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Abstract. The variational techniques (e.g., the total variation based method
[1]) are well established and effective for image restoration, as well as many
other applications, while wavelet frame based approach is relatively new and

came from a different school. This paper is designed to establish a connection
between these two major approaches for image restoration. The main result
of this paper shows that when spline wavelet frames of [2] are used, a special
model of a wavelet frame method, called the analysis based approach, can be
viewed as a discrete approximation at a given resolution to variational meth-
ods. A convergence analysis as image resolution increases is given in terms
of objective functionals and their approximate minimizers. This analysis goes
beyond the establishment of the connections between these two approaches,
since it leads to new understandings for the both approaches. First, it pro-
vides geometric interpretations to the wavelet frame based approach as well
as its solutions. On the other hand, for any given variational model, wavelet
frame based approaches provide various and flexible discretizations which im-
mediately lead to fast numerical algorithms for both the wavelet frame based
approaches and the corresponding variational model. Furthermore, the built-in
multiresolution structure of wavelet frames can be utilized to adaptively choose
proper differential operators in different regions of a given image according to
the order of the singularity of the underlying solutions. This is important
when multiple orders of differential operators are used in various models that
generalize the total variation based method. These observations will enable us
to design new methods according to the problems at hand, hence, lead to wider
applications of both the variational and wavelet frame based approaches. Links
of wavelet frame based approaches to some more general variational methods
developed recently will also be discussed.

1. Introduction

From the beginning of science, visual observations have been playing important
roles. Advances in computer technology have made it possible to apply some of
the most sophisticated developments in mathematics and the sciences to the design
and implementation of fast algorithms running on a large number of processors
to process image data. As a result, image processing and analysis techniques are
now applied to virtually all natural sciences and technical disciplines ranging from
computer sciences and electronic engineering to biology and medical sciences; and
digital images have come into everyone’s life. Image restoration, including image
denoising, deblurring, inpainting, computed tomography, etc., is one of the most
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important areas in image processing and analysis. Its major purpose is to enhance
the quality of a given image that is corrupted in various ways during the process of
imaging, acquisition and communication, and enables us to see crucial but subtle
objects reside in the image. Therefore, image restoration is an important step to
take towards the accurate interpretations of the physical world and making the
optimal decisions.

Mathematics has been playing an important role in image and signal processing
from the very beginning; for example, Fourier analysis is one of the main tools in
signal and image analysis, processing, and restoration. In fact, mathematics has
been one of the driving forces of the modern development of image analysis, process-
ing and restorations. At the same time, the interesting and challenging problems in
imaging science also gave birth to new mathematical theories, techniques and meth-
ods. The variational methods (e.g., total variation based methods) and wavelets
and wavelet frame based methods developed in the last few decades for image and
signal processing are two successful recent examples among many. This paper is
designed to establish connections between these two major image restoration ap-
proaches: variational methods and wavelet frame based methods. Such connections
provide new interpretations and understanding of both approaches, and hence, lead
to new applications for both approaches.

We start with an introduction of both the variational and wavelet frame based
methods. The basic linear image restoration model used for variational methods is
usually given as

(1.1) f = Au+ η,

where A is some linear bounded operator (not invertible in general) mapping one
function space to another, e.g., the identity operator for image denoising, or a
convolution operator for image deconvolution, and η denotes a perturbation caused
by the additive noise in the observed image (or measurements), which is typically
assumed to be a white Gaussian noise.

In order to recover the unknown image u from the equation (1.1), a typical
variational approach takes the following form:

(1.2) inf
u

ν‖Du‖∗ +
1

2
‖Au− f‖2L2(Ω),

where D is a vector of some (weighted) differential operators, ‖·‖∗ is some properly
chosen norm, Ω is some domain in R2, and ν is some scalar parameter. For example,
when D = ∇ and ‖∇u‖∗ :=

∫
Ω |∇u|dxdy, then (1.2) is the well-known Rudin-

Osher-Fatemi (ROF) model [1]:

(1.3) inf
u

ν

∫
Ω

|∇u|dxdy + 1

2
‖Au− f‖2L2(Ω).

the ROF model works exceptionally well in terms of preserving edges while sup-
pressing noise. After the ROF model was proposed, there were many variational
methods developed in the literature. We shall provide a short review of variational
methods in the next section.

In general, the infimum of a convex objective functional, such as the ones in (1.2)
and (1.3), may not be attainable. Some additional conditions, such as coercivity
[3], are needed in order to ensure that. However, practically, we only need to
deal with approximate minimizers, or more precisely, ε-optimal solutions (see (3.7)
for the definition) when solving image restoration problems, which always exist
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and are numerically computable for all objective functionals considered in this
paper. Therefore, we will not enforce additional conditions on D and A to ensure
attainability of the infimum.

The image restoration model (1.1) views images as functions defined on a contin-
uum, i.e. analog signals. What we observe in practice, however, are digital images
which are discrete versions of their continuous counterparts. Given an analog data
f , its digital/discrete version f can be obtained by various sampling schemes. How-
ever, digital images are never given in a function form. Hence, when model (1.1)
is adopted, one needs to obtain an approximation of an observed function from the
given digital image. Since digital images are discrete sequences and the restoration
of a digital image is to restore a sequence from an observed sequence, it is more
natural to view a digital image as a sequence f and establish a restoration model
in a sequence space instead of a function space. This is what the wavelet frame
based approach is for. In fact, as we will see, the wavelet frame based approach
naturally fits the discrete setting of digital images.

The digital image restoration model is the discrete version of (1.1), which is to
find the unknown true digital image u from an observed image (or measurements)
f defined by

(1.4) f = Au + η,

where A is a linear operator and η is a Gaussian noise. Here the linear operator
A is the identity operator for image denoising, a convolution operator for image
deconvolution, and a projection operator for image inpainting.

The problem (1.4) is a typical linear inverse problem. The frame based image
restoration model that we shall focus on in this paper is the analysis based approach,
which is to solve

(1.5) inf
u

ν‖λ ·Wu‖∗ +
1

2
‖Au− f‖22,

where W is the discrete wavelet frame transform using filters of some tight wavelet
frame system, and ‖ · ‖∗ is some properly chosen norm that reflects the regularity
or sparse properties of the underlying solutions, e.g., the weighted �1-norm is com-
monly used. We will provide details on wavelet frame transforms and the definition
of ‖ · ‖∗ in the next section. In order to have a desired solution of (1.4) via solving
(1.5), the underlying solution should have a good sparse approximation under the
wavelet frame transform W . One of the advantages of using tight wavelet frame
systems is that they provide reasonably good sparse approximations to piecewise
smooth functions, which form a large class of functions that images belong to.

When the wavelet frame based approach (1.5) is used, the digital image data
is given in a sequence form and the minimization is also done in sequence space.
Hence the solution is naturally a sequence. The underlying function from which
the digital image is sampled does not appear explicitly. It appears implicitly when
the regularity of the underlying solution is mentioned, which is stated in terms of
the decay of the wavelet frame coefficients Wu. Furthermore, one can obtain an
approximate solution in function form whenever it is needed. Indeed, since wavelet
frame based approaches normally generate coefficients of a wavelet frame system
(or coefficients of shifts of the corresponding refinable function that generates the
wavelet frame system), it is easy to reconstruct a function from these coefficients.

In fact, as we will see, when wavelet frames are used, we can interpret the
digital image f as f [k] = 〈f, φ(· − k)〉 for some function φ to link it to function
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space. The operator A can be viewed as a discrete version of the continuous
linear operator A of (1.1) through certain discretization. Furthermore, when special
wavelet frames are chosen, the wavelet frame transform λ · Wu can be regarded
as certain discretizations of Du. This motivates us to explore whether the model
(1.5) approximates (1.2) and whether the approximation becomes more accurate
when image resolution increases. One of the major contributions of this paper is to
establish a connection between the wavelet frame based image variational approach
(1.5) and the differential operator based variational model (1.2), as well as their
corresponding approximate minimizers. An approximate minimizer is the one on
which the value of the objective functional is close to the infimum.

In order to briefly summarize our results, we need to introduce some notation.
The details can be found in later sections. First, define the objective function

Fn(u) := ν‖λ ·Wu‖∗ +
1

2
‖Anu− f‖22,

where u and f are N×N with N = 2n+1. The operator An should be understood
as a proper discretization of some operator A defined on a function space. We will
first show that the approximate minimizers of Fn can be put into correspondence
with those of the following objective functional:

En(u) := ν‖λ ·WnTnu‖∗ +
1

2
‖AnTnu− Tnf‖22,

where Tn is some discretization operator associated to the given wavelet frame
system. In particular, if u�

n is an (approximate) minimizer of Fn, then we can
explicitly construct a u�n such that u�n is an (approximate) minimizer of En. The
converse argument is also true. Note that En is a functional defined on some
function space, as well as the objective functional

E(u) := ν‖Du‖∗ +
1

2
‖Au− f‖2L2(Ω).

For clarity of the presentation here, we postpone the detailed definition of the
function space of u and the domains of the operatorsD, W and Tn to later sections.

While En is essentially a reformulation of Fn, it can also be regarded as an
approximation of E. For this, we first show that En pointwise converges to E.
Then, we prove that En Γ-converges to E (see Definition 3.1 for the definition of
Γ-convergence; also see, e.g., [4] for an introduction of Γ-convergence). In fact,
we shall prove a convergence result that is stronger than the Γ-convergence. The
analysis is based on approximation of functions through multiresolution structures
generated by B-splines and their associated spline wavelet frames constructed from
[2]. In numerical computation for both the variational and wavelet frame based ap-
proaches, the computed solutions are often those whose values of the corresponding
objective functional E or En are ε close to the infimum. We refer to such solutions
as ε-optimal solutions to E or En (see (3.7) for the definition). Denote by u�n an
ε-optimal solution to En, which can be constructed by the ε-optimal solution to Fn,
denoted as u�

n. As a result of Γ-convergence, we are able to connect the functional
En with E, hence Fn with E, in the following sense:

lim sup
n→∞

Fn(u
�
n) = lim sup

n→∞
En(u

�
n) ≤ inf

u
E(u) + ε.
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The above inequality shows that {u�n} is a sequence that enables En to approximate
the optimal value of E from below. Furthermore, any cluster point of {u�n} is an
ε-optimal solution to E.

The discussions of the similarity and difference between the total variation
method and wavelet method for image denoising have already been given through
the discussions of the space of bounded variation functions (BV space) and the

Besov space (e.g., B1,1
1 space) in [5], which provides a fundamental understanding

of the two approaches for image denoising. The results given here not only consider
more general image restoration problems, but also reveal close connections between
the solutions of wavelet frame based image restoration, which is used in numerical
computing, and those of the total variation method. Furthermore, since the num-
ber of levels used in wavelet decomposition is fixed independent of the resolution
(though the resolution can be higher when the give data is denser) and since the
parameters for the low pass filter are always set to be zero in numerical implemen-
tation of (1.5), the weighted �1-norm of wavelet coefficients here is not equivalent
to the Besov norm as discussed in [5]. All these indicate that the study here takes
a different approach and leads to a different set of results which will extend our
understanding for both the wavelet frame based and variational approaches. Our
conclusion goes beyond the theoretic justifications of the linkage of the two ap-
proaches. Since the total variation approach has a strong geometric interpretation,
this connection gives geometric interpretations to the wavelet frame based approach
(1.5) as well as its minimizers, as it can be understood as the discrete form of (1.2).
This also leads to even wider applications of the wavelet frame based approach,
e.g., image segmentation [6] and 3D surface reconstruction from unorganized point
sets [7]. On the other hand, for any given variational model (1.2), (1.5) provides
various and flexible discretizations, as well as fast numerical algorithms. Using a
wavelet frame based approach, we can approximate various differential operators
for model (1.2) by choosing a proper wavelet frame transform and parameters λ.
Furthermore, by putting (1.2) into a wavelet frame setting, one can use a mul-
tiresolution structure to adaptively choose proper differential operators in different
regions of a given image according to the orders of the singularities of underlying
solutions. It should be pointed out here that if one wants to use a more general
differential operator in (1.2), the ability of applying different differential operators
according to where various singularities are located is the key to make such a gen-
eralization successful. The wavelet frame based approach has a built-in adaptive
mechanism via the multiresolution analysis that provides a natural tool for this
very purpose. Finally, we can use more general wavelet frame based approaches,
e.g., the wavelet frame based balanced approach, or using two-system models to
solve various generalizations of (1.2), as will be shown in a later section.

The rest of this paper is organized as follows. In Section 2, we will first review
some of the classical as well as some most recent variational approaches. Then
we will review some basic notions of wavelet frames, fast framelet transforms, and
wavelet frame based image restoration approaches. Finally, we will motivate the
readers by showing the link between the wavelet frame based approach with Haar
framelet and the ROF model with A = I. Theoretical justifications of the link
between (1.2) and (1.5) will be given in Section 3 with some technical details given
later in Section 4. In particular, in Section 3, we will prove that En pointwise
converges to E, which indicates that En can be used to approximate E. In order to
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understand further connections between En and E, another convergence result of
En to E is also proven. This result implies that En Γ-converges to E. It also leads
to the fact that the approximate minimizers of E can be bounded below in general
by lim supn→∞(inf En) up to some small ε. Furthermore, approximated minimizers
of E can be directly approximated by those of En for many cases. All these provide
a fundamental link between the optimization problems (1.2) and (1.5), and a link
between their approximate minimizers. Numerical algorithms that solve (1.5) as
well as some simulations will be provided in Section 5. Finally, in Section 6, we
will present some further extensions of (1.5) and their connections to some recently
proposed variational methods.

2. Models and Motivations

In this section, we first recall some variational methods, as well as their history
and recent developments. Then we review some basic notation of wavelet frames
and wavelet frame based image restoration approaches. At the end, we shall give
an example to illustrate that these two approaches are closely related.

2.1. Total Variation Based Models and Their Generalizations.

2.1.1. Total Variation Based Models. The trend of variational methods and partial
differential equation (PDE) based image processing started with the refined Rudin-
Osher-Fatemi (ROF) model [1]:

(2.1) inf
u

ν

∫
Ω

|∇u|dxdy + 1

2
‖Au− f‖2L2(Ω).

The ROF model aims at finding a desirable solution of (1.1). The choice of regular-
ization

∫
Ω
|∇u|dxdy is the total variation (TV) of u, which is much more effective

than the classical choice
∫
Ω
|∇u|2dxdy in terms of preserving sharp edges, which are

key features for images. Many of the current PDE based methods for image denois-
ing and decomposition utilize TV regularization for its beneficial edge-preserving
property (see, e.g., [5, 8, 9]). The ROF model is especially effective on restoring
images that are piecewise constant, e.g., binary images.

To solve the ROF model (2.1), one can solve the corresponding Euler-Lagrange
equation:

(2.2) −ν∇ ·
( ∇u
|∇u|

)
+A�(Au − f) = 0.

To solve the Euler-Lagrange equation (2.2), it was proposed in [1] to use a time
evolution PDE which is essentially the steepest descent equation for the objective
functional (2.1). This time evolution PDE was later modified by [10] to improve
the Courant-Friedrichs-Lewy (CFL) condition when solving the PDE using explicit
finite difference schemes. To completely remove the CFL restriction, a fixed point
iteration scheme which solves the Euler-Lagrange equation (2.2) directly was pro-
posed in [11].

All the numerical methods in [1, 10, 11] aimed at solving the Euler-Lagrange
equation (2.2), which becomes singular when |∇u| = 0. To avoid this, [1, 10, 11]
used a regularized parabolic term for (2.2) instead, i.e.

−ν∇ ·
( ∇u
|∇u|ε

)
+A�(Au − f) = 0, where |∇u|ε :=

√
|∇u|2 + ε2.
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Although such regularization prevents the coefficients of the parabolic term of (2.2)
from getting arbitrarily large, a large ε also reduces the ability of the ROF model
to preserve edges. On the other hand, when ε is small, the efficiency of these
algorithms will also be significantly reduced. To overcome this dilemma, a duality
based method was proposed by [12, 13] exploiting the dual formula of the ROF
model. Recent developments of the duality based method can be found in [14, 15,
16, 17, 18] and the reference therein.

The more recently developed efficient algorithm for the ROF model (2.1) is the
split Bregman algorithm proposed by [19] that is based on the Bregman distance
[20]. In fact, the split Bregman algorithm of [19] solves a wavelet frame based
approach implicitly when a proper discretization of the differential operator ∇ is
chosen. For example, one may choose the following discretizations:

∂xu ≈ u[i+ 1, j]− u[i, j]

h
and ∂yu ≈ u[i, j + 1]− u[i, j]

h
.

Then, with a proper choice and organization of the above difference operators and
parameter λ (see, e.g., Section 2.3), the split Bregman algorithm solving the ROF
model (2.1) can be viewed as solving the following optimization problem:

(2.3) inf
u

ν‖λHu‖1,2 +
1

2
‖Au− f‖22,

with H being the Haar wavelet transform. Model (2.3) is a discretization of the
ROF denoising model (2.1) (see (2.19) for the definition of ‖ · ‖1,2). In other words,
instead of solving the ROF model (2.1), the split Bregman algorithm of [19] solves
the wavelet frame based approach (2.3) if a proper discretization is used (see Section
2.3 for details). This shows that when the split Bregman algorithm of [19] is
used to obtain efficient algorithms solving the ROF model (2.1), one implicitly
solves a wavelet frame based model (1.5) when a proper discretization is used. The
efforts made in seeking efficient algorithms for the ROF model (2.1) came across
with wavelet frame based approaches at this point. Convergence analysis of the
split Bregman algorithm for frame based image restoration was given by [21]. The
connections of the split Bregman algorithm to some earlier algorithms were later
discovered by [22, 23]. We shall review split Bregman algorithm in Section 5.

2.1.2. Generalizations of Total Variation Based Models. As we mentioned earlier,
the ROF model is especially effective on restoring images that are piecewise con-
stant, e.g., binary images. However, it will also create the staircase effect for images
that are not piecewise constant [24, 25].

To reduce the staircase effect of the ROF model, [26] understood the image u as
an addition of two image layers, i.e. u = u1 + u2 and proposed the inf-convolution
model:

(2.4) inf
u1,u2

∫
Ω

ν1|∇u1|+ ν2|∇2u2|dxdy +
1

2
‖A(u1 + u2)− f‖2L2(Ω),

where |∇2u2| :=
√
|∂xxu2|2 + |∂yyu2|2 + 2|∂xyu2|2. Following the idea of the inf-

convolution model, [27, 28] proposed the following model where the Hessian ∇2

used in the inf-convolution model is replaced by the Laplacian Δ:

inf
u1,u2

∫
Ω

ν1|∇u1|+ ν2|Δu2|pdxdy +
1

2
‖A(u1 + u2)− f‖2L2(Ω), p = 1, 2.
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Another approach reducing the staircase effect without multi-layer assumptions
of the images is adding a higher order regularization term to the original ROF
model by [29]. Thanks to the higher order term, the solution prefers “ramps” over
“staircases” (see [29] for details).

More recently, a more general variational approach was proposed by [30], where
the authors introduced total generalized variation (TGV) as the regularization term.
Here we will recall a modified version of the general TGV model (we shall refer to
it as the TGV model in this paper):

(2.5) inf
u,v

ν1‖∇u− v‖L1(Ω) + ν2‖∇ · v‖L1(Ω) +
1

2
‖Au− f‖2L2(Ω),

where the variable v = (v1, v2) varies in the space of all continuously differential
2-tensors and

‖∇ · v‖L1(Ω) :=

∫
Ω

√
(∂xv1)2 + (∂yv1)2 + (∂xv2)2 + (∂yv2)2dxdy.

The TGV model generalizes the inf-convolution model in the sense that it coin-
cides with the inf-convolution model when v only varies in the range of ∇. The
TGV model improves the results for image denoising over the ROF model and
inf-convolution model. The interested reader should consult [30] for details.

Similar to total variation based methods, we will establish the connections be-
tween the inf-convolution model (2.4) and the TGV model (2.5) with some wavelet
frame based approach. Both the inf-convolution model (2.4) and the TGV model
(2.5) can be approximated by some tight wavelet frame based approach, while it is
more natural and efficient to have a frame based approach for these generalizations
as well. We shall postpone the detailed discussions to Section 6.

2.2. Wavelet Frame Based Models. This section is devoted to recalling the
wavelet frame based image restoration approaches. We start with the concept of a
tight frame and a tight wavelet frame, and then introduce the analysis based image
restoration approach and other more general wavelet frame based approaches.

2.2.1. MRA-Based Tight Frames. In this subsection, we briefly introduce the con-
cept of tight frames and tight wavelet frames. The interested readers should consult
[2, 31, 32] for theories of frames and wavelet frames, [33] for a short survey on the
theory and applications of frames, and [34] for a more detailed survey.

A countable set X ⊂ L2(R
d), with d ∈ Z+, is called a tight frame of L2(R

d) if

(2.6) f =
∑
g∈X

〈f, g〉g ∀f ∈ L2(R
d),

where 〈·, ·〉 is the inner product of L2(R
d).

For given Ψ := {ψ1, . . . , ψq} ⊂ L2(R
d), the corresponding quasi-affine system

XJ(Ψ) generated by Ψ is defined by the collection of the dilations and the shifts of
Ψ as

(2.7) XJ(Ψ) = {ψ�,n,k : 1 ≤ � ≤ q;n ∈ Z,k ∈ Z
d},

where ψ�,n,k is defined by

(2.8) ψ�,n,k :=

{
2

nd
2 ψ�(2

n · −k), n ≥ J ;

2(n−
J
2 )dψ�(2

n · −2n−Jk), n < J.
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When XJ(Ψ) forms a tight frame of L2(R
d), each function ψ�, � = 1, . . . , q, is

called a (tight) framelet and the whole system XJ(Ψ) is called a tight wavelet
frame. In this section, we shall focus on the case J = 0, where we simply denote
X(Ψ) := X0(Ψ). Similar arguments hold for general J (see [34]). Note that
here we only discuss the quasi-affine system (2.8), since we only use undecimated
wavelet frames which implicitly use quasi-affine frames. The interested reader can
find further details on the affine wavelet frame systems and its connections to the
quasi-affine frames [2, 34, 35].

The constructions of framelets Ψ, which are desirably (anti)symmetric and com-
pactly supported functions, are usually based on a multiresolution analysis (MRA)
that is generated by some refinable function φ with refinement mask a0 satisfying

(2.9) φ = 2d
∑
k∈Zd

a0[k]φ(2 · −k).

The idea of an MRA-based construction of framelets Ψ = {ψ1, . . . , ψq} ⊂ L2(R
d)

is to find masks a�, which are finite sequences, such that

(2.10) ψ� = 2d
∑
k∈Zd

a�[k]φ(2 · −k), � = 1, 2, . . . , q.

The sequences a1, . . . ,aq are called wavelet frame masks, or the high pass filters of
the system, and the refinement mask a0 is also known as the low pass filter.

The unitary extension principle (UEP) of [2] provides a general theory of the
construction of MRA-based tight wavelet frames. Roughly speaking, as long as
{a1, . . . ,aq} are finitely supported and their Fourier series satisfy

(2.11)

q∑
�=0

|â�(ξ)|2 = 1 and

q∑
�=0

â�(ξ)â�(ξ + ν) = 0,

for all ν ∈ {0, π}d \ {0} and ξ ∈ [−π, π]d, the quasi-affine system X(Ψ) (as well as
the traditional wavelet system) with Ψ = {ψ1, . . . , ψq} defined by (2.10) forms a
tight frame in L2(R

d).
We now show three simple but useful examples of univariate framelets. The

framelet given in Example 2.1 is known as the Haar wavelet. When one uses a
wavelet (affine) system, it generates an orthonormal basis of L2(R). The quasi-affine
system that the Haar wavelet generates, however, is not an orthonormal basis, but
a tight frame of L2(R) instead. We shall refer to ψ1 in Example 2.1 as the “Haar
framelet”. The framelets given by Example 2.2 and Example 2.3 are constructed
from piecewise linear and cubic B-splines respectively first given in [2] (see [2] for de-
tails). The masks of those framelets are exactly discrete difference operators up to a
scaling. These framelets are widely used in frame based image restoration problems
because they provide sparse approximations to piecewise smooth, especially piece-
wise linear, functions such as images (see, e.g., [35, 36, 37, 38, 39, 40, 41, 42, 43, 21]).
We shall refer to ψ1 and ψ2 in Example 2.2 as “piecewise linear framelets”, and ψ1,
ψ2 and ψ3 in Example 2.3 as “piecewise cubic framelets”.

Notice that the framelet masks shown by the following examples correspond
to standard difference operators up to some proper scaling, which is also true for
framelets constructed by higher order B-splines [2]. This is a crucial observation
that made us believe that a link does exist between the variational and wavelet
frame based methods.
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In this paper, the B-splines are the centered B-splines defined as follows. The

centered B-spline of order m, denoted as φ, is defined by its Fourier transform φ̂ as

φ̂(ω) = e−
iωjm

2

(
sin(ω2 )

ω
2

)m

,

where jm := 0 when m is even and jm := 1 when m is odd.

Example 2.1. Let a0 = 1
2 [1, 1] be the refinement mask of the piecewise constant

B-spline B1(x) = 1 for x ∈ [0, 1] and 0 otherwise. Define a1 = 1
2 [1,−1]. Then a0

and a1 satisfy (2.11). Hence, the system X(ψ1) defined in (2.7) is a tight frame of
L2(R). The mask a1 corresponds to a first order difference operator up to a scaling.

Example 2.2. Let a0 = 1
4 [1, 2, 1] be the refinement mask of the piecewise linear

B-spline B2(x) = max (1− |x|, 0). Define a1 =
√
2
4 [1, 0,−1] and a2 = 1

4 [−1, 2,−1].
Then a0, a1 and a2 satisfy (2.11). Hence, the system X(Ψ) where Ψ = {ψ1, ψ2}
defined in (2.7) is a tight frame of L2(R). The masks a1 and a2 correspond to the
first order and second order difference operators respectively up to a scaling.

Example 2.3. Let a0 = 1
16 [1, 4, 6, 4, 1] be the refinement mask of the piecewise

cubic B-spline B4. Define a1, a2, a3, a4 as follows:

a1 =
1
8 [−1,−2, 0, 2, 1], a2 =

√
6

16 [1, 0,−2, 0, 1],

a3 = 1
8 [−1, 2, 0,−2, 1], a4 = 1

16 [1,−4, 6,−4, 1].

Then {a� : 0 ≤ � ≤ 4} satisfy (2.11) and hence the system X(Ψ), where Ψ = {ψ� :
1 ≤ � ≤ 4} defined in (2.7) is a tight frame of L2(R). The filters a1, a2, a3, and
a4 correspond to the first to fourth order difference operators respectively up to a
scaling.

For practical concerns, we need to consider tight frames of L2(R
d) with d = 2 or

3, since a typical image is a discrete function with its domain in 2 or 3 dimensional
space. One way to construct tight frames for L2(R

d) is by taking tensor products
of univariate tight frames. For simplicity of notation, we will consider the 2D case,
i.e. d = 2. Arguments for d = 3 or higher dimensions are similar.

Given a set of univariate masks {a� : � = 0, 1, . . . , r}, define the 2D masks ai[k],
with i := (i1, i2) and k := (k1, k2), as

(2.12) ai[k] := ai1 [k1]ai2 [k2], 0 ≤ i1, i2 ≤ r; (k1, k2) ∈ Z
2.

Then the corresponding 2D refinable function and framelets are defined by

ψi(x, y) = ψi1(x)ψi2 (y), 0 ≤ i1, i2 ≤ r; (x, y) ∈ R
2,

where we have let ψ0 := φ for convenience. We denote

Ψ2 := {ψi; 0 ≤ i1, i2 ≤ r; i �= (0, 0)}.
If the univariate masks {a�} are constructed from UEP, then it is easy to verify
that {ai} satisfies (2.11) and thus X(Ψ2) is a tight frame for L2(R

2).
There are m framelets with vanishing moment from 1, . . . ,m constructed from

the B-spline of order m by the UEP in [2]. Recall that the vanishing moment of
a function is the order of the zero of its Fourier transform at the origin. We shall
order the indices of the framelets according to their orders of vanishing moments.
Note that the corresponding index for any B-spline is 0, since it has no vanishing
moment. Then, for the tensor product framelet ψi with i = (i1, i2), if there is a
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differential operator associate with it, the differential operator should be Di, i.e.
applying the i1 derivative at the first variable and the i2 derivative at the second
variable.

We now provide the masks of 2-dimensional Haar and piecewise linear framelets
constructed by tensor product in the following example.

Example 2.4.

(1) The tensor-product 2-dimensional Haar tight frame system has filters

a0,0 =
1

4

(
1 1
1 1

)
,a0,1 =

1

4

(
1 −1
1 −1

)
,

a1,0 =
1

4

(
1 1

−1 −1

)
,a1,1 =

1

4

(
1 −1

−1 1

)
.

(2) The tensor-product 2-dimensional piecewise linear B-spline tight frame sys-
tem has filters

a0,0 =
1

16

⎛
⎝ 1 2 1

2 4 2

1 2 1

⎞
⎠ ,a0,1 =

√
2

16

⎛
⎝ 1 0 −1

2 0 −2

1 0 −1

⎞
⎠ ,a0,2 =

1

16

⎛
⎝ −1 2 −1

−2 4 −2

−1 2 −1

⎞
⎠ ,

a1,0 =

√
2

16

⎛
⎝ 1 2 1

0 0 0
−1 −2 −1

⎞
⎠ ,a1,1 =

1

8

⎛
⎝ 1 0 −1

0 0 0
−1 0 1

⎞
⎠ ,a1,2 =

√
2

16

⎛
⎝ −1 2 −1

0 0 0
1 −2 1

⎞
⎠ ,

a2,0 =
1

16

⎛
⎝ −1 −2 −1

2 4 2
−1 −2 −1

⎞
⎠ ,a2,1 =

√
2

16

⎛
⎝ −1 0 1

2 0 −2
−1 0 1

⎞
⎠ ,a2,2 =

1

16

⎛
⎝ 1 −2 1

−2 4 −2
1 −2 1

⎞
⎠ .

In the discrete setting, let an image f be a d-dimensional array. We denote by

Id := R
N1×N2×···×Nd

the set of all d-dimensional images. We will further assume that all images are
square images, i.e. N1 = N2 = · · · = Nd = N and they all have supports in the
open unit d-dimensional cube Ω = (0, 1)d. Note that these assumptions are not
essential, and all arguments and results in this paper can be easily extended to
general cases.

For simplicity, we will focus on d = 2 throughout the rest of this paper. We
denote the 2-dimensional fast (discrete) framelet transform (see, e.g., [34]) with
levels of decomposition L as

(2.13) Wu = {Wl,iu : 0 ≤ l ≤ L− 1, 0 ≤ i1, i2 ≤ r}, u ∈ I2.
The fast framelet transform W is a linear operator with Wl,iu ∈ I2 denoting the
frame coefficients of u at level l and band i. Furthermore, we have

Wl,iu := al,i[−·]� u,

where � denotes the convolution operator with a certain boundary condition, e.g.,
periodic boundary condition, and al,i is defined as

(2.14) al,i = ãl,i � ãl−1,0 � . . .� ã0,0 with ãl,i[k] =

{
ai[2

−lk], k ∈ 2lZ2;
0, k /∈ 2lZ2.

Notice that a0,i = ai.
We denote the inverse framelet transform as W�, which is the adjoint operator

of W , and we will have the perfect reconstruction formula

u = W�Wu, for all u ∈ I2.
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We note that we will also denote the fast framelet decomposition and reconstruction
as Wn and W�

n , whenever the image resolution level n becomes relevant. We
will also use H and H� to denote the decomposition and reconstruction of Haar
framelets.

It is well known that large wavelet frame coefficients occur wherever there are
singularities. The order of the singularity can be observed by the order of vanishing
moments of the framelets whose corresponding coefficients are large. Recall that
the order of the vanishing moments of a function is the order of zeros of its Fourier
transform at the origin (see, e.g., [31, 44, 34]). When, for example, piecewise linear
framelets are used, different framelet has a different order of vanishing moment.
Therefore, the distributions of large wavelet frame coefficients indicates the distri-
butions of the singularities and their orders of the underlying functions. Since the
wavelet frame based approach essentially keeps large wavelet frame coefficients, it
preserves singularities, i.e. features such as edges, of the underlying solutions.

2.2.2. Wavelet Frame Based Image Restoration Models. As briefly discussed in Sec-
tion 1, the objective of image restoration is to find the unknown true image u ∈ I2
from an observed image (or measurements) f ∈ I2 defined by

(2.15) f = Au + η,

where A is some linear operator and η is the Gaussian noise. One can solve u from
(2.15) by considering the following least squares problem:

min
u

‖Au− f‖22.

This is, however, not a good idea in general. Taking the image deblurring problem
as an example, since the matrix A is ill-conditioned, the noise η possessed by f
will be amplified after solving the above least squares problem.

Therefore, in order to suppress the effect of noise and also preserve key fea-
tures of the image, e.g., edges, various regularization based optimization models
were proposed in the literature. In this section, we recall some basics of the
wavelet frame based approaches, which are all based on the fact that images,
especially natural images, can be regarded as piecewise smooth functions. It is
known that wavelet frames can usually provide good sparse approximations to
piecewise smooth functions (thus the small wavelet frame coefficients for such func-
tions can be ignored) due to their short supports and varied orders of vanishing
moments. This motivates the research on wavelet frame based image restoration
[35, 36, 37, 38, 39, 40, 41, 42, 43, 21].

Since wavelet frame systems are redundant systems, the mapping from the image
u to its coefficients is not one-to-one, i.e., the representation of u in the wavelet
frame domain is not unique. Therefore, there are mainly three formulations utilizing
the sparseness of the wavelet frame coefficients, namely analysis based approach,
synthesis based approach, and balanced approach. Although the analysis based,
synthesis based and balanced approaches are developed independently in the lit-
erature, the balanced approach can be viewed as a way to balance the analysis
and synthesis based approaches. Detailed and integrated descriptions of the three
approaches can be found in [34].

The wavelet frame based image processing started from [36, 37] for high-resolution
image reconstructions. By viewing the high-resolution image reconstruction as an
inpainting problem in the wavelet frame domain, an iterative algorithm by applying
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thresholding to wavelet frame coefficients at each iteration to preserve sharp edges
of images was proposed in [36, 37]. The algorithm works in the image domain and
frame domain alternatively. This simple algorithm converges as shown in [39] in
the wavelet frame domain to a solution of

(2.16) inf
α

1

2
‖AW�α− f‖22 +

1

2
‖(I −WW�)α‖22 + ν‖λ ·α‖1.

The recovered image is derived by u := W�α. The first term is a data fidelity
term. The last term is a weighted �1-norm of wavelet frame coefficients that reflects
the sparsity of the frame coefficients α. The second term penalizes the distance
of the wavelet frame coefficient to the range of the analysis operator, and there-
fore, it forces α to be close to the canonical coefficient. It is well known that the
weighted �1-norm of the canonical coefficient is related to some function norm of
the corresponding function u (see, e.g., [45]). Thus, the second and third terms
together balance the sparsity of the wavelet frame coefficient and the smoothness
of the underlying image. The formulation (2.16) is applied to various applications
in [38, 40, 35, 43]. In order to gain more flexibility, in [41, 42], we introduced a
weighting before the second term in (2.16):

(2.17) inf
α

1

2
‖AW�α− f‖22 +

γ

2
‖(I −WW�)α‖22 + ν‖λ ·α‖1.

This formulation is referred to as the balanced approach since it balances the spar-
sity of the wavelet frame coefficient and the smoothness of the image. When
γ = 0, the sparsity of the frame coefficient is penalized. This is called the syn-
thesis based approach, as the image is synthesized by the sparsest coefficient; see
[46, 47, 48, 49, 50]. When γ = +∞, the smoothness of the image and the sparsity
of canonical wavelet frame coefficients are penalized. It is called the analysis based
approach, as the coefficient is in the range of the analysis operator; see [21, 51, 52].
The three approaches become the same approach when W�W = WW� = I. In
this paper, we will focus on the analysis based approach because it provides a direct
link to the local geometry of u. Since the coefficients being sought are in the range
of the analysis operator, the analysis based approach [21] can be rewritten as

(2.18) inf
u
ν‖λ ·Wu‖1,p +

1

2
‖Au− f‖22,

with p = 1 or 2. Here, we extend the �1-norm in (2.17) to a generalized �1-norm
defined as

(2.19) ‖λ ·Wu‖1,p :=

∥∥∥∥∥∥∥
L−1∑
l=0

⎛⎝ (r,r)∑
i=(0,0)

λl,i|Wl,iu|p
⎞⎠

1
p

∥∥∥∥∥∥∥
1

where | · |p and (·) 1
p are entrywise operations and ‖ · ‖1 denotes the �1-norm of I2.

For l = 0, we simply denote λi := λ0,i and W0,i := Wi. We shall refer to the norm
‖ · ‖1,p as the �1,p-norm.

For p = 1, ‖ · ‖1,1 is the usual �1-norm used for frame and wavelet based image
restoration problems [35, 36, 37, 38, 39, 40, 41, 42, 43, 21, 46, 47, 48, 49, 50]. For
p = 2, the �1,2-norm can be understood as an isotropic �1-norm of the frame coeffi-
cients which uses an �2-norm to combine different frame bands at a given location
and decomposition level, while the �1,1-norm can be understood as an anisotropic
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�1-norm of the frame coefficients. By using the �1,2-norm, the model becomes un-
biased to horizontal and vertical directions. We further note that the isotropic
and anisotropic �1-norm of the wavelet frame coefficients resembles the definition
of isotropic TV

∫
Ω

√
|ux|2 + |uy|2dxdy and the definition of the anisotropic TV∫

Ω(|ux|+|uy|)dxdy. As a special case of the general results we shall establish in later
sections, when λ and W are properly chosen, the analysis based approach (2.18)
approximates the ROF model (2.1) with isotropic TV for p = 2, and anisotropic
TV for p = 1.

Model (2.18) preserves large wavelet frame coefficients of the underlying solu-
tion. It will generate a good solution if the underlying solution has a good sparse
representation under the wavelet frame transform W ; namely, a good approxima-
tion of the underlying solution is achieved by only keeping the large wavelet frame
coefficients. Since the large wavelet frame coefficients reflect the singularities of
the underlying solution such as edges, (2.19) preserves edges of the underlying so-
lution. The sparsity is also used in the total variation based method. That the
total variation based approach (2.1) can well preserve edges, especially for piece-
wise constant images, is simply because piecewise constant functions can be sparsely
approximated by the gradient transform.

When large coefficients of a particular framelet are kept, it means that the differ-
ence operator is applied to the underlying image at the location where singularity
occurs. Since different wavelet frame masks reflect different orders of difference op-
erators, the wavelet frame based approach applies difference operators adaptively
according to the singularities of the underlying solutions. Hence, it can well pre-
serve various types of edges simultaneously. This indicates why wavelet frame based
approaches can outperform (1.2) for some applications when the order of singulari-
ties of images varies in different regions. When spline wavelet frames are used, each
wavelet frame mask can be viewed as a standard difference operator that can be
understood as a discretization of the corresponding differential operator. Hence, if
using wavelet frame based approaches to approximate (1.2), one implicitly applies
differential operators adaptive to the singularities. In fact, the theory developed
here can be modified to apply to images that are piecewise smooth. Furthermore,
wavelet frame based approaches can automatically adapt to pieces with different
regularities easily in numerical implications.

We further note that for the analysis based approach (2.18), the inverse wavelet
frame transform W� is not used. Therefore, instead of using the wavelet frame
transform, one can replace it by any other linear transforms, e.g., a general frame
transform (not necessary a tight wavelet frame, or not even a wavelet frame). In
particular, when the split Bregman algorithm is applied to (2.1), it actually solves
(2.18) with W being some transform derived from whatever discretization scheme
one may choose. Since W can be extended to an onto mapping without changing
(2.18) by properly adjusting λ, the split Bregman based method solving (2.1) is
essentially a wavelet frame based method with the corresponding wavelet frame
depending on the choice of discretization.

As we will see in later sections, a special case of the analysis based approach
of the wavelet frame method (2.18), with only one level of decomposition, is used
to link the analysis based approach to various differential operator based approach
(1.2). Furthermore, it can also be viewed as one of the efficient ways to solve (1.2).
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It should be noted that the wavelet frame based approaches solve image restora-
tion problems in digital domain directly, and they give a wide variety of models,
(e.g., the synthesis based, analysis based and balanced approaches, and approaches
with multiple frame systems), as well as the associated efficient algorithms which
utilize the multilevel nature of wavelet frame transforms to achieve better sparse
approximation of the underlying solutions. The interested readers should consult,
for example, the survey articles [33, 34] for further details.

2.3. Motivation by an Example. As stated, we are aiming at establishing the
connections between the wavelet frame based approach and differential operator
based variational approaches. The connection is done by using the analysis based
approach (2.18) to approximate variational models when a proper λ is chosen. In
this section, we use the ROF denoising model, i.e.,

(2.20) min
u
E(u) := ν

∫
Ω

|∇u|dxdy + 1

2
‖u− f‖2L2(Ω)

as an example. Note that “min” is used here because the minimal value of E defined
above is attainable since E is coercive [3].

A complete analysis of more general cases is given in Section 3. The emphasis
here is to use a simple example to motivate us and ready ourselves for more compli-
cated ones. Some of the technical details may be left out and a complete analysis
will be given in Sections 3 and 4.

For simplicity, we start with a u ∈ L2(Ω) that is sufficiently smooth. Let u|
denote the restriction of u on the discrete mesh with meshsize h = 1/(N − 1), i.e.,

(u|)[i, j] = u(xi, yj), with (xi, yj) = (ih, jh) and 0 ≤ i, j ≤ N − 1.

For the data fidelity term, it is straightforward to use 1
2‖u| − f|‖22. Here the �2-

norm, as well as other norms involved, are scaled by taking the meshsize h into

account. In particular, we define ‖x‖pp := h2
∑N−1

i,j=0 |x[i, j]|p. It can be verified
that

(2.21)
1

2
‖u| − f|‖22 →

1

2
‖u− f‖2L2(Ω), as h→ 0.

For the regularization term, our motivation is that the filters of Haar framelets
are discrete difference operators, as shown in Example 2.4. We will illustrate our ob-

servations as follows. Since u is smooth enough,
∫
Ω |∇u|dxdy =

∫
Ω

√
u2x + u2ydxdy.

Then by Taylor’s expansion on u at (xi, yi), we have

2

h

(
a0,1[−·]� u|

)
[i, j] =

1

2h

(
u(xi, yj)− u(xi − h, yj)

)
+

1

2h

(
u(xi, yj − h)− u(xi − h, yj − h)

)
→ ux(xi, yj), as h→ 0.

Similarly, we can easily calculate that

2

h

(
a1,0[−·]� u|

)
[i, j] =

1

2h

(
u(xi, yj)− u(xi, yj − h)

)
+

1

2h

(
u(xi − h, yj)− u(xi − h, yj − h)

)
→ uy(xi, yj), as h→ 0.
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Therefore, we have that

νh2
∑
i,j

((
2

h

)2 (∣∣(a1,0[−·]� u|
)
[i, j]

∣∣2 + ∣∣(a0,1[−·]� u|
)
[i, j]

∣∣2))1/2

→ ν

∫
Ω

√
u2x + u2ydxdy,

(2.22)

as h→ 0. If we choose

(2.23) λ =

(
λ0,0 λ0,1
λ1,0 λ1,1

)
=

4ν2

h2

(
0 1
1 0

)
,

then the left hand side of (2.22) is exactly ‖λ ·Hu|‖1,2, i.e.,

(2.24) ‖λ ·Hu|‖1,2 → ν

∫
Ω

√
u2x + u2ydxdy, as h→ 0.

Combining (2.21) and (2.24) together, we get that, by choosing λ as in (2.23),

‖λ ·Hu|‖1,2 +
1

2
‖u| − f|‖22 → E(u), as h→ 0,

i.e., the objective functional of the analysis based approach converges to that of the
ROF denoising model.

The discretization of u by its restriction u| requires a strong assumption on the
smoothness of u, and it is used only for motivational purposes. When a wavelet
frame is used, the discretization of u is naturally given by the corresponding re-
finable function, and then the smoothness requirement for u is reduced. Precisely
speaking, we assume that u ∈W 1

1 (Ω) and we use

(2.25) Tnu = {2n〈u, φn,k〉 : k = (k1, k2), 0 ≤ k1, k2 ≤ N − 1}
to discretize u and f . Here we assume that N = 2n + 1 and h = 2−n, for some
n ≥ 0. Then, we use

(2.26) En(u) := ‖λ ·HTnu‖1,2 +
1

2
‖Tnu− Tnf‖22,

where λ is given by (2.23), to approximate the ROF denoising model E. Since Tnu
is some sampling of u, it is expected that

(2.27) En(u) → E(u), as n→ ∞.

Indeed, our main result in the next section confirms it. By applying Theorem 3.1
in Section 3.2, we have the following corollary.

Corollary 2.1. Assume that u ∈W 1
1 (Ω), and λ is in (2.23). Then (2.27) holds.

Furthermore, En Γ-converges to E. This further indicates the relations between
approximate minimizers, more precisely, the ε-optimal solutions, of (2.26) and those
of the ROF model (2.20), as given in the following corollary of Theorem 3.2. (The
definition of ε-optimal solution is given in (3.7).)

Corollary 2.2. Let E and En be energy functionals defined on the space W 1
1 (Ω),

and let λ be given by (2.23). Let u�n be an ε-optimal solution to En. Then we have

lim sup
n→∞

En(u
�
n) ≤ inf

u
E(u) + ε.

Furthermore, any cluster point of {u�n} is an ε-optimal solution of E.
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In Section 3, we will show that the above approaches work in a more general
setting; i.e., they work not only for the ROF model, but also for a wide variety
of regularizations; not only for the denoising problem, but also for the inpainting
and deblurring problems; not only for Haar framelets, but also for general B-spline
framelets that lead to a richer family of differential operator based variational meth-
ods; not only a specific choice of λ, but also a family of choices of λ.

3. Connections Between Models

This section is devoted to establishing a connection between the wavelet frame
based image restoration approach, especially the analysis based approach, and vari-
ational methods. A complete analysis will be given. The first part of this section
provides some preliminaries for our analysis; the second part gives the analysis of
the approximation by the objective functional of the wavelet frame based approach
to that of variational methods; finally, the relations among approximate minimizers
of different approaches are investigated. Some technical details and proofs are left
to Section 4.

3.1. Notation and Basics. In this subsection, we will introduce some basic no-
tation and concepts that will be used in the rest of this paper. We will also demon-
strate how to discretize functions defined on a square domain Ω ⊂ R2.

For convenience to be referred late, we introduce some symbols and notation
that will be used throughout the rest of the paper.

Notation 3.1. We focus our analysis on R2, i.e., the 2-dimensional cases. All the
2-dimensional refinable functions and framelets are constructed by tensor products
of univariate B-splines and the associated framelets obtained from the UEP (2.11).

(1) We assume all functions we consider are defined on the open unit square
Ω := (0, 1)2 ⊂ R2, and that their discrete versions, i.e. digital images, are
defined on an N ×N Cartesian grid on Ω̄ with N = 2n + 1 for n ≥ 0. We
denote by h = 2−n the meshsize of the N ×N grid.

(2) We use bold face letters i, j, and k to denote double indices in Z2. We
denote by O2 := {0, 1, . . . , N − 1}2 as the set of indices of the N × N
Cartesian grid.

(3) For 2-dimensional cases, φn,k (also φ̃n,k, ϕn,k, ϕ̃n,k, ψn,k, etc.) takes the
form φn,k = 2nφ(2n · −k). Given a wavelet frame system and its corre-
sponding refinable function φ, we denote M2 the set of indices k ∈ O2 such
that the support of φn,k, denoted as Λn,k, is completely supported in Ω.
Then obviously, M2 ⊂ O2. When needed, we will also use Λn,k to denote

the support of ϕn,k, and use Λ̃n,k to denote the support of φ̃n,k or ϕ̃n,k.
(4) In order to properly handle boundary conditions, we further restrict the

domain of the wavelet frame transform W to the set of discrete sequences

defined on the grid M2 ⊂ O2. We denote such a set of sequences as RM2

with M2 the cardinality of M2.
(5) For simplicity, we assume that the level of wavelet frame decomposition is

1, i.e. L = 1, while our analysis can be easily extended to the general cases
with L > 1. If L = 1, we have

Wu = {Wiu : 0 ≤ i1, i2 ≤ r}, Wiu := ai[−·]� u, with u ∈ R
M2

.
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(6) We denote K2 ⊂ M2 as the index set when the boundary condition of
ai[−·]� u is inactive for all i, or in other words, ai[−·] ∗ u is well defined
for all i, where “∗” is the standard discrete convolution operator. LetK2 be

the cardinality of K2. Then Wi : R
M2 �→ RK2

for each (0, 0) ≤ i ≤ (r, r).
Note that the index sets O2, M2 and K2 all depend on the image resolution
n.

(7) In order to link the continuous and discrete settings, we need to take reso-

lution into account. Therefore, for any array v ∈ RM2

, the discrete �p-norm
we are using is defined as

(3.1) ‖v‖pp :=
∑
i∈M2

|v[i]|p h2.

Then, we have

‖λ ·Wu‖1,p :=

∥∥∥∥∥∥∥
⎛⎝ (r,r)∑

i=(0,0)

λi|Wiu|p
⎞⎠

1
p

∥∥∥∥∥∥∥
1

= h2
∑
k∈K2

⎛⎝ (r,r)∑
i=(0,0)

λi[k]

∣∣∣∣(Wiu)[k]

∣∣∣∣p
⎞⎠

1
p

.

We use W r
p (Ω) to denote the Sobolev space in which the r-th weak derivative is

in Lp(Ω), and equipped with norm ‖f‖W r
p (Ω) :=

∑
|k|≤r ‖Dkf‖p, where Dk is the

standard multi-index notation of differential operators. Here v ∈ Lp(Ω) is said to
be a weak derivative of u ∈ Lp(Ω) if, for all functions w ∈ C∞

c (Ω), we have

〈v, w〉 = (−1)|k|〈u,Dkw〉,
where

〈v, w〉 :=
∫
Ω

vwdx.

For functions f, g ∈ L2(R
2), we denote their inner product as

〈f, g〉L2(R2) :=

∫
R2

fgdx.

For any given function u ∈ L2(Ω), we discretize it in the finite dimensional space

(3.2) Vn = span{φn,k : k ∈ M
2} ⊂ L2(Ω).

In particular, the discrete version of u ∈ L2(Ω) is defined by

(3.3) Tnu = {2n〈u, φn,k〉 : k ∈ M
2} ∈ R

M2

.

Throughout the rest of this paper, we assume that φ ∈ L2(R
2) is compactly sup-

ported in Ω. Then for u ∈ L2(Ω), the inner product 〈u, φn,k〉 =
∫
Ω uφn,kdx is

well-defined. Note that the factor 2n in the definition of Tn in (3.3) is needed to
cancel out the factor h2 in the definition of the �p-norm (3.1), so that we can have
‖Tnu‖22 =

∑
k∈M2 |〈u, φn,k〉|2, which is consistent with the notation used in the

literature of wavelets.
With the notation above, we can show the following lemma. The proof of {φn,k :

k ∈ M2} being a Riesz basis for Vn is straightforward and can be found in, e.g.,
[53]. We shall only present the proof of (2) which follows from Lemma 4.1.

Lemma 3.1. Let φ ∈ L2(Ω) be constructed by tensor product from a univariate
B-spline function and the corresponding operator Tn be defined by (3.3). Then
{φn,k : k ∈ M2} forms a Riesz basis for Vn with Riesz bounds independent of n. In
particular, there exists C independent of n such that:
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(1) For all u ∈ L2(Ω), we have

‖Tnu‖22 ≤ C‖u‖2L2(Ω).

In addition:

(2) For all u ∈ L2(Ω), we have

lim
n→∞ ‖Tnu‖22 = ‖u‖2L2(Ω).

Proof. We prove part (2). Notice that

‖Tnu‖22 = 〈
∑
k∈M2

〈u, φn,k〉φn,k, u〉.

By Lemma 4.1 with p = 2, we have

lim
n→∞ ‖

∑
k∈M2

〈u, φn,k〉φn,k − u‖L2(Ω) = 0.

Then we have

lim
n→∞ ‖Tnu‖22 = 〈 lim

n→∞

∑
k∈M2

〈u, φn,k〉φn,k, u〉 = ‖u‖2L2(Ω).

�

3.2. Connections of Two Models via Approximation. The major task of this
section is to establish the link of the analysis based approach (2.18) to various dif-
ferential operator based variational methods. Precisely speaking, we will show that
when one chooses various λ, the analysis based approach (2.18) can be understood
as certain discretizations of various types of differential operator based variational
methods, e.g., the variational approaches reviewed in the introduction. In general,
we shall focus on the following variational approach:

(3.4) inf
u∈W s

1 (Ω)
ν‖Du‖1,p +

1

2
‖Au− f‖2L2(Ω),

where D = (Di), s = maxi si ≥ 1 with si = |i|, and

‖Du‖1,p :=

∥∥∥∥∥∥
(∑

i

|Diu|p
) 1

p

∥∥∥∥∥∥
L1(Ω)

.

Here the differential operator Di with i = (i1, i2) is defined conventionally as

Di(u(x, y)) = ∂|i|u
∂xi1∂yi2

. To make the second term of (3.4) meaningful, we as-

sume that f ∈ L2(Ω) and A : L2(Ω) �→ L2(Ω) is a bounded linear operator.
Note from the Sobolev imbedding theorem (see, e.g., [54, Theorem 4.12]), we have
W s

1 (Ω) ⊂ L2(Ω). Therefore, the second term of (3.4) is well-defined.

3.2.1. Reformulation. We can write the analysis based approach at level n accord-
ing to (2.18) as

(3.5) inf
un∈RM2

‖λn ·Wnun‖1,p +
1

2
‖Anun − fn‖22.

Here we added the subscript n to emphasize the dependence of each variable and
operator on n. Note that Wn is defined in the exact same way as in (5) and (6)
of Notation 3.1, and the index n merely indicates that the domain and range of
Wn depend on n. Equation (3.5) is an optimization problem with respect to the
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discrete array un ∈ RM2

. As we have mentioned before, the discrete array un is
understood as a discretization of some function u ∈ L2(Ω) through operator Tn.
Then, by replacing un in (3.5) by Tnu, we can obtain a minimization at level n
with respect to function u. In addition, since we will prove connections between
the frame based approach (3.5) with the variational method (3.4), it is reasonable
to assume that the minimization is conducted for all u in the Sobolev spaceW s

1 (Ω).
Therefore, we shall consider the following optimization problem:

(3.6) inf
u∈W s

1 (Ω)
‖λn ·WnTnu‖1,p +

1

2
‖AnTnu− Tnf‖22.

In the following proposition we will show that the optimization problem (3.5) is
equivalent to (3.6).

For notational convenience, we denote the objective functional in (3.5) as

Fn(u) := ‖λn ·Wnun‖1,p +
1

2
‖Anun − fn‖22.

We denote the objective functional in (3.6) as

En(u) := ‖λn ·WnTnu‖1,p +
1

2
‖AnTnu− Tnf‖22.

In numerical computations, the task is to find an approximate minimizer, i.e.,
the one on which the value of the corresponding objective functional is close to its
infimum. We say that u� is an ε-optimal solution to a given objective functional E
if

(3.7) E(u�) ≤ inf
u
E(u) + ε, for some ε > 0.

We say that u� is a minimizer of E if E(u�) = infuE(u). It is clear that ε-optimal
solutions of E, En, and Fn always exist because each of them has an infimum. In
this paper, whenever we say that u� is an approximate minimizer of E we mean
that u� is an ε-optimal solution to E with some sufficiently small ε. In other words,
E(u�) is very close to inf E.

Proposition 3.1. Let the refinable function φ ∈ L2(Ω) be constructed by tensor
product from a univariate B-spline function, and the corresponding operator Tn

be defined by (2.25). Then Fn and En have the same infimum. Furthermore,
for any given minimizer (or ε-optimal solution) of u�

n of Fn, we can construct a
minimizer u�n (or ε-optimal solution) of En such that Tnu

�
n = u�

n. Conversely, for
any given minimizer u�n (or ε-optimal solution) of En, Tnu

�
n is a minimizer (or

ε-optimal solution) of Fn. In other words, (3.5) and (3.6) are equivalent for image
restoration.

Proof. We first note that for any given univariate B-spline function, we can con-
struct a compactly supported dual refinable function with any prescribed regularity
such that the shifts of the B-spline and its dual form a biorthogonal system (see,
e.g., [55]). This is still true in 2D for a φ that is constructed by tensor product from
a univariate B-spline function. In particular, for any given s ∈ Z+, there exists a
compactly supported refinable function φ̃ ∈ W s

1 (R
2), such that for any n ∈ Z and

i, j ∈ Z2,

(3.8) 〈φn,i, φ̃n,j〉L2(R2) =

{
1 when i = j;

0 otherwise.
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Let un ∈ RM2

be any given point. We construct a function un ∈ W s
1 (Ω) as

un := 2−n
∑

k∈M2 un[k]φ̃n,kχΩ. By the duality of φ and φ̃ given by (3.8), it is
easy to see that Tnun = un and En(un) = Fn(un). Thus, the infimum of En is
less than that of Fn. On the other hand, the infimum of Fn is less than that of
En. Indeed, let u�n be any given point. We can simply take un = Tnu, which is
well-defined since un ∈ W s

1 (Ω) ⊂ L2(Ω). This concludes that the infimum of Fn is
the same as that of En. The rest of the proposition follows directly from the above
arguments. �
Remark 3.1. For a given approximate minimizer u�

n of (3.5), the approximate

minimizer u�n of (3.6) is constructed from the dual refinable function φ̃. In general
u�n does not belong to Vn. However, when Vn ⊂W s

1 (Ω), then we can find the dual

basis φ̃n,k as a linear combination of {φn,k : k ∈ M2} such that φ̃n,k ∈ Vn, and
hence, u�n ∈ Vn. The condition Vn ⊂ W s

1 (Ω) will be satisfied whenever φ is a B-
spline of order s+1 or higher. For image processing, in order to preserve sharpness
of features, we usually prefer the order of smoothness of φ̃ to be as small as possible
in order not to smear out the edges, although to carry out the analysis here, we
need φ̃ ∈ W s

1 (Ω). In Section 3.3, we will focus on the relation between u�n and an
approximate minimizer u� of (3.4).

Since Proposition 3.1 clarifies the relations between approximate minimizers of
(3.5) and (3.6), throughout the rest of this paper, we will focus on the connections
of (3.6) with (3.4). Rewrite En as

En(u) = E(1)
n (u) + E(2)

n (u),

where

(3.9) E(1)
n (u) := ‖λn ·WnTnu‖1,p and E(2)

n (u) :=
1

2
‖AnTnu− Tnf‖22.

Denote the objective functional of (3.4) as

E(u) := ν‖Du‖1,p +
1

2
‖Au− f‖2L2(Ω).

We will also split E into

E(u) = E(1)(u) + E(2)(u),

where

E(1)(u) = ν‖Du‖1,p and E(2)(u) =
1

2
‖Au− f‖2L2(Ω).

For convenience, we shall take ν = 1 and then E(1)(u) = ‖Du‖1,p.
3.2.2. Assumptions. We shall impose some assumptions under which we can prove
that En converges to E. We will show that all assumptions given here are satisfied
in our choice of wavelet frame and discretization scheme. Hence, they are prop-
erties satisfied by our choice of wavelet frame and discretization scheme, rather
than imposed assumptions. However, when other wavelet frames and discretization
schemes are chosen, the proof given here still works, as long as these assumptions
are satisfied.

The first condition is consistency between the bounded operator A and its dis-
cretization An, i.e., the bounded linear operator A should be consistent with its
discretization An. More precisely, we assume that A and An satisfy the following
assumption.
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(A1) A : L2(Ω) → L2(Ω) is a continuous linear operator and its discretization
An satisfies

(3.10) lim
n→∞ ‖TnAu−AnTnu‖2 = 0, ∀u ∈ L2(Ω).

The above assumption says that the discretization Tn and the linear operator A
should commute asymptotically. It is clear that when the operator A is the identity
(e.g., for the image denoising), the obviously choice of An is also the identity. In
this case, the consistent assumption condition (A1) is satisfied automatically. In
Section 4.2, we will demonstrate how to properly discretize A such that Assumption
(A1) is indeed satisfied for image inpainting and image deblurring.

We also need to impose further assumptions on the tight wavelet frame systems
and the parameter λn. We shall focus our analysis on the case with L = 1, i.e.
only one level of decomposition, for simplicity. However, the proofs for multilevel

decomposition are similar. When L = 1, we can rewrite E
(1)
n (u) according to (7)

of Notation 3.1 as

E(1)
n (u) = ‖λn ·WnTnu‖1,p =

∥∥∥∥∥∥∥
⎛⎝ (r,r)∑

i=(0,0)

λi|Wiu|p
⎞⎠

1
p

∥∥∥∥∥∥∥
1

.

Let

B = {i : 0 ≤ i1, i2 ≤ r} \ {(0, 0)}
denote all the B-spline wavelet frame bands constructed from the tensor product of
the univariate B-spline of order r (see [2]). Without loss of generality, we assume
that the set of univariate B-spline framelets {ψi : 0 ≤ i ≤ r} is arranged according
to the ascend order of vanishing moment of ψi, i.e. the order of vanishing moment of
ψi = i (see Examples 2.1-2.3). Note that for each framelet ψi that is constructed by
the tensor product of univariate B-spline framelets, the only differential operatorDi

that can be associated with it should have the same tensor product structure. On
the other hand, for a given vector of differential operator D with order s, we choose
a B-spline wavelet frame system with the r given in (5) of Notation 3.1 satisfying
2r ≥ s. Such a choice always exists since we can construct a tight wavelet frame
system for a B-spline of any order using the UEP [2]. Denote the index sets I and
J as

I := {i : Di is in D} and J := B \ I.
Under these settings, we will consider u ∈ W s

1 (Ω) with s = maxi∈I si and si = |i|.
The set I corresponds to the active wavelet frame bands, on which we expect that

E
(1)
n (u) → E(1)(u) for each u. The set J corresponds to the inactive wavelet frame

bands, since for j ∈ J, Dj does not appear in D. Thus, we need the effect of the

terms in E
(1)
n that correspond to J to go to 0 as n → ∞. Consequently, proper

choices for λ at different bands are needed.
Now, we list the crucial assumptions of the set of framelets Ψ and the parameters

λ as follows:

(A2) For each i ∈ B, there exists an si-differentiable function ϕi with ci =∫
R2 ϕidx �= 0 such that Diϕi = ψi and ϕi has the same support as ψi.
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(A3) We choose λ0,0 = 0. For every i ∈ I, we set λi =
(

1
ci
2si(n−1)

)p
, where ci

is given by (A2). For every j ∈ J, we set 0 ≤ λj ≤ O
(
2sj′p(n−1)

)
for some

j′ ∈ B ∪ {0} such that 0 ≤ j′ < j and sj′ ≤ s.

Remark 3.2.

(1) The sets I and J form a partition of all the wavelet frame bands B. For
the indices j ∈ J, one can choose λj to be either zero or a nonzero value

bounded by O(2psj′ (n−1)). For both cases, one can show that (see the
proof of Lemma 3.3) the effect of λj |Wju|p will vanish when n→ ∞. This

means that for both cases, E
(1)
n (u) will be approximating the same E(1)(u),

which only depends on the choice of λi for i ∈ I. However, for different

choices of λj , j ∈ J, the term E
(1)
n (u) corresponds to a different type of

discretization of the same E(1)(u). Choosing a nonzero λj is to obtain
a better discretization for various purposes. Taking Haar framelets as an
example, if we use the following choice of λ,

(3.11) λ =
4ν2

h2

(
0 1
1 1

)
,

then in addition to the two terms we had in (2.22), we also have the term
a1,1[−·]�u|. Then using (3.11) we will have the following discretization of

|∇u|2:

|∇u|2 ≈ 1

4

[(
u[xi, yj ]− u[xxi − h, yj]

h

)2

+

(
u[xi, yj − h]− u[xi − h, yj − h]

h

)2

+

(
u[xi, yj]− u[xi, yj − h]

h

)2

+

(
u[xi − h, yj]− u[xi − h, yj − h]

h

)2 ]
+

1

2

[(
u[xi, yj]− u[xi − h, yj − h]√

2h

)2

+

(
u[xi − h, yj]− u[xi, yj − h]√

2h

)2 ]
,

(3.12)

which is better than the corresponding discretization using λ as in (2.23)
because it takes the rotation invariance of |∇u| into account (the last two
terms of (3.12) utilize the rotation invariance of |∇u| by 45 degrees).

(2) Note that the Assumption (A2) is indeed satisfied by our choice of wavelet
frame systems. Since we use the tensor-product B-spline framelets of [2], we
only need to consider the univariate case for a given set of framelets. When
the univariate framelet system generated by certain orders of the B-spline
is given, to obtain functions ϕ, one can simply apply the anti-derivative
s times to ψ, where s is the order of vanishing moments of ψ. It can be
checked easily that ϕ has the same support as ψ and

∫
R2 ϕdx �= 0. In

Section 4.3, we will provide details on the quantities defined above using
Haar and piecewise linear framelets as examples. The existence of ϕi is
guaranteed by the work [56]. In fact, a uniform form of such a function ϕi

for an arbitrary B-spline framelet is given by [56].
(3) When multi-level framelet decomposition is used, i.e. L > 1, we can follow

the same proof as the case L = 1 to obtain an approximation of the differen-
tial operators in the bands i ∈ I and the effects of the bands j ∈ J vanishing
as n → ∞ for multiple levels. However, the wavelet frame transform by
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multiple levels may get a better approximation to differential operators.
Since this paper is to emphasize on the connection between two approaches
of (3.4) and (3.5) for image restorations instead of using approach (3.5) to
find high order approximation to the variational method (3.4), we will only
focus on the case L = 1.

3.2.3. Pointwise Convergence. We show that the objective functional En converges
pointwise to E in this section. To be precise, we prove the following theorem which
is one of the two main results of this paper.

Theorem 3.1 (Pointwise Convergence). Assume that Assumptions (A1)–(A3) are
satisfied. Then, for any u ∈W s

1 (Ω), we have

(3.13) lim
n→∞En(u) = E(u).

Notice that here we imposed the smoothness of u, i.e., u ∈ W s
1 (Ω), where s is the

maximum order of the differential operators involved in E(1)(u). This smoothness
assumption is quite natural, as approximate minimizers of E have to be in W s

1 (Ω)
due to the term ‖Du‖1,p. To prove the theorem, we need Lemmas 3.2 and 3.3

where we will show that limn→∞ E
(1)
n (u) = E(1)(u) and limn→∞E

(2)
n (u) = E(2)(u)

respectively. Then Theorem 3.1 is obtained straightforwardly.
We now prove Lemma 3.2 under Assumption (A1) as follows.

Lemma 3.2. Assume that Assumption (A1) is satisfied. Then for every u ∈
W s

1 (Ω), we have limn→+∞E
(2)
n (u) = E(2)(u), i.e.,

lim
n→∞

1

2
‖AnTnu− Tnf‖22 =

1

2
‖Au− f‖2L2(Ω).

Proof. Note from the Sobolev Imbedding theorem, we have u ∈ L2(Ω). Then

‖Tn(Au − f)‖2 − ‖(AnTn − TnA)u‖2 ≤ ‖AnTnu− Tnf‖2
≤‖Tn(Au − f)‖2 + ‖(AnTn − TnA)u‖2.

By letting n→ +∞ and assumption (A1), we get

lim
n→∞ ‖AnTnu− Tnf‖22 = lim

n→∞ ‖Tn(Au− f)‖22.(3.14)

By item (2) of Lemma 3.1, we have

lim
n→∞ ‖Tn(Au− f)‖22 = ‖Au− f‖2L2(Ω).

Therefore, limn→∞ ‖AnTnu− Tnf‖22 = ‖Au− f‖2L2(Ω). �

Lemma 3.3, which states that limn→+∞ E
(1)
n (u) = E(1)(u), will be true under

Assumptions (A2) and (A3). The proof of it is left to Section 4.4.

Lemma 3.3. Assume that Assumptions (A2) and (A3) are satisfied. Then, for
any u ∈ W s

1 (Ω), we have

(3.15) lim
n→+∞ ‖λn ·WnTnu‖1,p = ‖Du‖1,p.
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3.3. Connections of Two Models via Γ-Convergence. The analysis in the
previous section, especially the pointwise convergence of En to E, indicates that
the analysis based approach (3.5) with various choices of parameters λ and wavelet
frame systems can be used to approximate to and be regarded as different types
of discretizations of various variational methods. Since numerical solutions of our
image restoration problems are approximate minimizers to the objective functionals
En and E, it is more important to discover the relations of En and E as optimization
problems. For example, we want to know whether the infimum value of E can be
approximated and bounded by the infimum value of En from below. However, such
relations need more than pointwise convergence of En to E, and we need the Γ-
convergence. In fact, we shall prove a convergence result that is stronger than the
Γ-convergence.

To state the second main theorem of this paper, we first present a proposition
indicating that for each fixed u, En is continuous uniformly in n. The proof is
postponed to Section 4.5.

Proposition 3.2. Suppose that Assumptions (A1)–(A3) are satisfied. Given an
arbitrary u ∈W s

1 (Ω), for any ε > 0, there exist an integer N and δ > 0 independent
of n such that for all v ∈ W s

1 (Ω) satisfying ‖u− v‖W s
1 (Ω) < δ and n > N , we have

|En(v)− En(u)| < ε.

Now, we present the second main result of this paper. The first main result of
this paper is Theorem 3.1. For this, we give the definition of Γ-convergence.

Definition 3.1. Given En(u) : W
s
1 (Ω) �→ R̄ and E(u) : W s

1 (Ω) �→ R̄, we say that
En Γ-converges to E if:

(i) for every sequence un → u in W s
1 (Ω), E(u) ≤ lim infn→∞ En(un);

(ii) for every u ∈ W s
1 (Ω), there is a sequence un → u in W s

1 (Ω), such that
E(u) ≥ lim supn→∞ En(un).

Theorem 3.2. Suppose that Assumptions (A1)–(A3) are satisfied. Then, for every
sequence un → u in W s

1 (Ω), we have limn→+∞En(un) = E(u). Consequently, En

Γ-converges to E in W s
1 (Ω).

Proof. By Theorem 3.1 and Proposition 3.2, we have that, for an arbitrary given
u ∈ W s

1 (Ω), and ε > 0,

(a) limn→+∞ |En(u)− E(u)| = 0;
(b) there exist an integer N and δ > 0 satisfying |En(v)−En(u)| < ε whenever

‖u− v‖W s
1 (Ω) < δ and n > N .

Note that for arbitrary un ∈W s
1 (Ω), we have

|En(un)− E(u)| ≤ |En(u)− E(u)|+ |En(u)− En(un)|.
Let the sequence un → u in W s

1 (Ω), and let ε > 0 be a given arbitrary number.
On the one hand, by (a), there exists an N1 such that |En(u) − E(u)| < ε/2
whenever n > N1. On the other hand, by (b), there exist N and δ such that
|En(v)−En(u)| < ε/2 whenever ‖u− v‖W s

1 (Ω) < δ and n > N ; since un → u, there

exists N2 such that ‖u − un‖W s
1 (Ω) < δ whenever n > N2; letting v = un leads to

|En(un) − En(u)| < ε/2 whenever n > max{N ,N2}. Combining all together, we
have

|En(un)− E(u)| ≤ ε
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whenever n > max{N ,N1,N2}. This shows that limn→+∞En(un) = E(u), and
hence both conditions given in Definition 3.1 are satisfied. Therefore, En is Γ-
convergent to E. �

In both the variational and wavelet frame based approaches (i.e. (1.2) and (1.5))
for image restorations, the key is to find a sparse approximate solution of the linear
inverse problem in some transform domain, for example the gradient domain for the
TV model and the wavelet frame domain for wavelet frame based models, since all
models (explicitly or implicitly) assume that the underlying solutions have a good
sparse approximate solution in the transform domains. The main idea to compute
an accurate sparse numerical solution is to threshold each numerical approximate
solution in the transform domain to make it sparse, and then update the residues
and iterate the process. Most successful algorithms follow such a procedure. At
the same time, in most of those algorithms, the value of the objective functional
converges to its infimum as the iteration proceeds. The small value of the objective
functional at the approximate solutions reflects that these solutions are closed to the
sparse solution of the original equation to some extent depending on the transform
and the blurring operator. The main task for both the variational and wavelet frame
based approaches is to find sparse approximate solutions in transform domains
which are usually those approximate solutions with small values of the underlying
objective functionals. The minimizers for either variational or wavelet frame based
models are not the focus here, although they may or may not exist. Even when
they do exist, they are commonly not unique, and it is usually difficult and, in fact,
unnecessary to find them numerically. Since the objective functionals for both the
variational and wavelet frame based models are convex, there is the infimum for
each given model. Therefore, instead of minimizers, we commonly seek approximate
minimizers, more precisely, ε-optimal solutions. Recall that u� is an ε-optimal
solution to E if

E(u�) ≤ inf
u
E(u) + ε, for some ε > 0.

Since En pointwise converges to E by Theorem 3.1, it is natural to use En

approximating E. Since we are interested in ε-optimal solutions to E, it is natural
to ask whether it is bounded below in some way by ε-optimal solutions to En

or even can be approximated by them for some cases. These all follow from the
Γ-convergence of En to E as shown in the following lemma:

Corollary 3.1. Suppose that Assumptions (A1)–(A3) are satisfied. Let u�n be an
ε-optimal solution of En for a given ε > 0 and for all n.

(1) We have

(3.16) lim sup
n→∞

En(u
�
n) ≤ inf

u
E(u) + ε.

In particular, when u�n is a minimizer of En, we have

lim sup
n→∞

En(u
�
n) ≤ inf

u
E(u).

(2) If, in addition, the set {u�n} has a cluster point u�, then u� is an ε-optimal
solution to E. In particular, when u�n is a minimizer of En and u� a cluster
point of the set {u�n}, then

E(u�) = lim sup
n→∞

(En(u
�
n)) = inf

u
E(u)

and u� is a minimizer of E.
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Proof. Part (1): For any u ∈ W s
1 (Ω), let {un} be the sequence as given in item (ii)

of the definition of Γ-convergence. Then, we have

E(u) ≥ lim sup
n→∞

En(un) ≥ lim sup
n→∞

(
inf
u
En(u)

)
≥ lim sup

n→∞
En(u

�
n)− ε,

which implies (3.16).
Part (2): If u� is a cluster point of {u�n}, let {u�nk

} be a subsequence of {u�n}
such that u�nk

→ u� as k → ∞. Then by item (i) of the definition of Γ-convergence,
we have

E(u�) ≤ lim inf
k→∞

Enk
(u�nk

) ≤ lim sup
k→∞

Enk
(u�nk

) ≤ lim sup
n→∞

En(u
�
n) ≤ inf

u
E(u) + ε,

where the last inequality follows from (3.16). This shows that u� is an ε-optimal
solution to E. �

While it is tricky to construct, or compute numerically, a sequence of ε-optimal
solutions, so that it has at least one cluster point, it should be pointed out that
the emphasis here is to establish relations between (1.2) and (1.5) (through the
connections between (3.4) and (3.6)) at a conceptional level. Such a connection not
only provides a better understanding of the variational model (1.2) and the wavelet
frame based approach (1.5), but also brings opportunities for new applications. It
gives geometric explanations of the wavelet frame based approach by viewing it
as a discrete form of the variational model (1.2). It also provides the legitimacy
of solving (1.2) via solving the corresponding discrete optimization problem (3.6).
Although the wavelet frame based approach (1.5) can be used to approximate the
variational model (1.2), finding a good approximation of (1.2) through solving (1.5)
is not a focus here. For image restorations, the wavelet frame based model has
been proven to be a very efficient method, and for many cases it is even better than
variational models. Hence, it is sufficient to adopt the wide range of wavelet frame
based approaches in many applications. Furthermore, when a solution in function
form is needed, one can obtain it easily as suggested in Remark 3.1. The choice of
the dual function φ̃ depends on the balance between the preservation of edges and
approximation orders.

4. Technical Details

In this section, we present the technical details that are temporarily avoided in
Section 3. More precisely, we will first discuss the discretization of the operator A
and the differential operator D. Then the proofs of Lemma 3.3 and Proposition
3.2 will be provided. We now start this section with a preliminary lemma from
approximation theory.

4.1. A Lemma in Approximation Theory. We present a lemma in approxima-
tion theory in this section. The lemma will be used later in the discretization and
the proofs.

Lemma 4.1. Let ϕ and ϕ̃ be two compactly supported bounded functions satisfying∫
R2 ϕdx = 1 and

∫
R2 ϕ̃dx = 1. In addition, we assume that ϕ satisfies the partition

of unity, i.e.
∑

j∈Z2 ϕ(· + j) = 1. Let M2 (resp. M̃2) be the index set for k such

that ϕn,k (resp. ϕ̃n,k) is completely supported in Ω. In addition, we assume that



28 JIAN-FENG CAI, BIN DONG, STANLEY OSHER, AND ZUOWEI SHEN

the support of ϕ is contained within the support of ϕ̃. Then, for any u ∈ Lp(Ω),
for 1 ≤ p ≤ ∞, we have

(4.1) lim
n→∞

∥∥∥∥∥u−
∑
k∈M2

〈u, ϕ̃n,k〉ϕn,k

∥∥∥∥∥
Lp(Ω)

= 0.

Proof. We first establish (4.1) for all u ∈ C1
c (Ω), the space of compactly supported

and continuously differentiable functions. We note that since ϕ and ϕ̃ are bounded
and have compact supports, hence they both belong to Lp(R

2) for 1 ≤ p ≤ ∞.
Let ue be an extension of u ∈ Lp(Ω) to Lp(R

2) such that ue = u on Ω and ue = 0

elsewhere. Since we have (ϕ̂̂̃ϕ)(0) = 1 and ϕ satisfies the partition of unity, then it
was shown by [57, Theorem 3.2] that, for any v ∈ Lp(R

2),

(4.2) lim
n→∞

∥∥∥∥∥v − ∑
k∈Z2

〈v, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥
Lp(R2)

= 0.

Denote by Λ̃n,k the support of ϕ̃n,k and by L(·) the Lebesgue measure. Note that

Λ̃n,k = 2−n(Λ̃0,0 + k). Define the index set In ⊂ Z2 as

In := {k ∈ Z
2 : L(Λ̃n,k ∩ Ω) > 0}\M̃2.

Similarly, define the index set Ĩn ⊂ Z2 as

Ĩn := {k ∈ Z
2 : L(Λ̃n,k ∩ Ω) > 0}\M2.

By the assumption that the support of ϕ is contained in the support of ϕ̃, we
have M̃2 ⊂ M2, and hence Ĩn ⊂ In. Then, noting that 〈ue, ϕ̃n,k〉L2(R2) = 0 for

k ∈ Z2\(M2 ∪ Ĩn), we have∥∥∥∥∥ue − ∑
k∈Z2

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥
Lp(R2)

=

∥∥∥∥∥∥ue −
⎛⎝∑

k∈M2

〈ue, ϕ̃n,k〉L2(R2)ϕn,k +
∑
k∈Ĩn

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

⎞⎠∥∥∥∥∥∥
Lp(R2)

≥
∥∥∥∥∥ue − ∑

k∈M2

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥
Lp(R2)

−

∥∥∥∥∥∥
∑
k∈Ĩn

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥∥
Lp(R2)

=

∥∥∥∥∥u−
∑
k∈M2

〈u, ϕ̃n,k〉ϕn,k

∥∥∥∥∥
Lp(Ω)

−

∥∥∥∥∥∥
∑
k∈Ĩn

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥∥
Lp(R2)

.

Therefore, substituting v = ue in (4.2), it suffices to show that

(4.3)

∥∥∥∥∥∥
∑
k∈Ĩn

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥∥
Lp(R2)

→ 0, as n→ ∞.
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Let Sn = ∪k∈In Λ̃n,k. Since |In| ≤ C2n where C depends only on Λ0,0, we have

L(Sn) ≤ C12
−n. Since ue is bounded and Ĩn ⊂ In, we have

∥∥∥∥∥∥
∑
k∈Ĩn

〈ue, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥∥
Lp(R2)

≤

∥∥∥∥∥∥
∑
k∈Ĩn

∣∣〈ue, ϕ̃n,k〉L2(R2)

∣∣ |ϕn,k|

∥∥∥∥∥∥
Lp(R2)

≤
∥∥∥∥∥∑
k∈In

∣∣〈ue, ϕ̃n,k〉L2(R2)

∣∣ |ϕn,k|
∥∥∥∥∥
Lp(R2)

≤ ‖u‖L∞(R2)

∥∥∥∥∥∑
k∈In

‖ϕ̃n,k‖L1(R2)|ϕn,k|
∥∥∥∥∥
Lp(R2)

.

Notice that

‖ϕ̃n,k‖L1(R2) =

∫
R2

2n |ϕ̃(2nx− k)| dx = 2−n‖ϕ̃‖L1(R2).

Thus

‖u‖L∞(R2)

∥∥∥∥∥∑
k∈In

‖ϕ̃n,k‖L1(R2)|ϕn,k|
∥∥∥∥∥
Lp(R2)

= 2−n‖u‖L∞(R2)‖ϕ̃‖L1(R2)

∥∥∥∥∥∑
k∈In

|ϕn,k|
∥∥∥∥∥
Lp(R2)

= 2−n‖u‖L∞(R2)‖ϕ̃‖L1(R2)

∥∥∥∥∥∑
k∈In

|ϕn,k|χΛ̃n,k

∥∥∥∥∥
Lp(R2)

≤ 2−n‖u‖L∞(R2)‖ϕ̃‖L1(R2)

∥∥∥∥∥2n‖ϕ‖L∞(R2)

∑
k∈In

χΛ̃n,k

∥∥∥∥∥
Lp(R2)

= ‖u‖L∞(R2)‖ϕ‖L∞(R2)‖ϕ̃‖L1(R2)

∥∥∥∥∥∑
k∈In

χΛ̃n,k

∥∥∥∥∥
Lp(R2)

.

Observe that
∑

k∈In
χΛ̃n,k

≤ CχSn with C only depending on Λ̃0,0. We then have

∥∥∥∥∥∑
k∈In

χΛ̃n,k

∥∥∥∥∥
Lp(R2)

≤ C ‖χSn‖Lp(R2) → 0,

as n→ ∞. We have now established (4.3) and hence (4.1) follows for all u ∈ C1
c (Ω).

We now extend the result to the entire Lp(Ω). Note from [58, Theorems 2.1 and
3.1] that the linear operator

∑
k∈Z2〈v, ϕ̃0,k〉ϕ0,k is bounded on Lp(R

2) since ϕ and
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ϕ̃ are compactly supported and bounded. For v ∈ Lp(R
2), we have that∥∥∥∥∥∑

k∈Z2

〈v, ϕ̃n,k〉ϕn,k

∥∥∥∥∥
Lp(R2)

=

∥∥∥∥∥∑
k∈Z2

〈v, 2nϕ̃(2n · −k)〉2nϕ(2n · −k)

∥∥∥∥∥
Lp(R2)

=

∥∥∥∥∥∑
k∈Z2

〈v(2−n·), ϕ̃0,k〉ϕ(2n · −k)

∥∥∥∥∥
Lp(R2)

= 2−2n/p

∥∥∥∥∥∑
k∈Z2

〈v(2−n·), ϕ̃0,k〉ϕ0,k

∥∥∥∥∥
Lp(R2)

,

and ‖v(2−n·)‖Lp(R2) = 22n/p‖v‖Lp(R2). Therefore, for all v ∈ Lp(R
2), we have∥∥∑

k∈Z2〈v, ϕ̃n,k〉ϕn,k

∥∥
Lp(R2)

‖v‖Lp(R2)
=

∥∥∑
k∈Z2〈v(2−n·), ϕ̃0,k〉ϕ0,k

∥∥
Lp(R2)

‖v(2−n·)‖Lp(R2)
≤ C.

This shows that
∑

k∈Z2〈v, ϕ̃n,k〉ϕn,k is bounded on Lp(R
2) with the bound inde-

pendent of n.
Now, for v ∈ Lp(R

2), we have∥∥∥∥∥ ∑
k∈M2

〈v, ϕ̃n,k〉L2(R2)ϕn,k

∥∥∥∥∥
Lp(R2)

≤
∥∥∥∥∥ ∑
k∈M2

〈|v|, |ϕ̃n,k|〉L2(R2)|ϕn,k|
∥∥∥∥∥
Lp(R2)

≤
∥∥∥∥∥∑
k∈Z2

〈|v|, |ϕ̃n,k|〉L2(R2)|ϕn,k|
∥∥∥∥∥
Lp(R2)

≤ C‖v‖Lp(R2).

Then by letting v = ue, we can see that the operator
∑

k∈M2〈u, ϕ̃n,k〉ϕn,k is

bounded on Lp(Ω) with bound independent of n. Since C1
c (Ω) is dense in Lp(Ω),

the rest of the proof follows from the standard density arguments. �

Remark 4.1. We forgo optimizing the assumptions in this lemma, since the present
form of this lemma is sufficient for proving our main results. For example, the as-
sumption that the support of ϕ̃ contains that of ϕ can be easily removed. Although
we have used the relation Ĩn ⊂ In in the proof, without such an assumption, the
cardinality of Ĩn is still of order 2n with the underlying constant depending only
on the supports of ϕ̃ and ϕ.

4.2. Discretization of Linear Operator A. We assume that A is a bounded
linear operator that maps L2(Ω) into L2(Ω). In this subsection, we demonstrate
how to discretize A to get a matrix An. As stated in Section 3.2.2, we require that
A and An satisfy Assumption (A1); i.e., the discretization An should be consistent
with A asymptotically. Obviously, not all discretizations of A would satisfy the
assumption (A1). In this subsection, we demonstrate how to properly discretize A
such that Assumption (A1) is indeed satisfied. We shall focus on image denoising,
image inpainting, and image deblurring problems.

Image denoising. In this case, A is the identity operator and we choose An to be
the identity matrix. Then Assumption (A1) is obviously true.
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Image inpainting. In this case, Au = χΛu, where Λ ⊂ Ω is the closed domain on
which the image is known. We assume that Λ contains finitely many disconnected
components whose boundaries are piecewise C2 with finite lengths. We define An

to be the M2 ×M2 diagonal matrix with diagonal entries

An[k,k] =

{
1 if L(Λn,k ∩ Λ) > 0,

0 otherwise,
∀k ∈ M

2,

where Λn,k denotes the support of φn,k. We now verify the consistency condition
(3.10).

Define

Sn = ∪{k:An[k,k]=1,k∈M2}Λn,k and In := {k : An[k,k] = 1} \ {k : Λn,k ⊂ Λ}.

Then, for any given u ∈ L2(Ω),

‖AnTnu− TnAu‖22 = ‖AnTnu− TnχΛu‖22 =
∑
k∈In

|〈u− χΛu, φn,k〉|2

=
∑
k∈In

|〈(χSn − χΛ)u, φn,k〉|2 ≤ ‖Tn(χSn − χΛ)u‖22

≤ C1‖(χSn − χΛ)u‖22 = C1

∫
Sn\Λ

|u|2dx.

The last “≤” sign above follows from item (1) of Lemma 3.1. Here, we also used the
fact that Λ ⊂ Sn for all n large enough, which is indeed true because Λ is closed
and is strictly contained in Ω, an open domain. Following a similar argument as in
the proof of Lemma 4.1, we can show that

(4.4) lim
n→∞L(Sn \ Λ) = 0,

where L(·) is the Lebesgue measure. Then

lim
n→∞ ‖AnTnu− TnAu‖22 ≤ C1 lim

n→∞

∫
Sn\Λ

|u|2dx = 0,

which verifies the consistency condition (3.10).

Image deblurring. In this case, Au = a ∗ u, where ∗ is the convolution and
a ∈ L∞(R2) ∩ L2(R

2) is some compactly supported kernel function. We define
a ∗ u ∈ L2(Ω) as

(a ∗ u)(x) = 〈a(x− ·), u〉, x ∈ Ω.

We choose An to be the matrix whose (i, j)-entry is

An[i, j] = 2−n〈a(−·), φn,j−i〉L2(R2), ∀i, j ∈ M
2.

Here φ is the corresponding refinable function (B-spline) for the given tight wavelet
frame system and is assumed to be bounded, compactly supported and satisfy the
partition of unity. Now we check Assumption (A1). For φn,k supported on Ω, we
have

TnAu[k] = 2n〈a ∗ u, φn,k〉 = 〈u, 2na(−·) ∗ φn,k〉
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and

AnTnu[k] = 2n
∑
j∈M2

An[k, j]〈u, φn,j〉 =
∑
j∈M2

〈a(−·), φn,j−k〉L2(R2)〈u, φn,j〉

= 〈u,
∑
j∈M2

〈a(−·), φn,j−k〉L2(R2)φn,j〉.

Therefore,

|TnAu[k]−AnTnu[k]| =
∣∣∣〈u, 2na(−·) ∗ φn,k〉 − 〈u,

∑
j∈M2

〈a(−·), φn,j−k〉L2(R2)φn,j〉
∣∣∣

=
∣∣∣〈u, 2na(−·) ∗ φn,k − a(− ·+k/2n)〉

− 〈u,
∑
j∈M2

〈a(−·), φn,j−k〉L2(R2)φn,j〉 − a(− ·+k/2n)〉
∣∣∣

≤‖u‖L2(Ω)

(
‖2na(−·) ∗ φn,k − a(− ·+k/2n)‖L2(Ω)

+ ‖
∑
j∈M2

〈a(−·), φn,j−k〉L2(R2)φn,j − a(− ·+k/2n)‖L2(Ω)

)
.

(4.5)

To estimate the first summand of (4.5), denote by “∗̄” the convolution on the entire
R2. We have

‖2na(−·) ∗ φn,k − a(− ·+k/2n)‖L2(Ω) ≤ ‖2na(−·)∗̄φn,k − a(− ·+k/2n)‖L2(R2)

= ‖a(−·)∗̄(2nφn,0)− a(−·)‖L2(R2).

(4.6)

To estimate the second summand of (4.5), let Λn,k be the support of φn,k and
define

In := {k ∈ Z
2 : L(Λn,k ∩ Ω) > 0}\M2.

Let Sn = ∪k∈InΛn,k. A similar argument of Lemma 4.1 leads to

(4.7) lim
n→∞ ‖χSn‖L2(Ω) = 0.
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Then,

‖
∑
j∈M2

〈a(−·), φn,j−k〉L2(R2)φn,j − a(− ·+k/2n)‖L2(Ω)

≤‖
∑
j∈Z2

〈a(−·), φn,j−k〉L2(R2)φn,j − a(− ·+k/2n)‖L2(Ω)

+ ‖
∑

j∈Z2\M2

〈a(−·), φn,j−k〉L2(R2)φn,j‖L2(Ω)

≤‖
∑
j∈Z2

〈a(−·), φn,j−k〉L2(R2)φn,j − a(− ·+k/2n)‖L2(R2)

+ ‖
∑
j∈In

〈a(−·), φn,j−k〉L2(R2)φn,j‖L2(Ω)

=‖
∑
j∈Z2

〈a(−·), φn,j−k〉L2(R2)φn,j−k − a(−·)‖L2(R2)

+ ‖
∑
j∈In

〈a(− ·+k/2n), φn,j〉L2(R2)φn,j‖L2(Ω)

=‖
∑
j∈Z2

〈a(−·), φn,j〉L2(R2)φn,j − a(−·)‖L2(R2)

+ ‖
∑
j∈In

〈a(− ·+k/2n), φn,j〉L2(R2)φn,j‖L2(Ω).

(4.8)

Since φ is a bounded compactly supported function satisfying the partition of unity,
following a similar proof as in Lemma 4.1, we have

‖
∑
j∈In

〈a(− ·+k/2n),φn,j〉L2(R2)φn,j‖L2(Ω) ≤ ‖
∑
j∈In

∣∣〈a(− ·+k/2n), φn,j〉L2(R2)

∣∣ |φn,j | ‖L2(Ω)

≤ 2−n‖a‖L∞(R2)‖φ‖L1(R2)‖
∑
j∈In

|φn,j | ‖L2(Ω)

= 2−n‖a‖L∞(R2)‖φ‖L1(R2)‖
∑
j∈In

|φn,j |χΛn,j
‖L2(Ω)

≤ C‖a‖L∞(R2)‖φ‖L1(R2)‖φ‖L∞(R2)‖χSn‖L2(Ω).

(4.9)

Therefore, by (4.5), (4.6), (4.8), and (4.9), we obtain

‖TnAu−AnTnu‖22
≤‖u‖2L2(Ω)

{
‖a(−·)∗̄(2nφn,0)− a(−·)‖L2(R2)

+ ‖
∑
j∈Z2

〈a(−·), φn,j〉L2(R2)φn,j − a(−·)‖L2(R2)

+ C‖a‖L∞(R2)‖φ‖L1(R2)‖φ‖L∞(R2)‖χSn‖L2(Ω)

}2

.

(4.10)

Since φ is compactly supported and
∫
R2 φdx = 1, the function 2nφn,0 approximates

the delta function. From the standard results in approximation of the identity (see,
e.g., [59]), we have

(4.11) lim
n→∞ ‖a(−·)∗̄(2nφn,0)− a(−·)‖L2(R2) = 0.
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This, together with (4.2) and (4.7), implies that the right-hand side of (4.10) tends
to 0 as n→ ∞, i.e., (3.10) is verified.

4.3. Discretization of Differential Operator D. We imposed Assumptions
(A2) and (A3) in Section 3.2.2 for the discretization of the differential operators.
In this section, we verify that all B-spline tight frame systems constructed by [2]
do satisfy these assumptions.

Since we will regard the digital image u as the discretization of some function
u through Tn, i.e. u = Tnu, the corresponding tight quasi-affine frame systems
we shall use are Xn(Ψ). We recall the definition of a quasi-affine system (given by
(2.8)) for 2D. Given Ψ ⊂ L2(R

2), the quasi-affine system XJ(Ψ) is defined by

(4.12) XJ(Ψ) = {ψ�,j,k : 1 ≤ � ≤ r; j ∈ Z,k ∈ Z
2},

where ψ�,j,k is defined by

(4.13) ψ�,j,k :=

{
2jψ�(2

j · −k), j ≥ J ;
22j−Jψ�(2

j · −2j−Jk), j < J.

Note from (4.13) that, under the quasi-affine system Xn(Ψ), we will have

ψ�,n,k = 2nψ�(2
n · −k) and ψ�,n−1,k = 2n−2ψ�(2

n−1 · −k/2).

Since our analysis only focuses on one level of the wavelet frame decomposition, we
will be repeatedly using the above two formulas for the dilation levels n and n− 1.

As we have seen in Section 2.3, our starting point is the fact that the filters in the
B-spline framelets are proportional to finite difference operators. More precisely,
let {ai} denote the collection of filters used in the B-spline tight wavelet frame
systems. Then each ai is proportional to some discrete finite difference operator.
Since Tnu is a discretization of u ∈ L2(Ω), we use the filter ai to pass through Tnu
to approximate a discretization of Diu. In particular, we use

λiai[−·] ∗ Tnu

as a discretization of Diu. Here ∗ is the discrete convolution operator. Since Ω is
an open domain, we do not use any boundary extension. When the convolution
needs to use data out of the boundary, we simply neglect it and the convolution is
not defined. Let S be the support of the filters ai and recall that K2 ⊂ M2, the
index set where ai[−·] ∗Tnu is defined for all i (see (6) of Notation 3.1). Then, we
have, for any k ∈ K2,

λi (ai[−·] ∗ Tnu) [k] = λi
∑

j∈S+k

ai[j − k](Tnu)[j] = 2nλi
∑

j∈S+k

ai[j − k]〈u, φn,j〉

= 2nλi〈u,
∑

j∈S+k

ai[j − k]φn,j〉 = 2nλi〈u, ψi,n−1,k〉.

According to the definition of the weak derivative and noticing

Diϕi,n−1,k = 2si(n−1)ψi,n−1,k,

we get

λi |(ai[−·] ∗ Tnu) [k]|p = 2npλi |〈u, ψi,n−1,k〉|p = 2sip(1−n)2npλi |〈Diu, ϕi,n−1,k〉|p .
Recall that ϕi is defined in Assumption (A2) as Diϕi = ψi. Therefore, if λi is
properly chosen, then λi (ai[−·] ∗ Tnu) can be seen as a sampling of Diu. Different
from the sampling of u via Tn where φ is used, the sampling here of Diu uses ϕi.
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In order for the sampling of Diu using ϕi to work, we have to impose Assumption
(A2) on ϕi and Assumption (A3) on λi as well.

We used I to denote the set of double indices where the differential operator Di

is involved in ‖Du‖1,p. It might also happen that the differential operator Dj is
not involved, while the corresponding filter aj appears in ‖Wu‖1,p. The set of all
such double indices is denoted by J. For all j ∈ J, we need to choose λj properly

such that, for any u ∈ W s
1 (Ω), we have that (λj)

1/p ‖aj [−·] ∗ Tnu‖1 tends to zero,
as n goes to infinity. The choice of λj for j ∈ J in Assumption (A3) is designed for
this very purpose.

We note that all B-spline tight wavelet frames constructed by [2] satisfy Assump-
tions (A2). Here, we provide the details for Haar and piecewise linear framelets
as follows. For the uniform form of such a function ϕi for an arbitrary B-spline
wavelet frame, we refer the readers to [56] for further details.

(1) For the Haar framelet, the wavelet functions and corresponding difference
operators are listed in the following table, where

ψ(x) =

⎧⎪⎨⎪⎩
1 0 ≤ x < 1

2

−1 1
2 ≤ x < 1

0 otherwise,

ϕ(x) =

⎧⎪⎨⎪⎩
x 0 ≤ x < 1

2
1
2 − x 1

2 ≤ x < 1

0 otherwise.

ϕi ci Di si
ψ1,0(x, y) = ψ(x)φ(y) ϕ1,0(x, y) = ϕ(x)φ(y) c1,0 = 1

4
D1,0 = ∂

∂x
s1,0 = 1

ψ0,1(x, y) = φ(x)ψ(y) ϕ0,1(x, y) = φ(x)ϕ(y) c0,1 = 1
4

D0,1 = ∂
∂y

s0,1 = 1

ψ1,1(x, y) = ψ(x)ψ(y) ϕ1,1(x, y) = ϕ(x)ϕ(y) c1,1 = 1
16

D1,1 = ∂2

∂x∂y
s1,1 = 2

If we want to use the Haar framelet transform to approximate TV, we
can choose I = {(0, 1), (1, 0)} and J = {(1, 1)}. For this case, s = 1, si = 1
for i ∈ I and sj = 2 for j ∈ J. Then Assumption (A2) is obviously satisfied
by the above table.

(2) For the piecewise linear framelet, the wavelet functions and corresponding
difference operators are listed in the following table, where

ψ1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2(x+ 1) −1 ≤ x < − 1

2

−
√
2x − 1

2 ≤ x < 1
2√

2(x− 1) 1
2 ≤ x < 1

0 otherwise,

ψ2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1− x −1 ≤ x < − 1
2

1 + 3x − 1
2 ≤ x < 0

1− 3x 0 ≤ x < 1
2

x− 1 1
2 ≤ x < 1

0 otherwise,

ϕ1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2
2 (x+ 1)2 −1 ≤ x < − 1

2√
2
2

(
1
2 − x2

)
− 1

2 ≤ x < 1
2√

2
2 (x− 1)2 1

2 ≤ x < 1

0 otherwise,

ϕ2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
6 (1 + x)3 −1 ≤ x < − 1

2
1
54 (1 + 3x)3 − 1

6x− 11
108 − 1

2 ≤ x < 0
1
6x+ 1

54 (1− 3x)3 − 11
108 0 ≤ x < 1

2
1
6 (x− 1)3 1

2 ≤ x < 1

0 otherwise.
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ϕi ci Di si

ψ1,0(x, y) = ψ1(x)φ(y) ϕ1,0(x, y) = ϕ1(x)φ(y) c1,0 =
√
2
4

D1,0 = ∂
∂x

s1,0 = 1

ψ0,1(x, y) = φ(x)ψ1(y) ϕ0,1(x, y) = φ(x)ϕ1(y) c0,1 =
√
2
4

D0,1 = ∂
∂y

s0,1 = 1

ψ1,1(x, y) = ψ1(x)ψ1(y) ϕ1,1(x, y) = ϕ1(x)ϕ1(y) c1,1 = 1
8

D1,1 = ∂2

∂x∂y
s1,1 = 2

ψ2,0(x, y) = ψ2(x)φ(y) ϕ2,0(x, y) = ϕ2(x)φ(y) c2,0 = − 1
16

D2,0 = ∂2

∂x2 s2,0 = 2

ψ0,2(x, y) = φ(x)ψ2(y) ϕ0,2(x, y) = φ(x)ϕ2(y) c0,2 = − 1
16

D0,2 = ∂2

∂y2 s0,2 = 2

ψ2,1(x, y) = ψ2(x)ψ1(y) ϕ2,1(x, y) = ϕ2(x)ϕ1(y) c2,1 = −
√

2
64

D2,1 = ∂3

∂x2∂y
s2,1 = 3

ψ1,2(x, y) = ψ1(x)ψ2(y) ϕ1,2(x, y) = ϕ1(x)ϕ2(y) c1,2 = −
√

2
64

D1,2 = ∂3

∂x∂y2 s1,2 = 3

ψ2,2(x, y) = ψ2(x)ψ2(y) ϕ2,2(x, y) = ϕ2(x)ϕ2(y) c2,2 = 1
256

D2,2 = ∂4

∂x2∂y2 s2,2 = 4

4.4. Proof of Lemma 3.3. In this section, we give the proof of Lemma 3.3, i.e.

limn→∞E
(1)
n (u) = E(1)(u) for u ∈W s

1 (Ω).

Proof of Lemma 3.3. For simplicity, we only prove this lemma for

‖Du‖1,p =

∫
Ω

(
∑
i∈I

|Diu|p)1/pdx

and, correspondingly,

‖λn·WnTnu‖1,p = h2
∑
k∈K2

⎛⎝∑
i∈I

λi|(ai[−·] ∗ Tnu)[k]|p +
∑
j∈J

λj |(aj [−·] ∗ Tnu)[k]|p
⎞⎠1/p

.

Other cases can be shown similarly. Recall that the sets I and J are defined as

I := {i : Di is in D} and J := B \ I,
where B = {i : 0 ≤ i1, i2 ≤ r} \ {(0, 0)}. The parameters λi and λj are properly
chosen so that Assumption (A3) is satisfied.

Let us first show the lemma when J = ∅. Note that Diϕi = ψi implies

Diϕi,n−1,k = 2(si+1)(n−1)−1ψi(2
n−1 · −k/2) = 2si(n−1)ψi,n−1,k.

Since ϕi is smooth and compactly supported and both ψi,n−1,k and ϕi,n−1,k are
supported on Ω, according to the definition of weak derivatives, we have

〈Diu, ϕi,n−1,k〉 = (−1)si〈u,Diϕi,n−1,k〉 = (−1)si2si(n−1)〈u, ψi,n−1,k〉.
On the other hand,

λi|(ai[−·] ∗ Tnu)[k]|p = 2np
(

1

ci
2si(n−1)

)p

|〈u, ψi,n−1,k〉|p,

and hence

‖λn ·WnTnu‖1,p = h2
∑
k∈K2

(∑
i∈I

λi|(ai[−·] ∗ Tnu)[k]|p
) 1

p

= 2−n
∑
k∈K2

(∑
i∈I

|〈Diu,
1

ci
ϕi,n−1,k〉|p

) 1
p

.

Let �k be the rectangular domain [ k1

2n ,
k1+1
2n ] × [ k2

2n ,
k2+1
2n ] where k = (k1, k2), and

recall that O = {0, 1, . . . , N − 1}2 and Ω = (0, 1)2. Then the above relations imply
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that

|‖Du‖1,p − ‖λn ·WnTnu‖1,p|

=

∣∣∣∣∣∣
∑
k∈O2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx− 2−n
∑
k∈K2

(
∑
i∈I

|〈Diu,
1

ci
ϕi,n−1,k〉|p)1/p

∣∣∣∣∣∣
≤
∑
k∈K2

∫
�k

∣∣∣∣∣(∑
i∈I

|Diu|p)1/p − 2n(
∑
i∈I

|〈Diu,
1

ci
ϕi,n−1,k〉|p)1/p

∣∣∣∣∣dx+
∑

k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx

≤
∑
k∈K2

∫
�k

(
∑
i∈I

|Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉|p)1/pdx+

∑
k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx

≤
∑
k∈O2

∫
�k

∑
i∈I

|Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉|dx+

∑
k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx

=
∑
i∈I

∑
k∈O2

∫
�k

|Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉|dx+

∑
k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx

=
∑
i∈I

∫
Ω

|Diu−
∑
k∈O2

2n〈Diu,
1

ci
ϕi,n−1,k〉χ�k

|dx+
∑

k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx

=
∑
i∈I

‖Diu−
∑
k∈O2

2n〈Diu,
1

ci
ϕi,n−1,k〉χ�k

‖L1(Ω) +
∑

k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx.

(4.14)

The second to the last identity follows from the fact that ∪k∈O2�k = Ω and L(�k∩
�j) = 0 for k �= j. It remains to show that

(4.15) lim
n→∞

∑
k∈O2\K2

∫
�k

(
∑
i∈I

|Diu|p)1/pdx = 0

and

(4.16) lim
n→∞ ‖Diu−

∑
k∈O2

2n〈Diu,
1

ci
ϕi,n−1,k〉χ�k

‖L1(Ω) = 0, for i ∈ I.

For (4.15), it is easy to show that limn→∞ L(∪k∈O2\K2�k) = 0. Therefore, by the
Lebesgue dominated convergence theorem, we get (4.15). For (4.16), notice that

2nχ�k
= φ

(H)
n,k , where φ

(H) is the characteristic function on the unit square, i.e.,
the tensor product of the piecewise constant B-spline which satisfies the partition
of unity property. Furthermore, by the definition of quasi-affine systems (4.13), we
have

1

ci
ϕi,n−1,k =

1

4ci
2nϕi(2

n−1x− k/2) =

(
ϕi(·/2)
4ci

)
n,k

and
∫
Ω

ϕi(·/2)
4ci

dx = 1. We also note that the support of ϕi(·/2) contains the support
of φ(H). Together with Diu ∈ L1(Ω), we establish (4.16) by Lemma 4.1.

In the case of J �= ∅, if we can show that, for all j ∈ J,

(4.17) lim
n→∞(λj)

1/p‖aj[−·] ∗ Tnu‖1 = 0,
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then we get (3.15). Indeed, define

EI = h2
∑
k∈K2

(∑
i∈I

λi|(ai[−·] ∗ Tnu)[k]|p
)1/p

.

Then we have

EI ≤ ‖λn ·WnTnu‖1,p ≤ EI +
∑
j∈J

(λj)
1/p‖aj [−·] ∗ Tnu‖1.

Taking the limit of the above inequality and noticing (4.17) leads to

lim
n→∞EI = lim

n→∞ ‖λn ·WnTnu‖1,p.

It now remains to show (4.17).
By assumption (A2), there exist ϕj and ϕj′ such that Djϕj = ψj and Dj′ϕj′ =

ψj′ . Choose j′ satisfying 0 ≤ j′ < j and sj′ ≤ s, as suggested in assumption A(3).
Note that such a j′ always exists, since, for example, one may pick j′ = 0. Let
ψ̄j = Dj−j′ϕj . Then obviously we have Dj′ψ̄j = ψj , due to the tensor product
structure of ϕj that ensures Dj′Dj−j′ϕj = Djϕj . For any real number t ≥ 0, the
function

ϕ̃t :=
1

cj′
ϕj′ + tψ̄j ,

with cj′ =
∫
R2 ϕj′dx, is smooth, compactly supported, and of integral 1 (since

obviously
∫
R2 ψ̄jdx = 0). This together with Dj′ ϕ̃t = 1

cj′
ψj′ + tψj leads to, for

u ∈ W s
1 (Ω),

〈Dj′u, ϕ̃t,n−1,k〉 = (−1)sj′2sj′ (n−1)〈u, 1

cj′
ψj′,n−1,k + tψj,n−1,k)〉.

Therefore,

‖2sj′(n−1)(
1

cj′
aj′ [−·] + taj [−·]) ∗ Tnu‖1 = 2−n

∑
k∈K2

|〈Dj′u, ϕ̃t,n−1,k〉|.

Following the exact same steps as in (4.14), by removing the summation with
respect to i ∈ I, replacing ϕ by ϕ̃t, Di by Dj′ and ci by cj′ , we have

‖Dj′u‖1 = lim
n→∞ ‖2sj′(n−1)(

1

cj′
aj′ [−·] + taj [−·]) ∗ Tnu‖1.

In particular, when t = 0, we have

‖Dj′u‖1 = lim
n→∞ ‖2sj′(n−1) 1

cj′
aj′ [−·] ∗ Tnu‖1.

These two equations imply that

t lim sup
n→∞

‖2sj′(n−1)aj[−·] ∗ Tnu‖1 ≤ 2‖Dj′u‖1.

Since t is arbitrary, we must have

lim
n→∞ ‖2sj′(n−1)aj [−·] ∗ Tnu‖1 = 0.

In view of 0 ≤ λj ≤ C(2sj′ (n−1))p, we get (4.17). This finishes the proof. �
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4.5. Proof of Proposition 3.2. In this section, we provide the proof of Proposi-
tion 3.2, which states that En is continuous uniformly in n.

Proof of Proposition 3.2. We consider E
(1)
n and E

(2)
n separately as the property in

the proposition is additive.

We first prove the uniform continuity of E
(1)
n . Define the space ��1,p(Z

2) := {b :
‖b‖�1,p < +∞} with

‖b‖�1,p =
∑
j∈Z2

⎛⎝ (r,r)∑
i=(0,0)

|bi[j]|p
⎞⎠

1
p

,

which can be regarded as a finite tensor of the space of all absolute summable
sequences on Z2. We also recall the �1,p-norm that we defined in (7) of Notation
3.1 (with λ = 1), as follows:

‖b‖1,p =
∑
j∈K2

⎛⎝ (r,r)∑
i=(0,0)

|bi[j]|p
⎞⎠

1
p

2−2n.

Since for any given n and v ∈ W s
1 (Ω), we have λn ·WnTnv ∈ ��1,p(Z

2),

‖2−2nλn ·WnTnv‖�1,p = ‖λn ·WnTnv‖1,p.
Since Tn is a bounded linear operator on L2(Ω) and Wn is a linear operator on a
finite dimensional space, then we have

‖2−2nλn ·WnTnv‖�1,p ≤ Cn‖v‖L2(Ω) ≤ C̃n‖v‖W s
1 (Ω),

where the last inequality follows from Sobolev imbedding theorems (see, e.g., [54]).
This shows that

2−2nλn ·WnTn :W s
1 (Ω) �→ ��1,p(Z

2)

is a bounded linear operator. In addition, for any fixed v ∈ W s
1 (Ω), we

lim
n→∞ ‖λn ·WnTnv‖1,p = ‖Dv‖1,p

by Lemma 3.3. Therefore,

sup
n

‖2−2nλn ·WnTnv‖�1,p = sup
n

‖λn ·WnTnv‖1,p < +∞

for every v ∈ W s
1 (Ω). By applying the uniform boundedness principle, we get

sup
n

‖2−2nλn ·WnTn‖op ≤ C,

where ‖ · ‖op stands for the operator norm and C is a constant independent of n.
Then,

|E(1)
n (u)− E(1)

n (v)| =|‖λn ·WnTnu‖1,p − ‖λn ·WnTnv‖1,p|
≤‖λn ·WnTn(u− v)‖1,p = ‖2−2nλn ·WnTn(u − v)‖�1,p
≤C‖u− v‖W s

1 (Ω),

which implies that the first term is Lipschitz continuous with Lipschitz constant
independent of n. Therefore, by choosing N = 1 and δ = ε/C, the proposition is

proved for E
(1)
n .
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Next, we prove the uniform continuity of E
(2)
n (u) with respect to n at each fixed

u. Define x(u) = ‖Au − f‖L2(Ω) for any fixed u ∈ L2(Ω). For any given ε, it is
obvious that there exists δ′ such that

(4.18)
∣∣∣1
2
x2(u)− 1

2
y2
∣∣∣ < ε/2, ∀|x(u)− y| < δ′.

With this δ′, by Lemma 3.2, there exists an N such that

(4.19) |‖AnTnu− Tnf‖2 − x(u)| < δ′/2, ∀n > N ,

and thus by (4.18) we get

(4.20)
∣∣∣1
2
x2(u)− E(2)

n (u)
∣∣∣ < ε/2, ∀n > N .

Similarly as before, we define the space ��2(Z
2) := {b : ‖b‖�2 < ∞} with ‖b‖�2 :=(∑

j∈Z2 |b[j]|2
) 1

2

. Then, for any given n, the linear operator

2−n(AnTn − TnA) :W
s
1 (Ω) �→ ��2(Z

2)

is bounded. Note from the definition of the discrete �2-norm defined by (3.1), we
have

‖(AnTn − TnA)v‖2 = ‖2−n(AnTn − TnA)v‖�2.
By Assumption (A1), ‖(AnTn − TnA)v‖2, hence ‖2−n(AnTn − TnA)v‖�2 as well,
converges to 0 for any given v ∈ W s

1 (Ω). By the uniform boundedness principle
and following a similar argument as before, we can show that 2−n(AnTn − TnA)
is uniformly bounded on W s

1 (Ω), i.e., ‖2−n(AnTn − TnA)‖op ≤ B, where ‖ · ‖op
stands for the operator norm and B is a positive number independent of n. Recall
the Sobolev imbedding theorem [54] once again; i.e., for an arbitrary v ∈ W s

1 (Ω),

‖v‖L2(Ω) ≤ C̃‖v‖W s
1 (Ω). Then, for arbitrary v, w ∈ W s

1 (Ω) ⊂ L2(Ω),∣∣∣‖AnTnv − Tnf‖2 − ‖AnTnw − Tnf‖2
∣∣∣

≤‖AnTn(v − w)‖2 ≤ ‖TnA(v − w)‖2 + ‖AnTn(v − w)− TnA(v − w)‖2
≤C‖A(v − w)‖L2(Ω) + ‖(AnTn − TnA)(v − w)‖2
=C‖A(v − w)‖L2(Ω) + ‖2−n(AnTn − TnA)(v − w)‖�2
≤(C̃‖A‖op + ‖2−n(AnTn − TnA)‖op)‖v − w‖W s

1 (Ω)

≤(C̃‖A‖op +B)‖v − w‖W s
1 (Ω).

In other words, ‖AnTnvTnf‖2 is Lipschitz continuous and the Lipschitz constant

is independent of n. So, if we choose δ = δ′

2(C̃‖A‖op+B)
, then we have∣∣∣‖AnTnw − Tnf‖2 − ‖AnTnv − Tnf‖2

∣∣∣ ≤ δ′

2
, ∀‖w − v‖W s

1 (Ω) < δ.

For given u, this together with (4.19) leads to∣∣∣x(u)− ‖AnTnv − Tnf‖2
∣∣∣ ≤ δ′, ∀‖u− v‖W s

1 (Ω) < δ, n > N .

By (4.20) and letting y = ‖AnTnv − Tnf‖2 = E
(2)
n (v) in (4.18) we obtain

|E(2)
n (u)− E(2)

n (v)| ≤ |1
2
x2(u)− E(2)

n (u)|+ |1
2
x2(u)− E(2)

n (v)| < ε,

for given u and all v, such that ‖u− v‖W s
1 (Ω) < δ, n > N . �



IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND 41

5. Algorithm and Experiments

In this section, we will present an efficient numerical algorithm that solves the
proposed frame based image restoration approach (2.18) and then conduct some
numerical experiments to show the effects of using the �1,2-norm and its advantages
over the standard �1,1-norm that has been used in the literature. The efficient
algorithms for the standard �1,1-norm have been developed and used for various
wavelet frame based approaches. The interested reader should consult [33] and
[34] for details. The emphasis here is to present an efficient numerical algorithm
that solves the proposed frame based image restoration approach (2.18) with the
�1,2-norm and to compare it with the standard �1,1-norm for the analysis based
approach of (2.18).

In our numerical simulations, we choose the conventional periodic boundary con-
dition for the convolutions of the fast framelet transforms. Unpleasant artifacts can
be reduced by using proper boundary conditions. Comparing with what was used in
the theoretical analysis given in previous sections, other boundary conditions may
put back some or all (modified) boundary elements, as well as the corresponding
sample data, in the wavelet system whose supports overlap with the boundary of
Ω. Since Ω is an open set, we may assume that the boundary elements are bounded
and of the same smoothness as other elements in the system on the open set Ω.
Furthermore, the boundary elements at different dilation levels can usually be made
to be a dilation of the boundary elements at the ground level. Hence the contribu-
tions of boundary elements will vanish as the resolution level goes to infinity, since
the measure of the total supports of the boundary elements will go to zero as the
resolution level goes to infinity. Therefore, as long as proper boundary elements
are chosen, some careful modifications can be made so that the results given in the
previous sections are still valid for some properly chosen boundary conditions.

One of the major difficulties of solving (2.18) is that the �1,p-norm is not smooth.
This prevents us from using optimization methods designed for smooth functions.
Another difficulty is that the term ‖λ·Wu‖1,p is not separable since W couples the
entries of u together. Therefore, one cannot simply use the soft thresholding as one
normally does for the synthesis based approach [46, 47, 48, 49, 50]. To overcome
this, we can convert (2.18) to a problem involving only separable nonsmooth terms
by a simple change of variables, and then iteratively enforce the constraints on the
change of variables via Bregman iterations [60, 61]. This is the main idea of the
recently proposed split Bregman algorithm in [19] which shows great efficiency in
solving �1-norm related optimization.

5.1. Split Bregman Algorithm. The split Bregman algorithm was first proposed
in [19] and was shown to be powerful in [19, 62] when it is applied to various PDE
based image restoration approaches, e.g., ROF and nonlocal variational models.
Convergence analysis of the split Bregman and its application to the standard �1,1-
norm for the analysis based approach of (2.18) were given in [21].

The idea of the split Bregman algorithm is as follows. One first replaces the
term Wu in (2.18) by a new variable d and then adds a new constraint d = Wu
into (2.18). Hence, (2.18) is now equivalent to

(5.1) inf
u,d

‖λ · d‖1,p +
1

2
‖Au− f‖22 subject to d = Wu.
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In order to solve (5.1), an iterative algorithm based on the Bregman distance [20, 60]
with an inexact solver was proposed in [19]. This leads to the alternating split
Bregman algorithm for (5.1).

The derivation of the split Bregman algorithm in [19, 21] is based on Bregman
distance. It was recently shown (see, e.g., [23, 63]) that the split Bregman algorithm
can also be derived by applying the augmented Lagrangian method (see, e.g., [64])
on (5.1). The connection between the split Bregman algorithm and the Douglas
Rachford splitting was addressed by [22]. We shall skip the detailed derivations
and recall the split Bregman algorithm that solves (2.18) as follows:

(5.2)

⎧⎪⎨⎪⎩
uk+1 = argminu

1
2‖Au− f‖22 + μ

2 ‖Wu− dk + bk‖22,
dk+1 = argmind ‖λ · d‖1,p + μ

2 ‖d−Wuk+1 − bk‖22,
bk+1 = bk + δ(Wuk+1 − dk+1).

Note that the minimal values of the two subproblems of (5.2) are indeed attainable.
Therefore, we can use “argmin” here, as well as many other places for the rest of
this and the next section.

The first subproblem of (5.2) can be solved easily as follows:

(5.3) uk+1 = (A�A+ μI)−1(A�f + μW�(dk − bk)),

where the inverse can be computed efficiently when A is simply a projection oper-
ator for inpainting problems or a convolution operator for deconvolution problems.

The second subproblem of (5.2) can also be solved rather efficiently. For the case
p = 1, dk+1 can be obtained by soft-thresholding as follows (see, e.g., [65, 66]):

(5.4) dk+1 = T 1
λ/μ(Wuk+1 + bk),

where the soft-thresholding operator T 1
τ (v) is an entry-wise operation defined by

T 1
τ (v) :=

v

|v| max{|v| − τ, 0}.

The superscript 1 of T 1
τ emphasizes that it is the shrinkage operator corresponding

to the �1,1-norm. We shall call T 1
τ anisotropic shrinkage.

For p = 2, we will need some proper assumptions on the parameter λ in order
to obtain a neat analytical formula for dk+1. Let Jl, for each 0 ≤ l ≤ L − 1, be
a subset of the index set {i := (i1, i2) : 0 ≤ i1, i2 ≤ r} and denote Jc

l := {i : 0 ≤
i1, i2 ≤ r} \ Jl. Assume that

(5.5) λl,i =

{
0, i ∈ Jl
τl, i ∈ Jc

l ,

for each 0 ≤ l ≤ L − 1 and τl ∈ I2. Note that by virtue of the structure of the
framelet decomposition Wu, (0, 0) /∈ Jl unless for l = L − 1. Since the band
i = (0, 0) of Wu corresponds to the low frequency components of u, which is
not sparse in general, we should not penalize the �1-norm of it and assume that
(0, 0) ∈ JL−1, i.e. λL−1,0,0 = 0. Under this assumption on λ, we then have

(5.6) w� = argmin
w

‖λ ·w‖1,2 +
μ

2
‖w − v‖22 = T 2

λ/μ(v),

where

(5.7)
(
T 2
λ/μ(v)

)
l,i

=

⎧⎨⎩
vl,i, i ∈ Jl

vl,i

Rl
max{Rl − τl/μ, 0}, i ∈ Jc

l ,
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with Rl :=
(∑

i∈Jc
l
|vl,i|2

)1/2
and τl defined as in (5.5). In this paper, we shall

call T 2
τ isotropic shrinkage. The isotropic shrinkage (5.7) was first considered by

[67] for the Haar framelet. The optimality property of the shrinkage (5.7), i.e. the
validity of the second equality in (5.6), is given by [68].

Now combining (5.3), (5.4) and (5.6) with (5.2), we have the following algorithm
solving the analysis based approach (2.18) for the case p = 1, 2. Since the proof of
convergence of the split Bregman algorithm given by [21] is very general, it directly
implies the convergence of the following Algorithm 5.1.

Algorithm 5.1. (Split Bregman)

(i) Set initial guesses d0 and b0. Choose an appropriate set of parameters
(λ, μ, ρ).

(ii) For k = 0, 1, . . ., perform the following iterations until convergence:

uk+1 = (A�A+ μI)−1(A�f + μW�(dk − bk)),

dk+1 = T p
λ/μ(Wuk+1 + bk),

bk+1 = bk + ρ(Wuk+1 − dk+1).

(5.8)

Remark 5.1. For the case p = 2 and λ not satisfying assumption (5.5), one can still
derive an analytic form, theoretically at least, for the optimization problem (5.6).
However, the analytic form is rather complicated because at some point, we need to
select one of the four roots of a quadratic polynomial. Therefore, using numerical
optimization techniques to solve (5.6) for general λ seems more realistic. In this
paper, the λ we use will satisfy (5.5), so we will not go into details of solving (5.6)
for general λ.

The theory of [21] can be applied here, leading to the following convergence
result: let uk be the sequence generated by Algorithm 5.1 for the given objective
function

F (u) = ‖λ ·Wu‖1 +
1

2
‖Au− f‖22;

then

lim
k→∞

F (uk) = inf
u
F (u),

as long as there exists a minimizer of F . Hence, the split Bregman algorithm used
here generates a minimizing sequence F (uk), while the sequence {uk} itself may
or may not converge. Even when the sequence {uk} itself converges to a minimizer
(for instance when there exists a unique minimizer of F as shown in [21]), we can
only stop at a finite number of iterations during actual computations. In other
words, an ε-optimal solution to F is what one obtains in practice, rather than an
actual minimizer of F . Furthermore, since it is hard (and unnecessary) to find an
actual minimizer of F numerically, an ε-optimal solution to F is what we commonly
seek when solving image restoration problems.

Next, we take a closer look at (5.8) in Algorithm 5.1 from a different angle. The
first step can be viewed as finding an approximate solution of equation Au = f
with updated residues from the previous step, and the third step can be viewed as
an update of residues. The second step can be viewed as a step to make the ap-
proximate solution obtained in the first step sparse by applying thresholding in the
transform domain where the underlying solution has a sparse representation. The
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step of thresholding is very important, since it preserves sparsity of the approxi-
mate solution of Au = f at each iteration. We further remark that the key point of
wavelet frame based image restorations is to find a good approximate solution of the
equation Au = f that is sparse in the transform domain, rather than a minimizer
of an objective functional. The iterative procedure of (5.8) generates a minimizing
sequence which leads us to an ε-optimal solution to the objective functional. These
are the central ideas that initiated the iterative algorithms with a built-in thresh-
olding step at the beginning of the wavelet frame based image restoration (see, e.g.,
[36, 69]).

Furthermore, since the second step of (5.8) in Algorithm 5.1 keeps the large
wavelet frame coefficients of the approximate solution of the current iteration and
large wavelet frame coefficients reflect the singularities of the approximate solution,
the step of thresholding sharpens the edges of the approximate solution by remov-
ing small coefficients. When large coefficients of a particular framelet are kept, it
means that the corresponding difference operator applies to the approximate solu-
tion locally. Since different wavelet frame masks reflect different orders of difference
operators, this iterative algorithm applies difference operators adaptively according
to the singularities of the approximate solution. Hence, it can well preserve different
types of edges at each iteration.

5.2. Numerical Experiments. In this section, we will perform some experiments
using the analysis based approach (2.18) with Haar and piecewise linear framelets.
The image restoration scenarios will be inpainting and deblurring. We will use
Algorithm 5.1 to solve (2.18).

For the image inpainting problem, the operator A in (2.15) is a projection oper-
ator defined as

(Au)[i, j] =

{
u[i, j], (i, j) ∈ Λ
0, otherwise,

where Λ is the domain where information of the image u is known. We will assume
that the observed image is not corrupted by noise for simplicity (i.e., η = 0 in
(2.15)). However, the analysis based approach using framelets is very robust to
noise as shown by various previous work (see, e.g., [34, 21]). Since there is not any
noise in f , after we obtain a solution u� using Algorithm 5.1, we will replace the
values of u� in Λ by those of f , i.e., we let u�[i, j] = f [i, j] for (i, j) ∈ Λ.

For the image deblurring problem, the operator A in (2.15) is a convolution
operator with kernel generated by some Gaussian function. In MATLAB, this
kernel function g is obtained by “g = fspecial(’gaussian’,15,2)”. Furthermore, the
observed image f is also corrupted by Gaussian white noise with σ = 3.

As we see from previous sections with various choices of the parameter λ, the
analysis based approach (2.18) corresponds to various variational methods. To be
specific, we will focus on the following choices of λ and levels of decomposition L:

(I) Inpainting: L = 1, p = 1 or 2 and
(i) Haar framelet

(5.9) λ :=

(
2ν

h

)p(
0 1
1 1

)
, E(1)

n (u) ≈ ν

∫
Ω

(|ux|p + |uy|p)
1
p dxdy;
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(ii) Piecewise linear framelet

(5.10) λ :=

(√
2ν

h

)p
⎛⎝ 0 1 1

1 1 1
1 1 1

⎞⎠ , E(1)
n (u) ≈ ν

∫
Ω

(|ux|p + |uy|p)
1
pdxdy;

(5.11) λ :=

(
4ν

h2

)p
⎛⎝ 0 0 1

0 0 1
1 1 1

⎞⎠ , E(1)
n (u) ≈ ν

∫
Ω

√
|uxx|2 + |uyy|2dxdy;

(II) Deblurring: L = 4, p = 1 or 2 and
(i) Haar framelet

(5.12)(
λ0,i
)
i
:=

(
2ν

h

)p (
0 1
1 1

)
, λl,i =

1

2lp
λ0,i, E(1)

n (u) ≈ ν

∫
Ω

(|ux|p + |uy|p)
1
p dxdy;

(ii) Piecewise linear framelet
(5.13)(
λ0,i
)
i
:=

(√
2ν

h

)p
⎛⎝ 0 1 1

1 1 1
1 1 1

⎞⎠ , λl,i =
1

2lp
λ0,i, E(1)

n (u) ≈ ν

∫
Ω

(|ux|p+|uy|p)
1
p dxdy.

Remark 5.2. Here we note from (5.9) and (5.10) (as well as (5.12) and (5.13)) that
by using the Haar framelet and the piecewise linear framelet and choosing a constant

λ across framelet bands, the regularization term E
(1)
n (u) always approximates the

total variation of u. However, when different wavelet frame systems are used,

E
(1)
n (u) corresponds to a rather different type of discretization of

∫
Ω
|∇u|dxdy,

which makes a big difference in terms of the qualities of the image restoration. On
the other hand, for a fixed wavelet frame system (i.e. Haar or piecewise linear)
and taking the constant λ across both framelet bands and levels, when one chooses

a different decomposition level, E
(1)
n (u) will also correspond to different type of

discretization of
∫
Ω |∇u|dxdy, which will also improve the results of image recovery.

According to our experience, L = 4 is usually desirable for image inpainting and
deblurring. This also shows that more flexibility is given when one takes a wavelet
frame based approach directly. One can even go further to the general balanced
approach if it is needed.

5.2.1. Inpainting. For image inpainting, we adopt the following stopping criteria:

‖Auk − f‖2
‖f‖2

< ε,

with ε = 5× 10−5 for λ given by (5.9) and (5.10), and ε = 8× 10−6 for λ given by
(5.11).

Figure 1 shows a comparison between p = 1 (anisotropic) and p = 2 (isotropic)
for λ given as in (5.9). It is clear that p = 2 recovers the missing regions better
than p = 1 in terms of the geometry of the edges. Figure 2 and Figure 3 show the
inpainting results using λ given by (5.9), (5.10) and (5.11). As one can see, piecewise
linear framelets perform better than the Haar framelet, and p = 2 performs better
than p = 1 (except for the piecewise linear framelet where the two are comparable).
It is also worth noticing that the algorithm converges faster for p = 2 than for
p = 1. This indicates that using p = 2 is generally better than p = 1 when one
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considers both quality and efficiency. More interestingly, when one uses λ given in
(5.11), the inpainting result is better than all other cases. For example, the regions
pointed at by the dotted white arrows indicate that using λ given in (5.11), the
corresponding model, which corresponds to a second order variational model, does
a good job in filling information into large gaps.

Figure 1. First row, from left to right, shows the observed im-
age, inpainted image using Haar with p = 1 (PSNR = 32.6267,
Iterations = 535) and inpainted image using Haar with p = 2
(PSNR = 34.534, Iterations = 395). The second row shows close-
up views of the corresponding images in the first row.

5.2.2. Deblurring. For image deblurring, we adopt the following stopping criteria:

‖dk −Wuk‖2
‖f‖2

< 10−4.

Figure 4 shows comparisons between p = 1 (anisotropic) and p = 2 (isotropic) with
λ given by (5.12) and (5.13). As one can see, the performance of the piecewise linear
framelets with p = 2 is better than all others in terms of both speed and quality.
The result of the Haar framelet with p = 1 shows clear block effect. Although such
an effect was greatly reduced when we use p = 2, the recovered image still looks
piecewise constant. The quality of the recovery is clearly better when piecewise
linear framelets are used, and p = 2 produces a sharper recovery than p = 1.

6. Extensions

The previous sections laid the foundations of the links between the wavelet frame
based approach (2.18) and the differential operator based variational method (3.4).
In this section, we will present some of the extensions of (2.18) and discuss their
connections to some variational methods.
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Figure 2. Image from left to right are: observed image, inpainted
image using Haar with p = 1 (PSNR = 32.6311, Iterations = 734),
inpainted image using Haar with p = 2 (PSNR = 32.766, Itera-
tions = 502), inpainted image using piecewise linear with p = 1
(PSNR = 33.8631, Iterations = 771), inpainted image using piece-
wise linear with p = 2 (PSNR = 33.6978, Iterations = 370), and
inpainted image using partial bands of piecewise linear with p = 2
(PSNR = 34.3902, Iterations = 688).

6.1. Two-System Wavelet Frame Based Models. Real images can usually
be regarded as being formed by two layers, namely cartoons (the piecewise smooth
part of the image) and textures (the oscillating components of the image). Different
layers usually have sparse approximations under different wavelet frame systems.
Therefore, these two different layers should be considered separately. One natural
idea is to use two wavelet frame systems that can sparsely represent cartoons and
textures separately. The corresponding image restoration problem can be formu-
lated as the following problem [21, 51, 52, 34]:

(6.1) inf
u1,u2∈I2

‖λ1 ·W1u1‖1,p1 + ‖λ2 ·W2u2‖1,p2 +
1

2
‖A(u1 + u2)− f‖22,

where p1, p2 are either 1 or 2, W1 and W2 denote two, possibly different, wavelet
frame transforms, and u1 and u2 are the two layers of image u satisfying u =
u1+u2. The two-system model (6.1) was proposed and well studied by [21], which
was shown to have excellent performance in restoration images with both cartoon
and texture components.

The optimization problem (6.1) can be solved by the split Bregman algorithm.
Similarly as in Section 5, we let d1 = W1u1 and d2 = W2u2. Then the problem
(6.1) is equivalent to

inf
u1,u2,d1=W1u1,d2=W2u2

‖λ1 · d1‖1,p1 + ‖λ2 · d2‖1,p2 +
1

2
‖A(u1 + u2)− f‖22.
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Figure 3. Images are the close-up views of those shown in Figure
2. The white arrows indicate the regions worth noticing, and the
dotted white arrows indicate the regions where the partial bands of
piecewise linear model with p = 2 work exceptionally better than
the others.

Then the corresponding Bregman iteration that solves the above problem can be
written as

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
1 = argminu1

1
2‖A(u1 + uk

2)− f‖22 + μ1

2 ‖W1u1 − dk
1 + bk1‖22,

uk+1
2 = argminu2

1
2‖A(uk+1

1 + u2)− f‖22 + μ2

2 ‖W2u2 − dk
2 + bk2‖22,

dk+1
1 = argmind1 ‖λ1 · d1‖1,p1 +

μ1

2 ‖d1 −W1u
k+1
1 − bk1‖22,

dk+1
2 = argmind2 ‖λ2 · d2‖1,p2 +

μ2

2 ‖d2 −W2u
k+1
2 − bk2‖22,

bk+1
1 = bk1 + δ1(W1u

k+1
1 − dk+1

1 ),

bk+1
2 = bk2 + δ2(W2u

k+1
2 − dk+1

2 ).

Note that the subproblems for u1 and u2 can be solved similarly as in (5.2) by
inverting two linear systems, and the subproblems for d1 and d2 can be solved by
anisotropic/isotropic shrinkage.

6.2. Connections to the TGV model. We start with the inf-convolution model
(2.4) by rewriting ∇2 as ∇(∇):

(6.3) inf
u1,u2

∫
Ω

ν1|∇u1|+ ν2|∇(∇u2)|dxdy +
1

2
‖A(u1 + u2)− f‖2L2(Ω).



IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND 49

Figure 4. The first row shows the observed image, deblurred im-
age using Haar with p = 1 (PSNR = 28.9845, Iterations = 117),
deblurred image using Haar with p = 2 (PSNR = 29.4147, Iter-
ations = 54), deblurred image using piecewise linear with p = 1
(PSNR = 29.5616, Iterations = 237), and deblurred image using
piecewise linear with p = 2 (PSNR = 29.6375, Iterations = 38).
The second and third rows show close-up views of the correspond-
ing images in the first row.

If certain discretization is used for (6.3), then the discrete version of (6.3) coincides
with the following Haar framelet based approach:

inf
u1,u2

‖λ1 ·Hu1‖1,2 + ‖λ2 ·H(Hu2)‖1,2 +
1

2
‖A(u1 + u2)− f‖22.

Note that the transform H(Hu) can be understood as a wavelet packet transform
(without decimation) [70, 71, 72].

More generally, we can use the following wavelet frame based approach to ap-
proximate the inf-convolution model:

(6.4) inf
u1,u2

‖λ1 ·Wu1‖1,2 + ‖λ2 ·W (Wu2)‖1,2 +
1

2
‖A(u1 + u2)− f‖22.

With different choices of λi and W , the wavelet frame based approach (6.4) pro-
vides various ways of solving the inf-convolution model (6.3) in the discrete setting.
Furthermore, (6.4) is in fact a special case of the two-system model (6.1) in the
previous section. Indeed, if we take W1 = W , W2 = W (W ) and p1 = p2 = 2 for
the two-system model (6.1), we obtain (6.4).

Therefore, with certain discretization for the inf-convolution model, it can be
regarded as a special case of the two-system model (6.1). For example, if we choose
W1 to be one level of Haar framelet decomposition, W2 to be one level of the
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piecewise linear framelet decomposition and take

λ1 =

(
2ν1
h

)2 (
0 1
1 1

)
, λ2 =

(
4ν2
h2

)2
⎛⎝ 0 0 1

0 γ 1
1 1 1

⎞⎠ ,

then we will have that

‖λ1 ·W1u1‖1,2 + ‖λ2 ·W2u2‖1,2
approximate

(6.5) ν1

∫
Ω

|∇u1| dxdy + ν2

∫
Ω

∣∣∇2u2
∣∣
γ
dxdy,

where ∇2u2 denotes the Hessian of u2 and

|∇2u2|γ :=
√
|∂xxu2|2 + |∂yyu2|2 + γ|∂xyu2|2.

The functional (6.5) with γ = 2 is precisely the regularization term of the inf-
convolution functional (2.4).

As we mentioned in Section 2.1 that the TGVmodel generalizes the inf-convolution
model (6.3). Indeed, if we let w = u2 and u1 = u − w in (6.3), the inf-convolution
model can be rewritten as

inf
u,w

∫
Ω

ν1|∇u−∇w|+ ν2|∇(∇w)|dxdy + 1

2
‖Au− f‖2L2(Ω).

Let v = ∇w; then the above problem is equivalent to

inf
v∈Range(∇),u

∫
Ω

ν1|∇u− v|+ ν2|∇ · v|dxdy + 1

2
‖Au− f‖2L2(Ω).

If we relax the restriction v ∈ Range(∇) by letting v vary in the space of continu-
ously differentiable 2-tensors, then we obtain the TGV model (2.5).

Following a similar idea, we shall derive a new wavelet frame based model from
the two-system model (6.1). This model includes the TGV model (2.5) as a special
case in the discrete setting. Letting v = u2 and u1 = u − v, we can rewrite (6.1)
as

(6.6) inf
u,v∈I2

‖λ1 ·W1(u − v)‖1,p1 + ‖λ2 ·W2v‖1,p2 +
1

2
‖Au− f‖22.

Let α := W1v and hence v = W�
1 α. Then (6.6) can be further written as

(6.7) inf
u∈I2,α∈Range(W1)

‖λ1 ·(W1u−α)‖1,p1 +‖λ2 ·W2W
�
1 α‖1,p2 +

1

2
‖Au−f‖22.

Note that (6.7) is still equivalent to (6.1). If we relax the restriction that α ∈
Range(W1) and replace W2W

�
1 in (6.7) by some general transformation, we then

have the following optimization problem:

(6.8) inf
u∈I2,α∈S

‖λ1 · (Wu−α)‖1,p1 + ‖λ2 · Tα‖∗,1,p2 +
1

2
‖Au− f‖22.

The space S that the variable α lives in has the same structure as Wu. Therefore,
the definition of S will depend on the structure of W . We now define the space S
that is associated to the transform W as

S := I2 × R
J×L = R

N×N×J×L,
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where J is the total number of bands of W for each level and L is the total
level of decomposition of W . The space S is a collection of all 4D arrays α with
α[·, ·, j, l] ∈ I2 for each 1 ≤ j ≤ J and 1 ≤ l ≤ L. The operator T is defined by

Tα := {Tj,lα[·, ·, j, l] : 1 ≤ j ≤ J, 1 ≤ l ≤ L},

where Tj,l corresponds to the framelet decomposition associated to a certain wavelet
frame system which is possibly different for different j and l. The norm ‖λ·Tα‖∗,1,p
is defined as

‖λ · Tα‖∗,1,p :=

L∑
l=1

⎛⎝ J∑
j=1

‖λj,l · Tj,lα[·, ·, j, l]‖p1,p

⎞⎠1/p

.

Clearly T itself is the wavelet frame decomposition corresponding to some wavelet
frame system, and we have T�T = I. In fact, T can also be interpreted as the
wavelet frame packet decomposition [72], which resembles the well known wavelet
packet decomposition [70, 71]. Furthermore, the new model (6.8) is generally dif-
ferent from (6.1) because the range of W is strictly contained in S unless W is
unitary (i.e., the corresponding wavelet system is orthonormal).

In particular, if one takes Tj = W and W to be the Haar framelet decomposition
in (6.8), and if λ1 and λ2 are properly chosen, then the regularization term of (6.8),
i.e.,

F (u) := min
α∈S

‖λ1 · (Wu−α)‖1,p1 + ‖λ2 · Tα‖∗,1,p2

approximates

inf
v
ν1‖∇u− v‖L1 + ν2‖∇ · v‖L1 ,

where the variable v = (v1, v2) varies in the space of all continuously differential
2-tensors. Therefore, with properly chosen parameters λ1 and λ2, model (6.8)
approximates the TGV model (2.5).

The optimization problem (6.8) can be solved by the split Bregman algorithm.
We let d1 = Wu−α and d2 = Tu, and it can then be written as

inf
u,α,d1=Wu−α,d2=Tα

‖λ1 · d1‖1,p1 + ‖λ2 · d2‖∗,1,p2 +
1

2
‖Au− f‖22.

Then the corresponding Bregman iteration that solves the above problem can be
written as

(6.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argminu
1
2‖Au− f‖22 + μ1

2 ‖Wu−αk − dk
1 + bk1‖22,

αk+1 = argminα
μ1

2 ‖Wuk+1 −α− dk
1 + bk1‖22 + μ2

2 ‖Tα− dk
2 + bk2‖22,

dk+1
1 = argmind1 ‖λ1 · d1‖1,p1 +

μ1

2 ‖Wuk+1 −αk+1 − d1 + bk1‖22,
dk+1
2 = argmind2 ‖λ2 · d2‖∗,1,p2 +

μ2

2 ‖Tαk+1 − d2 + bk2‖22,
bk+1
1 = bk1 + δ1(Wuk+1 −αk+1 − dk+1

1 ),

bk+1
2 = bk2 + δ2(Tαk+1 − dk+1

2 ).

Similar to (6.2), the subproblems for u and α in (6.9) can be solved by invert-
ing two linear systems, and the subproblems for d1 and d2 can be solved by
anisotropic/isotropic shrinkage.



52 JIAN-FENG CAI, BIN DONG, STANLEY OSHER, AND ZUOWEI SHEN

6.3. Numerical Experiments. We now present some numerical results of the two
wavelet frame based approaches (6.1) and (6.8) using algorithms (6.2) and (6.9).
Since (6.4) is a special case of (6.1), we forgo the numerical simulations for this
case.

We apply the algorithms (6.2) to the same deblurring problem as given in Section
5.2.2 with the same blurring kernel and noise level. We shall take pi = 2 for i = 1, 2
and adopt the following stopping criteria:√

‖dk
1 −W1uk

1‖22 + ‖dk
2 −W2uk

2‖22
‖f‖2

< 10−4.

We take the following two combinations of W1 and W2 where 4 levels of decompo-
sition are conducted for both W1 and W2:

(1) Haar framelet for W1, and piecewise linear framelets for W2 (denoted as
“Haar-Linear”);

(2) Haar framelet for W1, and piecewise cubic framelets for W2 (denoted as
“Haar-Cubic”).

The reason that we are using Haar for W1 is that we expect u1 to contain only the
cartoon component of the image. We use higher order framelets for W2 in order to
properly model texture components u2. The results are shown in Figure 5 (Haar-
Linear) and Figure 6 (Haar-Cubic). It is worth noticing that both Haar-Linear and
Haar-Cubic (where the latter produces a slightly better recovery than the former)
produce better results than all the results of using only the single wavelet frame
system given in Figure 4.

Figure 5. Results for Haar-Linear, where the images from left
to right are the cartoon component u1, the texture component u2

and the recovered image u = u1+u2; the images in the second row
are zoom-in views of the those in the first row. PSNR= 29.7082
and total number of iterations is 37.
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Figure 6. Results for Haar-Cubic, where the images from left to
right are the cartoon component u1, the texture component u2 and
the recovered image u = u1 + u2; the images in the second row
are zoom-in views of the those in the first row. PSNR= 29.7218
and total number of iterations is 31.

We now apply the algorithms (6.9) to the same example as we did for algorithm
(6.2). We pick W to be piecewise linear framelet decomposition (4 levels) and Tj

to be Haar framelet decomposition (1 level). We shall take pi = 2 for i = 1, 2 and
adopt the following stopping criteria:√

‖dk
1 −Wuk‖22 + ‖dk

2 − Tαk‖22
‖f‖2

< 2× 10−5.

A numerical result is given in Figure 7.
Judging from the PSNR values given by Figures 4, 5, 6 and 7, the two-system

model (6.1) gives the best performances for image deblurring problems. Also note
that (6.8) performs better than the analysis based approach (2.18), while not as
good as the two-systems model (6.1).
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