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Abstract. A new surface reconstruction method is proposed based on
graph cuts and local swap. We novelly integrate a curvature based vari-
ational model and Delaunay based tetrahedral mesh framework. The
minimization task is performed by graph cuts and local swap sequen-
tially. The proposed method could reconstruct surfaces with important
features such as sharp edges and corners. Various numerical examples
indicate the robustness and effectiveness of the method.

1 Introduction

Reconstructing a surface from an unorganized point data set is a significant
and challenging problem in the field of computer graphics. The development of
scanner techniques and their wide applications in the areas such as animation
industry, medical imaging, and archeology have boosted the demand of a good
reconstruction method. Extensive research has been conducted and tremendous
advances have been made. Therefore, a robust reconstruction method which
could recover the surface with the sharp features motivates this study.

Most surface reconstruction methods could be classified into two groups,
explicit methods and implicit methods. Explicit methods are local geometric ap-
proaches based on Delaunay triangulation and dual Voronoi diagram [3, 2, 4, 13].
One advantage of these methods is their theoretical guarantee that there exists
a sub-complex of Delaunay triangulation of the data set, which is homeomor-
phic to the ground truth surface given a sufficient sampling. However, due to
the insufficient sampling density at the sharp features, the explicit approaches
could not reconstruct the desired features. Sharp features are high frequency por-
tion in the signal processing language, which means the normal data acquisition
resolution could not fulfill the sufficient requirement.

In the last two decades, some researchers turned to the implicit methods to
gain flexibility of representation and mathematical facilities [16, 35, 34, 15, 26, 27,
5, 22]. The success of the weighted minimal surface model in [35] and its variants
prove the effectiveness of this methodology. The most popular regularization
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term added in the variational model is based on the area, which is designed
for noise removal but not for feature preservation. The application of Euler’s
elastica model in image processing inspires the graphic community and some
works oriented to curvature have been proposed, see [15]. However, most of
implicit reconstruction methods utilize the regular grid to discretize the energy
functional. The consequence of this framework is the staircasing observed in the
reconstructed surface. Some smoothing post-processing is needed more or less,
but the procedure weakens the feature sharpness.

Graph cuts techniques from combinational optimization have been used in
vision problems to find the global minimum of energy functionals for a long time
[7, 9, 8]. Recently, it is also widely used in the field of solving of higher order
models [19, 6] and surface reconstruction problem [17, 18, 20, 21, 25, 28, 32]. It is
a useful tool that can minimize energy functions over implicitly defined surfaces.
Compared with the iterative ways such as gradient descent, the main advantages
of graph cuts are the efficiency and ability to find global minima.

In this study, we propose a novel method for surface reconstruction. The
weighted minimal surface model in [35] has been added with a curvature term.
The variational model is first discretized on the tetrahedral mesh. A graph is
constructed dual to the mesh and graph cuts are applied. The high order curva-
ture term as well as the closeness term are assigned to the graph edge weights.
The energy is calculated based on the last iteration result and graph cuts are
performed iteratively. Local swap will be applied on each element of the explicit
surface, which is regarded as the mesh partition. The curvature based energy
functional is then calculated on 2-manifolds and the change of the energy will
be recorded.

Our method integrates Delaunay-based tetrahedral mesh and curvature based
variational model. It also takes the advantages of both. The Delaunay triangu-
lation guarantees the existence of reliable recovered surface to the ground truth
given sufficient sampling. The curvature based model helps to preserve the fea-
tures. More important is that the tetrahedral mesh guarantees the better capa-
bility of representing piecewise smooth surfaces with sharp corners and cusps.
The earlier works based on grid intrinsically could not obtain the sharp fea-
tures. The input data points are represented by grid data at first place. The
precise information is coarsened. Consequently the ground truth are difficult to
be reconstructed exactly. In our method, ground truths could be reconstructed
exactly, which will be seen in our examples.

The rest of this paper is organized as follows. In Section 2, we review some
related works and give an overview of our proposed method. In Section 3, we
propose a graph cuts based method as the first stage, global minimization. In
Section 4, the local swap method is proposed to recover the remaining features.
In Section 5, various numerical experiments are conducted and the results are
shown.
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2 An Overview of the Proposed Method

We proposed a new method based on the surface model by Zhao et al. in [35],
which is solved by a gradient descent method. In [15], Franchini et al. also solved
this model. The singed distance function d(x) and the curvature κ(x) are calcu-
lated on the regular mesh grid. The level set was computed by local RBF recon-
struction. In the mean time, models that minimize curvature based functionals
have been demonstrated to perform particularly well to avoid the staircasing
effect. The Euler’s elastica model is of central importance such curvature based
model, which was first introduced in image processing in [24, 11, 23] and later in
[6, 29].

Inspired by the performance of Euler’s elastica model in imaging, we in-
troduce the curvature term into the model for surface reconstruction. We also
calculate curvature on tetrahedral mesh to avoid staircasing.

Zhao et al. proposed the weighted minimal surface model as follows:

EZhao(Γ ) =

[∫
Γ

dp(x)ds

] 1
p

. 1 ≤ p ≤ ∞, (1)

where Γ is an arbitrary surface and ds is the surface area. d(x) = d(x, P ) here
is the distance function from the point x to the nearest point of data set P .

The Euler’s elastica of a curve C is given by the energy

EEL(C) =

∫
C

(a+ b · |k|β(x))dl, (2)

where a and b are two parameters and k is the curvature of C at position x. By
setting b = 0, EEL(C) measures the total length of the curve. If a = 0, EEL(C)
measures the total curvature of the curve. For solving this kind of curvature
based model, traditionally, the Euler-Lagrange or gradient descent equations
are derived. In [6], in order to accelerate the convergence of solution, based on
the general formulation of energy functional, we can solve the problem via graph
cuts by the connection between minimization problems and binary MRFs.

Our method has been motivated by these methods which adopt the weighted
surface area and the curvature function. We firstly introduce our model which
can recover not only the smooth parts but also the features such as sharp edges
and corners as follows:

E(Γ ) =

∫
Γ

(d(x) + λ|κ(x)|)ds . (3)

Here distance function for each point d(x) is the fidelity term and λ|κ(x)| is the
regularization term which replaced area term in the Zhao et al.’s model, κ(x)
is the mean curvature at position x. Given the input data set P , we add the
non-geometric background points Q; generate mesh in a Delaunay way in order
to have the reasonable Delaunay triangulations P ∪Q. Then we proposed a two
stage strategy:
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1. We use graph cuts to minimize the energy functional based on the primal
mesh and dual graph. Assign the graph weight according to the energy func-
tional to some extent to get the surface initialization which is for the curva-
ture based evolution;

2. Based on the explicit surface obtained by the first stage, we use local swap
here to recover the features without oscillation.

The flowchart of our method is as shown in Fig. 1, and we will describe the
details in the following two sections.

Fig. 1. flowchart of the proposed method

3 Global Minimization for Surface Reconstruction via
Graph Cuts

In this section, a curvature based variational model will be proposed for surface
reconstruction and solved by graph cuts. This new energy functional is a gener-
alization from that of the weighted minimal surface model, which is also related
to the geodesic active contours approaches [10, 12]. This functional is minimized
on an unstructured tetrahedral mesh framework. The method can handle many
reconstruction difficulties such as noise, undersampling and non-uniformity.

In this method, the unstructured tetrahedral mesh Th is used instead of
structured grids, which provides more flexibility and effectiveness. Normally, we
use {Ki}Ni=1 to denote all N tetrahedra in Th. In such mesh framework, the
surface Γ can be approximated by Γh, a sub-complex of Th. Therefore, our
energy functional (3) can be approximated by:

E(Γh) =

∫
Γh

(d(x) + λ|κ(x)|)ds .

For convenience reason, we do not distinct Γ and Γh in the rest of this paper.
The surface triangulation Γh can be thought of as the union of the triangular
faces shared by tetrahedra in different partitions. In this section, we only discuss
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two phase problems, in which the ground truth surface S simply separates the
embedding domain X ⊂ R3 into two connected regions, inside and outside.

We define the level set function:

φΓh(Ki) =

{
c1 if Ki inside Γh,
c2 if Ki outside Γh.

If we denote Γi,j = Ki∩Kj , which means the shared face of the two neighboring
tetrahedrons Ki and Kj , then we have Γh =

⋃
Γi,j .

We define indication function 1{T} as:

1{T} =

{
1 if the statement T is true,
0 if the statement T is false.

Hence the energy formulation can be discretized as follows:

E(Γh) =
∑
i,j

(di,j + λ|κi,j |)Si,j1{φΓh (Ki)6=φΓh (Kj)} , (4)

where

di,j =

∫
Γi,j

d(x)ds∫
Γi,j

ds
, Si,j =

∫
Γi,j

ds , κi,j =

∫
Γi,j

κ(x)ds∫
Γi,j

ds
. (5)

In level set formulation, the curvature can be calculated by signed distance
function as follows:

κ(xi) = ∇ ·
(
∇d(xi, Γ )

|∇d(xi, Γ )|

)
.

In [30], Tong et al. give the corresponding discretization of curvature in detail-
s. In order to focus on the steady state solution and not the evolution sequence
itself, we first initialize:

κ0(xi) = 0,

and

κn(xi) = ∇ ·
(
∇d(xi, Γ

n)

|∇d(xi, Γn)|

)
.

The energy functional in each iteration is:

E(Γn+1) =

∫
Γn+1

(d(x) + λ|κn(x)|)ds =
∑
i,j

(di,j + λ|κni,j |)Sni,j1{φΓh (Ki)6=φΓh (Kj)} .

(6)

Therefore, the energy functional can be minimized efficiently by graph cuts, since
it is graph representable. A graph dual to the whole mesh is built according to
the energy functional and applied with max-flow/min-cut algorithms as in Fig.
2. The two neighboring tetrahedron Ki,Kj can be expressed as two neighboring
nodes in the graph i, j respectively. We use triangulation to express the element
and small circle is the corresponding graph node for graph cuts computation.
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Fig. 2. primal mesh and dual graph Fig. 3. graph edge weight assignment

In Fig. 3, the weight on the edge (i, j) now is set to di,j + λ|κni,j |, which can be
calculated from (5).

By graph cuts, the proposed energy functional could be minimized global-
ly. However, the iteration result is not satisfactory. The global minimization
technique, i.e. graph cuts, is not the main reason for the undesirable result. The
reason is the inaccuracy of the curvature calculation. The tetrahedral mesh is in-
trinsically a much sparser representation compared with the grid representation.
The calculation based on such a sparse framework could not obtain a desirable
result. From the results of this stage, we can observe that some elements have
been recovered. However it is far away from the ground truth. Hence, the local
swap based on more precise calculation would be applied sequentially.

4 Feature Sensitive Local Minimization

Once the tetrahedral mesh is established, finding the embedded surface is equiv-
alent to finding the labeling for all tetrahedra to partition the whole mesh. For
each surface Γ , there is one corresponding labeling L. The labeling L is a local
minimum with respect to the energy functional in (3) if E(L) ≤ E(L′) for any
L′ “near to” L. In the environment of discrete tetrehedral mesh, the labelings
near to L are those within the swap of a single tetrahedron. This move is usually
referred to by standard moves in computer vision. One good example of the s-
tandard moves is simulated annealing [31]. In this section, the object of the swap
operation is only changed from image pixels to volumetric tetrahedra.

When the explicit surface expression is obtained, we will adopt the method
of [23]. The operator K maps a point xi on the surface to the vector:

K(xi) = 2κ(xi)n(xi),

where n(xi) is the normal vector. The mean curvature normal operator K, known
as the Laplace-Beltrami operator for the surface S, is a generalization of Lapla-
cian from flat spaces to manifolds [14]. By using the Gauss’ theorem, the integral
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of the Laplace-Beltrami operator reduces to the following form:∫ ∫
AM

K(x)dA =
1

2

∑
j∈N1(i)

(cotαi,j + cotβi,j)(xi − xj), (7)

where AM is the 1-ring neighborhood surface area around the point xi, αi,j and
βi,j are the two angles opposite to the edge in the two triangles sharing the edge
(xi, xj) as in Fig. 4, and N1(i) is the set of 1-ring neighbor vertices of vertex i.

Fig. 4. 1-ring neighbors and angles op-
posite to an edge

Fig. 5. the change of energy for each
local swap

The mean curvature normal operator is:

K(xi) =
1

2AM

∑
j∈N1(i)

(cotαi,j + cotβi,j)(xi − xj). (8)

Therefore, the discretization of energy functional (3) can be written as we men-
tioned:

E(Γh) =
∑
i

(di + λ|κi|)Γi, (9)

where

Γh =
⋃
Γi, di =

1

3

3∑
j=1

d(vij), κi =
1

3

3∑
j=1

κ(vij). (10)

vij , j = 1, 2, 3 are three vertices of Γi.
For each known surface, the energy functional could be calculated explicitly

by (9). Hence for the labeling swap of a single tetrahedral, the change of energy
could also be calculated locally. This swap and comparing procedure is illustrated
in Fig. 5. This local swap of a single tetrahedral has the counterpart in image
processing field, i.e. stimulated annealing. What is worth mentioning is that
stimulated annealing has been questioned of sensitive to the initial labeling. But
in our cases, this local swap seldom encounters such problem since the initial
labeling is determined by the global minimization stage. This good initial surface
makes the local stage work less likely to stuck in a local minimum far away from
the global one.
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Algorithm 1 Local Swap Procedure

– Step1: Start with the initial surface Γ ;
– Step2: For each element, swap it to the other partition and obtain the new surface
Γ ′;

– Step3: Re-calculate the after energy of (9):E(Γ ′), and compare E(Γ ′) with E(Γ ),
Step3.1: If E(Γ ′) < E(Γ ), confirm this swap;
Step3.2: If E(Γ ′) ≥ E(Γ ), undo this swap.

5 Numerical Experiments

In this section, various examples are presented to illustrate the effectiveness, effi-
ciency and robustness of the proposed method. All experiments were conducted
on a PC with Intel Pentium 4 CPU of 3.2GHz and 4GB memory and all exam-
ples were synthesized by ourselves. In the mesh generation stage, we adopted
the incremental insert algorithm implemented by CGAL [1]. All surfaces are
rendered by MeshLab. Only points locations were utilized in the algorithm.

We start by giving illustrative reconstruction examples in Fig. 6 which clear-
ly show the advantage of using curvature information over total variation (TV).
As is shown, our algorithm perfectly recovers the sharp edges of cubes. Total
variation on the other hand, just recovers the smooth faces. Some more identical
examples were also approached in [33, 15], readers could compare the perfor-
mance and find we have recovered the most features.

(a) TV reconstruction result (b) Our reconstruction result

Fig. 6. the comparison of TV result and our result

For all these experiments, we set the value of λ to 0.1. Table 1 gives the
sizes of data sets of four surface examples and corresponding CPU time counted
in seconds. The first column gives the examples’ names. The second column
contains the numbers of data points P . The third column is the mesh generation
time. The fourth column is the number of generated tetrahedra, the fifth the
graph cuts iteration cycles, the sixth the graph cuts time, the seventh the local
swap iteration cycles, and the eighth the local swap time.
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Table 1. Statistics of four examples

Example
Data
Set

Mesh
Generation
Time

Tetrahedra
Number

Global
Iteration
Cycle

Total
Graph Cuts
Time

Local
Iteration
Cycle

Total
Swap
Time

two cubes 2472 24.1 175851 3 0.33 5 5.57

two spheres 2653 34.2 218119 3 0.42 4 0.31

female symbol 4530 41.8 307968 3 0.63 7 11.57

bolt 2357 34.9 223346 3 0.41 6 2.57

The following figures include data points sets in the first row and the recon-
structed surfaces in the second row. In Fig. 7 from left to right, two geometries
from basic boolean operation are shown: the unions of two cubes and two spheres.
In Fig. 8, surface reconstruction results of four little complicated geometries are
shown. In Fig. 9, two platonic solids, i.e. a dodecahedron and an icosahedron,
a bucky ball model and a brilliant cut diamond are shown. In Fig. 10, four
interesting CAD models are shown, all of which have sharp edges or corners.

From all our reconstructed examples, most features are recovered especially
the sharp edges. The reconstructed surfaces are almost the ground truth surfaces
except some place ”over-enhancement”. The accuracy of our feature-preserving
operation will be improved and better performance could be expected in our
future works.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. the unions of geometries
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. a perforated cube, two tangling ones, male and female symbol models

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. two platonic solids: dodecahedron and icosahedron, a buckyball and a brilliant
cut diamond
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. four CAD models from left to right are: power wheel, tear drop, dumb bell
and bolt
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