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Abstract

Human visual system (HVS) can perceive constant color
under varying illumination conditions while digital images
record information of both reflectance (physical color) of
objects and illumination. Retinex theory, formulated by Ed-
win H. Land, aimed to simulate and explain this feature of
HVS. However, to recover the reflectance from a given im-
age is in general an ill-posed problem. In this paper, we
establish anL1-based variational model for Retinex theory
that can be solved by a fast computational approach based
on Bregman iteration. Compared with previous works, our
L1-Retinex method is more accurate for recovering the re-
flectance, which is illustrated by examples and statistics.In
medical images such as magnetic resonance imaging (MRI),
intensity inhomogeneity is often encountered due to bias
fields. This is a similar formulation to Retinex theory while
the MRI has some specific properties. We then modify the
L1-Retinex method and develop a new algorithm for MRI
data. We demonstrate the performance of our method by
comparison with previous work on simulated and real data.

1. Introduction

Digital images are sometimes different from the scene
directly perceived by the human visual system (HVS). Our
visual system can automatically discount the variation of
the illumination which ensures that the perceived color re-
mains constant under varying illumination conditions. This
feature is called color constancy. Edwin H. Land’s Retinex
theory [1, 2, 3, 4] is the first computational model that aims
to simulate the HVS. The basic assumptions of Retinex the-
ory are

(i). The HVS performs the same computation in each of
three independent color channels (RGB);

(ii). In each color channel, the image intensity is propor-
tional to the product of the reflectance of objects and
the illumination;

(iii). The reflectance of object can be perceived by HVS
while the illumination is automatically discounted.

Moreover, it is assumed that the reflectance is the sharp de-
tail in the image (i.e. edges) and thus piecewise constant
whereas the illumination is spatially smooth. The primary
goal of Retinex theory is to decompose a given imageI into
to two different images, the reflectanceR and the illumina-
tionE such that

I(x) = R(x)E(x) (1)

at each pixelx.

(a) (b)
Figure 1. Adelson’s checker shadow illusion. (a): Originalimage.
(b): Demonstration.

For example, in Figure-1, the image is called “Adelson’s
checker shadow illusion”. For us, the region A seems darker
than the region B, but they actually have exactly the same
color. This is because, by Retinex theory, they are in dif-
ferent illumination conditions. Actually, the region B is
in the shadow of the green cylinder so that the illumina-
tion of the region A is stronger than that of the region B,
i.e., E(A) > E(B). By Retinex theory, the reflectance
of the region A is smaller than that of the region B,i.e.,



R(A) < R(B) to ensureI(A) = I(A). For a human be-
ing, the illuminationE is discounted by the HVS and only
the reflectanceR is perceived, which is the reason why the
region A seems darker.

To simulate the mechanism of HVS, we need to recover
the reflectanceR from a given imageI, which is in gen-
eral an ill-posed problem. To overcome this problem, many
algorithms were developed. Retinex algorithms are basi-
cally categorized [8, 9, 10, 11] as path-based algorithms, re-
cursive algorithms, center/surround algorithms, PDE-based
algorithms, and variational algorithms. Path-based algo-
rithms [1, 3, 12] consider the reflectance at each pixel de-
pending on the multiplication of the ratios along random
walks and then stochastic theory is applied. Path-based al-
gorithms need a large number of parameters and have high
computation complexity. Recursive algorithms [14, 15] ex-
tend the path-based algorithms and replace the path com-
putation by a recursive matrix calculation which highly im-
proves the computational efficiency. But the number of it-
erations is not clearly defined and can strongly influence
the final result. The center/surround approaches [1, 17]
such as SSR (Single Scale Retinex) and MSR (Multiscale
Retinex) are based on the idea that the illumination compo-
nent tends to change smoothly, contrarily to the reflectance.
So the output reflectance values can be computed by sub-
tracting a blurred version of the input image. These algo-
rithms are easy to implement but need too many parame-
ters. In the PDE-based formulations [5, 6, 7, 8], threshold
functions are usually utilized to eliminate the illumination.
Then the reflectance can be recovered by solving Poisson
equations which can be done by effective algorithms such
as FFT. However, extra nonsparse divergence free vector
fields are introduced to the gradient when we solve the Pois-
son equations and thus the recovered reflectance is usually
not piecewise constant as expected. Variational methods
[9, 10] introduce regularization on reflectance and illumina-
tion based on the properties of them. Some regularization
terms such as total variation (TV) are introduced to ensure
getting piecewise constant reflectance. But they eliminate
too much information. Therefore, in this paper, we develop
a newL1-based variational method to solve this problem.
Also, we implement this optimization problem based on an
extremely fast approach called Bregman iteration [13, 16].

Intensity inhomogeneity is often encountered in mag-
netic resonance imaging (MRI) because of the bias fields
[19, 20, 21]. The mathematical formulation is

I(x) = b(x)J(x) + n(x) (2)

at pixelx, whereI is the measured image,J is the true sig-
nal to recover,b is an unknown bias field, andn is an addi-
tive noise. The bias field is usually assumed to be spatially
smooth. In Figure-2, three slices of a simulated example are
shown. The goal is to recover the true signal from the given

corrupted data.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 2. Simulated MRI images. (a,b,c): Clean images. (d,e,f):
Bias fields simulated by polynomials. (g,h,i): Corrupted images
by these fields.

There are many methods for inhomogeneity correction
[20] including filtering based, surface-fitting based, seg-
mentation based, and histogram based methods. In partic-
ular, the well-known N3 method [19] has been one of the
most popular methods for inhomogeneity correction which
uses B-splines to model the bias fields. It is very effective
and has been used as a standard method in many medical
imaging softwares. It depends on the number of node dis-
tances. Increasing the number of nodes would lead to con-
vergence problems and increased computation time.

To simplify the formulation, as in many methods before,
the noise is often ignored. Therefore, it has exactly the same
form as Retinex theory. It is natural to apply Retinex al-
gorithms to inhomogeneity correction problem. However,
in MRI data, there are many small details such as vessels
and tissues which are very important information for clini-
cal diagnosis. To keep these details, we modify our original
method to develop the smoothedL1-Retinex method. We
compare our algorithm with the N3 method on both simu-
lated and real data to demonstrate the performance.

The rest of the paper is organized as follows. In sec-
tion 2, we propose the mathematical formulation of ourL1-
based Retinex method. In section 3, we give the imple-
mentation details. In section 4, numerical results on natural
images and comparison with previous works are presented.
In section 5, the smoothedL1-Retinex method is derived
for MRI images and results on both simulated and real data



are shown. Finally the conclusion and future work are dis-
cussed in section 6.

2. L1-Retinex model

In this section, we propose a new variational model for
Retinex theory. By taking a logarithm in Equation (1), we
have

i(x) = r(x) + e(x) (3)

at each pixelx, wherei = log(I), r = log(R), ande =
log(E). We then take the gradient:

∇i = ∇r +∇e (4)

Because of the basic assumption that the gradient of the re-
flectance corresponds to sharp details such as edges and the
illumination is spatially smooth,∇e is relatively small. To
preserve the gradient of reflectance, a threshold function is
applied to∇i. The threshold function is defined as

δt(z) = (τt(z1), · · · , τt(zn)) (5)

with z = (z1, · · · , zn) ∈ R
n, where

τt(z) =

{

z if |z| > t
0 otherwise

(6)

and the thresholdt is a positive parameter. Therefore,

∇r ≈ δt(∇i) (7)

for a suitablet.
In order to recover the true reflectance imager, a PDE-

based method has been proposed by Petro Balagueret al.
[7, 8]. In fact, the authors of [7, 8] considered the Poisson
equation

∆r̂ = divδt(∇i). (8)

which is equivalent to minimize theL2 norm of ∇r −
δt(∇i). Supposêr is a solution to this equation,∇r̂ is not
necessarily equal toδt(∇i). Actually

∇r̂ = δt(∇i) + p (9)

wherep is vector field satisfying div(p) = 0. However,p is
usually nonsparse. This can introduce some unpredictable
effects to images. For example, in a regionU having con-
stant reflectance and smoothly varying illumination, then
divδt(∇i) = 0 in U for a suitable thresholdt. Because
∇r̂ = p for some unknown nonsparsep, r̂ may not be con-
stant inU , which is not as desired.

Another approach was proposed by Ma and Osher in [10]
using a TV regularized model as follows:

r̂ = argmin
r

∫

Ω

t|∇r| +
1

2
|∇r −∇i|2 (10)

which was implemented by Bregman iterations. And the au-
thors in [10] showed that the first iteration is actually similar
to (8), which is solving an equation

∆r1 = div shrinkt(∇i) (11)

where shrinkt is an isotropic soft threshold function which
is defined by

shrinkt(z) =

{

0 if ||z||2 ≤ t
z− z t

||z||2
if ||z||2 > t

(12)

wheret is a positive parameter. The TV regularized model
is efficient to recover piecewise constant images due to
property of TV regularizer, but it usually loses information
about reflectance.

Instead of minimizing theL2 norm, our motivation is to
minimize theL1 norm of∇r − δt(∇i). Namely, ourL1-
Retinex model is

r̂ = argmin
r

∫

|∇r − δt(∇i)| (13)

= argmin
r

∫

√

(∇xr − τt(∇xi))2 + (∇yr − τt(∇yi))2

(14)

By minimizing theL1 norm, we usually get a sparse vector
field q = ∇r − δt(∇i). For images, ifr̂ is the solution
of problem (13), then∇r̂ = δt(∇i) for most part of the
domain. Thus with a high probability, we will have the re-
flectancêr constant in the region whereδt(∇i) = 0.

3. Implementation

We implement theL1-Retinex model using Bregman
methods which are effective to solve sparse reconstruction
problems in image processing [13]. The goal of the original
Bregman method is to solve the general constrained mini-
mization problem:

min
u

J(u) s.t.H(u) = 0 (15)

whereJ is convex but not necessarily differentiable, such
as theL1 norm, andH is convex and differentiable with
zero as its minimum value. The original Bregman method
is based on the concept of Bregman distance for a convex
functionJ , which is given as:

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉 (16)

wherep ∈ ∂J is a subgradient ofJ at the pointv. Using
(16), the problem (15) can be solved by Bregman iterations:

uk+1 = argmin
u

Dpk

J (u, uk) +H(u) (17)

pk+1 = pk −∇H(uk+1) (18)



It has been proven that the sequence ofuk in the Bregman it-
eration converges to the solution of the constrained problem
(15). The advantage of Bregman iteration is to transform a
constrained problem into a sequence of unconstrained sub-
problems.

Our L1-Retinex model can be effectively solved by the
split Bregman method, which was introduced by Goldstein
and Osher [16] for solvingL1, TV, and related regularized
problems and applied to various imaging problems. The
split Bregman method aims to solve the unconstrained prob-
lem:

min
u

J(Φ(u)) +H(u), (19)

whereJ andH are as before, andΦ is linear functional.
The key idea of the split Bregman method is to introduce
an auxiliary variabled = Φ(u), and try to solve the con-
strained problem

min
d,u

J(d) +H(u), s. t.
λ

2
||d− Φ(u)||22 = 0 (20)

whereλ is a fixed positive constant. Then the original Breg-
man method can be applied. Anduk anddk are updated
alternatively.

For ourL1-Retinex model, we apply the split Bregman
method by introducingd = (dx, dy) as

dx = ∇xr − τt(∇xi) (21)

dy = ∇yr − τt(∇yi) (22)

then we can rewrite (13) as

(r̂, d̂) = argmin
r,d

∫

Ω

√

d2x + d2y s.t.d = ∇r − δt(∇i)

(23)

Then we can define

J(d, r) =

∫

Ω

|d| =

∫

Ω

√

d2x + d2y; (24)

H(d, r) =
1

2
||d−∇r + δt(∇i)||

2
2. (25)

Givenr0 = 0 andd0 = b0 = 0, then the Bregman iterations
(17) can be written as

(rk+1, dk+1) = argmin
r,d

∫

Ω

|d| − 〈pkd, d− dk〉 − 〈pkr , r − rk〉

+
λ

2
||d−∇r + δt(∇i)||

2
2 (26)

pk+1

d =pkd − λ(dk+1 −∇rk+1 + δt(∇i)) (27)

pk+1
r =pkr − λdiv(dk+1 −∇rk+1 + δt(∇i))

(28)

We assumebk = pkd/λ, thereforepkd = λbk and pkr =
λdivbk. Then the iterations become:

(rk+1, dk+1) = argmin
r,d

∫

Ω

|d| − λ〈divbk, r〉 − λ〈bk, d〉

+
λ

2
||d−∇r + δt(∇i)||

2
2 (29)

bk+1 =bk − dk+1 +∇rk+1 − δt(∇i) (30)

We then updaterk anddk alternatively as following:

rk+1 =argmin
r
−λ〈divbk, r〉+

λ

2
||dk −∇r + δt(∇i)||

2
2

(31)

dk+1 =argmin
d

∫

Ω

|d| − λ〈bk, d〉+
λ

2
||d−∇rk+1 + δt(∇i)||

2
2

(32)

bk+1 =bk − dk+1 +∇rk+1 − δt(∇i) (33)

The subproblems (31) and (32) can be explicitly solved
[16], which are summarized in the following algorithm.

Algorithm 1: L1-Retinex
input : Imagei
output: Reflectance imager

Linearly stretchi into the range [0,255];
Initialization: r0 = i, d0 = 0, b0 = 0, andk = 0;
while ||rk+1 − rk||2/||r

k+1||2 > ǫ do
(i)rk+1 ← ∆−1(div(δt(∇i) + dk − bk)) ;
(ii)dk+1 ← shrink1

λ

(∇rk+1 − δt(∇i) + bk) ;

(iii) bk+1 ← bk − dk+1 +∇rk+1 − δt(∇i);
(iv)k← k + 1;

Linearly stretchrk into the range [0,255];

In iteration (i), we updaterk+1 by solving a Poisson
equation associated with the zero Neumann boundary con-
dition. The solution of this equation is not unique. But the
difference of any two solutions is a constant. Therefore,
by fixing the value of one pixel, we can get a unique solu-
tion. In practice, the equation is solved by a discrete cosine
transformation (DCT). We note that the most complex part
of the whole algorithm is to solve this equation. The rest
of the algorithm only contains matrix multiplication and the
shrink operation. Thus the whole algorithm turns to be very
simple. In iteration (ii), the isotropic shrinkage function is
defined in (12). It is worth mentioning that, in the first it-
eration,r1 is exactly the solution to the Poisson equation
(8).

4. Numerical results of L1-Retinex

In this section, we compare ourL1-Retinex method with
the PDE method in [7, 8] and the TV-Bregman method in



[10]. Theoretically, we should apply the algorithms on raw
images. However, most test images are gamma-corrected.
Gamma-correction means that we have already applied a
concave function such as a logarithm orsγ with 0 < γ < 1
to the raw images. And all these functions have a similar
shape on image domain so that the logarithm in the Retinex
theory is not necessary. Therefore, all experiments in this
section are done by a gamma-corrected model as suggested
in [8], which means we omit the logarithm and exponent
process. For the parameters, we set the convergence toler-
anceǫ = 0.0005 and the constantλ = 1 in the shrinkage
function (12). The only parameter to be found is the thresh-
old t.
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Figure 3. “Logvinenko’s illusion”: (a): Original image. (b):
Demonstration. (c,f,i): Recovered reflectance. (d,g,j): Zoom-in
version of the box in the reflectance and the color shows the in-
tensity. (e,h,k): Recovered illumination. (c,d,e): Results from
the PDE method. (f,g,h): Results from the TV-Bregman method.
(i,j,k): Results from ourL1-Retinex method.

The first example is a single channel image called
“Logvinenko’s illusion”. As shown in Figure-3, all the di-

amonds have the same intensity although we feel different.
This is due to the same reason as we mentioned in “Adel-
son’s checker shadow illusion”. We set the thresholdt = 15
for all three algorithms and the computed results are shown.
The recovered reflectance images are supposed to be piece-
wise constant. If we zoom in the box, we can see the details
which are shown in color to represent the intensity. The re-
sult from the PDE method is not piecewise constant due to
the nonsparse vector fieldp as we mentioned before. The
result from the TV-Bregman method is improved compared
to the PDE method, but it is still not as good as theL1-
Retinex method. It should be noted that the recovered il-
lumination image from the TV-Bregman method contains
much more reflectance information than that of the other
two methods. Therefore, theL1-Retinex method gets the
best result both in reflectance and illumination.

rs + es = is

Figure 4. Simulation process

In the next example, we use a synthetic imagers with
range [0,255] as the original image. We use polynomials to
simulate illumination.

es(x, y) =
3

∑

i,j=0

aijx
iyj (34)

whereaij are random in [-1,1]. And then we rescale the
range of the polynomials to [-128,128]. As in Figure-4,
the simulated imagesis are the sum of a piecewise con-
stant imagers and the smoothed imageses. To know the
performance of different methods, we simulate 20 images.
We compare the original imagers with the recovered re-
flectancêr from three methods with thresholdt = 20 for
PDE andL1-Retinex andt = 15 for TV-Bregman. We cal-
culate the relative distanced(rs, r̂) andd(∇rs,∇r̂) where
the relative distance is defined by

d(x, x̂) =
||x− x̂||1
||x||1

(35)

The results are shown in the Figure-5. In the upper figure,
it is shown that the recovered reflectance fromL1-Retinex
method is closer to the original image compared with the
PDE method and the TV-Bregman method. In the lower
figure, we can see that the gradient of reflectance from the
L1-Retinex is also closer to gradient of the original image.

The third example is a RGB image “Adelson’s checker
shadow illusion” shown Figure-1. We set the thresholdt =
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12 and perform each algorithm channel by channel. We
consider the pixelP1 = (144, 68) in the region A andP2 =
(139, 111) in the region B, which are shown in Figure-6.
The RGB value of these two pixels are shown in Table-1.
The contrast of the reflectance from theL1-Retinex method
is stronger than the other two methods. The illumination
image from the PDE method preserves a lot of reflectance
information. The illumination image from the TV-Bregman
method takes less reflectance information, but the checker
and the cylinder are still visible. The illumination image
from ourL1-Retinex method takes the least information of
the reflectance and gives the best result.

X: 144 Y: 68
RGB: 102, 93, 94

X: 139 Y: 111
RGB: 144, 137, 135

X: 144 Y: 68
RGB: 92, 68, 78

X: 139 Y: 111
RGB: 135, 119, 122

X: 144 Y: 68
RGB: 94, 76, 82

X: 139 Y: 111
RGB: 152, 135, 139

(a) (b) (c)

(d) (e) (f)

Figure 6. The result of “Adelson’s checker illusion”. (a,b,c): Re-
covered reflectance. (d,e,f): Recovered illumination. (a,d): Re-
sults from the PDE method. (b,e): Results from the TV-Bregman
method. (c,f): Results from theL1-Retinex method.

To understand the influence of the thresholdt, we test
on an example using HSV color space. First, we map the
RGB image into the HSV space. Then theL1-Retinex al-
gorithm is applied to the V-channel: the intensity layer. At

RGB PDE TV-Bregman L1-Retinex
P1 (102,93,94) (92,68,78) (94,76,82)
P2 (144,137,135) (135,119,122) (152,135,139)

Table 1. The GRB value of the two pixels shown in Figure-6

the end, we transform it back to a RGB image only with the
reflectance in the V-channel. We compare the results with
different thresholdt in Figure-7. The illumination (shadow
effect) is eliminated gradually ast increases.

(a) (b)

(c) (d)

Figure 7. Influence of threshold. (a): Original image. (b):t = 5.
(c): t = 7.5. (d): t = 10

5. Application to medical images

In medical images such as MRI, the signals sometimes
are corrupted by bias fields which are similar to the natu-
ral images affected by varying illumination. Therefore, it
is a good idea to apply theL1-Retinex algorithm for solv-
ing problems in medical images. However, unlike natural
images, medical images have many small details such as
tissues and vessels which are very important for clinical di-
agnosis. So we cannot apply theL1-Retinex method di-
rectly to medical images. Because the bias fields are spa-
tially smooth, to take advantage of this image property, we
applied theL1-Retinex algorithm on the smoothed images
which are locally averaged. When we find the illumination,
the corrected image can be recovered by subtracting the il-
lumination from the original medical image.

To find the smoothed imagẽi, a Gaussian kernel is con-



voluted with the original imagei as following

ĩ = Ga ∗ i (36)

whereGa is the Gaussian kernel with standard deviationa.
Then we can apply theL1-Retinex algorithm tõi and find
the smoothed illuminatioñe. Based on the smoothness as-
sumption, we can suppose thatẽ ≈ e so that the reflectance
can be recovered from

r̂ = i− ẽ (37)

The detailed algorithm is summarized as following

Algorithm 2: SmoothedL1-Retinex
input : ImageI
output: Reflectance imageR

1.Linearly stretchI into the range [0,255];
2.Take logarithm:i = log(I + 1);
3.Smooth:̃i = Ga ∗ i;
4.ApplyL1-Retinex algorithm oñi to getr̃;
5.Estimate illumination:̃e = ĩ− r̃;
6.Extract reflectance:̂r = i− ẽ;
7.Linearly stretcĥr into the range[0, log(255)];

8.Take exponent:̂R = exp(r̂);

We apply the smoothedL1-Retinex method on both sim-
ulated and real data and and compare the results with that
of the N3 method [19] which is one of the most popular
methods in inhomogeneity correction. Our method can be
directly extended to 3D. For now we only test it in the 2D
case.

A clean MRI brain image from BrainWeb1 is used as
simulated data, and three slices are chosen as test images.
As in [21], we use polynomials with random coefficients to
simulate bias fields as in Equations (34). The bias fields
are scaled to [0.5,1.5] and then multiply the clean images.
Figure-2 are three examples. We compare our smoothed
L1-Retinex algorithm with the N3 method [19]. In the
proposed method, the parameters are set as the threshold
t = 1.5, the standard deviationa = 1, the discrete Gaussian
kernel a 25 by 25 matrix, and the convergence tolerance
ǫ = 0.0005. We use MIPAV2 [22] for the N3 algorithm.
The parameters are set as signal threshold 1, convergence
tolerance 0.001, Field distance 60.333, max number of iter-
ation 500, subsampling 1.0, Kernel fwhm 0.15, and Wiener
filter noise 0.001. Results of test images in the bottom row
of Figure-2 are shown in Figure-8. We find that the visual
quality of result images are similar by these two methods.

1http://mouldy.bic.mni.mcgill.ca/brainweb/
2downloaded from http://mipav.cit.nih.gov/

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 8. Results of simulated MRI images. (a,b,c): Clean data.
(d,e,f): N3 corrected images. (g,h,i): recovered images bythe
smoothedL1-Retinex method.

We also apply our method to a set of real clinical MRI
data as shown in Figure-9. From left to right are two sagit-
tal images and one coronal image of the head and neck
MRI from the same patient. In the original clinical images
(Figure-9 top row), there is apparent bias field effect at the
neck area. The middle row of Figure-9 are the results of the
N3 method using the same software in previous paragraph.
The parameters are set as signal threshold 1, convergence
tolerance 0.001, Field distance 83.333, max number of iter-
ation 500, subsampling 1.0, Kernel fwhm 0.15, and Wiener
filter noise 0.001. The bottom row of Figure-9 are the re-
sults from the smoothedL1-Retinex with parameterst = 2,
a = 5, andǫ = 0.0005, and discrete Gaussian a 25 by 25
matrix. In the original image, we can hardly observe the
area of the neck due to bias fields. Improved images ob-
tained by both N3 and smoothedL1-Retinex. However, the
details near the lower neck area are significantly visible by
the smoothedL1-Retinex method.

6. Conclusion

We propose a new method for Retinex theory, which is
effective in recovering reflectance from natural images. Our
method is based on minimizing anL1 norm, which ensures
that both the recovered reflectance and illumination have
better quality than previous works. Examples and statis-
tics are shown in the paper to demonstrate the performance
of our method. Besides, this algorithm can be applied to
shadow elimination problem and image enhancement.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Real data: (a,b,c): Original. (d,e,f): N3 corrected
images. (g,h,i): Corrected images by the smoothedL1-Retinex
method.

A modified method is developed for inhomogeneity cor-
rection problem for MRI data. Both simulated and real data
are tested. From the clinical example, we show that our
method can substantially increase the visual quality.

We can easily extend the method to 3D for medical im-
age reconstruction. Our method can be applied to other
data such as hyperspectral images. The method itself can
be modified by adding a regularizer based on the properties
of images. All of these will be in our future work.
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