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SUMMARY

In reflection seismology, seismic waves are recorded at the sur-
face of the earth and migrated to image the subsurface. In
mathematical terms, this is a boundary-value problem for the
wave equation, where the boundary data are the recorded seis-
mic wavefields. Gaussian beams, which are localized solu-
tions of the wave equation, can be used for seismic migration.
However, before Gaussian beams can be used for a solution
of the boundary-value problem, the recorded data have to be
represented in a compatible form. We present a new method
for decomposing seismic data as a sum of Gaussian beams,
based on transforming boundary data to a propagating wave-
field. A simple synthetic seismic migration example illustrates
our method and shows how different classes of Gaussian-beam
parameters (such as curvature and extent) control the accuracy
and sparseness of data representation.

INTRODUCTION

Gaussian beams, which are localized solutions of the wave
equation, have been used successfully in seismic migration ap-
plications (Hill, 1990, 2001; da Costa et al., 1989; Alkhalifah,
1995; Nowack et al., 2003; Gray, 2005; Popov et al., 2010;
Protasov and Tcheverda, 2011). Gaussian beam migration re-
tains the advantages of Kirchhoff migration (such as the abil-
ity to handle steep dips) while being able to handle the issue
of multipathing, which presents significant difficulties for tra-
ditional Kirchhoff implementations (Gray et al., 2002). In ad-
dition to their role in imaging, Gaussian beams also provide
a convenient data analysis tool: by decomposing seismic data
into beams, it is possible to track the role and contribution of
each beam in the data processing flow (Hill et al., 2002).

To use Gaussian beam methods in imaging, one must first rep-
resent the recorded seismic data in a compatible form. Tanu-
shev et al. (2009) present a method for decomposing a wave-
field into a superposition of Gaussian beams. The method is a
greedy iterative approach that represents as much of the wave
energy as possible using a single Gaussian beam through a lo-
cal optimization of the Gaussian beam parameters. Then, the
Gaussian beam wavefield is subtracted from the total wavefield
and then procedure is iterated.

Using a similar optimization procedure directly on the bound-
ary data is inherently difficult, since the Gaussian beam param-
eters depend on time and while for a fixed time the Gaussian
beam has small essential support (the set on which the magni-
tude of the beam is bigger than a small threshold), its essential
support may be quite spread out in the time-space domain.

To avoid this difficulty, we propose a method for transforming
boundary data into a wavefield, performing a Gaussian beam

decomposition of this wavefield, then propagating the Gaus-
sian beam parameters back to the boundary to obtain a decom-
position of the boundary data into a superposition of Gaussian
beams. The boundary data transformation can be viewed as the
solution operator for the wave equation which maps the given
boundary data to the wavefield data at the final time 7. The
domain of dependence and cone of influence (i.e. the finite
speed of wave propagation) for the wave equation guarantee
that the same information will be contained in the boundary
data and in the wavefield. For the solution operator, we use the
a constant-coefficient wave equation. Since the Gaussian beam
parameters are propagated back to the boundary, the choice of
the wave equation is arbitrary as long as it is used consistently.
For simplicity, we assume marine data (constant water veloc-
ity at the surface) and use the classical wave equation with
the water velocity. Thus, the solution can be expressed via
Fourier transform, and the Gaussian beam coefficients can be
propagated back to the boundary using exact formulas or by
integrating the ray-tracing system numerically.

In the example presented in this paper, we use a modified
version of the greedy algorithm described by Tanushev et al.
(2009) to decompose the wavefield that is obtained by trans-
forming the boundary data. This method is designed for cases
in which the wave energy concentrates in relatively small re-
gions. However, we note that any decomposition method can
be used, including methods based on expectation maximiza-
tion (Ariel et al., 2011), methods based on the FBI transform
(Qian and Ying, 2010), and others. We further note that our
approach can be applied not only with Gaussian beams, but
also to other recently proposed localized beam-type represen-
tations, such as curvelets (Chauris and Nguyen, 2008), wave-
packets (Qian and Ying, 2010; Duchkov et al., 2010), frozen
Gaussians (Lu and Yang, 2011), etc.

THEORY

In this section, we briefly review some mathematical proper-
ties of the wave equation and Gaussian beams. For a detailed
construction of Gaussian beams with the similar notation, we
refer the reader to Ralston (1982) or Tanushev (2008). We will
use the shorthand notation X = (¥, z).

We consider the wave equation,

uy —cA(F,2)Au=0 for (£,%z)€[0,T] xR xR_,
u=f@t,x) on z=0, (1)
u=u=0 at =0,
for n =2 or 3. We will assume that the data f(z,X) given at
z=0is a compactly supported function in (#,X). We will refer
to this data as “boundary data”, as opposed to a “wavefield”
which will refer to the wavefield and its time derivative at a
fixed ¢. Since boundary data do not contain any information
about the z derivative of the wavefield, we will also make the
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assumption that all of the wave energy that we are interested
in propagating is in the positive z direction.

The initial value problem for the wave equation (1) is well
posed in the energy norm,

1/2
et e = [ [l 02+ w97 ax)
Associated with this norm is the pointwise energy function,

Elu,u)(2,%) = |y (1,%) > + | Vu(t,%) > .

Gaussian beams are approximate localized solutions of the ini-
tial value problem for the wave equation that can be written as
uGp(t,X) ~ a(t)e®®X) with k> 1 and ¢ given by the Taylor
polynomial

¢(,%) =p(1)- X=y()) + %(ﬁf?(t)) M) (X=y(1)) .
Thus, the parameters that define the Gaussian beam wavefield
are the large parameter k, the Gaussian beam center y(z), the
oscillation direction p(¢), the complex valued Hessian matrix
M(t), and the amplitude a(¢). All of the time dependent pa-
rameters satisfy ODEs in time and can be easily propagated in
time given initial values. The Hessian matrix M (r) will always
have a positive definite imaginary part provided that it does
so initially, see Ralston (1982). This positive definite property
gives Gaussian beams their name and the localization of the
wavefield. Gaussian beams satisfy the wave equation asymp-
totically as k — oo.

Since the wave equation is linear, we can take N Gaussian
beams with different sets of initial parameters and sum them to
obtain a more general approximate solution to the wave equa-
tion. This approximate solution will have initial data of the
form

N
Z aj (1) 01 %;) , 0 [aj (t)eikj%(ff‘l?j)]
j:1 =0 =0
and boundary data of the form
N
Zaj(l)eikf‘pf(”i;yf) .
j=1 z=0

To use Gaussian beams for migration, we must find sets of
parameters so that the above sums approximate the given data.

BOUNDARY DATA DECOMPOSITION

The decomposition algorithm for boundary data includes three
major components: transformation of the boundary data into
a wavefield, decomposition of the wave field into a superpo-
sition of Gaussian beams, and propagation of Gaussian beam
parameters back to the boundary. We describe the details of
each of these steps separately. A schematic representation of
the algorithm is shown in Figure 1 for the 1-D spatial dimen-
sion case.
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Figure 1: Schematic description of the boundary data decom-
position algorithm in 1-D: (a) propagate wave to final time 7,
(b) decompose the wavefield at time 7', (c) pull back Gaussian
beam parameters to z = 0.

Transformation of Boundary Data into a Wavefield

As described in the introduction, the first step is to transform
the boundary data, f(¢,X), into a wavefield (u(¢,X),u;(,X)) at
time # = 7. Naturally, this transformation should keep all the
recorded wave information while not introducing any new in-
formation. We assume that the boundary data , f(¢,X), is given
for 7 € [0,T], has compact support in ¥, and that f(0,%) = 0 and
f(T,X) =0. We consider the following propagation equation,

(t,%2) € [0, T] xR"' xRy,
2=0, @)
t=0,

Uy —uy +Dzu=0 for
u=f(tXx) on

u=u =0 at
so that the propagation is considered in the positive z direction.

Recall that the Laplace transform is defined by
Zgl(s) :/ e Vg(t)dt with seC,
0

and extend the given boundary data f(z,X) by zero to all of
[0,00) x R, We take the Fourier transform in ¥ — & and the
Laplace transform in # — s of u and denote it by ii = £ [.F [u]].
Then, equation (2) becomes

i — (P +|EP)ia=0 for (s5,&,2) eCxR" xR, (3)
i=f(s,§) on z=0,

after recalling that Z[g"](s) = s>.%[g](s) — sg(0) — g’ (0) and
applying the initial conditions for u. The general solution of
equation (3) is given by (Gazdag, 1978)

i(s,E,2) = 1V HEP 4oy eVsHHIGR

To satisfy the boundary conditions, we impose that as ¢ in-
creases all waves are propagating into z > 0. Before we im-
pose this condition on the solution, let us recall the inversion
formula for the Laplace transform,

1 Y+iT

27VG)(t) = lim —

SZG d
T—oo 2TT0 y—iT ¢ (S) o

where ¥ is chosen so that G(s) is well defined for all s on the
integration contour. Since in our application, all of the func-
tions are compactly supported in #, we can choose ¥ = 0 and
then the inversion formula above is simply the inverse Fourier
transform in T — ¢, with s = —it:

Va1, E,2) = % [ ie*iﬂa(ﬂ-c,g,z)m .
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Thus, the propagation into the z > 0 domain can be described
in the Fourier domain. The propagating Fourier modes of solu-
tions of the wave equation, exp(i(& - X+ {z+ 7)), must satisfy
the relation 72 = |E|> 4 2. Since 7, & and ¢ are real, we
have that 72 — |£|> > 0 and § = 41/72 — |E|2. This observa-
tion has two implications: first, f(—it,&) =0 for 72 < |E|?
and second, the Fourier modes which propagate in the positive

z-direction take the form e/(6-¥+2V/ T =I8P=7) for £ > 0 and

e i(E T2y o[+ 1) for 7 < (. Consequently, we obtain

d(in = | TCOEVTER rz0,
U f(min, €)eiVEEP | r <0,

The above formulation defines a unique wavefield at t = T,
given by

u(T,x,2) =2 7]

t=T
w(T,x,2) =2 [=inF ]

=T

In order to obtain a numerical solution, we compute the Fourier
transform in the X variable using the fast Fourier transform
(FFT). We compute the Laplace and inverse Laplace trans-
forms by discretizing the integrals directly. We use an adaptive
grid for the inverse Laplace transform to minimize the errors
and computational time.

Wavefield Decomposition

Once the wavefield is computed at time 7', we decompose it
into Gaussian beams. For the decomposition, we use a vari-
ation of the algorithm proposed by Tanushev et al. (2009).
This algorithm assumes that the large parameter k is unique
and known. This assumption is not adequate for seismic data,
since there is no single dominant frequency in the data. We
determine each frequency band adaptively from the wavefield
that is being decomposed in a greedy manner. Guided by the
Fourier transform of a plane wave modulated by a Gaussian,

S ATp) 232
Py [e:kp-y—k\y\ /2>] — o (MDY 2%

we use pr(n) = e~ (N=k?/2k (o define the frequency band.
To find k at each step of the algorithm, we scan through the
possible values for £ and pick the band that contains the most
energy. The algorithm can be summarized as follows. Let
j=1and (u®,u?) = (u,u;). Then,

1. Let k; be given by

kj = argmax E [uj’l * (fflpk) 7u{fl * (fi’lpkﬂ .
0<k<Kkmax

2. Define (wj,w{) = (u™1, utj_l) * (ﬁz’lpk/).

3. Apply the algorithm of Tanushev et al. (2009) to (w/ wi )
with k = k; and obtain L; Gaussian beams with wavefields,
(ugg, 8tugg), ¢=1,...,L;. Briefly:

a. Find the Gaussian beam center:
¥o = argmaxg{E[V', v{]}
b. Find the propagation direction:
with G(X) = exp(—k|%X —¥,|*/2), let A
B = g argmaxg {| 7 v/ (X)GR)]|+ |7 v/ (%) G(X) /K] [}

c. Let the Hessian matrix be given by My = il, with I the
identity matrix.

d. Choose ¢ = +|p| and a, by an inner product so that

the Gaussian beam (uég, a,ugf;) defined by these pa-

rameters best approximates (v, vY).

e. 1. Version 1. No optimization.
ii. Version 2. Optimize the position y,; and propaga-
tion direction py locally.
iii. Version 3. Optimize ¥, p; and the real part of M,
locally.
iv. Version 4. Optimize all of the Gaussian beam pa-
rameters locally.
e. Let (V1 v+ = (of — uéf; vl — Blugf;), increment
¢ and repeat from step 3a. until E[v/*! v/*1] is small
enough or a maximum number of beams is reached.

i Y — (i1 Lj jt o j-1 Lj 5 jt
6. Let (u/,u)) = (v —Z(/ Ulp > U _ZZ] (:);MGB).
7. Increment j and repeat starting with step 1., until E[u/, u]]

is smaller than a predetermined tolerance or a maximum
number of Gaussian beams has been reached.

“Version I” of the algorithm is simply the initialization steps
of the decomposition algorithm of Tanushev et al. (2009) and
“Version 4” is the entire algorithm. The four versions of the
algorithm are progressively more computationally intensive.
However, with more optimization, the Gaussian beam repre-
sentation of the wavefield is more sparse. We show a compar-
ison the different versions in figure 2 for the synthetic seismic
example from the next section.
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Figure 2: A comparison between the different versions of the
decomposition algorithm. Note that the jagged structure of the
H! norm difference is due to the fact that from each frequency
band a fixed number of beams is extracted.

Back Propagation of Gaussian Beam Parameters

Once the Gaussian beam parameters are obtained in the de-
composition step above, they need be propagated back to the
z = 0 surface. Since the velocity is constant in the z > 0 re-
gion, the rays are straight lines and the time 7 at which they
intersect the z = 0 plane can be found analytically. All Gaus-
sian beam parameters are propagated back to this time ¢ using
the Gaussian beam ODEs.
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SYNTHETIC SEISMIC EXAMPLE

We use a simple synthetic example to illustrate the proposed
method. The seismic velocity is given by ¢(z) = 1.5+ z km/s
(linearly increasing with depth). The synthetic zero-offset data
is shown in Figure 3. We apply version 4 of the decomposi-
tion algorithm described in this paper with 10 Gaussian beams
per frequency band and 20 frequency bands for a total of 200
beams. After the Gaussian beam parameters have been recorded
on the boundary data surface, the beams are migrated into the
subsurface using standard Gaussian-beam techniques. Several
stages of the results of the decomposition and migration are
shown in Figure 4. We note that the migration was carried out
by propagating each Gaussian beam to half of time at which
the Gaussian beam appears on the boundary surface z = 0 (zero
offset migration).

Boundary data

Figure 3: Zero-offset synthetic seismic data.

SUMMARY

We propose an algorithm for decomposing seismic data into
a superposition of Gaussian beams with the ultimate goal that
the Gaussian beams will be used for seismic imaging. The
method has three main components: First, the recorded seis-
mic data are transformed from boundary data into a wavefield
at a fixed time. Second, this wavefield is then decomposed into
Gaussian beams using a previously developed method. Finally,
the Gaussian beam parameters are propagated to represent the
seismic data at the surface. Although we present only a simple
2-D zero-offset example, the method is general and applicable
to prestack 3-D data decompositions.

The reason for developing this algorithm rather than decom-
posing the recorded seismic data directly into Gaussian beams
is that at a fixed time, the absolute value of the wavefield of a
single beam is a Gaussian distribution. In contrast, the abso-
lute value of the wavefield can have a much more complicated
behavior on the boundary. We further note that this difficulty
exists not only for Gaussian beams, but also for other localized
beam-type wave representations and any other wave propaga-
tion methods that rely on localized-wave solutions. Thus, the
algorithm presented here can be used with other beam type ap-
proximations, with the second and third step replaced by the
appropriate decomposition and propagation.
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Figure 4: Boundary data representation with Gaussian beams
and the associated migrated image.
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