δ

(E[ρ+ δv]− E[ρ]) =
∫
v(ερ−G ∗ ρ)dx

=
∫

div(ρV )(ερ−G ∗ ρ)dx = −
∫
ρV · ∇(ερ−G ∗ ρ)dx.

Therefore, ρ is a stationary point for E under the constraint
∫
ρdx = 1. The computation

of the second derivative of E on ρ yields

d2

dδ2
E[ρ+ δv] =

d2

dδ2

ε

2

∫
supp(ρ+δv)

(ρ+ δv)2dx

− d2

dδ2

1
2

∫
supp(ρ+δv)

(ρ+ δv)G ∗ (ρ+ δv)dx

= ε

∫
v2dx−

∫
vG ∗ vdx

which is independent on δ and therefore it is valid also on δ = 0. �

Before we start analyzing the existence or nonexistence of steady states, we introduce
a very simple technical lemma which will be very useful in the sequel.

Lemma 3.3. Suppose ρ ∈ L2 ∩ P is a solution to (3.1) having connected support. Then

ερ(x) =
∫

supp[ρ]
G(x− y)ρ(y)dy + C

for all x ∈ supp[ρ] with C = 2E[ρ]. Moreover, in case supp[ρ] has infinite measure, then
C = E[ρ] = 0.

Proof. It is immediate from (3.1) that

ερ(x) =
∫

supp[ρ]
G(x− y)ρ(y)dy + C (3.3)

for all x ∈ supp[ρ] for a certain constant C. Then, we multiply (3.3) by ρ(x) and integrate
over supp[ρ] to obtain

ε

∫
supp[ρ]

ρ2(x)dx =
∫

supp[ρ]

∫
supp[ρ]

G(x− y)ρ(y)ρ(x)dydx+ C,

where we have used that ρ has unit mass. It is therefore clear that C = 2E[ρ]. Suppose
now that supp[ρ] has infinite measure. Suppose by contradiction that C 6= 0. Let
{xk} ⊂ supp[ρ] be a sequence of points such that |xk| → +∞. We have, for all k,

ερ(xk)−
∫

supp[ρ]
G(xk − y)ρ(y)dy = C

and therefore the same expression should hold in the limit k → +∞. Now, the assump-
tions on G imply that the integral∫

supp[ρ]
G(xk − y)ρ(y)dy
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converges to zero as k → +∞. This is due to Lebesgue’s dominated convergence Theorem.
Therefore, the term ρ(xk) has a limit C as k → +∞. Such limit is the same for all
diverging sequences of points {xk} ⊂ supp[ρ], which means

lim
x∈supp[ρ],|x|→+∞

ρ(x) = C.

Now, since supp[ρ] has infinite measure, then C 6= 0 implies that ρ is not integrable,
which is a contradiction. Therefore C = 0. �

3.1. Non existence of nontrivial steady states for ε > 1. We start by covering the
case ε > 1. Here, there exist no nontrivial steady states, as it follows from the following
simple lemma.

Lemma 3.4. Let ε > 1. Then, there exists no stationary solutions to (3.1) in the space
L2 ∩ P.

Proof. We first prove that there exists no minimizer for E[ρ] under the mass constraint∫
ρ = 1 and ρ ≥ 0. To see this, we use Young inequality for convolutions as follows

E[ρ] =
ε

2

∫
ρ2dx− 1

2

∫
ρG ∗ ρdx ≥ ε

2

∫
ρ2dx− ‖G‖L1

2

∫
ρ2dx =

ε− 1
2

∫
ρ2dx (3.4)

with ε − 1 > 0. Moreover, we have the simple estimate E[ρ] ≤ C‖ρ‖2L2 . Take a family
of functions ρλ(x) ≥ 0 such that

∫
ρλ(x)dx = 1 and

∫
ρ2
λ(x)dx → 0 as λ → +∞. To

construct such a family, we just take a fixed L2
+(Rd) function ρ 6≡ 0 and rescale it by

ρλ(x) = λ−dρ(λ−1x). For such a family we therefore have

E[ρλ]→ 0, as λ→∞.
Therefore, it is impossible to have a minimizer ρ∞for E[ρ] in the set

{
ρ ∈ L1

+ :
∫
ρ = 1

}
because (3.4) would imply that E[ρ∞] > 0 and we would necessarily have 0 < E[ρλ] <
E[ρ∞] for λ large enough.

Now we prove that there exist no steady states. Suppose by contradiction that ρ is
a steady state. Then, due to Lemma 3.2 ρ is a stationary point for E. Moreover, the
formula (3.2) implies that the functional E is strongly convex, and therefore admits only
one stationary point, which coincides with its global minimizer. But this contradicts the
non existence of a global minimizer proven above. �

3.2. The critical case ε = 1. We aim to solve

0 = div (ρ∇ (ρ−G ∗ ρ)) . (3.5)

We shall prove that no L2 ∩ P steady states exist in this case.

Theorem 3.5 (Non-existence of nontrivial steady states for ε = 1). There exists no
solutions to (3.5) in L2 ∩ P.

Proof. From Cauchy–Schwartz inequality we know that∫
Rd

ρG ∗ ρdx ≤ ‖ρ‖L2(Rd)‖G ∗ ρ‖L2(Rd)

and the equality in the above formula holds if and only if ρ and G ∗ ρ are proportional.
In terms of the functional E this means that

E[ρ] ≥ 0 for all ρ ∈ L2(Rd) ∩ P(Rd).



QUADRATIC DIFFUSION EQUATIONS WITH LONG-RANGE ATTRACTION 9

As in Lemma 3.4, we have the estimate E[ρ] ≤ C‖ρ‖2L2 , and using once again the family
ρλ of Lemma 3.4 we see that infρ∈L2∩P E[ρ] = 0. Assume by contradiction that there
exists a stationary solution ρ∞. Then, due to the result in Lemma 3.2 and in view of
Cauchy–Schwartz inequality, the second order derivative of E is everywhere nonnegative.
Hence, the functional E is convex and therefore ρ∞ is a global minimizer for E under the
constraint ρ ∈ L2 ∩ P. Then, we must have E[ρ∞] = 0, which means that ρ and G ∗ ρ
are proportional, i. e. there exists a constant λ ∈ R+ such that

ρ∞(x) = λG ∗ ρ∞(x) (3.6)

almost everywhere on Rd. Integrating (3.6) over Rd yields

1 = λ‖G‖L1(Rd) = λ

and hence
ρ∞(x) = G ∗ ρ∞(x) (3.7)

almost everywhere on Rd. We can then apply the Fourier transform

f̂(ξ) =
∫

Rd

e−2πix·ξf(x)dx

to both members of the equation (3.7) to obtain

ρ̂∞(ξ) = Ĝ(ξ)ρ̂∞(ξ), ξ ∈ Rd.

We have
|Ĝ(ξ)| ≤

∫
Rd

|G(x)|dx = 1.

Moreover, since G is even, then Ĝ(ξ) < 1 for all ξ 6= 0. In order to see that, write

Ĝ(ξ) =
∫

Rd

d∏
k=1

e−2πixkξkG(x)dx =
∫

Rd

d∏
k=1

(cos(2πxkξk)− i sin(2πxkξk))G(x)dx,

then G being even easily implies that only real valued contributions survive in the above
integral; such real valued contributions are of the form∫

Rd

fh,k(x, ξ)G(x)dx

where the functions fh,k are such that |fh,k(x, ξ)| ≤ 1 and |fh,k(x, ξ)| < 1 for x ranging
on a set of positive measure. Therefore, we have proven that

ρ̂∞(ξ) = 0 for all ξ 6= 0

and ρ̂∞(0) = 1. This implies that ρ(x) = 0 almost everywhere, which contradicts the fact
that ρ has unit mass. �

3.3. Stationary solutions for ε < 1. Let us now provide a minimizer for the entropy
functional in the case ε < 1, which implies the existence of a nontrivial L2 ∩ P steady
state for (3.1) in view of Proposition 3.1. Such result is proven rigorously in [2, Theorem
1], which we recall here.

Theorem 3.6 (Existence of minimizers, [2]). Let ε < 1. Then, there exists a radi-
ally symmetric non-increasing minimizer ρ ∈ P ∩ L2(Rd) for the entropy functional E
restricted to P with ρ 6= 0.
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We send the reader to [2] for the details of the proof, which is based on a sort of sub-
additivity property needed to provide suitable compactness of the minimizing sequence,
cf. [2, Lemma 2]. For the sake of clarity, we shall still provide the simple proof of the
fact that global minima of E under mass constraint are strictly negative, which forces
the minimizer to be non zero.

Lemma 3.7. Let ε < 1. Then, infρ∈P∩L2(Rd)E[ρ] < 0.

Proof. We consider the family σλ ∈ L2 ∩ P

σλ(x) =
1

2λ
χ[−λ,λ](x).

For ε < 1 we have

E[σλ] =
ε

4λ
− 1

8λ2

∫ λ

−λ

∫ λ

−λ
G(x− y)dydx

=
ε

4λ
− 1

4λ

∫ λ

−λ
G(z)dz =

1
4λ

(
ε−

∫ λ

−λ
G(z)dz

)
and since ∫ λ

−λ
G(z)dz → 1 as λ→ +∞,

we easily obtain that there exists a λ such that E[σλ] < 0. �

4. Stationary solutions in the 1-d case

In this section we prove the main result of our paper, namely that nontrivial stationary
solutions (which always exist in the case ε < 1) in one space dimension with fixed mass
and center of mass are unique. We shall first provide certain necessary conditions on the
steady states and then prove that they are unique under such conditions. The main tool
in this procedure is the use of the strong version of Krein-Rutman Theorem 4.10.

We start with a necessary condition on the steady states which deals with a property
of their support.

Lemma 4.1 (Steady states have connected support). Let ρ be a stationary solution to
(3.1) in one space dimension, namely

ρ∂x (ερ−G ∗ ρ) = 0 a.e. on R. (4.1)

Then, supp(ρ) is a connected set.

Proof. Let ρ solve (4.1). Let us first assume that ρ is compactly supported. Suppose that
supp(ρ) is not connected. Accordingly, let [a, b] be a non trivial interval such that

ρ(x) 6≡ 0 if x < a

ρ(x) = 0 if a ≤ x ≤ b (4.2)

ρ(x) 6≡ 0 if x > b.

Let us introduce the velocity field

V (x) :=

{
−1 if x ∈ (−∞, a)
1 if x ∈ (b,+∞)
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and let V ∈ C1(R). Let u(x, s) be a local solution to the Cauchy problem for the
continuity equation {

∂su+ ∂x(uV ) = 0
u(x, 0) = ρ(x).

Let us compute the evolution of the energy E along u at the time s = 0:

d

ds
E[u(s)]|s=0 =

∫
us(εu(x, s)−G ∗ u(x, s))dx|s=0 =

∫
ρV ∂x(ερ−G ∗ ρ)dx = 0.

Then, by definition of V we have

ε

∫
R
ρV ∂xρ =

ε

2

∫ a

−∞
∂xρ

2dx+
ε

2

∫ b

a
V ∂xρ

2dx− ε

2

∫ +∞

b
∂xρ

2dx = 0 (4.3)

because ρx = 0 on [a, b] and ρ = 0 on x = a, b and at ±∞. Hence, we have

0 =
∫ +∞

−∞
ρV ∂xG ∗ ρdx = −

∫ a

−∞
ρG′ ∗ ρdx+

∫ +∞

b
ρG′ ∗ ρdx. (4.4)

We compute∫ a

−∞
ρG′ ∗ ρdx =

∫ a

−∞

∫ a

−∞
ρ(x)G′(x− y)ρ(y)dydx+

∫ a

−∞

∫ +∞

b
ρ(x)G′(x− y)ρ(y)dydx,

the first term on the above right-hand side is zero since G′ is odd and the integration
domain is symmetric in x and y. Since G′(z) ≥ 0 as z ≤ 0, we have for the second term

ρ(x)G′(x− y)ρ(y) ≥ 0 on (x, y) ∈ (−∞, a)× (b,+∞).

In a similar way one can prove that∫ +∞

b
ρG′ ∗ ρdx =

∫ +∞

b
dx

∫ a

−∞
dyρ(x)G′(x− y)ρ(y)

with the integrand ρ(x)G′(x − y)ρ(y) ≤ 0 on the integration domain. Therefore, (4.4)
implies that

ρ(x)ρ(y) ≡ 0 on {x < a} ∩ {y > b}. (4.5)

We have thus proven that, whenever (4.2) holds, then (4.5) has to be necessarily satisfied.
Let A,B be two nonempty connected components of supp(ρ) and let [α, β] be the maximal
interval such that

a < b, for all a ∈ A, b ∈ B
ρ ≡ 0 on [α, β]
α ≥ a, for all a ∈ A
β ≤ b, for all b ∈ B.

Then, ρ(x)ρ(y) = 0 for all (x, y) such that

x < α, y > β,

which implies that either A or B cannot be in the support of ρ, and that is a contradic-
tion. In order to generalize the proof to a stationary solution ρ which is not compactly
supported, one can cutoff ρ to have compact support in such a way that the L2 norm of
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the compactly supported approximation is arbitrarily close to the L2 norm of ρ. Then,
the estimate

ε

∫
|ρ∂xρ|dx ≤ ‖G‖L1‖ρ‖2L2

implies that the integrals in (4.3) converge at infinity, therefore all the above computations
are valid up to an arbitrary difference which vanishes in the limit. �

Remark 4.2. In the case supp(G) = [−R,R] one can use the same strategy as in Lemma
4.1 to prove that, given two connected components A,B of supp(ρ) one has dist(A,B) >
2R. The proof is a straightforward generalization of the above arguments, and it is
therefore left to the reader.

We now exploit a standard symmetric rearrangement technique to prove that the min-
imizers of the energy are symmetric and monotonically decreasing on x > 0 under the
constraint of zero center of mass, cf. [38, 39].

Proposition 4.3. Let ρ∞ be a minimizer for the energy

E[ρ] =
ε

2

∫
ρ2(x)dx− 1

2

∫ ∫
G(x− y)ρ(x)ρ(y)dydx

under the constraint that the center of mass is zero. Then, ρ∞ is symmetric and mono-
tonically decreasing on x > 0.

Proof. We have to prove that the energy decreases strictly when a function u which is
not symmetric and decreasing on x > 0 is replaced by its symmetric rearrangement

u∗(x) = sup {t ≥ 0 : meas({u > t}) > 2 |x|} . (4.6)

For every exponent p ≥ 1 the following holds:∫
R

(u∗)pdx =
∫

R
(u)pdx, (4.7)

therefore the L2 part of the energy is invariant when passing from u to u∗. As for the
interaction energy, we recall the well known Riesz’s rearrangement inequality, see e. g.
[39], ∫

Rd

∫
Rd

f(x)g(x− y)h(y)dydx ≤
∫

Rd

∫
Rd

f∗(x)g∗(x− y)h∗(y)dydx, (4.8)

which holds for all nonnegative functions f, g, h vanishing at infinity. Moreover, if g is
strictly decreasing on x > 0 and symmetric, then equality in (4.8) holds if and only if
f(x) = f∗(x− x0) and h(x) = h∗(x− x0) for some common x0. Apply such a theorem to
our case, using G∗ = G and the fact that u is not symmetric up to translations. �

Let us rephrase Lemma 3.3 in the one-dimensional case.

Lemma 4.4. Let ρ be a 1d steady state, i. e.

ερ = G ∗ ρ+ C on supp[ρ]

for some C ∈ R. Then, C = 2E[ρ].

Proof. The support of ρ is connected in view of Lemma 4.1, therefore Lemma 3.3 applies.
�
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Lemma 4.5. Let ρ ∈ P ∩ L2 and let x0 ∈ R. Let ρx0 be defined by

ρx0(x) := ρ(x+ x0).

Then, E[ρx0 ] = E[ρ].

Proof. It follows by direct computation of the energy and by change of variable under
the integral sign. �

Lemma 4.6. Let ρ be a steady state with ε < 1. Then, the support of ρ is compact.

Proof. We know from Lemma 4.1 that the support of ρ is a connected set. Suppose that
supp(ρ) is not bounded. That means that supp(ρ) is of the form (−∞, b) (b possibly
+∞) or (a,+∞) (a possibly (−∞). Assume first supp(ρ) = (a,+∞). Then, Lemma 4.4
implies

2E[ρ] = ερ(x)−
∫ +∞

a
G(x− y)ρ(y)dy = 0

for all x ∈ (a,+∞). Now, there are two possibilities: either a = −∞ or a > −∞. In the
latter case, evaluation on x = a implies

0 = ερ(a) =
∫ +∞

a
G(a− y)ρ(y)dy

which is a contradiction because the integral on the right hand side is strictly positive
in view of supp(G) = R. In the former case a = −∞ we have then supp(ρ) = R, which
implies

ερ(x) =
∫ +∞

−∞
G(x− y)ρ(y)dy

for all x ∈ R. We can therefore integrate over R to obtain

ε = ‖G‖L1 = 1

which is a contradiction. The same proof can be produced in the case supp(ρ) = (−∞, b).
Therefore, the support of ρ can only be a bounded interval. �

Lemma 4.7. Let ρ be a steady state. Then there exists a symmetric steady state ρ̃ such
that

E[ρ̃] = E[ρ].

Proof. From Lemma 4.1 and Lemma 4.6 we know that supp[ρ] = (a, b) for some a, b ∈ R.
For a given x ∈ (a, b) we have

ερ(x) = G ∗ ρ(x) + C (4.9)

for some C ∈ R. Evaluation on x = a and x = b gives

C = −
∫ b

a
G(a− y)ρ(y)dy = −

∫ b

a
G(b− y)ρ(y)dy.

Let ρ(x) = ρ(x + x0) with x0 = (a + b)/2. Then ρ is still a steady state and it satisfies
E[ρ] = E[ρ] thanks to Lemma 4.5. Moreover, the support of ρ is symmetric. Let us
introduce

ρ̃(x) :=
1
2

(ρ(x) + ρ(−x)).
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Clearly, supp[ρ̃] = supp[ρ] and we have, for all x ∈ supp[ρ̃],

ερ̃(x) =
ε

2
(ρ(x) + ρ(−x)) =

ε

2
(ρ(x+ x0) + ρ(−x+ x0))

=
1
2

∫ b

a
G(x+ x0 − y)ρ(y)dy +

1
2

∫ b

a
G(−x+ x0 − y)ρ(y)dy + C

=
1
2

∫ (b−a)/2

(a−b)/2
G(x− z)ρ(z)dy +

1
2

∫ (b−a)/2

(a−b)/2
G(−x− z)ρ(z)dy + C

=
1
2

∫ (b−a)/2

(a−b)/2
G(x− z)ρ(z)dy +

1
2

∫ (b−a)/2

(a−b)/2
G(x− z)ρ(−z)dy + C

=
∫ (b−a)/2

(a−b)/2
G(x− z)1

2
(ρ(z) + ρ(−z)) dz + C =

∫ (b−a)/2

(a−b)/2
G(x− z)ρ̃(z)dz + C

where we have used the symmetry of G. The above computation shows that ρ̃ has the
same energy as ρ in view of the results in Lemma 4.5 and Lemma 4.4. �

Lemma 4.8 (Support of a minimizer). Let ρ∞ be a global minimizer to E. Let ρ be a
steady state such that

meas(supp[ρ∞]) ≤ meas(supp[ρ]).
Then ρ is also a minimizer.

Proof. Assume first that we are in the special case supp[ρ∞] ⊆ supp[ρ]. Let us compute
the second variation of E around the minimizer ρ∞ along the direction ρ∞ − ρ.

d2

dδ2
E[ρ∞ + δ(ρ− ρ∞)]|δ=0

= ε

∫
(ρ− ρ∞)2dx−

∫ ∫
G(x− y)(ρ(x)− ρ∞(x))(ρ(y)− ρ∞(y))dydx

= 2E[ρ] + 2E[ρ∞]− 2
∫

supp[ρ∞]
ρ∞(ερ−G ∗ ρ)dx

= 2E[ρ] + 2E[ρ∞]− 4E[ρ]

where the last step is justified by the fact that supp[ρ] ⊆ supp[ρ∞]. Therefore, since ρ∞
is a minimizer, the second derivative above is nonnegative, i. e.

0 ≤ d2

dδ2
E[ρ∞ + δ(ρ− ρ∞)]|δ=0 = 2(E[ρ∞]− E[ρ]),

which yields E[ρ] ≤ E[ρ∞]. Since ρ∞ is a minimizer, then so is ρ. In the general case
in which supp[ρ∞] * supp[ρ], consider a translation ρx0(x) = ρ(x − x0) in such a way
that the support of ρ contains the support of ρ∞. Since the energy is invariant after
translation in view of Lemma 4.5, the assertion is proven. �

We are now getting closer to the proof of our uniqueness result. Let us recall the
following important theorems, see e. g. [23] and the references therein.

Theorem 4.9 (Krein–Rutman Theorem). Let X be a Banach space, let K ⊂ X be a
total cone, i. e. such that λK ⊂ K for all λ ≥ 0 and such that the set {u− v, u, v ∈ K}
is dense in X. Let T be a compact linear operator such that T (K) ⊂ K with positive
spectral radius r(T ). Then r(T ) is an eigenvalue for T with an eigenvector u ∈ K \ {0}.
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An important consequence [23] of the Krein–Rutman theorem, which will be extremely
useful in the sequel, is the following

Theorem 4.10 (Krein–Rutman Theorem, strong version). Let X be a Banach space,
K ⊂ X a solid cone, i. e. such that λK ⊂ K for all λ ≥ 0 and such that K has a
nonempty interior K0. Let T be a compact linear operator which is strongly positive with
respect to K, i. e. such that T [u] ∈ K0 is u ∈ K. Then,

(i) The spectral radius r(T ) is strictly positive and r(T ) is a simple eigenvalue with an
eigenvector v ∈ K0. There is no other eigenvalue with a corresponding eigenvector
v ∈ K.

(ii) |λ| < r(T ) for all other eigenvalues λ 6= r(T ).

We shall now prove the uniqueness of symmetric steady states with unit mass which
are monotonically decreasing on the positive semi-axis in the case ε < 1. We already
know that under the above assumptions we can write, for x ∈ [−L,L] = supp[ρ],

ερ(x) =
∫ L

−L
G(x− y)ρ(y)dy + C, C = 2E[ρ]. (4.10)

Taking the derivative w.r.t x ∈ [−L,L] we obtain

ερ′(x) =
d

dx

∫ L

−L
G(x− y)ρ(y)dy =

d

dx
G ∗ ρ(x) =

∫ L

−L
G(x− y)ρ′(y)dy.

The symmetry of ρ and G implies, for x ∈ [0, L],

ερ′(x) = −
∫ L

0
G(x+y)ρ′(y)dy+

∫ L

0
G(x−y)ρ′(y)dy =

∫ L

0
[G(x− y)−G(x+ y)] ρ′(y)dy.

Assuming that ρ ∈ C1([−L,L]), finding a steady state with the above assumptions is
equivalent to find ρ on [0, L] such that

ρ(L) = 0,

− ρ′(x) = u(x), x ∈ [0, L],

u ≥ 0, and u solves εu =
∫ L

0
H(x, y)u(y)dy,

H(x, y) = G(x− y)−G(x+ y).

To convince ourselves about that, integrate

−ερ′(x) = −
∫ L

0
(G(x− y)−G(x+ y))ρ′(y)dy



16 M. BURGER, M. DI FRANCESCO, AND M. FRANEK

over the interval [ξ, L] for some ξ ∈ [0, L). Then ρ(L) = 0 and integration by parts imply

−ερ(ξ) =−
∫ L

ξ
dx

∫ L

0
(G(x− y)−G(x+ y))ρ′(y)dy

=−
∫ L

ξ
dx[(G(x− L)−G(x+ L))ρ(L)− (G(x)−G(x))ρ(0)]

+
∫ L

ξ
dx

∫ L

0
(−G′(x− y)−G′(x+ y))ρ(y)dy

=
∫ L

0
ρ(y)dy

∫ L

ξ
(−G′(x− y)−G′(x+ y))dx

=
∫ L

0
ρ(y)[−G(L− y)−G(L+ y) +G(ξ − y) +G(ξ + y)]

which implies, by the symmetry of G,

ερ(x) =
∫ L

−L
G(x− y)ρ(y)dy + C, C = −

∫ L

0
(G(L− y) +G(L+ y))ρ(y)dy.

For further reference, we introduce the operator

GL[ρ](x) :=
∫ L

0
[G(x− y) +G(x+ y)−G(L− y)−G(L+ y)] ρ(y)dy (4.11)

on the Banach space
YL := {ρ ∈ C([0, L]) : ρ(L) = 0} .

In order to simplify the notation, we also define the following operator

HL[u](x) :=
∫ L

0
H(x, y)u(y)dy =

∫ L

0
(G(x− y)−G(x+ y))u(y)dy.

Proposition 4.11. For a fixed L > 0 there exists a unique symmetric function ρ ∈
C2([−L,L]) with unit mass and with ρ′(x) ≤ 0 on x ≥ 0 such that ρ solves (4.10) for
some ε = ε(L) > 0. Such function ρ also satisfies ρ′′(0) < 0. Moreover, ε(L) is the
largest eigenvalue of the compact operator GL on the space Banach YL and any other
eigenfunction of GL on YL with unit mass has the corresponding eigenvalue ε′ satisfying
|ε′| < ε(L).

Proof. Since G is decreasing on the half-line [0,+∞) we get

H(x, y) = G(x− y)−G(x+ y) ≥ 0, on x, y ≥ 0.

Consider now the Banach space

XL =
{
f ∈ C1([0, L]) : f(0) = 0

}
endowed with the C1 norm

‖f‖XL
= ‖f‖L∞([0,L]) + ‖f ′‖L∞([0,L]).

It can be easily seen that the set

K := {f ∈ X : f ≥ 0}
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is a solid cone in X. Indeed, any function f ∈ K with f ′(0) > 0 is in the interior of K.
Moreover, for a given u ∈ K, we have

HL[u](x) =
∫ L

0
H(x, y)u(y)dy ≥ 0

for all x ∈ [0, L] and

HL[u](0) =
∫ L

0
H(0, y)u(y)dy =

∫ L

0
(G(−y)−G(y))u(y)dy = 0.

Therefore H is a positive operator in the sense provided by the definition of the cone K.
Indeed, we can prove that H is strongly positive, i. e. for a given u ∈ K, H[u] belongs to
the interior of K. In order to see that, for a u ∈ K \ {0} compute

(HL[u])′(0) =
∫ L

0
(G′(−y)−G′(y))u(y)dy = −2

∫ L

0
G′(y)u(y)dy > 0,

and thereforeHL[u] belongs to the interior of K. Hence, we can apply the stronger version
of Krein–Rutman theorem 4.10, which implies the existence of a simple eigenvalue ε > 0
equal to the spectral radius of HL. More precisely, there exists a family of solutions u to

εu = HL[u]

generated by one given nontrivial element ū in the interior of K. This implies that the
corresponding set of symmetric and monotone ρ solving (4.10) satisfies

ρ(x) = ρ(x)− ρ(L) = −
∫ L

x
ρ′(y)dy =

∫ L

x
u(y)dy = α

∫ L

x
ū(y)dy,

for α > 0. We choose α as follows

α =
(

2
∫ L

0

∫ L

x
ū(y)dydx

)−1

,

and we obtain that ρ has unit mass on [−L,L]. It is clear that ρ′(x) ≤ 0 for x ≥ 0,
ρ′(0) = 0, and ρ′′(0) < 0. In view of the statement (i) of theorem 4.10, there exists no
other eigenvalues to HL with eigenvectors in K besides the one ε with eigenfunction ū,
and all other eigenvalues ε′ with eigenfunctions in XL satisfy |ε′| < ε. �

The eigenvalue ε (which coincides with the spectral radius of HL) can be considered
as a function of L, namely ε = ε(L). The behavior of such function is established in the
next proposition.

Proposition 4.12 (Behavior of the function ε(L)). The simple eigenvalue ε(L) found in
Proposition 4.11 is uniquely determined as a function of L with the following properties

(i) ε(L) is strictly increasing with respect to L
(ii) limL→+∞ ε(L) = 1
(iii) ε(0) = 0.

Proof. In order to prove (i), let us consider the equation

ε(L)uL(x) = HL[uL](x) =
∫ L

0
H(x, y)uL(y)dy, x ∈ [0, L],
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where uL is the unique eigenfunction obtained in Proposition 4.11. We multiply the above
equation by uL(x) and integrate over [0, L] to obtain

ε(L)
∫ L

0
uL(x)2dx =

∫ L

0
HL[uL](x)u(x)dx.

Recall that the eigenvalue uL satisfies uL(0) = 0 and, for x ∈ (0, L],

uL(x) =
1

ε(L)

∫ L

0
H(x, y)u(y)dy > 0

since H(x, y) = G(x− y)−G(x+ y) > 0 for all y ∈ [0, L] under the assumption x > 0 in
view of the strict decreasing monotonicity of G on x > 0. For a general L ∈ (0,+∞) and
a δ > 0 (small enough) we have

I1 := ε(L+ δ)
∫ L+δ

0
u2
L+δ(x)dx− ε(L)

∫ L

0
u2
L(x)dx

=
∫ L+δ

0
HL+δ[uL+δ](x)uL+δ(x)dx−

∫ L

0
HL[uL](x)uL(x)dx =: I2. (4.12)

We analyze the two terms I1 and I2 separately. I1 can be expanded as follows:

I1 = (ε(L+ δ)− ε(L))
∫ L+δ

0
u2
L+δ(x)dx

+ ε(L)
∫ L+δ

0
(uL+δ(x)− uL(x))(uL+δ(x) + uL(x))dx+ ε(L)

∫ L+δ

L
u2
L(x)dx.

I2 is given by

I2 =
∫ L+δ

0
(HL+δ[uL+δ](x)−HL[uL](x))uL+delta(x)dx

+
∫ L+δ

L
HL[uL](x)uL(x)dx+

∫ L+δ

0
HL[uL](x) (uL+δ(x)− uL(x)) dx

=
∫ L+δ

0
(HL+δ[uL+δ](x)−HL[uL](x))uL+delta(x)dx

+ ε(L)
∫ L+δ

L
u2
L(x)dx+ ε(L)

∫ L+δ

0
uL(x) (uL+δ(x)− uL(x)) dx
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and on substituting I1 and I2 in (4.12) we can cancel some terms and obtain

(ε(L+ δ)− ε(L))
∫ L+δ

0
u2
L+δ(x)dx+ ε(L)

∫ L+δ

0
(uL+δ(x)− uL(x))uL+δ(x)dx

=
∫ L+δ

0
(HL+δ[uL+δ](x)−HL[uL](x))uL+δ(x)dx

=
∫ L+δ

0

∫ L+δ

L
H(x, y)uL(δ)(y)uL+δ(x)dydx

+
∫ L+δ

0

∫ L+δ

0
H(x, y)(uL+δ(y)− uL(y))uL+δ(x)dydx

=
∫ L+δ

0

∫ L+δ

L
H(x, y)uL(y)uL+δ(x)dydx

+ ε(L+ δ)
∫ L+δ

0
uL+δ(x)(uL+δ(x)− uL(x))dx

where we have used the definition of HL and the property H(x, y) = H(y, x). By suitably
expanding the term on the left hand side in the above identity, we obtain

(ε(L+ δ)− ε(L))
∫ L+δ

0
uL(x)uL+δ(x)dx =

∫ L+δ

0

∫ L+δ

L
H(x, y)uL(y)uL+δ(x)dydx

= ε(L+ δ)
∫ L+δ

L
uL+δ(y)uL(y)dy

and the positivity property of uL implies that

ε(L+ δ) > ε(L),

which proves (i).
Let us now prove (ii). Assume by contradiction that

lim
L→+∞

ε(L) = ε0 < 1.

Let ε ∈ (ε0, 1). We know from Theorem 3.6 that there exists a minimizer ρε for the
energy E with zero center of mass. We also know that the support of ρε is compact
from Lemma 4.6. From Proposition 4.3 we know that ρε is symmetric and monotonically
decreasing on x > 0. Therefore, ρε is the unique eigenfunction with unit mass provided
by Proposition 4.11, and the support of ρε is [−L,L] for some L > 0. Therefore, the
corresponding eigenvalue should be ε(L) < ε0, which is a contradiction since ε and ε0 are
two different eigenvalues with the same eigenfunction.

Let us prove (iii). By letting L↘ 0 one has that the operator HL is the zero operator,
and therefore ε(0) should be the eigenvalue of the zero operator, which can only be zero.

�

We are now ready to prove the main result of this paper.

Theorem 4.13. Let ε < 1. Then, there exists a unique ρ ∈ L2 solution to

ρ∂x(ερ−G ∗ ρ) = 0,

with unit mass and zero center of mass. Moreover,
• ρ is symmetric and monotonically decreasing on x > 0,
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• ρ ∈ C2(supp[ρ]),
• supp[ρ] is a bounded interval in R,
• ρ has a global maximum at x = 0 and ρ′′(0) < 0,
• ρ is the global minimizer of the energy E[ρ] = ε

2

∫
ρ2dx− 1

2

∫
ρG ∗ ρdx.

Proof. We know from Theorem 3.6 that there exists a minimizer ρ∞ with unit mass
and zero center of mass, which is symmetric and monotonically decreasing on x > 0 in
view of Proposition 4.3 and compactly supported on a certain [−L,L] in view of Lemma
4.6. From the results in Propositions 4.11 and 4.12, we know that there exists a unique
steady state with such properties, because the correspondence ε = ε(L) is one-to-one.
So, the only possibility to violate uniqueness of steady states with unit mass and zero
center of mass is to have a steady state which violates either the monotonicity property
or the symmetry. Suppose first that there exists a steady state with zero center of mass
ρ which is not symmetric, it is not restrictive to assume the support of ρ is [−L′, L′].
Then, we know from Lemma 4.7 that it is possible to construct a symmetric steady
state ρ̃ with the same energy of ρ and with the same support of ρ. Now, there are two
possibilities: either ρ̃ is a minimizer or not. In the former case ρ is also a minimizer and
this is a contradiction (a minimizer is symmetric). In the latter case, the support of ρ̃ is
strictly contained in the support of ρ∞ in view of Lemma 4.8, and ρ̃ is not monotonically
decreasing on x > 0 because otherwise it would be the unique minimizer provided before.
Therefore, with the notation of Proposition 4.11, −ρ̃′ is an eigenfunction for HL′ in the
space XL′ which is not belonging to the solid cone K. Therefore, the stronger version of
Krein-Rutman’s Theorem 4.10 and the fact that ε(L) is increasing imply that L′ > L,
since ρ is an eigenfunction outside the solid cone K, and it therefore should have an
eigenvalue strictly less than ε(L′). This implies that ε(L) < ε(L′) and therefore L < L′.
Now this is a clearly a contradiction because we said before that the support or ρ̃ is
strictly contained in the support of ρ∞, so L > L′. The case in which ρ is symmetric but
not monotonic on x > 0 can be covered by repeating the same argument above (assume
ρ = ρ̃!). �

Corollary 4.14 (Concavity of ρ for small ε). There exists a value ε0 ∈ (0, 1) such that, for
all ε ∈ (0, ε0) the corresponding stationary solution provided in Theorem 4.13 is concave
on the whole interval [0, L].

Proof. We can differentiate twice w.r.t x in

ερ(x) =
∫ L

−L
G(x− y)ρ(y)dy + C

to obtain

ερ′′(x) =
∫ L

−L
G′′(x− y)ρ(y)dy

for all x ∈ [−L,L]. Therefore, G′′ is evaluated on the interval [−2L, 2L] in the above
integral. We know from Proposition 4.12 that L is a monotonically increasing function
of ε with limε↘0 L(ε) = 0. Since G′′(0) < 0, and G ∈ C2, then there exists L0 > 0 such
that G′′ < 0 on [−2L0, 2L0]. Let ε0 be the eigenvalue in K corresponding to L = L0.
Then, the eigenfunction ρ is concave on its support. �
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Remark 4.15 (The case meas(supp(G)) < +∞). If the support of G is bounded, one
can generalize the procedure of the present paper to prove the existence of infinitely
many stationary states, which are countable unions of stationary states the supports of
which are at least as far apart as the size of the support of G. Hence, the components
of the solution are not interacting. On each component of the support the shape of the
stationary states is as in the case of global support of G.

5. Numerical Results

In the following we show numerical simulations for the evolution equation (2.1). We
discretize the equation using an explicit Euler scheme and finite difference methods. In
one dimension, we partitionate the domain Ω = [a, b] using an equidistant grid with n+1
grid points a = x0 < x1 < ... < xn = b and step size h = (b − a)/(n + 1). Furthermore
we use the following finite difference scheme:

ρj+1
i − ρji
dt

= Dx
−(ρjiD

x
+(ερji −G ∗ ρ

j
i ))

with forward and backward difference quotients

Dx
+ρi =

ρi+1 − ρi
h

, Dx
−ρi =

ρi − ρi−1

h
.

The time step size dt has to be chosen appropriately, to quarantee stability. In a first
example we consider an interaction potential G(x) = 1

σ
√

2π
exp

(
−1

2

(x−µ
σ

)2) with mean
µ = 0 and variance σ = 1, which fullfill the conditions (1)-(8), ‖G‖L1 = 1 and models a
wide range attraction. For this kernel we present in Figure 1 the solutions for the station-
ary equation (2.2), which means we calculated the largest eigenvalues and corresponding
eigenvectors of the operator GL defined in (4.11) for different L. The largest eigenvalues
ε = ε(L) are presented in Figure 1 (a). Like mentioned in Proposition 4.12 ε(L) is strictly
increasing with respect to L and furthermore limL→∞ ε(L) = 1. The corresponding eigen-
functions with unit mass are presented in Figure 1 (b) and (c). We proved in Corollary
4.14 the concavity of ρ for small ε. To make this behavior more clear, we illustrate in
Figure 1 (b) the eigenfunctions for L ∈ (0, 1], that means for ε < 0.05. For a certain ε,
which depends on the concavity of the kernel G, the solution is not fully concave on its
support any more, but bell shaped, compare Figure 1 (c).
To make this result more clear we present in Figure 2 the stationary solutions of the
evolution equation (2.1) for ε ∈ (0, 1). We consider a compactly supported initial data
ρ(x, 0) = ρ0 with unit mass

∫
Ω ρ0 = 1. As the results are the same as in Figure 1 (b)-(c),

we recognize again that up to a certain ε the solutions are concave and then bell shaped.
Furthermore we have mass conservation. As mentioned before, for ε ≥

∫
G = 1 we do

not have steady states because the impact of the diffusive term is higher then of the
aggregation term. The solutions behave like the well known Barenblatt-Pattle profiles.
For ε = 0 we obtain an unique stationary solution, which is a Dirac-δ-distribution with
unit mass centered at zero.
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