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Abstract 

 In the proposed method for image denoising,  an operator is defined to take the image data to a 

high dimensional (e.g. ten dimensions)  image representation in a patch attribute space.  A partial 

differential equation is run in this space with the constraint that that the high dimensional representation 

conforms to a true two dimensional image.  The high dimensional PDE is modeled using a simplified 

meshfree method and the constraint enforced with a projection that naturally follows from the defined 

operator.  This leads to an updating of pixel values, not by an averaging procedure, but through a search 

for an optimal solution to a system of overdetermined equations.   This approach is explored using the 

reverse heat equation, which deblurs when run on the image domain, but when run on the high 

dimensional patch attribute space formulated here, it denoises. 

1  Introduction 

1.1  Non-local Means and Semi-local Means 

 The basic approach of the non-local means denoising method [5] is to identify pixels anywhere in 

the noisy image that should have a similar value in the true image (that is, the image without noise) and 

then average these pixels together to reduce the noise.   Determining which pixels should be averaged 

together is typically done by comparing the difference between patches of pixels around the pixel of 

interest (often a 5 by 5 pixel patch is used).  Many modifications and improvements have been made in 

subsequent works including [3], [7], [8], [11], [13], [15], [17], [18], [19] and [20], some of which are 

discussed in more detail below.   The non-local means approach contrasts to earlier methods that can be 

interpreted as local averaging methods.  Local averaging can be implemented  in careful ways to avoid the 

worst effects of local averaging.  For example, the well known method [16] can be interpreted as a local 

averaging method that is careful to avoid averaging across sharp edges in the images.  But this method 

will still remove more intricate patterns and textures.       

 Semi-local means is a slight variant on the non-local means method.  It differs only in that 

patches can only be compared if they are nearby, typically meaning that they fall within the same small 

square search window.  The semi-local means method has a computational complexity of       where 

  is the number of pixels and   is the window size.  This works well and quickly if patterns in the image 

repeat nearby in the image.  This may not always be the case and, furthermore, in some applications the 

objects of the greatest interest may not repeat frequently, such unusual growths in a set of medical images 

or an aerial photo with small ships in an ocean.  Yet, increasing the window size does not necessarily lead 

to a better overall result, as shown in [8] for example.  Twenty-five noisy pixels is not sufficient to 

describe any object and so it is possible that patches that are similar with noise may really not be, and thus 

in this case an averaging procedure will not effectively lead to a closer approximation to the true image.  

A small window size makes these bad patch comparisons less likely.  Furthermore, a large   makes the 

computation impractical, though this has been addressed using filtering methods (discussed below). 

 In the proposed method, the pixel values are not updated with an averaging procedure.  Instead an 

overdetermined systems of equations is constructed and the pixel values are updated by finding an 

optimal solution to this system.  The practical consequences of this is that the denoising is much less 

affected by incorrect patch comparisons and a lack of good patch comparisons.  A pixel value can update 

correctly even if its surrounding patch does not resemble any other and a pixel is less susceptible to being 



adjusted toward an incorrect value.  This results in more noise being removed from the image and less of 

the true image ending up in the noise removed, as is discussed in the results section.  

1.2  Filtering methods 

 Some nonlocal methods employ so called filtering methods ([4], [11], and [13]) which measure a 

few patch attributes in advance of the denoising to limit the search range of similar patches when the 

actual denoising is performed.  Usually the number of patch attributes considered is smaller than 25 (4 in 

[11] and 6 in [13]).  Thus the search range could include candidates that are not relevant (just as when 25 

patch attributes are considered) but, in addition, could miss some patches that are relevant.  Furthermore, 

in some cases the search range could include the majority of the image, such as when most of the image is 

a solid single color.  These filtering methods are a different sort of approach than what is proposed here 

and not necessarily incompatible.   

1.3  Reverse Heat Equation and Projections 

 Modified versions of the heat equation have been used in image processing applications for 

decades [10]. If        is simply defined on the image domain, the forward heat equation,      , 

will remove noise but blur out the image.  The reverse heat equation         will deblur but increase 

the noise in the process.   In [6] the reverse heat equation and nonlocal means are conisidered.  But the 

reverse heat equation term is local and used for deblurring and the denoising term is non-local.  In [8], a 

nonlocal positive Laplacian (forward heat equation) is defined for denoising.  The nonlocal Laplacian is 

modified from a graph theory version and the sign is switched so that this nonlocal Laplacian corresponds 

to the local Laplacian in a special case.  New operators can be defined in any way that is appropriate.  But 

here, a new Laplacian is not defined, but merely the classical one used in a different space and this 

unambiguously results in the reverse heat equation. 

 Some papers have examined performing operations on the patch attribute space including running 

partial differential equations, [14],[17], and [18].  In [17] and [18] (two versions from the same authors), a 

heat equation is run on the patch attribute space and projected onto the image domain.  However, their 

formulation leads to an averaging procedure defined on the image domain which is quite similar to the 

original non-local means method, as the authors point out.  In the proposed method, the formulation 

naturally leads to the pixels being updated, not by averaging, but through obtaining the solution to an 

overdetermined system of equations.  This is the primary reason why the results presented here are 

different and improved over the original non-local means method.   Another key difference is that the heat 

equation in [17] is solved using established information about the particular solution of the heat equation, 

specifically that it can be solved using convolutions with a Gaussian kernel.  The proposed method 

employs a general approach to solving PDEs, meshfree methods, and could therefore be modified to work 

with other PDEs.        

 Also of note is that projection methods have been incorporated into numerical schemes for 

solving fluid dynamics problems [2].     

1.4  Meshfree methods 

 Meshfree methods are a means by which partial differential equations can be numerically 

implemented [9].  Two main advantages of these methods is that they can work in high dimensional 

spaces and that they are less restricted by a preset domain on which the PDEs are run.  Meshfree methods 

are chosen here because finite difference and finite element methods are impractical in high dimensional 

spaces.  Two main drawbacks of meshfree methods are the difficulty associated with creating an 

approximation to an arbitrary function and imposing boundaries constraints.  Both of the issues are trivial 



in the simplest finite difference and finite element situations.   But as is explained in the methods section, 

neither of these significant difficulties come into play for the proposed denoising approach.   

 Meshfree methods are not common in image processing applications but include [1] and [12].  

Both of these papers use meshfree methods on the image domain, which is not what is done here. 

2  Proposed Image Denoising Method 

2.1  Construction of high dimensional image representation 

 The image data is taken to be a vector,  , of length  , where   is the number of grayscale pixels.   

Each entry of  , denoted   , gives the single grayscale value of pixel  . The proposed method involves 

creating a linear operator to convert each    into a point in 10 dimension space, which is denoted   . 

From these    and an estimate about the amount of noise in the image, a high dimensional function   

        is generated.  Locations close to each other in the 2D image may be completely different 

things and so a local interaction may not be useful for reducing the noise.  But the linear operator which 

takes points from    to    is such that locations close to each other in this 10 dimensional space are 

similar things, and so local interactions in this space may be useful for denoising.   

 Each point         is associated with one pixel and the coordinates of the point are determined 

by computing patch attributes.  10 attributes were heuristically picked as shown in Figure 1.  The 

attributes are the sum of various pixels, shown in gray, multiplied by a normalizing constant so that they 

have equal significance in the denoising.  During the projection step discussed below, pixels will be found 

that correspond to given attributes.  Of note is that 10 attributes specified for one patch give some 

guidance for how the 25 pixels in the patch will be updated but still allow some flexibility.       

 

Figure 1 The point    is at the center of the 5 by 5 patch.  The gray pixels are added and normalized to obtain each of the 10 coordinates 

of       . 



 This procedure can be expressed concisely using the matrix  , which has     rows by   

columns, the vector   of length  , which contains the values of the pixels in the image, and the vector    

which is of length    . 

     

                                                  

 The distance between a point        and        is measured using the ordinary Euclidean 

distance. 

                   

  

   

 

 The basis functions centered at each    are related to how far away a    is likely to be from its 

true location without any noise in the image.  This will allow points to interact if it is likely that their 

distance apart is related only to the noise present.  The single value    is related to the standard deviation 

of the distance of each    from its true location,  and is calculated based on an initial estimate of the noise 

in the image.  As the points    move during the simulation, it is assumed that they move to reduce the 

noise.  If    
 is equal to    at the beginning of the simulation then a crude estimate of the current amount 

of noise is given by:  

                
  

 A Gaussian function is formed around each   .  This function appears in various non-local means 

methods and is also used for basis functions in meshfree methods.  It can also be interpreted as a 

probability distribution function of where    is likely to be if no noise were present, though it does not 

strictly integrate to 1 for numerical implementation reasons when    is small.   

           
 

     
         

   
   

 The function         is achieved by simply summing these generating functions g. 

                

 

   

 

 Once the function   is generated at each time step, it only changes as a result of the points    

being moved, as described in the next section. 

2.2  Updating the High Dimensional Image Representation and Projecting It 

 The points    should change from a more disperse or disordered state to a more ordered one.  

This result can be achieved by running the reverse heat equation on the high dimensional represenation of 

 , denoted by  .   

 To compute the Laplacian of   at each time step, a local approximation of the function is 

required at each   .  This is done by pseudo-randomly selecting 10 nearby points.  Selecting any 10 

points at random would produce some points that are so far away that their basis functions have a 

negligible contribution.  Selecting the 10 exact nearest neighbors might cause similar points to be selected 



at each time step and points that are close enough to have their associated basis functions significantly 

affect   will never be considered.  This pseudorandom nearest neighbor search is the slowest step and can 

be done with computational complexity as good as         .  Additionally, the reverse heat equation is 

unstable, and working with very large values of  , which would occur if a large number of nearby 

neighbors are considered,  can cause instability.   

 The function   is updated at each time step by moving the points   .  This is done in order to 

keep all the relevant information about   required to perform the projection encapsulated within the   .  

The number   denotes the current time step and     the next time step.   

                             
 

 The points      were creating from an image.  However, as soon as these points are moved to 

obtain        there is no longer a correspondence to a true image. The         altogether contain     

values and somehow the best image with   values corresponding to this        needs to be found.  This is 

done using the aforementioned relation between the image and high dimensional data involving  . 

                                                  

                                            

 The matrices   and     are sparse and only need to be found once.  There are many methods to 

quickly find the solution to a sparse symmetric positive definite linear system.   

2.3  Partial Differential Equation 

 The partial differential equation involves a high dimensional representation of  , denoted by  , 

and a projection which is used to convert the high dimensional representation back to an image.   The 

procedure for creating   is described in detail in section 2.1.  The projection,  , gives the vector of length 

  that best approximates the high dimensional data, denoted   .  The specific formulation for   relates to 

the linear operator that was used to generate the high dimensional function and is described in detail in 

section 2.2.  A standard fidelity term to the original image is a also present. The vector    of length   is 

simply the grayscale pixels values of the original noisy image.   

                    

2.4  Summary of Numerical Implementation 

The updating of   at each time step, where   denotes the current time and     then next time step, is 

summarized as follows: 

 1.  Use the points      to generate points          and the function         as described in     

      section 2.1. 

 2.  Update   by moving the points      to        as described in section 2.2. 

 3.  Obtain the    that best corresponds to        as described in section 2.2 

 4. Compute      using the formula below: 

                          

 



3  Results 

 Artificial noise with standard deviation 10 was added to images of bark and Lena, and noise of 

standard deviation 15 was added to the peppers image as shown in Figure 2. For all noised and denoised 

images, the signal to noise ratio is computed: 

     
      

            
   

          
                         

   

 

The bar stands for the average of that value over the whole image and the    subscript stands for the true 

image with no noise.  As another measure of the denoising quality, the sup norm, or worst error in the 

image, was computed: 

                  
      

While very simple, this measure is completely unforgiving.  If the denoising method removes patterns 

that are present in the clean, original true image or fails to denoise large parts of the image, this measure 

will be poor.  Also, as discussed previously, in some applications things that occur rarely within an image 

may be of greater interest than large regions of near constant pixel value.  This may be a better measure of 

how well intricate and rare features are denoised.   

 The proposed method (Figure 6) is compared to the original non-local means method (Figure 5) 

[5] as well as two semi-local means methods (Figures 3 and 4) [5] using different patch sizes.  The non-

local method provides the most direct comparison as the proposed method is also fully non-local.  But, 

varying the window and patch size can cause various advantages and disadvantages depending on both 

the image noise and image content.  So different window and patch sizes are considered to provide some 

evidence that the proposed method gives a denoising result that cannot be achieved by a non/semi-local 

means method with a careful selection of window and patch size.  For all examples the programs were 

given the true standard deviation as a parameter.         

 Figure 3 shows the result obtained by the original semi-local means method using a 5 by 5 patch 

and an 11 by 11 search window.  The denoising results for the pepper are quite good as can be seen by the 

noise removed.  Denoising occurs on most of the image and not too much of the true image appears in the 

noise removed.  In the peppers image, most patches are similar to some other nearby patches.  In contrast, 

the denoising result for the bark is extremely poor.  For this image, similar patches do not often repeat 

nearby.  Very little of this image is actually denoised. Lena also contains some large regions where very 

little denoising occurs.   

 In Figure 4, the window sized remained 11 by 11, but the patch size was reduced to 3 by 3.  This 

resulted in more denoising occurring for the bark image though many areas where no denoising occurred 

still remain.  However, at the same time, Lena's, as well as the peppers, true image shows up more in the 

noise removed when compared to the 5 by 5 patch.    

 Figure 5 shows the original NL means method with a patch size of 5 by 5 and a search window 

size of 512 by 512, that is, the entire image.  Just as when the patch is reduced in size, increasing the 

window size results in a trade off where more of the image is denoised yet at the same time more of the 

true image appears in the noised removed.  The SNR is worse in some cases than the semi-local method, 

but the sup norm is always nearly equivalent or much better than the semi-local methods.  So non-local 

methods may possibly still be a better choice for denoising applications where the object of interest is 

complicated (that is, difficult to denoise) and does not repeat frequently in the image.  Also of note, is that 

no filtering method was used.  If one were employed to break the        computationally complexity, 

the results would likely be worse.   



 Figures 6 shows the denoising result with proposed method.  Unlike any of the previously 

discussed variations of the original non/semi-local means, significant denoising occurs throughout all 

three images.  At the same time, very little of the true image appears in the noise removed which occurred 

for the original non/semi-local means only in the large patch and small window situation shown in figure 

3 (at the expensive of large image regions not being denoised as discussed).  Additionally, both measures 

of image quality for all three images were either equivalent or superior when compared to all variations of 

the original non/semi-local means methods.  On the negative side, a small amount of blurring seems to be 

occuring in the proposed method.  This could be due to the    minimization in the projection step, the 

Laplacian operator, or a suboptimal choice of patch attributes to measure. 

4  Conclusion 

 The proposed denoising method can effectively compare data throughout an entire image and  

incorporate it into an effective denoising result.  Very little of the true image is removed as noise and 

significant denoising occurs in every part of the image.  The projection step of the proposed method, 

which involves finding a solution to an overdetermined system, is of great importance to achieving this 

result.   

 The          computational complexity of the method is not as good the optimal      
complexity, but given that even a simple 1D sorting problem has          computational complexity, a 

fully nonlocal method with a      complexity would be challenging.  Additionally, modified version of 

the filtering methods may be applicable here to further speed up the method.   

 Another advantage of this method is that there may be many avenues toward its improvement.   

The speed and denoising capability of the method depends on several very well studied problems, 

including selecting local image attributes of interest, partial differential equationss, random nearest 

neighbor searching, and finding an optimal solution to an overdetermined system. 
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Figure 2  Three images with noise of standard deviation 10 (left), 10 (middle) and 15 (right).  Zoomed in portion of image on bottom.   

SNR is 22.1 (left), 22.9 (middle), and 13.1 (right). Sup norm is 44 (left), 52 (middle), and 77 (right) . 



 

 

Figure 3  Original SL-means method with an 11 by 11 search window and 5 by 5 patch.  Denoised image and removed noise (multiplied 

by 4) shown.  SNR is 24.3 (left), 87.0 (middle), and 79.7 (right).  Sup norm is 44 (left), 40 (middle), and 60 (right). 



 

 

Figure 4  Original SL-means method with an 11 by 11 search window and 3 by 3 patch.  Denoised image and removed noise (multiplied 

by 4) shown.  SNR is 30.0 (left), 91.5 (middle), and 76.0 (right).  Sup norm is 43 (left), 37 (middle), and 63 (right). 



 

 

Figure 5  Original NL-means method with  whole image search window and 5 by 5 patch.  Denoised image and removed noise (multiplied 

by 4) shown.  SNR is 30.9 (left), 91.6 (middle), and 68.8 (right).  Sup norm is 40 (left), 38 (middle), and 52 (right). 



 

 

Figure 6  Proposed method.  Denoised image and removed noise (multiplied by 4) shown.  SNR is 33.6 (left), 103.8 (middle), and 79.7 

(right).  Sup norm is 39 (left), 35 (middle), and 50 (right). 


