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Abstract

This paper introduces a proximity operator framework for studying the L1/TV image de-
noising model which minimizes the sum of a data fidelity term measured in the `1-norm and the
total-variation regularization term. Both terms in the model are non-differentiable. This causes
algorithmic difficulties for its numerical treatment. To overcome the difficulties, we formulate
the total-variation as a composition of the convex function with the `1-norm or the `2-norm
and the first order difference operator, and then express the solution of the model in terms
of the proximity operator of the composition. By developing a “chain rule” for the proximity
operator of the composition, we identify the solution as a fixed point of a mapping expressed
in terms of the proximity operator of the `1-norm or the `2-norm, each of which is explicitly
given. This formulation naturally leads to fixed-point algorithms for the numerical treatment of
the model. We propose an alternative model by replacing the non-differentiable convex function
in the formulation of the total variation with its differentiable Moreau envelope and develop
corresponding fixed-point algorithms for solving the new model. When partial information of
the underlying image is available, we modify the model by adding an indicator function to the
minimization functional and derive its corresponding fixed-point algorithms. We establish con-
vergence results of the proposed fixed-point algorithms by showing that the mappings which
define the fixed-point iterations are nonexpansive. Numerical experiments are conducted to test
the approximation accuracy and computational efficiency of the proposed algorithms. Also, we
provide a comparison of our approach to two state-of-the-art algorithms available in the litera-
ture. Numerical results confirm that our algorithms perform favorably, in terms of PSNR-values
and CPU-time, in comparison to the two algorithms.

1 Introduction

Total-variation based variational models are widely used in image denoising. The well-known Rudin-
Osher-Fatemi (ROF) image denoising model [38] seeks a minimizer of the sum of a data fidelity term
measured in the square of `2-norm and the total-variation regularization term. This minimization
problem is often referred to as the L2/TV model. The `2-norm fidelity term is particularly effective
for treating the Gaussian noise and the total-variation regularization allows the reconstructed image
to have sharp edges. However, both theoretical study and numerical experiments show that the `2-
norm fidelity term is less effective for the non-Gaussian additive noise because it tends to amplify the
effect of outliers in the given image. To overcome the drawback of the L2/TV model, an alternative
formulation has been used to minimize the sum of a data fidelity term measured in the `1-norm and
the total-variation regularization term. The `1-norm can effectively suppress the effect of outliers
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that may contaminate a given image. It was demonstrated in [2, 37] that the `1-norm fidelity
term is particularly suitable for handling non-Gaussian additive noise such as impulsive noise and
Laplace noise [6]. We shall refer to such a formulation as the L1/TV (image denoising) model. In
contrast to the L2/TV model, the L1/TV model has many distinctive and desirable features. For
example, the L1/TV model does not erode geometric structures of the images under processing
and possesses properties such as contrast invariant, data driven parameter selection, multiscale
image decomposition, and morphological invariance [17, 37, 44]. Applications of the L1/TV model
include computer vision [19], biomedical imaging [43], optical flow and object tracking [46], and
shape denoising [46]. In light of the interesting features of the L1/TV model and its successful
applications, it is highly desirable to develop efficient and fast algorithms for numerical treatment
of the model.

The use of the `1-norm fidelity term and the total-variation regularization term in the L1/TV
model introduces algorithmic difficulties for the numerical treatment of the model due to the non-
differentiability of both terms in its minimization functional. To overcome the difficulties, several
numerical approaches were proposed recently for solving the L1/TV model. The paper [17] in-
troduced a time-marching PDE approach in which the solution of the L1/TV model is viewed as
a steady solution of the Euler-Lagrange equation of the model and it is obtained by solving the
related PDE. This approach also has its drawback. Due to the nonsmoothness of the `1 norm, the
artificial time step needs to be very small when the system associated with the Euler-Lagrange
equation is close to its steady state. This causes numerical difficulties. In [25], the L1/TV model
was formulated as a linear or quadratic programming problem which was solved by the interior
point method. At each iteration of the interior point method, a structured linear system must be
solved. The preconditioned conjugate gradient method with factorized sparse inverse precondition-
ers was employed to solve such structured inner systems. In [27], a method based on second order
cone programming was proposed. In recent work on the numerical treatment of the the L1/TV
model (see for example, [3, 20, 29, 42]), a commonly used approach is to introduce various aux-
iliary variables in the L1/TV model aiming at overcoming the non-differentiability of its fidelity
and regularization terms. A Fenchel-duality principle was used in [23] to avoid treating directly
the non-differentiable functional in the L1/TV model, the associated dual problem was treated by
adding two regularization terms to make the dual problem itself semi-smooth, and the resulting
primal-dual system was then solved by a semi-smooth Newton solver. Therefore, it appears that
all existing work so far does not solve the L1/TV model directly, but rather solves various modified
versions of it.

The main purpose of this paper is to introduce a proximity operator framework for the direct
treatment of the L1/TV model. In [35], by identifying the total-variation as a composition of the
convex function which defines the `1-norm or the `2-norm and the first order difference operator,
we characterized the solution of the L2/TV model in terms of the proximity operator of the convex
function with a fixed-point equation related to the convex function and the first order difference
operator, and developed fixed-point algorithms for the numerical treatment of the model based on
this characterization. Adopting this viewpoint, we shall again formulate the total-variation as a
composition of the convex function which defines the `1-norm or the `2-norm and the first order
difference operator, and characterize the solution of the L1/TV model in terms of the proximity op-
erator of the composition. Developing proximity algorithms for the L1/TV model is more involved
than that for the L2/TV model since the use of the `1 norm in the fidelity term causes further
difficulty in the numerical treatment of the model due to its non-differentiability. This difficulty
will be overcome by introducing a new fixed-point equation. For potential wider applicability of our
methods, we consider a general model which minimizes the `1 fidelity term plus the regularization
term in the form of the composition of a convex function and a matrix over a closed convex set in
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the Euclidean space. This model contains the L1/TV model and the L1/TV inpainting model as
special cases. By developing a chain rule for the proximity operator of the composition, we identify
a solution of the model in terms of the proximity operator of the convex function and two equations,
one reflecting the composition with the matrix and the other addressing the non-differentiability
of the `1 fidelity term.

This paper is organized into six sections. In Section 2 we investigate a general model constructed
as a minimization of the sum of an `1 fidelity term, an indicator term and a regularization term in
the form of the composition of a convex function and a matrix. This model includes the L1/TV
model and the L1/TV inpainting model as special cases. The solution of this model is identified as
a fixed-point of a system of two equations. When the convex function is differentiable, the system
reduces to a single fixed-point equation, and the convergence of the resulting fixed-point algorithm
is proved by employing the well-known fixed-point theory which states that the map that defines
the fixed-point iteration is nonexpansive. Section 3 is devoted to a study of the model when the
convex function involved in the regularization term is replaced by its Moreau envelope. The envelope
preserves the main geometric feature of the convex function and at the same time it is differentiable.
We specify in Section 4 the results obtained in Sections 2 and 3 to the L1/TV image denoising
model and derive specific algorithms accordingly. Numerical results are presented in Section 5 for
impulsive noise removal to demonstrate the approximation accuracy and computational efficiency
of the proposed algorithms. They confirm that the PSNR-values and CPU-time of the proposed
algorithms compare favorably to the state-of-the-art algorithms developed in [23, 42]. The fast
convergence of the proposed algorithms comes from the fact that each iterative step only uses the
operations of shrinkage and finite differences. We summarize our conclusions in the last section.

2 The L1/ϕ ◦ B Model

In this section, we study a general minimization model which we denote by the L1/ϕ ◦ B model.
This model minimizes the sum of the `1 fidelity term and the composition of a convex function with
a matrix and includes the L1/TV denoising model and the L1/TV inpainting model as special cases.
This section naturally divides into two parts. The first part pertains to a fixed-point formulation
of the solutions of the L1/ϕ ◦ B model in terms of the proximity operator. In the second part, we
show that the mapping that defines the fixed-point equation in the characterization of solutions
of the L1/ϕ ◦ B model is averaged nonexpansive under certain differentiability conditions on the
convex function.

We begin with our preferred notation. By Rd, we denote the usual d-dimensional Euclidean
space. For a natural number k, we let Nk := {1, 2, . . . , k}. For x ∈ Rd, its i-th entry is denoted by
xi. For x, y ∈ Rd, we define 〈x, y〉 :=

∑
i∈Nd

xiyi, the standard inner product of Rd. We use ‖ · ‖1
and ‖ · ‖2, respectively, to denote the `1 and `2 vector norm on Rd.

We now describe the general model. Suppose that ϕ is a given convex function on Rm and B
is a given m× d matrix. We denote by C a nonempty closed convex set of Rd. For a given x ∈ Rd

and a nonempty closed convex subset C of Rd, we consider the following constrained minimization
problem

min{λ‖u− x‖1 + (ϕ ◦B)(u) : u ∈ C}.

The convex set C in the above model may be used to describe available constraints. This constrained
model may be rewritten as a non-constrained model by introducing the indicator function of the
set C, defined at u ∈ Rd as

ιC(u) :=

{
0, u ∈ C;
+∞, u /∈ C.

(2.1)
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Using the indicator function, the above constrained minimization problem is reformulated as an
equivalent unconstrained minimization problem

min{JL1/ϕ◦B(u) : u ∈ Rd} (2.2)

where for u ∈ Rd we define

JL1/ϕ◦B(u) := λ‖u− x‖1 + ιC(u) + (ϕ ◦B)(u), u ∈ Rd.

We refer the minimization problem (2.2) to as the L1/ϕ ◦ B model. The functional JL1/ϕ◦B(u) is
convex and approaches to infinity whenever ‖u‖2 goes to infinity. Hence, a solution to model (2.2)
exists. On the other hand, since the functional JL1/ϕ◦B is not in general strictly convex, solutions
of model (2.2) may not be unique. This is an intrinsic feature of model (2.2).

The composition ϕ ◦B appearing in the L1/ϕ ◦ B model can cover several important scenarios
in image processing, including the following:

• Total-variation regularization. Anisotropic total-variation and isotropic total-variation are
the standard choices used for discrete grayscale images. For the anisotropic total-variation ϕ
is the norm ‖ · ‖1 while for the isotropic total-variation ϕ is a linear combination of the norm
‖ · ‖2 in R2. The matrix B for the both cases is the first order difference matrix. For higher-
order total-variations (see, e.g., [14, 18, 34, 39, 40, 45]), B is chosen to be a higher-order
difference matrix.

• Sparse regularization of wavelet coefficients. The use of sparsity for image restoration has
gained much attention recently (see, e.g., [9, 12, 13, 16, 22, 24, 41]). Images are well-
represented by sparse expansions with respect to wavelets or framelets. In a wavelet frame-
work, ϕ is the norm ‖ · ‖1 and B usually is a wavelet transform matrix.

• Optimal MRI reconstruction. The regularization functional in the optimal MRI reconstruc-
tion [33] is defined in terms of a combination of the total variation and a Besov norm. In this
case, ϕ is the norm ‖ · ‖1 and B is the first order difference matrix concatenated by the Haar
wavelet transform matrix.

When C is chosen to be the entire space Rd and ϕ◦B the total-variation, the resulting L1/ϕ ◦ B
model becomes the L1/TV model. If the convex set C, associated with a given vector x ∈ Rd and
a proper subset Λ ⊂ Nd, is chosen as

C := {y : PΛy = PΛx} (2.3)

where PΛ is a d × d diagonal matrix with diagonal entries 1 for indices in Λ and 0 otherwise, the
resulting L1/ϕ ◦ B model is used for an inpainting problem.

We now characterize a solution of the L1/ϕ ◦ B model (2.2) in terms of proximity operators.
We recall the notions of subdifferential and the proximity operator of a convex function.

Definition 1. Let ψ : Rd → R ∪ {+∞} be a convex function, not identically equal to +∞. The
subdifferential of ψ at x ∈ Rd with ψ(x) < +∞ is the set defined by

∂ψ(x) := {y : y ∈ Rd and ψ(z) ≥ ψ(x) + 〈y, z − x〉 for all z ∈ Rd}.

It is well-known (cf. [5, Page 732]) that the subdifferential of a convex function ψ is a set-valued
mapping from Rd into nonempty convex compact sets in Rd.
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Definition 2. Let ψ : Rd → R ∪ {+∞} be a convex function, not identically equal to +∞. The
proximity operator of ψ is defined for x ∈ Rd by

proxψ(x) := arg min

{
1

2
‖u− x‖22 + ψ(u) : u ∈ Rd

}
.

The subdifferential of a convex function may be characterized in terms of its proximity operator.

Lemma 1. If ψ is a convex function on Rd and x ∈ Rd, then

y ∈ ∂ψ(x) if and only if x = proxψ(x+ y).

A simple proof of this fact was given in [35]. As a direct consequence of Lemma 1, we have that

y ∈ ∂ψ(x) if and only if y = (I − proxψ)(x+ y). (2.4)

With the help of Lemma 1, we next characterize a solution of model (2.2). To this end, for
a given x ∈ Rd, a positive number λ, and a convex set C in Rd, we define a function % on Rd at
v ∈ Rd as

%(v) := λ‖v − x‖1 + ιC(v). (2.5)

Proposition 1. If ϕ is a real-valued convex function on Rm, B an m× d matrix, and u ∈ Rd is a
solution of model (2.2), then for any α, β > 0 there exists a vector b ∈ Rm such that

u = prox 1

λα
%

(
u−

β

λα
B>b

)
, (2.6)

b =
(
I − prox 1

β
ϕ

)
(Bu+ b). (2.7)

Conversely, if there exist α, β > 0, b ∈ Rm, and u ∈ Rd satisfying equations (2.6) and (2.7), then
u is a solution of model (2.2).

Proof. We assume that u ∈ Rd is a solution of model (2.2). By the Fermat rule in convex analysis,
0 ∈ ∂JL1/ϕ◦B(u) which, by the chain rule ∂(ϕ ◦B)(u) = B>∂ϕ(Bu), is equivalent to the condition
that

0 ∈ ∂%(u) +B>∂ϕ(Bu). (2.8)

For any numbers α, β > 0, we can choose a vector a ∈ 1
λα∂%(u) and a vector b ∈ 1

β∂ϕ(Bu) such
that

0 = λαa+ βB>b. (2.9)

By Lemma 1, from the inclusion b ∈ 1
β∂ϕ(Bu) we get (2.7) and from the inclusion a ∈ 1

λα∂%(u) we
have that

u = prox 1

λα
%(u+ a). (2.10)

Using equation (2.9) we conclude that a = − β
λαB

>b and substitute it into (2.10) we obtain (2.6).
Conversely, suppose that there exist α, β > 0, b ∈ Rm, and u ∈ Rd satisfying equations (2.6)

and (2.7). Again, by Lemma 1, equations (2.7) and (2.6) ensure that b ∈ 1
β∂ϕ(Bu) and − β

λαB
>b ∈

1
λα∂%(u), respectively. Combining these two inclusion relations yields that

0 = λα ·

(
−
β

λα
B>b

)
+ βB>b ∈ ∂%(u) +B>∂ϕ(Bu).

This in turn implies that u ∈ Rd is a solution of model (2.2).
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The next result gives the proximity operator of the function % defined by equation (2.5).

Lemma 2. If λ, α > 0, x ∈ Rd, Λ ⊂ Nd, C is the set defined by (2.3) and % is the function defined
by (2.5), then for v ∈ Rd,

prox 1

λα
%(v) = x+ (I − PΛ)prox 1

α
‖·‖1

(v − x). (2.11)

Proof. By the definition of the proximity operator, we have for v ∈ Rd that

prox 1

λα
%(v) = arg min

{
1

2
‖y − v‖22 +

1

α
‖y − x‖1 + ιC(y) : y ∈ Rd

}
.

Since the convex set C has the structure described in (2.3), we get that

prox 1

λα
%(v) = PΛx+ (I − PΛ) · arg min

{
1

2
‖y − v‖22 +

1

α
‖y − x‖1 : y ∈ Rd

}
. (2.12)

Again, using the definition of the proximity operator, we derive from (2.12) that

prox 1

λα
%(v) = PΛx+ (I − PΛ)

(
x+ prox 1

α
‖·‖1

(v − x)
)
,

which establishes equation (2.11).

Specializing Lemma 2 to the convex set C defined by (2.3), equation (2.6) becomes

u = x+ (I − PΛ)prox 1

α
‖·‖1

(
u− x−

β

λα
B>b

)
. (2.13)

As a result, a solution of model (2.2) for the convex set C defined by (2.3) is characterized in terms
of the fixed-point equations (2.13) and (2.7).

Next, we show that if the convex function ϕ is differential, a solution of the corresponding model
is characterized in terms of only one fixed-point equation.

Proposition 2. Let x ∈ Rd be given, λ be a positive number, and B be an m× d matrix. Suppose
that C is a convex set in Rd, % is the function defined by (2.5), and ϕ is a differential convex
function on Rm. If u ∈ Rd is a solution of model (2.2), then for any α > 0

u = prox 1

λα
%

(
u−

1

λα
B>∇ϕ(Bu)

)
. (2.14)

Conversely, if u ∈ Rd satisfies equation (2.14) for some α > 0, then u is a solution of model (2.2).

Proof. According to Proposition 1, a solution u of model (2.2) satisfies the fixed-point equations
(2.6) and (2.7). Notice that the subdifferential of a differentiable function ϕ at a point v ∈ Rm is
a singleton set, that is,

∂ϕ(v) = {∇ϕ(v)},

where ∇ϕ(v) denotes the gradient of ϕ at v. Hence, by (2.4), equation (2.7) implies that

b =
1

β
∇ϕ(Bu). (2.15)

Substituting equation (2.15) into (2.6) yields the fixed-point equation (2.14).
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An approximate solution of the fixed-point equation (2.14) gives an approximate solution of
model (2.2) with a differentiable convex function ϕ. In particular, when the convex set C is defined
by (2.3), according to Lemma 2, equation (2.14) becomes

u = x+ (I − PΛ)prox 1

α
‖·‖1

(
u− x−

1

λα
B>∇ϕ(Bu)

)
. (2.16)

Proposition 2 expresses a solution of model (2.2) as a fixed-point of a nonlinear mapping. We
now formulate the nonlinear mapping. For a given x ∈ Rd and positive numbers λ and α, we define
an operator H : Rd → Rd at u ∈ Rd by the equation

Hu := u−
1

λα
B>∇ϕ(Bu) (2.17)

and a mapping P : Rd → Rd at u ∈ Rd by

Pu := (prox 1

λα
% ◦H)u. (2.18)

With this notation, (2.14) is rewritten simply as

u = Pu. (2.19)

A straightforward numerical method to iterate (2.19) is the Picard iteration. Specifically, for a
given initial point x1 ∈ Rd, the Picard iterates of operator P generate the sequence {xk : k ∈ N}
where xk+1 := Pxk, k ∈ N. That is, xk+1 := P kx1 where P k denotes the k-th power of P . We next
study the convergence property of the Picard sequence. To this end, we briefly review the notion
of nonexpansive mappings which is crucial for convergence analysis of the Picard sequence.

Let Ω be a closed convex nonempty subset of Rd. According to [4, 8], a mapping Q : Ω → Rd

is called nonexpansive if for all x, y ∈ Ω we have that

‖Qx−Qy‖2 ≤ ‖x− y‖2.

An averaged nonexpansive mapping is a nonexpansive mapping that can be written as

(1− κ)I + κN, (2.20)

for some positive number κ in (0, 1) and some nonexpansive operator N . Moreover, a mapping of
the form given in (2.20) is called κ-averaged and an operator is called firmly nonexpansive if it is
1
2
-averaged. The next two lemmas were proved in [8].

Lemma 3. If {Qi : i ∈ Ns} is a family of averaged nonexpansive mappings, then both the com-
position mapping Qs ◦ · · · ◦ Q1 and

∑
i∈Ns

wiQi, where
∑

i∈Ns
wi = 1 and wi ≥ 0 for i ∈ Ns, are

averaged nonexpansive.

For any operatorQ on Rd, the fixed-point set ofQ is Fix(Q) := {x : Qx = x}. The Krasnoselskii-
Mann approach is a powerful way to find fixed-points of nonexpansive operators.

Lemma 4. If Q is an averaged nonexpansive mapping on Rd and Fix(Q) is nonempty, then for
any initial vector in Rd the corresponding Picard sequence converges to a member of Fix(Q).

The next lemma is due to [26].

Lemma 5. If Ω is a closed subset of Rd and Q : Ω→ Rd is a mapping, then the following statements
are equivalent:
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(i) The mapping Q is firmly nonexpansive.

(ii) The inequality ‖Qx−Qy‖22 ≤ 〈Qx−Qy, x− y〉 holds for all x, y ∈ Ω.

(iii) The mapping 2Q− I is nonexpansive.

Since I −Q = 1
2
I + 1

2
(I − 2Q), by Lemma 5, we know that I −Q is firmly nonexpansive, if Q

is firmly nonexpansive. With this fact, we can show that I − proxψ is firmly nonexpansive since
proxψ is firmly nonexpansive [21]. This result is stated in the following.

Lemma 6. If ψ is a convex function on Rd, then both proxψ and I−proxψ are firmly nonexpansive.

We now return to the study of the operator P given by (2.18). We will prove that P is averaged
nonexpansive for proper choices of parameters λ and α.

Proposition 3. Let x ∈ Rd be given, B be an m× d matrix, ϕ be a differentiable convex function
on Rm, and ∇ϕ be Lipchitz continuous, that is, for some L > 0,

‖∇ϕ(p)−∇ϕ(q)‖2 ≤ L‖p− q‖2 for all p, q ∈ Rm. (2.21)

If α is chosen to satisfy
L

λα
≤

1

‖B‖22
, (2.22)

where ‖B‖2 denotes the largest singular value of B, then operator H defined by (2.17) is firmly
nonexpansive.

Proof. We define the operator F : Rd → Rd at u ∈ Rd by Fu := 1
λαB

>∇ϕ(Bu) and observe that
for any u ∈ Rd that Hu = (I −F )u. By referring back to the argument made prior to Lemma 6 to
establish the firm nonexpansivity of H, we need to prove that F is firmly nonexpansive. For this
purpose, we see from [30, Theorem 4.2.2] that our hypothesis on ∇ϕ implies that for any u, v ∈ Rd

‖∇ϕ(Bu)−∇ϕ(Bv)‖22 ≤ L〈∇ϕ(Bu)−∇ϕ(Bv), Bu−Bv〉.

This inequality, combined with the definition of F , yields for u, v ∈ Rd the inequality

‖Fu− Fv‖22 ≤
L

λ2α2
‖B>‖22〈∇ϕ(Bu)−∇ϕ(Bv), Bu−Bv〉 =

L

λα
‖B>‖22〈Fu− Fv, u− v〉.

By Lemma 5 and hypothesis (2.22), the above inequality ensures that F is firmly nonexpansive.

We are now ready to establish the averaged nonexpansivity of operator P defined by (2.18).

Proposition 4. Let x ∈ Rd be given, B be an m × d matrix, C be a convex set in Rd and % be
a function defined by (2.5). Suppose that ϕ is a differentiable convex function on Rm, and ∇ϕ is
Lipschitz continuous with the Lipschitz constant L. If the parameter α is chosen to satisfy condition
(2.22), then operator P defined by (2.18) is averaged nonexpansive.

Proof. Since the parameter α is chosen to satisfy hypothesis (2.22), by Proposition 3, H is firmly
nonexpansive. Moreover, by Lemma 6, prox 1

λα
% is firmly nonexpansive. Therefore, they both are

averaged nonexpansive. Lemma 3 ensures that prox 1

λα
% ◦ H is averaged nonexpansive. It follows

that P defined by (2.18) is averaged nonexpansive.

The next result shows that the Picard sequence of the operator (2.18) converges to a solution
of model (2.2).
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Proposition 5. Let x ∈ Rd be given, B be an m × d matrix, C be a convex set in Rd and % be
a function defined by (2.5). Suppose that ϕ is a differentiable convex function on Rm, and ∇ϕ is
Lipschitz continuous with the Lipschitz constant L. If the parameter α is chosen to satisfy condition
(2.22), then for any initial vector u0 ∈ Rd the sequence {P ku0 : k ∈ N} converges to a solution of
model (2.2).

Proof. Proposition 2 ensures that a fixed-point of operator P defined by (2.18) gives a solution
of model (2.2). It remains to prove the Picard iteration sequence {P ku0 : k ∈ N} converges to a
fixed-point of P . Since the parameter α satisfies condition (2.22), by Proposition 4 the operator P
is averaged nonexpansive. Thus, Lemma 4 ensures that the sequence {P ku0 : k ∈ N} converges to
a solution of the fixed-point equation (2.14) for any vector u0 ∈ Rd.

3 The L1/env ◦ B Model

In the preceding section, we studied the L1/ϕ ◦ B model under various hypotheses. We noticed, by
imposing an assumption on the differentiability of the convex function ϕ, that the coupled system
of fixed-point equations (2.6) and (2.7) for a solution of the model reduces to a single fixed-point
equation (2.14). This has obvious computational advantages. However, in the image denoising
context, the convex function used in the definition of the total-variation is often not differentiable
so that the denoised images preserve sharp edges. To balance the need of preserving edges with
computational efficiency, we propose to replace the convex function ϕ by its “smoothed” version
which preserves main geometric features of ϕ but, at the same time, is differentiable. For this
purpose, we study in this section the L1/env ◦ B model which is a variant of the L1/ϕ ◦ B model
with ϕ being replaced by its Moreau envelope.

For a positive number γ and a convex function ψ on Rm, the Moreau envelope of ψ with index
γ at z ∈ Rm is defined as

envγψ(z) := min

{
1

2γ
‖y − z‖22 + ψ(y) : y ∈ Rm

}
. (3.1)

Clearly, the minimum of (3.1) is attained at proxγψz. It can be shown that the envelope of a convex
function is convex. For example, the envelope of ψ := γ‖ · ‖2 is given for z ∈ Rm by

envγ‖·‖2
(z) :=

{
1
2γ ‖z‖

2
2, if ‖z‖2 ≤ γ;

‖z‖2 −
γ
2
, otherwise.

(3.2)

It is worth noting that the well-known Huber function [31] is actually the envelope envγ‖·‖2
. Recall

for γ > 0 and z ∈ Rm that the proximity operator proxγ‖·‖2
(z) has the expression

proxγ‖·‖2
(z) = max {‖z‖2 − γ, 0}

z

‖z‖2
. (3.3)

It can be readily verified that the envelope and the proximity operator for this specific convex
function are connected in the following way

γ∇envγ‖·‖2
(z) = (I − proxγ‖·‖2

)(z).

In fact, this relation holds for any convex function ψ. Indeed, the envelope of a convex function is
always differentiable and its gradient is given by

∇(envγψ) =
1

γ
(I − proxγψ). (3.4)
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Moreover, for any positive number γ the envelope envγψ is bounded above by ψ and it converges
to ψ as γ → 0+ (see, e.g., [36]). That is, for z ∈ Rm we have that

envγψ(z) ≤ ψ(z) and envγψ(z)→ ψ(z), as γ → 0+.

These remarkable properties of the envelope motivate us to replace the convex function ϕ in the
L1/ϕ ◦ B model by its envelope env 1

β
ϕ for some positive number β. The resulting model is then

given by

min
{
λ‖u− x‖1 + ιC(u) + env 1

β
ϕ(Bu) : u ∈ Rd

}
. (3.5)

We refer to this model as the L1/env ◦ B model.
We present below the main results of this section.

Proposition 6. Let x ∈ Rd be given, λ be a positive number, and B be an m× d matrix. Suppose
that C is a convex set in Rd, % is a function defined by (2.5), and ϕ is a convex function on Rm. If
u is a solution of model (3.5), then for any α > 0, u ∈ Rd is a fixed-point of the mapping Q defined
by

Qu := prox 1

λα
%

(
u−

β

λα
B>(I − prox 1

β
ϕ)(Bu)

)
. (3.6)

Conversely, if there exist α > 0 and u ∈ Rd such that u is a fixed-point of mapping Q, then u is a
solution of model (3.5).

Proof. By equation (3.4), we know that env 1

β
ϕ is differentiable. Using Proposition 2 with ϕ

replaced by its envelope and the gradient of env 1

β
ϕ

∇env 1

β
ϕ(u) = β(I − prox 1

β
ϕ)(u),

we conclude that the result of this proposition holds.

When the convex set C is given by (2.3), we appeal to Lemma 2 and conclude that the fixed-point
equation of mapping Q becomes

u = x+ (I − PΛ)prox 1

α
‖·‖1

(
u− x−

β

λα
B>(I − prox 1

β
ϕ)(Bu)

)
. (3.7)

Proposition 7. Let x ∈ Rd be given, λ, β be positive numbers, % be a function defined by (2.5),
and ϕ be a convex function on Rm. If the parameter α is chosen to satisfy the condition

β

λα
≤

1

‖B‖22
, (3.8)

then Q defined by (3.6) is averaged nonexpansive.

Proof. By equation (3.4) and Lemma 6, we have for any p, q ∈ Rd that

‖∇env 1

β
ϕ(p)−∇env 1

β
ϕ(q)‖2 = ‖β(I − prox 1

β
ϕ)(p)− β(I − prox 1

β
ϕ)(q)‖2 ≤ β‖p− q‖2.

This shows that ∇env 1

β
ϕ is Lipschtiz continuous with the Lipschitz constant β. Hence, by Propo-

sition 4, the mapping Q defined by (3.6) is averaged nonexpansive.

The following result shows the Picard sequence converges to a solution of model (3.5).

Proposition 8. Let x ∈ Rd be given, λ, β be positive numbers, % be a function defined by (2.5),
and ϕ be a convex function on Rm. If the parameter α is chosen to satisfy condition (3.8), then
for any initial vector u0 ∈ Rd the sequence {Qku0 : k ∈ N} converges to a solution of model (3.5).

Proof. This is a direct consequence of Lemma 4 and Proposition 7.
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4 The L1/TV Image Denoising Model

In this section, we apply the general methods and theory developed in the previous two sections to
the L1/TV image denoising model.

We consider a digital image as an n×n square matrix for some positive integer n. As a matter
of fact, for convenience of exposition, we treat an image matrix as a vector in the vector space
Rn2

in such a way that the ij-th entry of the image matrix corresponds to the (in + j)-th entry
of the associated vector in Rn2

. The L1/TV image denoising model (resp. the modified L1/TV
image denoising model) is a special case of the L1/ϕ ◦ B model (resp. the L1/env ◦ B model), with
appropriate identification of the convex function ϕ and the matrix B in the general models.

To reexpress the total-variation of an image in the form of the composition of a convex function
ϕ and a matrix B, we need an n× n “local difference” matrix D.

D :=




0
−1 1

. . .
. . .

−1 1


 .

The matrix D will be used to “differentiate” a row or a column of an image matrix. For matrices
P and Q, we use P ⊗ Q to denote their Kronecker product. Corresponding to the n × n identity
matrix In and the local difference matrix D, we define the 2n2 × n2 “global difference” matrix B
by

B :=

[
In ⊗D
D ⊗ In

]
. (4.1)

The matrix B will be used to “differentiate” the entire image matrix.
A generic form of the total-variation of an image u ∈ Rn2

is ϕ(Bu) with B given by (4.1) above
and the convex function ϕ according to whether the total-variation is anisotropic or isotropic. For
the anisotropic or the isotropic total-variation, ϕ : R2n2

→ R is defined at z ∈ R2n2

, respectively,
as

ϕ(z) := ‖z‖1 or ϕ(z) :=
∑

i∈N
n2

∥∥∥[zi, zn2+i]
>
∥∥∥

2
. (4.2)

Hence, the L1/TV image denoising model is model (2.2) with the convex function ϕ and the matrix
B chosen above, and C = Rn2

. According to Proposition 1, a solution of the L1/TV image denoising
model is characterized by the fix-point equations (2.6) and (2.7), with the above special choice of
the convex function ϕ, the matrix B and C. In fact, in this special case, equation (2.6) reduces to

u = x+ prox 1

α
‖·‖1

(u− x−
β

λα
B>b).

The following algorithm describes specific procedures for finding a solution of the above L1/TV
image denoising model according to the fix-point equations.

Algorithm 1.

1. Given: noisy image x ∈ Rn2

; λ > 0, α > 0, β > 0, αmax, βmax and µ ∈ N

2. Initialization: u1 = x, and b1 = 0

3. For k ∈ N,

11



(a) if α < αmax and β < βmax, and k is a multiple of µ, update α ←− 2α and β ←− 2β; if
α ≥ αmax or β ≥ βmax, then set α = αmax and β = βmax;

(b) uk+1 ←− x+ prox 1

α
‖·‖1

(uk − x− β
λαB

>bk)

(c) bk+1 ←− (I − prox 1

β
ϕ)(Buk+1 + bk)

(d) Stop, if uk+1 converges or satisfies a stopping criteria; otherwise, set k ← k + 1.

In Algorithm 1, implementing Step 3(b) and 3(c) requires the availability of specific formulas
for computing the nonlinear operators prox 1

α
‖·‖1

and prox 1

β
ϕ. In fact, for α > 0 and u ∈ Rn2

, if

v := prox 1

α
‖·‖1

(u), then the components of this vector are given for i ∈ Nn2 as

vi = max {|ui| − 1/α, 0} · sign(ui). (4.3)

For a given vector z ∈ R2n2

and a positive number β, we write y := prox 1

β
ϕ(z). If ϕ is the `1-norm

on R2n2

, then yi the ith component of y is computed according to (4.3) with ui being replaced by
zi and α by β. If ϕ is defined by (4.2), then each vector [yi, yn2+i]

>, i ∈ Nn2, formed from the
components of y, is the proximity operator of the `2-norm on the R2 evaluated at [zi, zn2+i]

>. That
is, we have that

[yi, yn2+i]
> = prox 1

β
‖·‖2

(
[zi, zn2+i]

>
)
, (4.4)

which can be evaluated explicitly by using (3.3). Hence, Step 3(b) and 3(c) can be efficiently
computed.
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Figure 1: Convergence rate of Algorithm 1 with different strategies of selecting parameters α and
β in Step 3(a) for (a) the image of “Cameraman” and (b) the image of “Lena”. The dotted lines
are with αmax = βmax = 0.1 and α = β = 0.1; the dash dotted lines are with αmax = βmax = 1 and
α = β = 1; the solid lines are αmax = βmax = 4, α = β = 1/128, and µ = 10.

In Algorithm 1, the iterate uk+1 can exactly reconstruct the given image x at the pixels where
the absolute values of uk − x − β

λαB
>bk are less or equal to 1/α. This property is particularly

desirable for denoising x having impulsive noise.
The selection of parameters α and β are crucial in Algorithm 1 and other algorithms to be

described later in this section. We now explain the strategy of determining these parameters in
Step 3(a) of Algorithm 1 via a numerical example of impulsive noise removal. We consider the image
of “Cameraman” having 30% of its pixels corrupted by salt-pepper noise. In the first experiment, we
choose (α, β) = (0.1, 0.1) and (αmax, βmax) = (0.1, 0.1), i.e., the pair (α, β) will be kept unchanged
during iterations. The PSNR-value of the restored image at each iteration is plotted (dotted line)
in Figure 1(a). In the second experiment, we choose (α, β) = (1, 1) and (αmax, βmax) = (1, 1) which
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is larger than the one used in the first experiment. Again, the pair (α, β) will be kept unchanged
during iterations. The dash dotted line in Figure 1(a) depicts the corresponding PSNR-value of
the restored image at each iteration. It can be seen that the PSNR-values of the restored image
with the pair (α, β) = (0.1, 0.1) approach to a stable value much quicker than that with the pair
(α, β) = (1, 1). However, the stable value in the first case is smaller than that in the second case.
These observation can be intuitively explained from Step 3(b) of Algorithm 1. If α is small, i.e., 1/α
is large, Step 3(b) of Algorithm 1 tends to stop updating the noisy image with new information.
As a result, useful information contained in the neighbors of noisy pixels cannot permeate into
the corresponding noisy pixels to recover them. On the other hand, if α becomes large, it tends
to gradually restore noisy pixels, but at a slow rate of convergence. In the third experiment, we
choose (αmax, βmax) = (4, 4), (α, β) = (1/128, 1/128), and µ = 10. The solid line in Figure 1(a)
displays the corresponding PSNR-value of the restored image at each iteration. The selection of the
parameters in the third experiment makes Algorithm 1 working well in assimilating the strengths of
the pairs (α, β) with large and small values. Under the same setting of parameters, a quite similar
phenomenon (see Figure 1(b)) has also been observed for the “Lena” image having 30% of its pixels
corrupted by salt-pepper noise. In summary, it is a reasonable strategy to double parameters α and
β every fixed number of iterations until they exceed the pre-given numbers αmax and βmax. Also,
the parameter µ in the algorithm is to indicate that the underlying algorithm with a pair (α, β)
will iterate µ times before the algorithm with the pair (2α, 2β) runs another µ times. According to
our numerical experiments, µ ranging from 10 to 25 usually produces reasonable results.

In the above L1/TV image denoising model, if we replace the convex function ϕ by its envelope,
then it becomes a special case of the L1/env ◦ B model. We call such a model the modified L1/TV
image denoising model. We apply the result on the L1/env ◦ B model (3.5) with C = Rn2

to the
modified L1/TV image denoising model to obtain the following result.

Proposition 9. Let x ∈ Rn2

be given, λ and β be positive numbers, B be the matrix given by
(4.1), and ϕ be either ‖ · ‖1 or the convex function defined by (4.2). If there exists α > 0 such that
u ∈ Rn2

is a solution of the following fixed-point equation u = Qu where

Qu := x+ prox 1

α
‖·‖1

(
u−

β

λα
B>(I − prox 1

β
ϕ)(Bu)

)
, (4.5)

then u is a solution of the modified L1/TV image denoising model. Furthermore, if α satisfies

α ≥
8β

λ
sin2 (n− 1)π

2n
, (4.6)

then for any initial vector u0 ∈ Rn2

the sequence {Qku0 : k ∈ N} converges to a solution of the
model.

Proof. The first part of this proposition follows directly from Proposition 6 with (3.7) and C = Rn2

.
For the proof of the second part, we recall that

‖B‖22 = 8 sin2 (n − 1)π

2n

(see [35]). This fact, together with hypothesis (4.6), ensures that the assumption of Proposition 8
is satisfied. Hence, by Proposition 8 the sequence {Qku0 : k ∈ N} converges to a fixed point of
(4.5) for any initial vector u0 ∈ Rn2

.

Proposition 9 leads to the following algorithm, with guaranteed convergence, if α satisfies the
inequality (4.6).
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Algorithm 2.

1. Given: noisy image x ∈ Rn2

; λ > 0, β > 0, βmax, µ ∈ N, and α = 8β
λ

2. Initialization: u1 = x, and b1 = 0

3. For k ∈ N,

(a) if β < βmax and k is a multiple of µ, update α←− 2α and β ←− 2β; if β ≥ βmax, then
set α = 8βmax

λ and β = βmax;

(b) uk+1 ←− x+ prox 1

α
‖·‖1

(uk − x− β
λαB

>(I− prox 1

β
ϕ)(Buk))

(c) Stop, if uk+1 converges or satisfies a stopping criteria; otherwise, set k ← k + 1.

The parameter β appeared in Algorithm 2 is an essential parameter in the L1/env ◦ B model
(3.5). The output from Algorithm 2 can be understood as a solution of the L1/env ◦ B model (3.5)
with β being βmax, that is,

min
{
λ‖u− x‖1 + env ϕ

βmax

(Bu) : u ∈ Rn2
}
.

Basically, what Algorithm 2 does in the situation of β < βmax is to find a proper initial vector for
the iterative procedure Step 3(b) in the situation of β = βmax.

In the rest of this section, we consider the situation C ( Rn2

which corresponds to the L1/ϕ ◦ B
image denoising model with prior known information or inpainting. For this case, we have the
following algorithm.

Algorithm 3.

1. Given: noisy image x ∈ Rn2

; λ > 0, α > 0, β > 0, αmax, βmax and µ ∈ N

2. Initialization: u1 = x, and b1 = 0

3. For k ∈ N,

(a) if α < αmax and β < βmax, and k is a multiple of µ, update α ←− 2α and β ←− 2β; if
α ≥ αmax or β ≥ βmax, then set α = αmax and β = βmax;

(b) uk+1 ←− x+ (I − PΛ)prox 1

α
‖·‖1

(uk − x− β
λαB

>bk)

(c) bk+1 ←− (I − prox 1

β
ϕ)(Buk+1 + bk)

(d) Stop, if uk+1 converges or satisfies a stopping criteria; otherwise, set k ← k + 1.

In the L1/TV image denoising model with prior known information or inpainting, if we replace
the convex function ϕ by its envelope, we call the model the modified L1/TV image denoising
model with prior information and similar to Proposition 10 have the following result.

Proposition 10. Let x ∈ Rn2

be given, λ and β be positive numbers, B be the matrix given by
(4.1), and ϕ be either ‖ · ‖1 or the convex function defined by (4.2). If there exists α > 0 such
that u ∈ Rn2

is a solution of the fixed-point equation (3.7), then u is a solution of the the modified
L1/TV image denoising model with prior known information. Furthermore, if α satisfies (4.6) then
for any initial vector u0 ∈ Rn2

the sequence {Qku0 : k ∈ N} converges to a solution of the model.

This proposition leads to our Algorithm 4, with guaranteed convergence, if α satisfies the
inequality (4.6).
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Algorithm 4.

1. Given: noisy image x ∈ Rn2

; λ > 0, β > 0, βmax, µ ∈ N, and α = 8β
λ

2. Initialization: u1 = x, and b1 = 0

3. For k ∈ N,

(a) if β < βmax and k is a multiple of µ, update α←− 2α and β ←− 2β; if β ≥ βmax, then
set α = 8βmax

λ and β = βmax;

(b) uk+1 ←− x+ (I − PΛ)prox 1

α
‖·‖1

(uk − x− β
λαB

>(I− prox 1

β
ϕ)(Buk))

(c) Stop, if uk+1 converges or satisfies a stopping criteria; otherwise, set k ← k + 1.

We remark that the output of Algorithm 4 should be understood as a solution of the following
L1/TV image denoising model

min
{
λ‖u− x‖1 + ιC(u) + env ϕ

βmax

(Bu) : u ∈ Rn2
}
.

5 Numerical Results

We present in this section numerical results to demonstrate approximation accuracy and computa-
tional efficiency of the proposed algorithms. We shall compare results of the proposed algorithms
to those of two the-state-of-the-art methods in the literature. All the experiments are performed
under Windows 7 and MATLAB 7.6 (R2008a) running on a PC equipped with an Intel Core 2
Quad CPU at 2.66 GHz and 4G RAM memory.

In our numerical experiments, we consider the problem of restoring images from those corrupted
by salt-pepper noise. Salt-pepper noise is often caused by malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or transmission in a noisy channel [7]. A considerable amount
of work has been done for removing salt-pepper noise from a noisy image. Roughly speaking, there
are two types of methods for salt-pepper noise removal. One is the median filter and its variants (see,
e.g., [1, 32] and references therein); the other one is the variational approach (see, e.g., [15, 37]).
As an alternative to these methods, recent work in [10, 11] employed multiscale analysis based
methods for salt-pepper noise removal.

Let u be an ideal n×n image whose pixel values are in the dynamic range [Smin, Smax]. Suppose
that x is a noisy image of u corrupted by salt-pepper noise. The noisy image x is generated in the
following manner:

xi =





Smin with probability p
Smax with probability q
ui with probability 1− p− q,

i ∈ Nn2,

where p and q are two positive numbers with p+ q < 1. The number p+ q is called the salt-pepper
noise level of x. In our experiments, p and q are chosen to be the same.

In our numerical experiments, the testing images shown in Figure 2 are the “Cameraman” and
“Lena” with size of 256× 256 and the “Baboon” with size of 512× 512. The quality of the restored
images is evaluated in terms of the peak-signal-to-noise ratio (PSNR) defined by

PSNR := 10 log10

n22552

‖u− ũ‖22
(dB),
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(a) (b) (c)

Figure 2: Original images. (a) “Cameraman”; (b) “Lena”; and (c) “Baboon”.

where ũ denotes the restored image with respect to the original image u. Each PSNR-value reported
in all tables in this section is the average over five runs.

In the first experiment, we compare the performance of Algorithms 1 and 2 developed in the
previous section with that of Algorithm PDTV proposed in [23] and Algorithm FTVd in [42]. Both
Algorithm PDTV and Algorithm FTVd were proposed recently for the simultaneous deblurring
and denoising of images subject to impulse noise. We choose them for comparison because they
were both for solving the L1/TV model, and can be used for impulse noise removal. The source
code of Algorithm PDTV was obtained from the authors of [23]. The parameters λ and γ used in
Algorithm PDTV are chosen to be λ = 0.001 and γ = 0.01. The stopping criterion is set according
to the detailed description in [23]. The implementation and the website of the corresponding source
code package “FTVdv4.1” of Algorithm FTVd can be found in [42]. The parameters β1 and β2

in Algorithm FTVd are set to be 5 and 20, respectively. We further set the blurring kernel in
Algorithm FTVd to be the identity matrix for the denoising purpose. For Algorithm 1, we set
αmax = βmax = 4 and the initial parameters α = β = 1

128
. For Algorithm 2, we set set αmax = 4

and the initial value α = 1
64

and in the meanwhile keep β = 1
8
αλ in every iteration. For both of

these algorithms, we double the values of α and β every ten iterations. The stopping criterion of
Algorithm FTVd and Algorithms 1 and 2 is that the relative error between the successive iterates
of the restored images should satisfy the following inequality

‖ui+1 − ui‖22
‖ui‖22

< 0.001 (5.1)

where ui is the denoised image at the i-th iteration. For each of the four algorithms, the regular-
ization parameter is determined experimentally for the restored image to achieve the best possible
PSNR-value.

The numerical results are listed in Table 1. We observe that the PSNR-values of the restored
images by Algorithm 1 are higher than those by Algorithm FTVd, and equally match those by
Algorithm PDTV. Specifically, when the noise levels are lower than 30%, Algorithm 1 constantly
produces the best results in terms of PSNR values. The PSNR-values of the restored images by
Algorithm 2 are always higher than those by the other three algorithms. Table 1 also contains
the CPU-time consumed by these four algorithms. Clearly, the proposed Algorithms 1 and 2 use
much less CPU-time than Algorithm PDTV and Algorithm FTVd. The fast convergence of our
algorithms benefits mainly from the low cost of each iteration which consists only of operations
of shrinkage and finite differences. In contrast, Algorithm FTVd requires computing FFTs and
Gaussian elimination besides operations of shrinkage and finite differences. Moreover, Algorithm 2
is more efficient than Algorithm 1 in terms of the PSNR-values and the used CPU-time. We remark
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Table 1: The summary of the restoration results of Algorithm PDTV, Algorithm FTVd, and
Algorithms 1 and 2.

Cameraman Lena Baboon
Level Method PSNR Time PSNR Time PSNR Time

(dB) (seconds) (dB) (seconds) (dB) (seconds)

10% PDTV 28.80 17.03 31.42 18.08 26.49 128.98
FTVd 28.68 3.49 31.03 3.31 26.29 18.39

Algorithm 1 28.81 2.17 31.46 2.36 26.43 10.68
Algorithm 2 28.91 1.15 31.75 1.23 26.66 5.21

20% PDTV 26.28 16.85 29.11 17.12 23.84 119.47
FTVd 26.15 3.46 28.76 3.33 23.73 20.21

Algorithm 1 26.35 2.43 29.11 2.43 23.92 11.17
Algorithm 2 26.59 1.18 29.58 1.47 24.24 6.44

30% PDTV 24.83 15.66 27.55 16.46 22.61 122.74
FTVd 24.71 3.80 27.25 3.66 22.38 21.72

Algorithm 1 24.92 2.74 27.57 2.75 22.61 12.53
Algorithm 2 25.15 1.50 27.88 1.67 22.84 7.77

40% PDTV 23.64 17.35 26.06 15.55 21.56 129.51
FTVd 23.59 4.25 25.79 3.99 21.41 23.59

Algorithm 1 23.77 2.75 26.00 2.81 21.56 13.09
Algorithm 2 23.95 1.63 26.46 1.82 21.68 9.59

50% PDTV 22.57 16.45 24.77 17.40 20.77 135.11
FTVd 22.39 4.66 24.52 4.52 20.69 25.31

Algorithm 1 22.49 2.85 24.30 2.84 20.74 14.19
Algorithm 2 22.74 1.85 24.82 1.93 20.81 9.93

that no prior knowledge of potential uncorrupted pixels are utilized in these four algorithms. To
better visualize the performance of the four algorithms, the results in Table 1 are plotted in Figure 3.

The restored images obtained from the four algorithms for the noise level at 30% are displayed
in Figure 4. As it can be seen, the denoised images by these four methods have similar visual
quality as they are all based on the L1/TV model which ultimately determines the quality of the
restoration.

In the second experiment, we test the performance of Algorithms 3 and 4 for salt-pepper noise
removal. For these algorithms, the adaptive median filter (AMF) [28] is used for detecting and
labeling the salt-pepper noise, therefore, generating the convex set C. Since the pixels which are
detected as uncorrupted by impulse noise will be placed back at each iteration, the starting values
of α and β for Algorithm 3 are set to 1, which are larger than that in Algorithms 1 and 2. We
choose αmax = βmax = 128 in Algorithm 3. For Algorithm 4, we set αmax = 128 and α = 1 and
keep β = 1

8
αλ. The parameter µ is set to 10 in both Algorithms 3 and 4. Table 2 summarizes the

restoration results of Algorithms 3 and 4. Algorithms 3 and 4 produce significantly higher PSNR-
values than Algorithms 1 and 2 even when noise levels are high. As it can be seen from Figure 5,
the visual quality of the restored images can also be greatly improved when using Algorithms 3 and
4. This is mainly based on the accurate noise detection by the AMF and the good noise recovery
capacity of the L1/TV models (2.2) and (3.5). On the other hand, the L1/ϕ ◦ B and L1/env ◦ B
models (2.2) and (3.5) with C = Rn2

include all corrupted pixels, which can greatly affect the
restoration process especially when the noise level is high. As a result, both of the noisy pixels
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Figure 3: Performance of Algorithm PDTV, Algorithm FTVd and Algorithms 1, 2 on the images of
“Cameraman”, “Lena”, and “Baboon” contaminated by different levels of salt-pepper noise. Row
1: The PSNR-values against noise levels; Row 2: CPU-times against noise levels.

Table 2: The summary of the restoration results of Algorithms 3 and 4.
Cameraman Lena Baboon

Level Method PSNR Time PSNR Time PSNR Time
(dB) (seconds) (dB) (seconds) (dB) (seconds)

10% Algorithm 3 36.93 2.17 40.03 2.14 32.66 10.63
Algorithm 4 36.67 0.49 39.76 0.57 33.03 3.00

20% Algorithm 3 33.29 2.37 36.58 2.27 29.51 11.45
Algorithm 4 33.20 0.71 36.34 0.72 29.90 3.81

30% Algorithm 3 30.88 2.37 34.05 2.45 27.46 11.50
Algorithm 4 30.86 0.91 33.87 0.96 27.89 4.59

40% Algorithm 3 29.21 2.42 32.40 2.44 25.83 11.84
Algorithm 4 29.18 1.24 32.25 1.21 26.26 6.08

50% Algorithm 3 27.69 2.38 30.57 2.52 24.56 11.68
Algorithm 4 27.66 1.49 30.42 1.53 24.85 8.00

and uncorrupted pixels are tended to be modified in the restored images and hence the fine image
details will be destroyed. This can be seen from the the difference among the restored images shown
in Figure 5.

Finally, we demonstrate that Algorithms 3 and 4 can efficiently remove salt-pepper noise with
high noise levels. The visual quality and the PSNR-values of the restored images for the “Cam-
eraman”, “Lena”, and “Baboon” images corrupted by salt-pepper noise at noise levels of 70% and
90% are depicted in Figure 6 and Figure 7, respectively. These clearly show that Algorithms 3 and
4 are indeed very efficient.
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Figure 4: Results of the four methods when restoring noisy “Cameraman”, “Lena”, and “Baboon”
images corrupted by salt-pepper noise with the noise level r = 30%. (Row 1) The noisy images.
(Row 2) The result of FTVd-algorithm. (Row 3) The result of PDTV-algorithm. (Row 4) The
result of Algorithm 1. (Row 5) The result of Algorithm 2.

6 Concluding Remarks

We establish proximity operator frameworks for the numerical treatment of the L1/ϕ ◦ B and
L1/env ◦ B models and apply them to the image denoising models for their numerical solutions.
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The resulting fixed-point equations are formed via the proximity operators of the `1-norm and `2-
norm that have explicit expressions. This naturally leads to simple, efficient fixed-point algorithms
for finding approximate solutions of the L1/ϕ ◦ B and L1/env ◦ B image denoising models. We
prove convergence of the algorithms for the L1/env ◦ B model. Numerical results presented in this
paper confirm that the proposed algorithms perform favorably and use much less CPU-time than
the two state-of-the-arts algorithms in the literature.
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