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Abstract (ii). In each color channel, the image intensity is propor-
tional to the product of the reflectance of objects and
Human visual system (HVS) can perceive constant color  the illumination;
under varying illumination conditions while digital imagie (iii). The reflectance of object can be perceived by HVS
record information of both reflectance (physical color) of while the illumination is automatically discounted.

objects and illumination. Retinex theory, formulated by Ed o .
win H. Land, aimed to simulate and explain this feature of Moreover, it is assumed that the reflectance is the sharp de-

HVS. However, to recover the reflectance from a given im- til in the image ie. edges) and thus piecewise constant
age is in general an ill-posed problem. In this paper, we whereas the |IIum|nat|Qn is spatially smoojth. The primary
establish arl.,-based variational model for Retinex theory 90@l of Retinex theory is to decompose a given imAgeo
that can be solved by a fast computational approach basedt© two differentimages, the reflectanfeand the illumina-

on Bregman iteration. Compared with previous works, our tion £ such that

L,-Retinex method is more accurate for recovering the re-
flectance, which is illustrated by examples and statistits.
medlcgl images such as magnetlc resonance imaging (MRI)'at each pixek.
intensity inhomogeneity is often encountered due to bias

fields. This is a similar formulation to Retinex theory while
the MRI has some specific properties. We then modify the
L,-Retinex method and develop a new algorithm for MRI
data. We demonstrate the performance of our method by
comparison with previous work on simulated and real data.

I(x) = R(X)E(x) (1)

1. Introduction (@) (b)
Figure 1. Adelson’s checker shadow illusion. (a): Originahge.
Digital images are sometimes different from the scene (b): Demonstration.

directly perceived by the human visual system (HVS). Our

visual system can automatically discount the variation of

the illumination which ensures that the perceived color re-  For example, in Figure-1, the image is called "Adelson’s

mains constant under varying illumination conditions.sThi  checker shadow illusion”. For us, the region A seems darker

feature is called color constancy. Edwin H. Land’s Retinex than the region B, but they actually have exactly the same

theory [1, 2, 3, 4] is the first computational model that aims color. This is because, by Retinex theory, they are in dif-

to simulate the HVS. The basic assumptions of Retinex the-ferent illumination conditions. Actually, the region B is

ory are in the shadow of the green cylinder so that the illumina-
tion of the region A is stronger than that of the region B,

(). The HVS performs the same computation in each of i.e., F(A) > F(B). By Retinex theory, the reflectance

three independent color channels (RGB); of the region A is smaller than that of the region i,



R(A) < R(B) to ensurel(A) = I(A). For a human be-  corrupted data.
ing, the illuminationE is discounted by the HVS and only
the reflectance is perceived, which is the reason why the
region A seems darker.

To simulate the mechanism of HVS, we need to recover
the reflectance? from a given imagel/, which is in gen-
eral an ill-posed problem. To overcome this problem, many
algorithms were developed. Retinex algorithms are basi-
cally categorized [8, 9, 10, 11] as path-based algoritheas, r
cursive algorithms, center/surround algorithms, PDEetas
algorithms, and variational algorithms. Path-based algo-
rithms [1, 3, 12] consider the reflectance at each pixel de-
pending on the multiplication of the ratios along random
walks and then stochastic theory is applied. Path-based al-
gorithms need a large number of parameters and have high
computation complexity. Recursive algorithms [14, 15] ex-
tend the path-based algorithms and replace the path com-
putation by a recursive matrix calculation which highly im-
proves the computational efficiency. But the number of it-
erations is not clearly defined and can strongly influence
the final result. The center/surround approaches [1, 17] 2 g
such as SSR (Single Scale Retinex) and MSR (Multiscale (9) (h) ()
Retinex) are based on the idea that the illumination compo-Figure 2. Simulated MRI images. (a,b,c): Clean images.,fid,e
nent tends to change smoothly, contrarily to the reflectance Bias fields simulated by polynomials. (g,h,i): Corruptecages
So the output reflectance values can be computed by subby these fields.
tracting a blurred version of the input image. These algo-
rithms are easy to implement but need too many parame- _ . .
ters. In the PDE-based formulations [5, 6, 7, 8], threshold There are many methods for mhomqg_enelty correction
functions are usually utilized to eliminate the illumiraati [20] '”?'”d'”g filtering b_ased, surface-fitting based, S€g-
Then the reflectance can be recovered by solving Poissor{néntation based, and histogram based methods. In partic-
equations which can be done by effective algorithms suchUIar' the well-known N3 m_ethod [19] h‘f"s been one of t_he
as FFT. However, extra nonsparse divergence free vectofost popu!ar methods for mhqmogenelty c_orrect|on Wh'.Ch
fields are introduced to the gradient when we solve the Pois-US€s B-splines to model the bias fields. It is very effective

son equations and thus the recovered reflectance is usuallj‘nd r_las be;en used Iaii a staéldard rr]nethodt;n m?ny dme((jj_lcal
not piecewise constant as expected. Variational method maging softwares. It depends on the number of node dis-

[9, 10] introduce regularization on reflectance and illuain tances. Increasing the number of nodes would lead to con-

tion based on the properties of them. Some reguIarization\/ergen_Ce pl,mblr?mfs andl|nf:reaseq computatlohn t(;mi' ‘
terms such as total variation (TV) are introduced to ensure h To simp |fyftt € ormugtllg);l, ai'n m_arr:y metho | S he ore,
getting piecewise constant reflectance. But they eIiminate]tc € n0|seR|’S(_) en |?]nore II nere ore,llt as e>|<a<§yfc eesa:n
too much information. Therefore, in this paper, we develop orm as et!nex theory. ) tis natur_a to apply Retinex al-
a new L;-based variational method to solve this problem. gorlthms to inhomogeneity correction pr_oblem. However,
Also, we implement this optimization problem based on an n MRI data, th.ere are many small d‘?ta"s suc;h as ve§§els
extremely fast approach called Bregman iteration [13, 16]. and t_|ssues_wh|ch are very |mport_ant mforma_ltlon for 9“.”"
Intensity inhomogeneity is often encountered in mag- cal diagnosis. To keep these details, we modify our original

netic resonance imaging (MRI) because of the bias fieIdsmethOd to develop the smoothéd-Retinex method. We
[19, 20, 21]. The mathematical formulation is compare our algorithm with the N3 method on both simu-

lated and real data to demonstrate the performance.

I(x) = b(x)J (x) + n(x) (2) The rest of the paper is organized as follows. In sec-
tion 2, we propose the mathematical formulation of byf
at pixelx, where! is the measured imagé,is the true sig-  based Retinex method. In section 3, we give the imple-
nal to recover) is an unknown bias field, andis an addi- mentation details. In section 4, numerical results on rétur

tive noise. The bias field is usually assumed to be spatiallyimages and comparison with previous works are presented.
smooth. In Figure-2, three slices of a simulated example areln section 5, the smoothefl;-Retinex method is derived
shown. The goal is to recover the true signal from the given for MRI images and results on both simulated and real data



are shown. Finally the conclusion and future work are dis- which was implemented by Bregman iterations. And the au-
cussed in section 6. thors in [10] showed that the first iteration is actually $ami

to (8), which is solving an equation
2. Li-Retinex model

In this section, we propose a new variational model for
Retinex theory. By taking a logarithm in Equation (1), we where shrinkis an isotropic soft threshold function which
have is defined by

i(x) = r(x) +e(x) ©)

at each pixek, wherei = log(I), r = log(R), ande =
log(E). We then take the gradient:

Ary = div shrink (Vi) (11)

_ 0 if |zl <t
shrink(z) = { z— zm it [lzl[; > ¢ (12)

wheret is a positive parameter. The TV regularized model
Vi=Vr+ Ve (4) is efficient to recover piecewise constant images due to

property of TV regularizer, but it usually loses informatio
Because of the basic assumption that the gradient of the regpout reflectance.

flectance corresponds to sharp details such as edges and the |nstead of minimizing the., norm, our motivation is to
illumination is spatially smoothVe is relatively small. To minimize theL; norm of Vr — §,(Vi). Namely, ourL,-
preserve the gradient of reflectance, a threshold funcsion i Retinex model is

applied toVi. The threshold function is defined as

8u(z) = (1), (=) § F=eamin [ 99 13)
withz = (21,--- , 2,) € R", where = argmin/ \/(Vzr — 1 (Vgi))2 4+ (Vyr — 1 (Vyi))?
| ozif |z >t (14)
mi(z) = { 0 otherwise (6)
By minimizing theL; norm, we usually get a sparse vector
and the thresholdis a positive parameter. Therefore, field q = Vr — 6;(Vi). For images, iff is the solution
Vr ~ 5,(Vi) @) of problem (13), therV# = 6;(Vi) for most part of the

domain. Thus with a high probability, we will have the re-
for a suitablet. flectance’ constant in the region whete(Vi) = 0.

In order to recover the true reflectance imaga PDE-
based method has been proposed by Petro Balagusr 3. |mplementation

[7, 8]. In fact, the authors of [7, 8] considered the Poisson We implement theL;-Retinex model using Bregman

equation methods which are effective to solve sparse reconstruction
A7 = divdy (Vi). (8) problems in image processing [13]. The goal of the original
Bregman method is to solve the general constrained mini-
which is equivalent to minimize thé, norm of Vr — mization problem:
0:(Vi). Suppose' is a solution to this equatiory/7 is not
necessarily equal t6. (V). Actually muin J(u)st.H(u)=0 (15)
Vi =0,(Vi)+p 9)

whereJ is convex but not necessarily differentiable, such
wherep is vector field satisfying digp) = 0. Howeverp is as theL, norm, andH is convex and differentiable with
usually nonsparse. This can introduce some unpredictableZ€ro as its minimum value. The original Bregman method
effects to images. For example, in a regidrhaving con- is based on the concept of Bregman distance for a convex
stant reflectance and smoothly varying illumination, then function.J, which is given as:

divé, (Vi) = 0in U for a suitable threshold. Because »

Vi = p for some unknown nonsparpes may not be con- Dj(u,v) = J(u) = J(v) = (p,u—v) (16)
stantinU/, which is not as desired. wherep € 0J is a subgradient of at the pointv. Using

_Another approagh was proposed by Ma and Osher in [10] (16), the problem (15) can be solved by Bregman iterations:
using a TV regularized model as follows:

k
1 k1 _ in D (u,u*) + H 17
= argmin/t|VT| + 5lVr = Vil (10) B argmin D (u, u”) + H{(u) (17)
r J pk+1 _ pk _ VH(UIH-I) (18)



Ithas been proven that the sequence/oih the Bregmanit- ~ We assumé® = pk /), thereforept = X\b* andpt =
eration converges to the solution of the constrained proble Adivb*. Then the iterations become:

(15). The advantage of Bregman iteration is to transform a

constrained problem into a sequence of unconstrained sub- (F*",d"*!) =arg min/ |d| — A(divb®, r) — A(b*, d)
problems. nd Ja

Our L-Retinex model can be effectively solved by the + é||d — Vr +6:(Vi)||2 (29)
split Bregman method, which was introduced by Goldstein il ok 2 1 - _
and Osher [16] for solvind.;, TV, and related regularized VI =bT = dT VT = 6,(Vi) (30)

problems and applied to various imaging problems. The We then update* andd*
split Bregman method aims to solve the unconstrained prob-
lem:

alternatively as following:

PR+ = arg min —A(divb®, 7) + g||dk — Vr+68:(Vi)||3
min J(®(u)) + H (u), (19) (31)

) A .
where.J and H are as before, and is linear functional. ~ d"™* :argmjn/ |d| — Mb*, d) + §||d =Vt +6,(Vi)| 13
The key idea of the split Bregman method is to introduce @ (32)

an auxiliary variablel = ®(u), and try to solve the con-
strained problem P =pF — dF T vt — 6,(Vi) (33)

A ) The subproblems (31) and (32) can be explicitly solved
min J(d) + H(u), s. t. Jfld = 2(u)[; =0  (20)  [16], which are summarized in the following algorithm.

U

where) is a fixed positive constant. Then the original Breg- ~ Algorithm 1: L,-Retinex

man method can be applied. And andd* are updated input_: Imagei

alternatively. _ output: Reflectance image
For our L;-Retinex model, we apply the split Bregman

method by introducing = (d,, d,) as

Linearly stretch into the range [0,255];
Initialization: r° =4, d® = 0, b° = 0, andk = 0;

dp = Vaor — 7¢(Vai) (21) while [|[rETL — k|5 /[|r*+1 |2 > e do
dy = V,r — 1(V,i) 22) (D)rF L A=Y(div(0,(Vi) + d¥ — bF)) ;
(i) d**+* « shrinky (Vr*+! — 6, (Vi) +0) ;
then we can rewrite (13) as (i) bR+ < bk — @+l 4 Ukt — 5 (Vi);
R (V)k + k+1;
(7,d) = arg I?,idn / \ di +dj st.d = Vr — 6,(Vi) Linearly stretch-* into the range [0,255];
Q
(23) L . :
In iteration (i), we update**! by solving a Poisson
Then we can define equation associated with the zero Neumann boundary con-
dition. The solution of this equation is not unique. But the
J(d,r) = /|d| = /1 [d2 + d%; (24) difference of any two solutions is a constant. Therefore,
& 4 by fixing the value of one pixel, we can get a unique solu-

1 tion. In practice, the equation is solved by a discrete @sin
H(d,r) = §||d — Vr+6,(Vi)|]3. (25) transformation (DCT). We note that the most complex part
of the whole algorithm is to solve this equation. The rest
Givenr? = 0 andd’ = b° = 0, then the Bregman iterations  of the algorithm only contains matrix multiplication anetth
(17) can be written as shrink operation. Thus the whole algorithm turns to be very
simple. In iteration (ii), the isotropic shrinkage functics
(rF L @) = arg midn/ \d| — (pk,d — d*) — (p¥,r —¥) definedin (12). Itis worth mentioning that, in the first it-
Q

T eration,r! is exactly the solution to the Poisson equation
A
+Zlld = Vr + 6V 26) ©
PEHL =pk — A(dFT — Rt 4 5,(Vi)) 27) 4. Numerical resultsof L,-Retinex
pEHL =pk — Adiv(a* ! — vkt 4 5,(Vi)) In this section, we compare ol -Retinex method with

(28) the PDE method in [7, 8] and the TV-Bregman method in



[10]. Theoretically, we should apply the algorithms on raw

amonds have the same intensity although we feel different.

images. However, most test images are gamma-correctedThis is due to the same reason as we mentioned in “Adel-
Gamma-correction means that we have already applied ason’s checker shadow illusion”. We set the threshtotd15

concave function such as a logarithms@rwith 0 < v < 1

for all three algorithms and the computed results are shown.

to the raw images. And all these functions have a similar The recovered reflectance images are supposed to be piece-
shape on image domain so that the logarithm in the Retinexwise constant. If we zoom in the box, we can see the details
theory is not necessary. Therefore, all experiments in thiswhich are shown in color to represent the intensity. The re-
section are done by a gamma-corrected model as suggestesllt from the PDE method is not piecewise constant due to

in [8], which means we omit the logarithm and exponent

the nonsparse vector fiejd as we mentioned before. The

process. For the parameters, we set the convergence toleresult from the TV-Bregman method is improved compared

ancee = 0.0005 and the constant = 1 in the shrinkage

function (12). The only parameter to be found is the thresh-

old ¢.

(k)

Figure 3. “Logvinenko’s illusion”: (a): Original image. Xb
Demonstration. (c,f,i): Recovered reflectance. (d,g,jpo@-in
version of the box in the reflectance and the color shows the in
tensity. (e,h,k): Recovered illumination. (c,d,e): Résdtom
the PDE method. (f,g,h): Results from the TV-Bregman method
(i,j,k): Results from ourl; -Retinex method.

The first example is a single channel image called

“Logvinenkoa’s illusion”. As shown in Figure-3, all the di-

to the PDE method, but it is still not as good as the
Retinex method. It should be noted that the recovered il-
lumination image from the TV-Bregman method contains
much more reflectance information than that of the other
two methods. Therefore, the;-Retinex method gets the
best result both in reflectance and illumination.

T + g

€s

Figure 4. Simulation process

In the next example, we use a synthetic imagevith
range [0,255] as the original image. We use polynomials to
simulate illumination.

3
es(w,y) = Y aya'y’ (34)

4,J=0

wherea;; are random in [-1,1]. And then we rescale the
range of the polynomials to [-128,128]. As in Figure-4,
the simulated images, are the sum of a piecewise con-
stant image-; and the smoothed images. To know the
performance of different methods, we simulate 20 images.
We compare the original image with the recovered re-
flectancer from three methods with threshotd= 20 for
PDE andL,-Retinex and = 15 for TV-Bregman. We cal-
culate the relative distanc&r, ) andd(Vr,, Vi) where

the relative distance is defined by

d(x, %) = X=Xk (35)
[IxI|x
The results are shown in the Figure-5. In the upper figure,
it is shown that the recovered reflectance fromRetinex
method is closer to the original image compared with the
PDE method and the TV-Bregman method. In the lower
figure, we can see that the gradient of reflectance from the
L,-Retinex is also closer to gradient of the original image.
The third example is a RGB image “Adelson’s checker
shadow illusion” shown Figure-1. We set the threshotel



015 R?Ialive dislz‘\nce of refl‘eclance ‘ ‘ ‘ RG B PDE TV.Breg man Ll -Ret'nex
:ggs':w}e’ Py (102,93,94) (92,68,78) (94,76,82)
o | P» || (144,137,135) (135,119,122) (152,135,139)

Table 1. The GRB value of the two pixels shown in Figure-6

the end, we transform it back to a RGB image only with the
reflectance in the V-channel. We compare the results with
o d0ror different threshold in Figure-7. The illumination (shadow

—a—dr, e, effect) is eliminated gradually asncreases.
0.35- ——d(@r, Or )

0.4

L L L L L L L L
2 4 6 8 10 12 14 16 18 20

Figure 5. Top: Relative distance of reflectance. Bottom:aRed
distance of gradient reflectance

12 and perform each algorithm channel by channel. We
consider the pixeP; = (144, 68) in the region A and?, =
(139,111) in the region B, which are shown in Figure-6.
The RGB value of these two pixels are shown in Table-1.
The contrast of the reflectance from the-Retinex method

is stronger than the other two methods. The illumination
image from the PDE method preserves a lot of reflectance
information. The illumination image from the TV-Bregman
method takes less reflectance information, but the checker [{&
and the cylinder are still visible. The illumination image
from our L -Retinex method takes the least information of
the reflectance and gives the best result.

Figure 7. Influence of threshold. (a): Original image. (b} 5.
(€):t="75.(d):t=10

5. Application to medical images

In medical images such as MRI, the signals sometimes
are corrupted by bias fields which are similar to the natu-
ral images affected by varying illumination. Therefore, it
is a good idea to apply the;-Retinex algorithm for solv-
ing problems in medical images. However, unlike natural

(d) ©) ® images, medical images have many small details such as
Figure 6. The result of “Adelson’s checker illusion”. (&),Re- tissues and vessels which are very important for clinical di
covered reflectance. (d,e,f): Recovered illuminationd)(aRe- agnosis. So we cannot apply tiig-Retinex method di-
sults from the PDE method. (b,e): Results from the TV-Bregma rectly to medical images. Because the bias fields are spa-
method. (c,f): Results from the; -Retinex method. tially smooth, to take advantage of this image property, we

applied theL-Retinex algorithm on the smoothed images
To understand the influence of the threshglave test which are locally averaged. When we find the illumination,
on an example using HSV color space. First, we map thethe corrected image can be recovered by subtracting the il-
RGB image into the HSV space. Then the-Retinex al- lumination from the original medical image.
gorithm is applied to the V-channel: the intensity layer. At  To find the smoothed image a Gaussian kernel is con-



voluted with the original imagéas following
i=Gyxi (36)

whered,, is the Gaussian kernel with standard deviation
Then we can apply thé,-Retinex algorithm ta and find
the smoothed illuminatioA. Based on the smoothness as-
sumption, we can suppose tliats e so that the reflectance
can be recovered from

F=i—¢ (37)

The detailed algorithm is summarized as following

Algorithm 2: Smoothed.;-Retinex
input :Imagel
output: Reflectance imag&

1.Linearly stretch into the range [0,255];

2.Take logarithmi = log(I + 1); ©) (h) ' @)
3.Smoothz = G, * ; ) Figure 8. Results of simulated MRI images. (a,b,c): Cleaa.da
4.Apply L, -Retinex algorithm or to get7; (d,e,f): N3 corrected images. (g,h,i): recovered imageshey

5.Estimate illuminationé = i — 7; smoothed.; -Retinex method.

6.Extract reflectance: = i — ¢é;
7.Linearly stretch into the rangd0, log(255)];
8.Take exponentk = exp(#); We also apply our method to a set of real clinical MRI
data as shown in Figure-9. From left to right are two sagit-
tal images and one coronal image of the head and neck
We apply the smoothef,; -Retinex method on both sim-  MRI from the same patient. In the original clinical images
ulated and real data and and compare the results with thatFigure-9 top row), there is apparent bias field effect at the
of the N3 method [19] which is one of the most popular neck area. The middle row of Figure-9 are the results of the
methods in inhomogeneity correction. Our method can be N3 method using the same software in previous paragraph.
directly extended to 3D. For now we only test it in the 2D The parameters are set as signal threshold 1, convergence
case. tolerance 0.001, Field distance 83.333, max number of iter-
A clean MRI brain image from BrainWebis used as  ation 500, subsampling 1.0, Kernel fwhm 0.15, and Wiener
simulated data, and three slices are chosen as test imagefilter noise 0.001. The bottom row of Figure-9 are the re-
As in [21], we use polynomials with random coefficients to sults from the smoothef; -Retinex with parameterts= 2,
simulate bias fields as in Equations (34). The bias fieldsa = 5, ande = 0.0005, and discrete Gaussian a 25 by 25
are scaled to [0.5,1.5] and then multiply the clean images.matrix. In the original image, we can hardly observe the
Figure-2 are three examples. We compare our smoothedarea of the neck due to bias fields. Improved images ob-
L,-Retinex algorithm with the N3 method [19]. In the tained by both N3 and smoothéd-Retinex. However, the
proposed method, the parameters are set as the thresholdetails near the lower neck area are significantly visible by
t = 1.5, the standard deviatian= 1, the discrete Gaussian the smoothed.;-Retinex method.
kernel a 25 by 25 matrix, and the convergence tolerance
e = 0.0005. We use MIPAVZ [22] for the N3 algorithm. 6. Conclusion
The parameters are set as signal threshold 1, convergence
tolerance 0.001, Field distance 60.333, max number of iter-
ation 500, subsampling 1.0, Kernel fwhm 0.15, and Wiener
filter noise 0.001. Results of test images in the bottom row
of Figure-2 are shown in Figure-8. We find that the visual
quality of result images are similar by these two methods.

We propose a new method for Retinex theory, which is
effective in recovering reflectance from natural images:. Ou
method is based on minimizing dn norm, which ensures
that both the recovered reflectance and illumination have
better quality than previous works. Examples and statis-
tics are shown in the paper to demonstrate the performance
Ihttp://mouldy.bic.mni.mcgill.ca/brainweb/ of our method. Besides, this algorithm can be applied to
2downloaded from http://mipav.cit.nih.gov/ shadow elimination problem and image enhancement.




(h)

Figure 9. Real data: (a,b,c): Original. (d,e,f): N3 coreect
images. (g,h,i): Corrected images by the smootheeRetinex
method.

A modified method is developed for inhomogeneity cor-

rection problem for MRI data. Both simulated and real data
are tested. From the clinical example, we show that our

method can substantially increase the visual quality.

We can easily extend the method to 3D for medical im-
age reconstruction. Our method can be applied to other
data such as hyperspectral images. The method itself can
be modified by adding a regularizer based on the propertie

of images. All of these will be in our future work.
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