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We present implicit surface reconstruction algorithms for point clouds. We
view the implicit surface reconstruction as a three dimensional binary im-
age segmentation problem that segments the entire space R3 or the com-
putational domain into an interior region and an exterior region while the
boundary between these two regions fits the data points properly. The key
points with using an image segmentation formulation are: (1) an edge indi-
cator function that gives a sharp indicator of the surface location, and (2) an
initial image function that provides a good initial guess of the interior and
exterior regions. In this work we propose novel ways to build both func-
tions directly from the point cloud data. We then adopt recent convexified
image segmentation models and fast computational algorithms to achieve
efficient and robust implicit surface reconstruction for point clouds. We test
our methods on various data sets that are noisy, non-uniform, and with holes
or with open boundaries.

Key Words: principal component analysis (PCA), anisotropic Gaussian, dis-
tance function, edge indicator, normal, image segmentation, total variation,
primal-dual algorithm.

1. INTRODUCTION

Point cloud (PC) data is defined simply as a set of unstructured
points with no specific ordering and connection. In 2 or 3D, points
are defined by their X, Y and X, Y, Z coordinates respectively. PC
data is one of the most basic and ubiquitous ways for 3D modeling
and rendering in practice, e.g., PC data obtained from 3D scanners
or LiDAR (Light Detection And Ranging) measurements. There
are several basic problems associated to point clouds including the
likes of visualization, segmentation, feature extraction, and surface
reconstruction.

In this paper, our primary focus will be on surface reconstruc-
tion for PC. PC is highly unstructured without ordering or con-
nection information among data points. Also noise, non-uniform
sampling, open boundaries, singularities (corners and edges), and
complicated topology further complicate the reconstruction pro-
cess. For PC with little noise and good sampling rate, the task of
surface reconstruction is relatively easy and many efficient algo-
rithms are available. However, in many applications PC data can
be quite noisy. Moreover, the sampling rate can be highly non-
uniform and there may even be missing pieces such as holes in
the data. These issues further exacerbate the intrinsic ill-posedness
of the problem. Most surface reconstruction methods for PC can be
classified into two categories in terms of the form of the represen-
tation of the surface, namely explicit or implicit surface. Explicit
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surface representations prescribe the surface location and geom-
etry in an explicit manner. For example, computational geometry
approaches [Amenta et al. 1998a; Amenta et al. 1998b; Boisson-
nat 1984; Edelsbrunner 1998; Edelsbrunner and Mucke 1994] often
utilize Voronoi diagrams and Delaunay triangulations to determine
connections among data points and subsequently construct triangu-
lated surfaces by connecting adjacent vertices. For other explicit
representations such as parametric surfaces, we refer the reader
to [Piegl and Tiller 1996; Rogers 2003]. Implicit surface represen-
tations typically embed surfaces as a codimension one level set
of a scalar-valued function. For implicit surface representations,
the scalar function is usually constructed on a grid [Rogers 2001;
Hoppe et al. 1992; Zhao et al. 1998; Zhao et al. 2001; Lempitsky
and Boykov 2007; Goldstein et al. 2009; Bae et al. 2009], which is
typically related to the signed distance function, or is constructed
grid free using a combination of an implicit surface defined in terms
of some mesh-free approximation methods such as a radial basis in-
terpolating function [Carr et al. 1997; Carr et al. 2001; Morse et al.
2001; Ohtake et al. 2003; Wendland 2002]. We also remark that,
there are some recent fast and convex optimization techniques for
implicit representations in the context of PC, see [Ye et al. 2010;
Goldstein and Osher 2009; Goldstein et al. 2009; Zhu and Chan
2008; Chambolle 2004; Bae et al. 2009].

The advantage of using an explicit surface formulation include
precise and concise representation. However, triangulated surface
approaches usually have difficulties in dealing with noise and espe-
cially holes in data due to the fact that (1) all data points are used as
vertices of the triangulated surfaces, (2) connection relation among
data points are based on closest point information, which is local
in nature. Parametric surfaces have even more compact and ex-
plicit representations, however, the lack of a global parametrization
makes it difficult to deal with general data sets. Also explicit sur-
face representations are less robust and flexible to deal with com-
plicated topology due to the lack of volumetric information. In ad-
dition to the topological flexibility and robustness, we believe that
global implicit surface reconstruction with the incorporation of vol-
umetric or prior information can alleviate the ill-posedness to some
extent and is more appropriate for noisy and highly non-uniform
PC. As an example, for the PC in 2D shown in Figure 1 (a), we can
see that there are two obvious reasonable reconstructions based on
local points configuration, 1 (b) and (c). However, if we incorporate
the line of sight (volumetric) information shown in Figure 1 (d), we
can resolve the ambiguity easily.

Essentially, construction of an implicit surface is equivalent to
the segmentation of the domain into two regions, an interior and
an exterior region with the boundary approximating the PC. In this
work we formulate the implicit surface reconstruction as an image
segmentation problem. Different from standard image segmenta-
tion where an initial image uniformly sampled on a rectangular grid
is given, two key issues for PC are (1) there is no initial image given
on a regular grid, and (2) a good edge indicator is needed. In this
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Fig. 1. Ambiguous PC reconstruction and alleviation by utilizing volumet-
ric information.

work we develop novel ways to construct this information directly
from the scattered PC. In particular, the initial image provides a
good indication of inside and outside regions and can incorporate
volumetric information, such as line of sight. The edge indicator
function is mainly for the purpose to provide a data fitting term
that indicates how well the data points are approximated by the
boundary between the inside and outside regions. We then adopt
recent convexified image segmentation models and corresponding
fast algorithms for implicit surface reconstruction. We show both
efficiency and robustness of the proposed method to construct wa-
ter tight surfaces for PC’s with complicated topology, noise, and
holes.

The paper is outlined as follows, in Section 2 we review a few
variational models for implicit surface reconstruction and also talk
about some binary image segmentation models, both of which mo-
tivate our work. We will then explain our methodology for the con-
struction of the initial image and edge indicator which are obtained
directly from the PC in Section 3. Fast algorithms and implemen-
tation details will be given in Section 4. Finally test results will be
provided in Section 5 to demonstrate the ability of our method in
dealing with various kinds of PC data.

2. VARIATIONAL MODELS FOR IMPLICIT
SURFACE RECONSTRUCTION AND IMAGE
SEGMENTATION

One of the earliest variational models for implicit surface recon-
struction was introduced by Zhao et al. in [Zhao et al. 1998; Zhao
et al. 2001] where the authors propose the following weighted min-
imal surface model:

E(Γ) :=

(∫
Γ

dp(~x) ds

)1/p

. (1)

Here, S = {~xi}i=1,2,... denotes the data set, and d(~x) =
dist(~x, S) is the distance to the data S. Γ is an arbitrary surface
and ds represents an element of surface area. When p = 1, the
associated Euler-Lagrange equation has the following form:

∇d(~x) · ~n +
1

p
d(~x)κ = 0 (2)

where ~n denotes the unit normal, and κ is the mean curvature of
Γ. The above PDE can be interpreted as a balance between the at-
traction of the data set ∇d(~x) · ~n and the weighted surface ten-
sion d(~x)κ due to the weighted surface energy. The balance also
implies a requirement for local sampling density with respect to
the local feature size. The approach proposed in [Zhao et al. 1998;
Zhao et al. 2001] is to start with an initial guess, here, a surface
that encloses the data set, and follow the gradient descent of the en-
ergy functional, i.e., the initial surface will shrink and wrap around
the data points. However, the energy functional (1) is non-convex
in Γ. Nonetheless, for discrete data sets, one is looking for a lo-
cal minimum since the global minimum is Γ = ∅. Since there are
many local minima, the initial guess is very important especially
if the shape is concave. Distance contour as an approximate offset
of the true shape can be used as a good initial guess. A fast tag-
ging algorithm is developed to further shrink the initial surface to
get approximately the convex hull of the data set without solving
a partial differential equation. The method works quite desirably
except when the sampling of the data becomes very non-uniform
and there are holes as well as concave features that are of compa-
rable or smaller size. The evolving surface can often get stuck in
unwanted local minimum even if starting very close to the PC data.
An explicit example of this can be seen in Figure 2 where in (a) and
(b), a point cloud and it’s distance function are shown. The distance
contours for ε = 0.05 and 0.09 are seen in (c) and (d) respectively.
If ε is chosen too small, the initial surface using the distance con-
tour is not a closed surface. On the other hand, if ε is chosen too
large, the local concave feature cannot be detected by the distance
contour. These issues are also related to using distance function as
an indicator of fitting error. The distance function to a discrete data
set is determined totally by the closest point information, which is
mutually exclusive. As a consequence, its behavior is isotropic in
all directions near a point and does not utilize neighboring points
to reveal more local geometric information. Later we will develop
a better indicator in terms of both location and geometry for the un-
derlying surface directly from the PC. In Figure 2 (e) and (f) are the
reconstruction results by the fast tagging algorithm in [Zhao et al.
2001] and the minimal surface model starting from the ε = 0.09
contour of the distance function as the initial guess; the local con-
cave feature cannot be felt by the minimal surface model and gets
stuck at an unwanted local minimum.

In the setting where p = 1 in the above minimal surface model
(1), the model is equivalent to the geodesic active contour/snake
model for image segmentation when the distance function is re-
placed by an edge indicator function derived from the given image,
see [Caselles et al. 1997; Kass et al. 1987]. However, these image
segmentation models suffer the same intrinsic difficulty of many
local minima due to non-convexity of the optimization problem.
Recently there have been a few convexified binary image segmen-
tation models proposed to overcome the above difficulty. There are
two key ideas behind these models. First, instead of minimizing
over all possible curves or surfaces, which is highly non-convex,
the energy function is translated equivalently to the minimization
over binary functions which becomes convex (although non strictly
convex in general). Second, the fidelity term that incorporates the
volumetric image is used in addition to the local edge indicator
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Fig. 2. Inability of the distance contour to capture fine feature in non-
uniform PC data. (a) point cloud, (b) distance function, (c) ε = 0.05 contour,
(d) ε = 0.09 contour, (e) fast tagging, (f) minimal surface reconstruction.

function. Moreover, efficient and robust optimization algorithms
are available for these models. These models will be adopted for
our implicit surface reconstruction method which is equivalent to
segmenting the whole domain into interior and exterior regions.
Here, we give a brief introduction to two of those convex models
for binary image segmentation.

One of the first convex binary image segmentation models is the
following TVG-L1 model proposed in [Bresson et al. 2007],

min
u

∫
Ω

g(x)|∇u(x)|+ λ|u− f |dx. (3)

In the first term, g(x) > 0 is an edge indicator function which
is close to zero at edge locations. This term alone is akin to the
geodesic active contour model. For example, if u(x) is a charac-
teristic function, then

∫
Ω
g(x)|∇u(x)| is the weighted (by g(x))

length/area of the boundary by the co-area formula for total varia-
tion (TV) [Giusti 1984; Federer 1969]. The second term is a volu-
metric image fitting term in which f is the given image. In particu-
lar, when g(x) = 1 and f is a binary image, it was shown in [Chan
et al. 2004] that a global minimizer Σ of the non-convex variational
problem (for binary image defined by Ω):

min
Σ
|∂Σ|+ λ|Σ4Ω|, (4)

where4 denoting the symmetric differences of the two sets, can be
found by computing any global minimizer, ū(x), which may not be
unique, of the convex TV-L1 problem

min
u

∫
Ω

|∇u(x)|+ λ|u− f |dx,

and defining Σ = {x|ū(x) > µ} for any µ ∈ (0, 1). Then Σ is a
global minimizer of the original non-convex problem (4). In other
words, any global minimizer is almost binary in this case, i.e., the
measure of the set {x, u(x) 6= 0 or 1} is zero. So the most impor-
tant advantage of the binary image segmentation model, TVG-L1,
is that it becomes convex by reformulating the original geomet-
ric problem into the minimization over functions. Moreover, if f
is close to a binary image, the minimizer is also close to a binary
image with sharp transitions located at the places where g(x) is
small. Efficient algorithms are available for the convex minimiza-
tion problem. The algorithm and implementation details will be
given a little later in Section 4. However, we would like to point
out that the most important issue in applying the TVG-L1 model
to implicit surface reconstruction is how to construct the edge in-
dicator g(x), which should localize the surface well, and the initial
image f(x), which should provide a good volumetric information,
i.e., indicator of inside and outside information, from unstructured
and irregularly sampled PC. This issue will be discussed in detail
in the next Section.

Another closely related binary image segmentation model we
also consider is the following CVG model proposed in [Bresson
et al. 2007],

min
0≤u≤1,c1,c2

∫
Ω

g(x)|∇u(x)|+λ
[
(f − c1)2 − (f − c2)2

]
u(x)dx.

(5)
Here, g(x) and f(x) is exactly as in the TV-L1 setting. c1 and c2
are two constants. The above model is a convex constrained version
of the original model by Chan and Vese [Chan and Vese 2001]. If
g(x) = 1, it is the same as the piecewise constant Mumford-Shah
model. Again it was shown in [Chan et al. 2004] that to find the best
approximation of an image f(x) by two-valued piecewise constant
functions,

u(x) = c11Σ + c21Ω\Σ (6)

which has the following variational formulation,

min
c1,c2,Σ⊂Ω

|∂Σ|+ λ

[∫
Σ

(f − c1)2dx+

∫
D\Σ

(f − c2)2dx

]
, (7)

where Σ ⊂ D is a region contained in the image domain and |∂Σ|
denotes the measure of the boundary of Σ, it is equivalent to finding
(c1, c2, u(x)) to minimize

min
c1,c2

min
0≤u≤1

∫
D

|∇u|dx+ λ

[∫
D

(f − c1)2 − (f − c2)2

]
u(x)dx.

In other words, if (c1, c2, u(x)) is a solution to the above formu-
lation, then for any µ ∈ (0, 1), the triplet, (c1, c2, u(x) ≥ µ) is
a global minimizer for (7). Again the first term in the CVG model
(5) is the same as the first term in the TVG-L1 model (3) which is
like a geodesic active contour. However, the fitting term is different
and involves two global constants. In particular the CVG model is
convex in c1, c2 when u(x) is given and the optimal values are the
average of f(x) in each region respectively. Once c1, c2 are given,
the optimization in u is also convex and can be efficiently computed
using the numerical algorithm described in Section 4. Both of these
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two models produce successful and accurate results. In compari-
son, TVG-L1 depends on the initial image f more and only locally,
i.e., at each point only the sign of f(x) − u(x) matters as can be
seen from the Euler-Lagrange equation. If the data is clean and the
initial image f gives a good binary approximation of interior and
exterior regions, then TVG-L1 provides more accurate solutions.
On the other hand, due to the introduction of two global constants,
c1, c2, the CVG model is more robust with respect to noise in the
data or to a rough initial image f . Numerical tests will be shown in
Section 5 to demonstrate both models for various types of data.

Our work is also motivated by the recent work [Ye et al. 2010],
in which the authors adapt the TV based segmentation models, i.e.,
TVG and CVG models proposed in [Bresson et al. 2007] for im-
plicit surface reconstruction from PC. However, the most important
issue in using an image segmentation model for implicit surface re-
construction is the choice of the edge indicator function and the
initial image, especially when the PC is noisy, non-uniform and
containing holes or open boundary. In [Ye et al. 2010], both of
them are directly related to the distance function d(x) to the data
set. In particular, the edge indicator function is exactly d(x), i.e.,
g(x) = d(x). The initial image is constructed by the following ar-
gument. Suppose an image f is given, then a natural choice of an
edge indicator function for f is simply:

g(x) =
1

ε+ |∇f(x)|p
(8)

for some p > 0. The foremost idea in [Ye et al. 2010] is to view
the distance function d(x) as the edge detector. By regularizing the
distance function by setting g = d+ ε > 0 they compute the initial
image f by solving the Eikonal equation:

|∇f | = 1

g1/p + ε
. (9)

Then they propose to use the CVG segmentation model from [Bres-
son et al. 2007]:

min
0≤u≤1

∫
Ω

g(x)|∇u|+ λ
{

(f − c1)2 − (f − c2)2
}
u(x)dx. (10)

Thresholding the function u (usually taking the 0.5 level set) gives
a coarse approximation to the implicit surface. The authors then
utilize some post processing algorithms including a variant of the
method found in [Lempitsky and Boykov 2007] along with some
TV based iterative refinement by way of the Bregman iteration
found in [Osher et al. 2005]. However, the above work suffers
the intrinsic problems of using the distance function to the data
set as the edge indicator. These problems will be discussed in de-
tails in Section 3. Our main contribution in this work is addressing
the problem of how to choose a better edge indicator function and
initial image directly from the PC, which is explained in the next
section.

3. CONSTRUCTION OF THE INITIAL IMAGE AND
THE EDGE INDICATOR FUNCTION

As we mentioned before, the major difference between point cloud
problems and classical image processing problems is that there is
no initial image sampled on a regular grid for the point cloud to
begin with. All that is known are the locations of the points. Hence,
to view the implicit surface reconstruction for PC as an image seg-
mentation problem we need to create an initial image and edge in-
dicator directly from the given PC. Since the implicit surface can
be thought about entirely as the segmentation of the domain prop-
erly into two regions, interior and exterior, the initial image should

provide a good indication of this volumetrically. At the same time,
the edge indicator function should provide more information about
the precise location of the surface. In other words, the initial func-
tion gives the likelihood of a grid point to be inside or outside,
and the edge indicator function gives the likelihood of a grid point
on the surface. Below we will give our construction of these two
functions directly from the PC. The basic tool in our approach is
Principal Component Analysis (PCA) using neighboring points to
extract more accurate local geometric information.

Given a PC consisting of points, D = {xi}ni=1, the PCA at a
given data point p ∈ D is typically computed by first determining
the K-nearest neighbors (KNN), xk ∈ D, k = 1, 2, · · ·K, of p.
Then form the covariance matrix by

P =

K∑
k=1

(xk − p)T (xk − p) (11)

where p is the centroid of the KNN, p = 1
K

∑K
k=1 xk. Let 0 ≤

λ1 ≤ λ2 ≤ λ3 be the three eigenvalues and v1, v2, v3 be the three
corresponding normalized eigenvectors. PCA reveals the local lin-
ear structure from the KNN of p. In particular v1 gives the surface
normal approximation and the relative size of λ1, λ2, and λ3 in-
dicates how curved the surface is in different directions. Figure 3
gives a 2D illustration. See [Pauly et al. 2002; Digne et al. 2011] for
more characterization of local geometry in terms of the eigenvalues
of the covariance matrix.

Fig. 3. Local coordinates using PCA.

3.1 The initial image

To give a good indication of interior and exterior regions of the PC,
we use the following inner product field as the likelihood function,
i.e., the initial image. Suppose we have a consistent outward normal
at each data point. At a point x in the domainD, we denote p(x) as
the data point that is closest to x. Then we define the inner product
field

f(x) = v(x) · n(p(x)), v(x) =
x− p
|x− p|

(12)

as the initial image, where n(p(x)) is the outward normal at p(x).
Figure 4 illustrates how v(x), p(x), and n(p(x)) are defined. In the
figure, data points are blue. The black vector is the outward normal
at a given data point. The green and red vectors corresponds to
x− p(x) for the green and red points respectively.

In particular, −1 ≤ f(x) ≤ 1 is positive when x is outside
and is negative when x is inside. The outward normal is used at
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Fig. 4. Key idea of the inner product field.

each data point. Far away from the data set, f(x) is quite uniform.
Near the data point f(x) is more anisotropic and gives stronger
indication in directions that are more aligned with the normal di-
rection and gives weaker indication in directions that are closer to
the tangential directions. The construction of f has two important
ingredients. One is the consistent normal estimation for PC and
the other one is the closest point information. Although PCA gives
pretty robust normal estimation, it does not specify a consistent
outward or inward normal estimation. For consistent normal esti-
mation, the easiest way is to use line of sight information at each
data point. For pure PC data, we first use PCA to estimate the nor-
mal at each data point and then use the simple method proposed in
[Castillo and Zhao 2009] to orient them consistently in which an
adjacency information is formed among all data points. We refer
the reader to that work for detailed description where Castillo et al.
also discussed about how to use constrained nonlinear least squares
to improve the normal estimation for PC near singularities. To find
closest point information p(x), i.e., given a point x ∈ D find the
data point p ∈ S which is closest to x, we use the fast sweeping
method [Zhao et al. 1998; Zhao et al. 2001; Tsai 2002; Luo et al.
2010; Bak et al. 2010]. The fast sweeping method is an efficient
iterative method that can compute the distance function as well as
the closest point information on a rectangular grid in 4 iterations
for 2D data and 8 iterations for 3D. Figure 5 shows an example of
the inner product field. In practice, even when the data is noisy or
the normal estimation is not that accurate, the inner product field
gives a pretty good indication of the inside and outside regions of
the PC data. Since this inner product field f(x) is used as the initial
image in the second term (fitting term) in both the TVG-L1 model
(3) and the CVG (5) model, the final implicit surfaces can be re-
garded as regularized (by the first term in both models) or modified
segmentation based on f(x).

Actually, using the above defined inner product field can extend
an open boundary and fill holes in the data set naturally. The use of
closest point and inner product extends the surface in the tangen-
tial direction at the boundary. Moreover, due to the regularization
intrinsic to the variational model, extension at these boundaries or
hole filling will not create edges, corners or kinks. Figure 6 illus-
trates the boundary extension and hole-filling scenario in 2D. For
example, at the left-most boundary, points in the region left to the
line that goes through the left end point and is parallel to the normal
all have that left end point as the closest point. The inner product
field in the region changes sign across the tangent line through the
left end point. The same thing happens in the middle where there
is a hole. Extensions come from both ends and fills the hole. As
demonstrated in the Figure, the filling will not be a straight line (or
flat surface in 3D) as in most hole filling models based on diffu-
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Fig. 5. Consistent normals and inner product field. The image on the left is
an example of a 2D point cloud with consistent outward normal estimation,
the right one is the inner product field f(x) defined by (12). The black curve
is the 0-level set of the inner product field.

sion, minimal surface or TV regularization. Although the extension
from different parts of the boundary will meet and may create cor-
ners and/or edges, i.e., the zero level set of the inner product field f
may have corners and/or edges, the first regularization term in both
models will smooth out these corners and/or edges. So the hole fill-
ing is neither flat nor containing corners and edges. This ability to
extend surfaces at the boundary allows our method to handle not
only holes in the data but also open surfaces, which are not so easy
for traditional implicit surfaces. We will show results for both hole
filling and open surfaces in Section 5.

As a final remark, other volumetric information can be easily in-
corporated in the construction of f . For example we can use avail-
able line of sight information for laser scanned PC easily to find
consistent outward normals as well as fix the values of f in those
cells along each line of sight.

extend open boundary

fill holes

Fig. 6. Surface extension and hole-filling.

3.2 Edge indicator

A good edge indicator is crucial for the performance and quality
of the TVG-L1 and CVG models. A straightforward edge indicator
function is the distance function to the data set. The distance func-
tion is easy to compute and gives a good indicator far away from
the data set. However, due to the fact that the distance function is
completely determined by the closest point, which is mutually ex-
clusive, it suffers from the following issues,

—it behaves isotropically in all directions near a point and does not
utilize neighboring points to reveal local orientation or geometry,

—it does not allow superposition or averaging and is difficult to
deal with noise naturally.
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Here, we design a sharp and robust edge indicator based on PCA
which can extract local geometric information of the underlying
surface at each data point. At a data point pi, we first use PCA (11)
on its KNN to obtain the eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 and the
corresponding normalized eigenvectors v1, v2, v3 respectively. We
establish a local coordinate system (x, y, z) aligned with the three
eigenvectors and centered at pi. Then we generate the following
anisotropic Gaussian kernel at pi:

Gi(x) = exp{β(pi)} exp{−s
(
x2

1

λ1

+
x2

2

λ2

+
x2

3

λ3

)
} (13)

where (x1, x2, x3) is the local coordinate for a grid point x ∈
D under the local coordinate. In the above expression, the term
exp{β(pi)} is to characterize uncertainty information at pi, which
is useful in dealing with outliers. For example, β(pi) can be re-
lated to measurement uncertainty, e.g., glancing angle, and/or fit-
ting error in local moving least square approximation [Fleishman
et al. 2005]. In our implementation we choose a simple formula,
β(pi) = −r λ1

λ1+λ2+λ3
which characterizes how well the point

cloud can be approximated by a plane near pi. If the local sam-
pling rate is good enough to resolve the feature size, β(pi) will
be relatively large. For corner points or outliers β(pi) will be rel-
atively small. Figure 7 (c) provides some demonstration in 2D,
where β(pi) = −5 λ1

λ1+λ2
and s = 4. Another note is that since

λ1, λ2, λ3 equal to the sum of squared distance from the KNN
points to the three local axes determined by the three eigenvec-
tors from PCA respectively, the size of the Gaussian scales natu-
rally according to the local sampling density. Moreover, the kernel
is anisotropic in different directions according to the local PCA.
Hence the constructed Gaussian gives a local sharp indicator of the
surface at each data point based on its KNN. We compute such an
anisotropic Gaussian for each data point and superpose them to-
gether to give a sharp likelihood function of the underlying surface.
Similar likelihood function that characterizes uncertainty and vari-
ability of surface at each data point constructed based on weighted
global information such as tensor voting [Medioni et al. 2000] or
the one proposed in [Pauly et al. 2004], which is more expensive to
compute, can be used here too. For our variational models (3) and
(5), we invert the likelihood function

G(x) =
1∑

iGi(x) + α
(14)

where α > 0 is some constant to avoid division by zero, and scale
it to [0, 1] to get the edge indicator function g0(x),

g0(x) =
G(x)−minx∈D G(x)

maxx∈D G(x)−minx∈D G(x)
. (15)

Some useful features of our edge indicator function include

—it utilizes neighboring data points to extract local geometry and
is anisotropic in different directions, hence it is sharper than the
distance function.

—it allows superposition from all data points as well as easy incor-
poration of other uncertainty information, hence it is more robust
than using a distance function as the indicator.

These features are especially useful in dealing with non-uniform
and noisy data sets. An interesting observation is that the behav-
ior of our constructed edge indicator function is complementary to
that of the distance function in the sense that it changes rapidly and
provides a sharp indicator near the data set while it varies slowly
and gives weak indication further away from the data set due to

the fast decay of the exponential function. On the other hand, the
distance function always has a constant magnitude in gradient and
provides a good indicator away from the data set. So in practice
we combine these two. We normalize the distance function to [0, 1]
and average it with the inverse sum of the anisotropic Gaussians
defined in (15). Another advantage of combining these two is that
it is only necessary to evaluate each Gaussian on grids in a small
local region (a narrow band) of each data point which in turn saves
computation cost significantly. As a result, our edge indicator func-
tion behaves more like the inverse sum of anisotropic Gaussians
(15) near the data set and behaves more like the distance function
away from it. This behavior of our edge indicator function, which
gives both strong global indication and sharp localization near the
data set, also helps the optimization algorithms for both convexified
segmentation models described below to converge fast.

Figure 7 gives a clear demonstration of the behaviors of different
edge indicator functions. Figure 7 (b) shows the constantly sloped
distance function which is not so sharp near the data set. Figure 7
(c) shows the inverse sum of anisotropic Gaussians (15) which is
sharp near the data set but is almost a constant away from the data
set. Figure 7 (d) shows a combination which inherits advantages of
both.
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Fig. 7. Proposed edge indicator function on concave data set. (a) point
cloud, (b) distance function, (c) anisotropic Gaussian, (d) edge indicator
(average of the scaled distance and anisotropic Gaussians)

4. NUMERICAL ALGORITHMS

4.1 Generating the initial image and edge indicator
function

To generate the initial image we

(1) Compute the distance function and find the closest point map
for the whole grid using fast sweeping method with locking
[Zhao 2005; Bak et al. 2010; Luo et al. 2010].
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(2) Do local PCA based on KNN to compute the normal at each
point.

(3) Generate the normalized inner product field.

These are all efficient algorithms with linear complexity.
The edge indicator function can be computed directly from the

local PCA and distance function obtained in the above step. We
limit Gaussian evaluation only near each data point.

4.2 Image Segmentation Algorithms: TVG-L1 and
CVG

Here, we outline two efficient algorithms based on the dual for-
mulation of the TVG-L1 and CVG models. There are many recent
methods for solving these models, most notably [Zhu and Chan
2008; Goldstein and Osher 2009; Bae et al. 2009; Chambolle 2004;
Bresson et al. 2007]. We found that different methods perform com-
parably in our application mainly due to the fact that we have a
pretty accurate initial image and a sharp edge indicator to start with.
For ease of use, simple parameter tuning, and guaranteed conver-
gence, we utilize the fixed point method found in [Bresson et al.
2007] based on the dual formulation of the TVG-L1 and CVG mod-
els. We further reduce the computational cost for closed surfaces by
restricting our image segmentation in a neighborhood around the
data points using the distance contour that is far enough to close
the gap between neighboring points, see Figures 12–16. For open
surfaces, i.e. surfaces with open boundary, we utilize a bounding
box and do the segmentation in the whole box, see Figures 17–18.
As discussed in Section 3.1 our method can fill holes and extend
open surfaces smoothly along the tangential directions. We give a
more detailed description of the algorithms below.

4.2.1 TVG-L1. For numerical implementation of the TVG-L1
model (3), we consider the convex regularized version suggested in
[Bresson et al. 2007] which has the following formulation:

min
u,v

∫
Ω

(
g(x)|∇u|+ λ|v|+ 1

2θ
|u+ v − f |2

)
dx (16)

where f is the initial image from (12) and g(x) is the PC edge
detector:

g(x) =
d(x) + g0(x)

2
, (17)

with d(x) being the scaled distance function, and g0(x) the scaled
inverse sum of the Gaussians found in (15). It is assumed that the
above model (16) converges to the original TVG-L1 model for θ
chosen small enough, see [Aujol et al. 2006]. This regularized en-
ergy can be minimized by alternatingly minimizing over each sin-
gle variable u and v in the coupled energies:

(1) for v fixed,

min
u

∫
Ω

(
g(x)|∇u|+ 1

2θ
|u+ v − f |2

)
dx (18)

(2) for u fixed,

min
v

∫
Ω

( 1

2θ
|u+ v − f |2 + λ|v|

)
dx. (19)

It is shown in [Carter 2001; Chambolle 2004] that the minimizer u
for (18) can be found in terms of the dual variable p by the update
formula

u = f − v − θ∇ · p (20)

where p solves the dual optimality equation associated to the dual
formulation of the sub-minimization problem (18)

g(x)A(p)− |A(p)|p = 0 (21)

with A(p) = ∇(∇ · p − (f − v)/θ). The dual variable p can be
subsequently solved for by the fixed point scheme that was intro-
duced in [Chambolle 2004] which was also used for minimizing
the TVG-L1 model in [Bresson et al. 2007]:
p0 = 0,

pn+1 =
pn + τA(pn)

1 + τ
g(x)
|A(pn)|

(22)

which is guaranteed to converge for time step τ ≤ 1/8.
Now, v can easily be solved for from the shrinkage scheme be-

low:

v =

 f − u− θλ if f − u ≥ θλ
f − u+ θλ if f − u ≤ −θλ
0 if |f − u| ≤ θλ.

(23)

This scheme was initially proposed in [Chambolle et al. 1998;
Donoho and Johnstone 1995] for wavelet shrinkage, but was later
adapted to the TV-L1 and TVG-L1 minimization problems in [Au-
jol et al. 2006; Bresson et al. 2007] respectively.

Solving for the final solution amounts to alternating between the
two equations (22) and (23) using the initial conditions u0 = 0 =

v0 and p0 = 〈p1
0, p

2
0, p

3
0〉 ≡ ~0 with time step taken as τ = 1/8

for 2D examples and τ = 1/16 for 3D ones. Discretization fol-
lows in exactly the same way as discussed in [Chambolle 2004;
Bresson et al. 2007]. The stopping criteria used for the alternating
minimization is max (|un+1 − un|, |vn+1 − vn|) ≤ Tol, for some
prescribed tolerance ‘Tol’. Lastly, the final segmented region Σ is
obtained by simply taking the 1/2 upper level set of the minimizer
u(x); strictly speaking Σ =

{
x|u(x) ≥ 1

2

}
(assuming the initial

image is scaled between [0,1]). The boundary of the surface recon-
struction to the PC is then realized by taking the µ = 1/2 level set
of u(x). i.e. ∂Σ =

{
x|u(x) = 1

2

}
.

The reconstructed surface of the above 2D example is shown in
Figure 8 (a), using 100 iterations with λ = 0.01 and θ = 0.1.
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Fig. 8. Gap connection and concave feature reconstruction. (a) recon-
structed surface using TVG-L1, (b) reconstructed image.

4.2.2 CVG. For the numerical implementation of the CVG
model (5) for PC data, if the constants c1, c2 are fixed, we con-
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sider the following convex unconstrained formulation:

min
u

∫
Ω

[
g(x)|∇u(x)|

+ λ
[
(f − c1)2 − (f − c2)2

]︸ ︷︷ ︸
≡R(x,c1,c2)

u(x) + αν(u(x))
]
dx

(24)

where again g(x) is the PC edge detector (17) and f(x) the initial
image (12). The function ν(ζ) ≡ max {0, 2|ζ − 1/2| − 1} is an
exact penalty function on u. The above unconstrained model (24)
and the CVG model (5) have the same set of minimizers provided
that α is chosen large enough in relation to λ. A criteria here would
be α > λ

2
‖R(x, c1, c2)‖L∞ as shown in [Chan et al. 2004; Bresson

et al. 2007].
In order to take advantage of fast algorithms based on the dual

formulation of the TVG norm, we utilize a regularized version of
the CVG model (much as in the TVG-L1 case) found in [Bresson
et al. 2007] as follows:

min
u,v

∫
Ω

[
g(x)|∇u|+ 1

2θ
|u− v|2

+ λR(x, c1, c2)v + αν(v)
]
dx.

(25)

The energy (25) can be minimized by an alternating minimization
method in the proceeding manner:

(1) for v fixed,

min
u

∫
Ω

(
g(x)|∇u|+ 1

2θ
|u− v|2

)
dx (26)

(2) for u fixed,

min
v

∫
Ω

( 1

2θ
|u− v|2 + λR(x, c1, c2)v + αν(v)

)
dx. (27)

The sub-minimization problem (26) in u coincides with the sub-
minimization problem (18) of the TVG-L1 model if we simply re-
place f − v by the new variable v in (18). Thus, the same method
for obtaining a minimizer u by way of solving the dual formulation
of this sub-problem can be employed. Following in this manner,
the update for u in terms of the dual variable p with regards to
the dual formulation of (26) is given by u = v − θ∇ · p. Now,
if we set A(p) = ∇(∇ · p − v/θ) then the dual variable p sat-
isfies (much in the same way as in (21)) the optimality equation
g(x)A(p) − |A(p)|p = 0. Thus, the dual variable p satisfying the
optimality equation can be solved for by the exact same fixed point
scheme as in the TVG-L1 model explicitly given above in (22).

Solving for v in (27) amounts to the following threshold scheme
discussed in [Chan et al. 2004; Bresson et al. 2007]

v = min {max {u(x)− θλR(x, c1, c2), 0} , 1 } . (28)

Finally, the constants c1 and c2 are updated by the formulas:

c1 =

∫
Σ
f(x) dx

|Σ|
, c2 =

∫
Ω\Σ f(x) dx

|Ω \Σ|
. (29)

For the CVG alternating minimization scheme between the fixed
point method (22) and the threshold scheme (28), we use the same
initial conditions, stopping criteria, discretization, and final thresh-
olding on the minimizer u of (24) as in the TVG-L1 model outlined
above to get the final segmented region Σ and reconstructed surface
∂Σ of the PC. The only difference here is that during the alternating

minimization between the fixed point and thresholding, we update
the constants c1 and c2 every 10 iterations via the formula (29).

The reconstructed surface of the above 2D example is shown in
Figure 9 (b), using 100 iterations with λ = 0.05 and θ = 0.1.
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Fig. 9. Gap connection and concave feature reconstruction. (a) recon-
structed surface using CVG, (b) reconstructed image.

4.3 Postprocessing

The above image segmentation models tend to produce a nearly bi-
nary image (characteristic function) with rapid transition near the
sharp edge indicator. Although the segmentation contains the im-
plicit surface information, it does not render a pleasing visual effect
using standard visualization tools for implicit surfaces. We post-
process the segmentation by a reinitialization process [Peng et al.
1999] to transform the characteristic function to a signed distance
function which results in a slightly smoothed surface without af-
fecting the accuracy.

4.4 Complexity Analysis

We use a fast sweeping method to compute the distance function
and closest point information. In order to additionally speed up
the computation, we also use a simple locking technique for the
fast sweeping method which will avoid unnecessary updates dur-
ing each sweeping. We refer the readers to [Luo et al. 2010; Bak
et al. 2010] for more details. The computation complexity for dis-
tance function and closest point information is O(M) where M is
the grid size. For computing the inner product field, we only need
to sweep the whole grid once.

To find the KNN for each data point, we use a very efficient pack-
age called KDTREE2. The computation time is O(KN logN)
where N is the total number of data points and K is the number
of neighbors we use. We compute the PCA for each data point to
form a local coordinate and we use the LAPACK to solve the eigen-
value problem, the total computation time is O(N). The time for
computing the anisotropic Gaussian for each data point is O(N).
A useful fact is that the anisotropic Gaussian decays so fast that we
do not need to compute it on the whole grid, only a small portion
of the grid near the data points is sufficient. In our implementa-
tion, we compute the anisotropic Gaussian values G(pi) for grids
that are within the box center at pi with length of side 3r where
r = 1

K

∑K
k=1 ||pk−pi|| is defined as the average distance between

the KNN.
The complexity for reinitialization is proportional to the grid size

and number of iterations. Since our solution surface from TVG-L1
or CVG segmentation is close to the correct surface, only a few
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iterations are needed, thus, being very fast. More details about the
reinitialization algorithm can be found in [Peng et al. 1999].

The overall complexity of our implicit surface reconstruction
from point cloud is O(N logN + M). Since it is based on ro-
bust convexified segmentation algorithms it can handle noisy and
nonuniform PC, PC with holes or open boundary as can be seen
from the various numerical experiments found in the next section.

5. NUMERICAL EXPERIMENTS

In this section, we present some 2D and 3D experiments to validate
the effectiveness of the proposed model. For the segmentation step,
which creates the boundary of the reconstructed surface, we uti-
lize the two models discussed in Section 4.2. In general they both
produce accurate and comparable results. However, there are some
differences in their respective reconstructions due to their different
data fidelity terms, namely, the fidelity term in the TVG-L1 model
is more local in nature while the fidelity term in the CVG model
is more global. Hence TVG-L1 tends to preserve singularities, e.g.
corners and edges, sharper while the CVG model is more robust to
noise. In particular, the TVG-L1 model tends to depend a bit more
on the consistency of the normals while CVG one only requires that
most of the normals are consistent. Choosing which model may de-
pend on the particular point cloud and we provide some guidelines
at the end of this section.

All experiments are performed on a Dell Inspiron 1525 notebook
with an Intel(R) Core(TM) 2 Duo CPU T8100 @ 2.10 GHz proces-
sor and 4.00 GB RAM memory. Our algorithm is not particularly
sensitive to parameters. All the parameters are easily chosen and
some guidelines are provided later in this section.

5.1 2D Experiments

We use a 257×257 grid and the 5 nearest neighbors in PCA for all
of the 2D experiments. The parameters used for all the 2D experi-
ments are the following: β(pi) = −5 λ1

λ1+λ2
, s = 2, and α = 10.

Figure 10 illustrates an example of a PC with both an open
boundary and 2 portions having missing data points. Figure 10 (b)
shows that our edge indicator not only provides strong connection
in the linear missing part but also extends the open boundary in
a correct and natural way. In 10 (c) is the normalized inner prod-
uct field whose zero level set is taken as our initial surface. One
can see that there are some incorrectly identified regions. Nonethe-
less, one important and beneficial property of either the TVG-L1
or CVG model is that they can resolve these misidentified regions
while keeping the correct ones near the boundary of the PC. Our re-
constructed surface 10 (d) can properly fill in the linear missing part
of the PC boundary while also providing a reasonable gap connec-
tion in the non-linear region containing missing points somewhere
between a tangent extension and minimal curvature rather than just
connecting it using a straight line. We use TVG-L1 for this exam-
ple, using 300 iterations with λ = 0.001 and θ = 0.1.

In the next example we consider a PC in the shape of a noisy
ellipse with two outlier points which can be seen in Figure 11 (a).
Our edge indicator is shown in 11 (b) providing a strong indicator
near the boundary of the ellipse while having much less indica-
tion near the outliers. The inner product field is observed in 11 (c)
yielding a favorable initial surface with the possible exception be-
ing near the outlier points. The reconstructed surface viewed in 11
(d) provides a reasonably accurate surface for the noisy ellipse. Our
edge indicator function automatically provides weaker indicator at
the outlier points, thus, the outliers do not affect our reconstructed
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Fig. 10. Open Boundary Extension and Gap Connection. (a) point cloud,
(b) edge indicator, (c) normalized inner product, (d) reconstructed surface
by the proposed method using TVG-L1 segmentation.

surface. We use the CVG model for the segmentation step in this
example, using 500 iterations with λ = 0.0001 and θ = 0.1.
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Fig. 11. Reconstruction of a Noisy PC with Outliers. (a) point cloud, (b)
edge indicator, (c) normalized inner product, (d) reconstructed surface by
the proposed method using CVG segmentation.
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5.2 3D Experiments

For the 3D examples, we utilize uniform grids whose grid size de-
pends on both the size of a given point cloud and range of those
data points. As mentioned before, when possible, we use a narrow
band computational domain around the PC. An interesting fact is
that we can keep almost all the parameters the same for different
data sets. We use 15 nearest neighbor points for all examples and
set β(pi) = −5 λ1

λ1+λ2+λ3
, s = 1, and α = 10 in the computation

of the anisotropic Gaussian.

5.2.1 Data of significant size. We consider the dragon and
skeleton hand PC data sets which both have a significant number of
points, large grid size, and complicated geometry detail. For these
closed surfaces, we can restrict the computation to the grid points
that are within a narrow band of the surface. In the reconstructed
surfaces, all the details of the PC data can be observed, like the
teeth of the dragon seen in Figure 12 and the fine feature thin bones
near the wrist of the skeleton hand observed in Figure 13. Parame-
ters for the dragon and hand are all the same: 50 iterations, λ = 1
and θ = 0.1 for both the TVG-L1 and CVG models. Lastly, only
3 iterations of reinitialization are needed to achieve the final recon-
structed surface. The Figures 12 and 13 show reconstructed sur-
faces using the TVG-L1 model of the dragon and skeleton hand re-
spectively. Here, TVG-L1 is utilized in the segmentation step since
the data set is well behaved in the sense of uniform sampling and
low noise level.

Fig. 12. Dragon PC surface reconstruction by the proposed method using
TVG-L1 segmentation.

5.2.2 Data with holes. In both Figures 14 and 15, the left Fig-
ures 14 (a) and 15 (a) are the reconstructed surfaces and the right
ones 14 (b) and 15 (b) are the reconstructed surfaces with the data
points superimposed. For both of these examples, we use a nar-
row band computational domain. The holes, scratches, and missing
parts in both PC’s can be successfully filled as observed in Figure
14 (b) for the Stanford Bunny and in 15 (b) for the Knot. Parame-
ters for the bunny with holes are: 50 iterations, λ = 1 and θ = 0.1
for both the TVG-L1 and CVG models. Lastly, only 3 iterations of
the reinitialization is needed to achieve the final reconstructed sur-
face. Parameters for the knot PC with holes are: 50 iterations for
both TVG-L1 and CVG models, λ = 0.16 and θ = 1 in TVG-L1
model and λ = 0.48 and θ = 1 in CVG model. For both mod-
els, once again, only 3 iterations of the reinitialization is needed to

Fig. 13. Skeleton hand PC surface reconstruction by the proposed method
using TVG-L1 segmentation.

achieve the final reconstructed surface. In both Figure 14 and 15,
the reconstructed surfaces are obtained using the TVG-L1 model in
the segmentation step.

(a) (b)

Fig. 14. Hole filling multiple regions. Bunny reconstruction by the pro-
posed method using TVG-L1 segmentation.

(a) (b)

Fig. 15. Hole filling with difficult topology. Knot reconstruction by the
proposed method using TVG-L1 segmentation.
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5.2.3 Noisy data. In Figure 16 (a) a noisy bunny PC is ob-
served. Here, we add Gaussian noise with 0 mean and variance of
0.5% of the diagonal of the bounding box to the clean bunny PC to
obtain the observed one. The reconstructed surface is observed in
16 (b) where it is easily seen that most of the parts of the bunny are
reconstructed quite well despite the noise with the possible excep-
tion being one of the ears. The reason here is that particular portion
of the ear in question is relatively thin which can be construed as a
fine feature, thus, the presence of noise affects it a great deal more.
As mentioned in the beginning of this section, the TVG-L1 model
is more local while the CVG model is more averaged (less local)
and provides a smoother reconstructed surface. Hence, we utilize
the CVG model for noisy data and the parameters for this particu-
lar experiment are 50 iterations with λ = 0.4 and θ = 1. Lastly, 25
iterations of reinitialization are used. Again we only need to com-
pute in a narrow band of the PC for this example.

(a) (b)

Fig. 16. Noisy PC surface reconstruction by the proposed method using
CVG segmentation.

5.2.4 Data with open boundary. Due to the open boundary, we
cannot use the narrow band method in this case and will need to ex-
ecute the computation in the bounding box. Nonetheless, an inter-
esting benefit of our algorithm is that we can extend the boundary
smoothly. We show that for the Venus and gargoyle data sets, we
can reconstruct Venus’s neck and extend the base of the gargoyle.

In the two examples of the Venus and the Gargoyle, their respec-
tive PC data sets are relatively dense, uniformly distributed, have
low noise, and with few singularities, thus, the 0-level set of the
normalized inner product field is already quite an accurate recon-
structed surface. Hence, in this particular case, the computation of
the edge indicator and the segmentation process can be optional. In
both of the two examples shown in Figure 17 and 18, we omit the
edge indicator computation and segmentation steps and only run 3
iterations of reinitialization to get smoothly reconstructed surfaces.

5.2.5 LiDAR data. In the last section we test our algorithm on
challenging real LiDAR data. Figures 19 (a) and 20 (a) demon-
strate two data sets that are segmented from a large LiDAR data
set. One of the main challenges comes from non-uniformity and
non-complete data due to occlusion or shadow. For example, our
two data sets are all one-sided and also have some missing parts
like the right broken (disconnected) leg. Our reconstructed surfaces
show that our algorithm can deal with such difficult data quite rea-
sonably. We can connect the broken leg, we can fit the one-sided
data and we can capture features such as gaps between two legs.
Since these data are one-sided, using anisotropic Gaussians as the

Fig. 17. Open boundary reconstruction and boundary extension of the
Venus PC.

Fig. 18. Open boundary reconstruction and boundary extension of the
Gargoyle PC.

edge indicator may extend the boundary undesirably. So we simply
use the distance function as an edge indicator with the CVG model.
Due to its local nature, the TVG-L1 model is not optimum for these
LiDAR data sets and cannot provide optimum results. Parameters
for LiDAR1 are: 100 iterations of CVG model with λ = 0.06 and
θ = 1 and then 10 iterations of reinitialization. Parameters for Li-
DAR2 (with broken leg) are: 100 iterations of CVG model with
λ = 0.11 and θ = 1 and then 10 iterations of reinitialization.

5.3 Summary: Computation Times and Guidelines

The CPU running time (in seconds) for all 3D experiments are
shown in the following table.

pt size grid size ini proc segmentation reini total
dragon 435,545 221×157×99 24.96 8.67(TVG-L1) 2.47 36.10

16.03(CVG) 43.46
hand 327,323 301×211×103 38.64 14.60(TVG-L1) 4.62 57.86

28.02(CVG) 71.28
bunny(hole) 35,132 129×127×101 7.05 7.80(TVG-L1) 1.17 16.02

12.57(CVG) 20.79
knot 9,754 127×129×63 4.63 11.12(TVG-L1) 0.79 16.54

16.19(CVG) 21.61
bunny(noisy) 35,947 127×129×63 6.94 10.78(CVG) 8.89 26.61

Venus 44,992 125×129×91 6.75 1.05 7.80
gargoyle 91,279 201×145×135 16.58 2.99 19.57
LiDAR1 1,006 39×39×129 0.42 12.34(CVG) 0.43 13.19
LiDAR2 1,009 37×27×129 0.31 8.49(CVG) 0.32 9.12

‘pt size’ is the number of data points, ‘ini proc’ is sum of the initial
processing time (KNN, PCA, fast sweeping method with locking to
compute distance function, closest point information, edge indica-
tor, and normalized inner product field), ‘segmentation’ is the time
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(a) (b)

Fig. 19. LiDAR1 data set surface reconstruction by the proposed method
using CVG segmentation.

(a) (b)

Fig. 20. LiDAR2 data set surface reconstruction by the proposed method
using CVG segmentation.

for TVG-L1 or CVG minimization, ‘reini’ is the time for reinitial-
ization, ‘total’ is the total time of computation.

Outlined below are some guidelines from our experience of
which model to choose depending on the given PC data:

(1) If the data is dense enough, the 0 level set of the normalized
inner product field is already an agreeable surface reconstruc-
tion; several iterations of reinitialization will provide a smooth
final surface.

(2) For closed boundary data, we can use the narrow band compu-
tational domain. For data with an open boundary, we have to
use the bounding box.

(3) If the data is dense and the noise level is small, the TVG-L1
model is suggested in the segmentation step. Moreover, it is a
bit computationally faster than the CVG model.

(4) For a data set that is very noisy or with unreliable normal esti-
mation, the CVG segmentation model is preferred.

6. CONCLUSIONS

In this paper, we proposed robust and efficient algorithms for im-
plicit surface reconstruction that exploits the underlying geometric
structure of the PC data combined with a global convexified image
segmentation formulation. The main advantage of our method is its
ability to deal with challenging PC data that have complicated ge-
ometry and topology as well as noise, non-uniform sampling, holes,
and open boundary.
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