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Abstract. Applications of wavelet frames to image restoration prob-
lems (e.g. image deblurring and inpainting) have been successful due
to their redundancy and capability of sparsely approximating piecewise
smooth functions like images (see e.g. [1, 2, 3]). However, wavelet
frames have not yet been used for surface reconstruction problems. Re-
cently in [4], connections between one of the wavelet frame based image
restoration model [3, 5, 6] and variational models (e.g. the ROF model
[7]) were rigorously established. Such connections not only grant new
insights to wavelet frame based image restorations, it also case a geo-
metric explanation to wavelet frame based approaches. This leads us to
a wavelet frame based model, as well as a fast algorithm, to reconstruct
implicit surfaces from unorganized point sets in R

3. We will demon-
strate the effectiveness of the proposed model using several commonly
used examples.

1. Introduction

Surface reconstruction from unorganized/scattered point sets (point clouds)
is an important problem in geometric modelling. Given a set of scattered
points X = {x1, x2, . . . , xn} ⊂ R

3 that are sampled from some unknown
surface S, the surface reconstruction problem is to construct a surface Ŝ
from the observed data X such that Ŝ approximates S. It has received a lot
of attention in the computer graphics community in recent years because of
the fast development of laser scanner technology which enables the point-
based representation for highly detailed surfaces, and its wide applications
in areas such as reverse engineering, product design, medical appliance de-
sign, archeology, etc. In this paper, we shall propose a wavelet frame based
model to reconstruct surfaces from general point sets in R

3.

1.1. Frames and Wavelet Frames. The theory of the multiresolution
analysis (MRA) based frames, especially the MRA based tight wavelet frames,
were extensively studied in the past two decades (see e.g. [8, 9, 10, 11,
12]). Examples of tight frames includes translation invariant wavelets [13],
curvelets [14], and framelets [9], etc. In contrast to orthogonal bases, tight
frames provide redundant representations to signals and images. The re-
dundancy of tight frames usually leads to sparse approximation of piece-
wise smooth functions, like images, due to their short supports and high
order of vanishing moments. Such property is known to be desirable for
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image restoration problems, like denoising, inpainting, deblurring, tomog-
raphy, etc. This motivates the research on frame based image restorations
[13, 14, 3, 15, 16, 5, 17, 18, 19].

Although wavelet frames are now widely used and quite successful in
image restorations, there is not much work done for surface reconstruction
problems. When the given set of points are sampled from the graph of
a certain 2-dimensional function, a frame based model was proposed by
[20], which used a simple principal shift invariant space and its associated
wavelet transform to fit the given data points. However, for point sets that
are sampled from general surfaces, there is not a reconstruction model in
literature that is based on wavelet frames.

The major difficulty of using wavelet frames for general surface recon-
struction problems is that the surface that needs to be recovered is not
generally the graph of a certain scalar function. Therefore, we need to as-
sociate a function to a given surface in some way. One of the widely used
techniques is to define the reconstructed surface Ŝ implicitly as the zero
level set of a 3-dimensional scalar function u, i.e. Ŝ := {x;u(x) = 0}. Then
through minimizing some differential operator based variational model (see
e.g. [21, 22, 23, 24]), one can reconstruct u whose zero level is an approxi-
mations to the unknown surface. However, it is still not clear how one can
apply wavelet frames to reconstruct such 3-dimensional scalar function u,
until the recent work by [4]. In [4], the authors established a rigorous connec-
tion between differential operator based variational models (e.g. the ROF
model [7]) and one of the frame based model, called analysis based approach
[3, 5, 6]. Their discovery shows that when spline wavelet frames of [9] are
used, the analysis based approach can be viewed as certain finite difference
approximation to various variational models at a given resolution. Based on
the connections found by [4], we can combine the ideas of variational models
with those of frame based models. Such combination was already used by
[25] where a wavelet frame based image segmentation model was proposed.

Motivated by the image segmentation model of [25] and the discoveries of
[4], and inspired by the variational models [21, 22, 23, 24], we shall propose
a wavelet frame based model for surface reconstruction problems. With this
new model, the efficient algorithms for frame based image restoration models
can now be used to obtain fast algorithms for surface reconstruction.

1.2. Brief Literature Review. There has been tremendous work done
for surface reconstruction from point clouds. One of the earliest algorithm
was given by [26] where the authors locally estimated the signed distance
function of the true surface. Smooth surfaces can also be built by fitting
radial basis functions to a given point cloud [27], which was later adapted to
large data sets by [28]. In [21], a variational level set method was proposed,
where the authors introduced an energy functional utilizing the distance
function associated to the given data points and minimized the energy by
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solving a level set equation. Recently, some work that extends the work by
[21] were proposed [22, 23, 24].

Instead of computing a single global approximation to point clouds, the
approaches of using moving least squares algorithms locally fit smooth func-
tions to each sample point and then smoothly combine them together [29,
30]. A different approach to moving least squares is the nonlinear projec-
tion method originally proposed by [31]. A point-set surface is defined as
the set of stationary points of a projection operator, which was first used by
[32] for point based modelling and rendering. Another popular technique is
to construct a polyhedral surface from the input set of points utilizing the
Voronoi diagram [33, 34, 35, 36, 37], which is closely related to Voronoi-based
algorithms for medial axis estimation.

1.3. Plan of The Paper. In Section 2, we will first present a general
variational model for surface reconstruction problems that includes some of
the known models as examples. Then, after a brief introduction to (tight)
wavelet frames, we will propose a wavelet frame based model that can be re-
garded as certain discretizations to the general variational model. To show
the advantage of using wavelet frames over the standard finite difference
discretization for differential operators, we will also present a 2-dimensional
comparison in this section. In Section 3, we will present a fast algorithm
that solves the frame based model using the idea of split Bregman algorithm.
Numerical results for surface reconstruction will be given at the end of this
section.

2. Mathematical Models

Given a set of scattered points X = {x1, x2, . . . , xn} ⊂ R
3 that are sam-

pled from some unknown surface S, we need to find an approximation to
S based on the observed data X. If we restrict our interests to surfaces
that can be implicitly represented by the zero level set of some function
u : Ω �→ R, where Ω ⊂ R

3 is some computation domain, then the surface re-
construction problem is amount to finding u such that {x ∈ R

3 : u(x) = 0}
interpolates or approximates the data X. Many variational models were
proposed in the literature to recover a desirable level set function u for the
given data X. However, there has not been any work on applying wavelet
frames, which has been widely used for image restorations, for surface re-
construction. One of the reasons is the lack of geometric interpretations of
wavelet frames. Recently, the authors of [4] established a link between one
of frame based image restoration models with variational models, which,
for the very first time, grants geometric interpretations to wavelet frames.
Based on the work of [4], we will propose a wavelet frame based model for
surface reconstruction problems.

We will start this section by presenting a general variational model for
surface reconstructions which includes some of the known model in the liter-
ature as special examples. Then, after a brief introduction of wavelet frames,
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we will present the wavelet frame based formulation for surface reconstruc-
tions which can be regarded as certain discretization of the general varia-
tional model. However, once it links to the wavelet frame, the advantages of
using wavelet frame immediately show up. First, there are fast algorithms
for frame based optimizations that can also be used for surface reconstruc-
tion. Secondly, the wavelet tight frame provides a rich family of difference
operators that can be understood as various discretizations of a family of
differential operators. The multi-level nature of the tight wavelet frame de-
composition automatically applies different difference operators adaptively
to the geometric structure of the surface, hence, features of the surface can
be well reconstructed. This also leads to the fact that wavelet frame based
approaches outperform those by discretizing variational models without us-
ing wavelet frame structures.

2.1. Variational Models for Surface Reconstruction. Like the vari-
ational models proposed for image restoration problems, we can define a
general variational model for surface reconstruction as

(2.1) min
u∈V

‖ν ·D(u)‖1,p +H(u, f),

where V is some convex set, D := {Dj : 1 ≤ |j| ≤ s} is a vector of
differential operators of order s, H(u, f) is some smooth convex functional
and f is some given function that may be obtained from the input point set.
The norm ‖ · ‖1,p is defined as follows

(2.2) ‖ν ·D(u)‖1,p :=

∥∥∥∥∥∥∥
⎛⎝ ∑

1≤|j|≤s

νj|Dju|p
⎞⎠

1
p

∥∥∥∥∥∥∥
1

,

where νj are some pre-selected weight functions defined on Ω, and ‖ · ‖q
denotes the Lq-norm. Among all the different choices of νj, the choice
of distance function is very popular and was shown to be effective in the
literature. For a given set of scattered points X = {x1, x2, . . . , xn} ⊂ R

3,
define the distance function as

(2.3) ϕ(x) := inf
y∈X
‖x− y‖2, x ∈ Ω,

which can be obtained by solving the Eikonal equation [38, 39] (see Figure
1 for an example of ϕ(x)). Then we can choose, e.g. νj = αϕ, for each
1 ≤ |j| ≤ s and some scalar α ∈ R. The distance function was first used
in [21] for surface reconstruction problems, and was used and analyzed by
various later work (see e.g. [40, 41, 24]).

The general model (2.1) includes some of the known models in the lit-
erature as special cases. For example when V = L2(Ω), D = ∇ and
H(u, f) = 1

2h‖u − f‖22, model (2.1) was used iterative in [23] for surface
reconstructions. Another example is when V = {u ∈ L2(Ω) : 0 ≤ u ≤ 1},
D = ∇ and H(u, f) = 〈2f − 1, u〉, model (2.1) was used in [24] as the
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first step of their entire procedure, which is also a special case of the Chan-
Vese model [42, 43] (called active contour with edges) proposed for image
segmentation problems.

The variational model (2.1) views the variable u, as well as f and ϕ as
functions defined on Ω. However, the data X collected by certain scanning
machine is discrete and the distance function ϕ that one can compute is
also discrete. Therefore, when we are solving the problem (2.1), we need
proper discretizations of it. Instead of using standard discretizations for
differential operators, we shall use wavelet frames which was proven in [4]
to be a consistent approximation when meshsize goes to zero. Furthermore,
the discretization provided by wavelet frames was shown, in e.g. [1, 2, 44,
3, 4, 12], to be superior than the standard discretization for some of the
variational models (e.g. total variation based models) for image restoration
problems, and also for image segmentation problems [25]. We shall leave
the details to Section 2.3 after a brief introduction to (tight) wavelet frames
in Section 2.2.

2.2. Tight Wavelet Frames. We now briefly introduce the concept of
tight frames and framelets. Interesting readers should consult [8, 9, 10]
for theories of frames and framelets, [11] for a short survey on theory and
applications of frames, and [12] for a more detailed survey.

A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X

〈f, h〉h ∀f ∈ L2(R),

where 〈·, ·〉 is the inner product of L2(R). For given Ψ := {ψ1, . . . , ψr} ⊂
L2(R), the wavelet system generated by Ψ is defined by the collection of the
dilations and the shifts of Ψ as

X(Ψ) := {ψ�,j,k : 1 ≤ � ≤ r; j, k ∈ Z} with ψ�,j,k := 2
j/2
ψ�(2j · −k).

When X(Ψ) forms a tight frame of L2(R), it is called a tight wavelet frame,
and ψ�, � = 1, . . . , r, are called framelets.

The construction of framelets can be obtained by the unitary extension
principle (UEP) of [9]. In our implementations, we will use the piecewise
linear B-spline framelets constructed by [9]. Given a 1-dimensional framelet
system for L2(R), the s-dimensional tight wavelet frame system for L2(Rs)
can be easily constructed by using tensor products of 1-dimensional framelets
(see e.g. [8, 12]).

In the discrete setting, a discrete image u is an s-dimensional array. We
will useW to denote fast tensor product framelet decomposition and useW�
to denote the fast reconstruction. Then by the unitary extension principle
[9], we have W�W = I, i.e. u = W�Wu for any image u. We will further
denote an L-level framelet decomposition of u as

Wu = {Wl,ju : 0 ≤ l ≤ L− 1, j ∈ I},
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where I denotes the index set of all framelet bands. More details on discrete
algorithms of framelet transforms can be found in [12].

2.3. Wavelet Frame Based Surface Reconstruction Model. We now
propose a wavelet frame based model for surface reconstruction problems,
which serves as discretizations of the general variational model (2.1). Given
data X, we will still use ϕ to denote the distance function associated to
X. However, ϕ, so are all other variables involved in the model and the
algorithm, should be understood as a discrete array defined on regular grids
in R

3.

Surface Reconstruction Model. Given data X = {x1, x2, . . . , xn} ⊂ R
3,

solve the following optimization problem

(2.4) min
u∈V
‖λ ·Wu‖1,p +H(u, f),

and

(2.5) ‖λ ·Wu‖1,p :=

∥∥∥∥∥∥∥
L−1∑
l=0

⎛⎝∑
j∈I

λl,j|Wl,ju|p
⎞⎠ 1

p

∥∥∥∥∥∥∥
1

.

The parameter λ is chosen as

λl,j = ϕ(x)q

for each l and j with 0 < q ≤ 1. In particular, we shall focus on the following
choice of the set V and H(u, f) due to their simplicity and effectiveness in
practice:

(2.6) V = {0 ≤ u ≤ 1} and H(u, f) = μ〈2f − 1, u〉.
Remark 1.

(1) The norm ‖ · ‖1,1 as given by (2.5) is the standard �1-norm used for
frame based image restoration problems, while the norm ‖ · ‖1,2 is
an isotropic version of ‖ · ‖1,1. It was shown by [4] that for image
restorations, the ‖ · ‖1,2 outperforms ‖ · ‖1,1 in terms of both qual-
ity of the restoration and efficiency of the corresponding numerical
algorithm. Therefore, in this paper, we shall use the norm ‖ · ‖1,2.

(2) When we choose V and H(u, f) as in (2.6), we take f as a charac-
teristic function, i.e. f = χΛ, where ∂Λ is an initial approximation
to the the given data set X. In other words, the role of f here is an
initial guess of the underlying surface that we want to reconstruction.

(3) The analysis in [4] suggests that under proper assumptions on the
space V and H(u, f) and proper choices of λ, the energy functional
of the frame based model (2.4) is indeed a discrete approximation to
the energy functional of the variational model (2.4). In particular, if
one assumes that u is smooth enough, such connection can be easily
established via Taylor’s expansions.
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For some of the variational models (e.g. total variation based mod-
els), using the discretization provided by wavelet frames has advantages
over the standard discretization for image restoration problems (see e.g.
[1, 2, 44, 3, 4, 12]), and also for image segmentation problems [25]. By
putting model (2.1) into a wavelet frame setting, one can use a multiresolu-
tion structure to adaptively choose a proper differential operators in different
regions of a given image according to the order of the singularity of underly-
ing solutions. It should be pointed out here that if one wants to use a more
general differential operator in model (2.1), the ability of applying different
differential operators according to where various singularity are located is
the key to make such generalization successful. The wavelet frame based
approach has a built-in adaptive mechanism via the multiresolution analy-
sis that provides a natural tool for this purpose. To illustrate the benefit
of using the frame based model, we present a 2-dimensional comparison be-
tween model (2.4) and model (2.1) (using a standard discretization) for the
case D = ∇, and V and H(u, f) given as in (2.6) (see Figure 1). Note that
the curves shown in Figure 1 are the boundaries of the set {u� ≥ 0.5} where
u� is the solution to the corresponding optimization problems.

3. Algorithm and Numerical Experiments

In this section, we focus on the algorithm and numerical results of the
model (2.4) with V and H(u, f) given as in (2.6), i.e. we will use the
following model

(3.1) min
0≤u≤1

‖λ ·Wu‖1,p + μ〈2f − 1, u〉.

3.1. Fast Algorithm. We now describe an algorithm that solves (3.1).
Note that the corresponding algorithm for the general frame based model
(2.4) can be derived in a similarly way.

The proposed algorithm is based on the split Bregman algorithm. The
split Bregman algorithm was first proposed in [46] which was shown to be
powerful in [46, 47] when it is applied to various PDE based image restora-
tion approaches, e.g., ROF model [7] and nonlocal variational models [48].
Convergence analysis of the split Bregman algorithm were given in [3] for
frame based image restoration problems.

The idea of split Bregman algorithm is to first replace the term Wu in
(3.1) by a new variable d and then adds a new constraint d = Wu into (3.1).
Then (3.1) is now equivalent to

(3.2) min
0≤u≤1,d=Wu

‖λ · d‖1,p + μ〈r, u〉,

where both u and d are variables need to be optimized. In order to solve
(3.2), an iterative algorithm based on the Bregman distance [49, 50] with
an inexact solver was proposed in [46]. This leads to the alternative split
Bregman algorithm for (3.2). The derivation of splitting Bregman algo-
rithm in [46, 3] is based on Bregman distance. It was recently shown (see
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Figure 1. Upper left: distance function ϕ(x) to a given
point set; upper right: function f , the boundary of its sup-
port is an initial approximation of the given data points;
lower left: reconstructed curves using tight wavelet frame
(red) and total variation (blue); lower right: a zoom-in view
of the lower left image.

e.g. [51, 52]) that the split Bregman algorithm can also be derived by apply-
ing augmented Lagrangian method (see e.g. [53]) on (3.2). The connection
between split Bregman algorithm and Douglas Rachford splitting was ad-
dressed by [54]. We shall skip the detailed derivations and recall the split
Bregman algorithm that solves (3.1) as follows

(3.3)

⎧⎪⎨⎪⎩
uk+1 = arg min0≤u≤1 μ〈r, u〉 + ν

2‖Wu− dk + bk‖22,
dk+1 = arg mind ‖λ · d‖1,p + ν

2‖d−Wuk+1 − bk‖22,
bk+1 = bk + δ(Wuk+1 − dk+1).

We propose the following two steps to approximate the solution uk+1 of
the first subproblem of (3.3):

(3.4)

{
uk+ 1

2 = W�(dk − bk)− μ
ν r,

uk+1 = min{max{uk+ 1
2 , 0}, 1}.
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The second subproblem of (3.3) can be solved rather efficiently by shrinkage
(see e.g. [55, 56] for the case p = 1 and [57] for the case p = 2):

(3.5) dk+1 = T p
λ/ν(Wuk+1 + bk),

where the thresholding operator T p
τ (v) is defined, for each 0 ≤ l ≤ L − 1

and j ∈ I, as(
T p

τ (v)
)

l,j
:=

{
vl,j

|vl,j | max{|vl,j| − τ, 0}, p = 1
vl,j

Rl
max{Rl − τ, 0}, p = 2

where Rl :=
(∑

j∈I |vl,j|2
) 1

2 .
Now combining (3.4) and (3.5), we obtain Algorithm 1 for the surface

reconstruction model (3.1):

Algorithm 1 Wavelet Frame Based Surface Reconstruction
Given a binary image f and r = 2f − 1, initialize d = b = 0.
while topping criteria is not met do

1. Update u: {
u ←W�(d− b)− μ

ν r,

u ← min{max{u, 0}, 1}.
2. Update d:

d← T p
λ/ν(Wu+ b).

3. Update b:
b← b+ δ(Wu− d).

end while

3.2. Numerical Experiments. We now present some numerical results for
surface reconstruction using Algorithm 1. A summary of the data we are us-
ing is given by Table 1. The data “hand” is obtained from “www.cc.gatech.edu/projects/large
models”, while all the other data in Table 1 is obtained from “www-graphics.stanford
.edu/data/3Dscanrep”.

To get better initialization f , we adopt the idea proposed by [24]. Given
a point set X and its corresponding distant function ϕ(x), we compute f
by solving the following Eikonal using fast sweeping method [39]

|∇f | = 1
ϕ2 + ε

,

where ε is some properly chosen parameter. We shall skip the details here,
but interested reader should consult [24, 39] for details. For all our exper-
iments, we shall choose q = 1

2 . The reason that we are in favor of q = 0.5
over q = 1 (used in [21]) is because when the true surface that needs to be
reconstructed has rather concave regions, using q = 0.5 will require a less
restrictive initialization than using q = 1.



10 BIN DONG AND ZUOWEI SHEN

All calculations are done in MATLAB on a laptop with Intel Core i7 (1.73
GHz) CPU and 8.0G RAM. The stopping criteria we choose for Algorithm
1 is

‖uk+1 − uk‖2
‖uk‖2

< 5× 10−4.

The total number of iterations and computational time for each data set
are given in Table 1. Reconstructed surfaces, as well as their corresponding
initializations f (the boundaries of the supports of f are visualized) are
shown by Figure 2-6. All surfaces are visualized as the 0.5-level set of their
corresponding level set functions.

Table 1. Data summary and computation efficiency of Al-
gorithm 1.

Model Data points Grid size #Iterations Time (min.)
Armadillo 172,974 164× 141 × 130 54 11.7

Budda 144,647 277× 126 × 126 109 33.4
Bunny 35,947 100× 100 × 83 57 3.6
Dragon 437,645 162× 221 × 110 95 25.8
Hand 327,323 161× 221 × 90 83 18.3

Figure 2. Model: armadillo. Left image: initialization;
right image: reconstruction.

References

[1] R. Chan, T. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution im-
age reconstruction,” SIAM Journal on Scientific Computing, vol. 24, no. 4, pp. 1408–
1432, 2003.

[2] R. Chan, L. Shen, and Z. Shen, “A framelet-based approach for image inpainting,”
Research Report, vol. 4, p. 325, 2005.



WAVELET FRAME BASED SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS11

Figure 3. Model: budda. Left image: initialization; right
image: reconstruction.

Figure 4. Model: bunny. Left image: initialization; right
image: reconstruction.

[3] J. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based image
restoration,” Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal,
vol. 8, no. 2, pp. 337–369, 2009.

[4] J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restorations: total variation, wavelet
frames and beyond,” preprint, 2011.



12 BIN DONG AND ZUOWEI SHEN

Figure 5. Model: dragon. Left image: initialization; right
image: reconstruction.

Figure 6. Model: hand. Left image: initialization; right
image: reconstruction.

[5] M. Elad, J. Starck, P. Querre, and D. Donoho, “Simultaneous cartoon and tex-
ture image inpainting using morphological component analysis (MCA),” Applied and
Computational Harmonic Analysis, vol. 19, no. 3, pp. 340–358, 2005.

[6] J. Starck, M. Elad, and D. Donoho, “Image decomposition via the combination of
sparse representations and a variational approach,” IEEE transactions on image pro-
cessing, vol. 14, no. 10, pp. 1570–1582, 2005.

[7] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Phys. D, vol. 60, pp. 259–268, 1992.

[8] I. Daubechies, “Ten lectures on wavelets,” vol. CBMS-NSF Lecture Notes, SIAM, nr.
61, 1992.

[9] A. Ron and Z. Shen, “Affine Systems in L2(R
d): The Analysis of the Analysis Oper-

ator,” Journal of Functional Analysis, vol. 148, no. 2, pp. 408–447, 1997.
[10] I. Daubechies, B. Han, A. Ron, and Z. Shen, “Framelets: Mra-based constructions of

wavelet frames,” Applied and Computational Harmonic Analysis, vol. 14, pp. 1–46,
Jan 2003.

[11] Z. Shen, “Wavelet frames and image restorations,” Proceedings of the International
Congress of Mathematicians, Hyderabad, India, 2010.



WAVELET FRAME BASED SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS13

[12] B. Dong and Z. Shen, “Mra based wavelet frames and applications,” IAS Lecture
Notes Series, Summer Program on “The Mathematics of Image Processing”, Park
City Mathematics Institute, 2010.

[13] R. Coifman and D. Donoho, “Translation-invariant de-noising,” Lecture Notes in
Statistics-New York-Springer Verlag, pp. 125–125, 1995.

[14] E. Candes and D. Donoho, “New tight frames of curvelets and optimal representations
of objects with C2 singularities,” Comm. Pure Appl. Math, vol. 56, pp. 219–266, 2004.

[15] C. Chaux, P. Combettes, J. Pesquet, and V. Wajs, “A variational formulation for
frame-based inverse problems,” Inverse Problems, vol. 23, pp. 1495–1518, 2007.

[16] I. Daubechies, G. Teschke, and L. Vese, “Iteratively solving linear inverse problems
under general convex constraints,” Inverse Problems and Imaging, vol. 1, no. 1, p. 29,
2007.

[17] M. Fadili, J. Starck, and F. Murtagh, “Inpainting and zooming using sparse repre-
sentations,” The Computer Journal, vol. 52, no. 1, p. 64, 2009.

[18] A. Chai and Z. Shen, “Deconvolution: A wavelet frame approach,” Numerische Math-
ematik, vol. 106, no. 4, pp. 529–587, 2007.

[19] J. Xun, Y. Lou, B. Dong, and S. Jiang, “Gpu-based iterative cone beam ct recon-
struction using tight frame regularization,” preprint, 2010.

[20] H. Ji, Z. Shen, and Y. Xu, “Wavelet frame based scene reconstruction from range
data,” Journal of Computational Physics, 2009.

[21] H. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit and non-parametric shape
reconstruction from unorganized points using variational level set method,” Computer
Vision and Image Understanding, vol. 80, no. 3, pp. 295–319, 2000.

[22] J. Ye, I. Yanovsky, B. Dong, R. Gandlin, A. Brandt, and S. Osher, “Multigrid Narrow
Band Surface Reconstruction via Level Set Functions,” Submitted for publication,
2008.

[23] T. Goldstein, X. Bresson, and S. Osher, “Geometric Applications of the Split Bregman
Method: Segmentation and Surface Reconstruction,” UCLA CAM Report, pp. 09–06,
2009.

[24] J. Ye, X. Bresson, T. Goldstein, and S. Osher, “A Fast Variational Method for Surface
Reconstruction from Sets of Scattered Points,” CAM Report, vol. 10-01, 2010.

[25] B. Dong, A. Chien, and Z. Shen, “Frame based segmentation for medical images,”
accepted by Communications in Mathematical Sciences, 2010.

[26] H. Hoppe, T. DeRose, T. Duchampt, J. McDonald, and W. Stuetzle, “Surface Re-
construction from Unorganized Points,” vol. 26, p. 71, 1992.

[27] G. Turk and J. O’Brien, “Shape transformation using variational implicit functions,”
p. 13, 2005.

[28] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum, and T. Evans,
“Reconstruction and representation of 3D objects with radial basis functions,” pp. 67–
76, 2001.

[29] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel, “Multi-level partition of
unity implicits,” p. 173, 2005.

[30] R. Kolluri, “Provably good moving least squares,” ACM Transactions on Algorithms
(TALG), vol. 4, no. 2, pp. 1–25, 2008.

[31] D. Levin, “Mesh-independent surface interpolation,” Geometric Modeling for Scien-
tific Visualization, vol. 3, 2003.

[32] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva, “Computing
and rendering point set surfaces,” IEEE Transactions on Visualization and Computer
Graphics, pp. 3–15, 2003.

[33] N. Amenta, M. Bern, and M. Kamvysselis, “A new Voronoi-based surface reconstruc-
tion algorithm,” pp. 415–421, 1998.

[34] J. Boissonnat and F. Cazals, “Smooth surface reconstruction via natural neighbour
interpolation of distance functions,” pp. 223–232, 2000.



14 BIN DONG AND ZUOWEI SHEN

[35] N. Amenta, S. Choi, and R. Kolluri, “The power crust,” pp. 249–266, 2001.
[36] B. Mederos, N. Amenta, L. Velho, and L. de Figueiredo, “Surface reconstruction from

noisy point clouds,” p. 53, 2005.
[37] T. Dey and S. Goswami, “Provable surface reconstruction from noisy samples,” Com-

putational Geometry, vol. 35, no. 1-2, pp. 124–141, 2006.
[38] M. Crandall and P. Lions, “Viscosity solutions of Hamilton-Jacobi equations,” Trans-

actions of the American Mathematical Society, pp. 1–42, 1983.
[39] H. Zhao, “A fast sweeping method for eikonal equations,” Mathematics of computa-

tion, vol. 74, no. 250, pp. 603–628, 2005.
[40] H. Pottmann and M. Hofer, “Geometry of the squared distance function to curves

and surfaces,” Visualization and mathematics III, pp. 221–242, 2003.
[41] Y. Duan, L. Yang, H. Qin, and D. Samaras, “Shape reconstruction from 3D and 2D

data using PDE-based deformable surfaces,” Computer Vision-ECCV 2004, pp. 238–
251, 2004.

[42] F. Chan and L. Vese, “Active contours without edges,” IEEE Transactions on image
processing, vol. 10, no. 2, pp. 266–277, 2001.

[43] T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for finding global minimizers
of image segmentation and denoising models,” Siam J Appl Math, vol. 66, pp. 1632–
1648, Jan 2006.

[44] J. Cai, S. Osher, and Z. Shen, “Linearized Bregman iterations for frame-based image
deblurring,” SIAM J. Imaging Sci, vol. 2, no. 1, pp. 226–252, 2009.

[45] G. Dal Maso, Introduction to Γ-convergence. Birkhauser, 1993.
[46] T. Goldstein and S. Osher, “The split Bregman algorithm for L1 regularized prob-

lems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–343, 2009.
[47] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized nonlocal regularization

for deconvolution and sparse reconstruction,” SIAM Journal on Imaging Sciences,
vol. 3, p. 253, 2010.

[48] G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,”
Multiscale Model Sim, vol. 7, pp. 1005–1028, Jan 2008.

[49] L. Bregman, “The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming,” USSR Compu-
tational Mathematics and Mathematical Physics, vol. 7, no. 3, pp. 200–217, 1967.

[50] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization
method for total variation based image restoration,” Multiscale Model. Simul, vol. 4,
no. 2, pp. 460–489, 2005.

[51] E. Esser, “Applications of Lagrangian-based alternating direction methods and con-
nections to split Bregman,” CAM Report, vol. 9, p. 31.

[52] X. Tai and C. Wu, “Augmented Lagrangian method, dual methods and split Bregman
iteration for ROF model,” Scale Space and Variational Methods in Computer Vision,
pp. 502–513, 2009.

[53] R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods
in nonlinear mechanics. Society for Industrial Mathematics, 1989.

[54] S. Setzer, “Split Bregman algorithm, Douglas-Rachford splitting and frame shrink-
age,” Scale Space and Variational Methods in Computer Vision, pp. 464–476, 2009.

[55] D. Donoho, “De-noising by soft-thresholding,” IEEE transactions on information
theory, vol. 41, no. 3, pp. 613–627, 1995.

[56] P. Combettes and V. Wajs, “Signal recovery by proximal forward-backward splitting,”
Multiscale Modeling and Simulation, vol. 4, no. 4, pp. 1168–1200, 2006.

[57] Y. Wang, W. Yin, and Y. Zhang, “A fast algorithm for image deblurring with total
variation regularization,” Rice University CAAM Technical Report TR07-10, 2007.


