
  

Abstract—Image frames from dynamic MRI can be abstracted 

as the superposition of the background component, which is 

temporally coherent, and the motion component, which is spatially 

sparse, up to the proper basis. Inspired by their distinct 

characterizations, we introduce the divide-and-conquer 

spatiotemporal matrix decomposition approach, namely Prior 

Rank, Intensity and Sparsity Model (PRISM). Here the temporal 

coherence of the background component is enforced by the rank 

regularization and the spatial sparsity of the motion component is 

promoted by the sparsity regularization in framelets. The 

validation with both synthetic and experimental cardiac data and 

the comparison with the state-of-art reconstruction methods show 

that PRISM is feasible for maintaining the reconstruction quality 

with much fewer samples. The consequent reduction of data 
acquisition time can relax the breath-holding constraint with 

possibly less respiratory motion artifact and more regular heart 

rate in cardiac cine imaging, and enable the imaging of patients 

with faster heart rate in real-time cardiac cine imaging. 

 
Index Terms—Compressive sensing, matrix completion, robust 

PCA, low rank, sparsity, framelet, dynamic MRI, cardiac MRI. 

 

I. INTRODUCTION 

YNAMIC MRI reconstructs a temporal series of images to 

resolve the motion or the variation of the imaged object. It 

often occurs that the image frames to be reconstructed are 

dynamically correlated, which we term as “image coherence”. 

As a result, the acquired MR data in k-t space are also 

dynamically coherent, which we name as “data redundancy”. 

Over the years numerous spatiotemporal strategies have been 

proposed to accelerate dynamic MRI or improve reconstruction 

quality by exploring image coherence and/or data redundancy 

explicitly or implicitly. Some recent work includes UNFOLD 

[Madore99], k-t BLAST and k-t SENSE [Tsao03], HYPR 

[Mistretta06], k-t SPARSE [Lustig06], Partially Separable 

Functions (PSF) [Liang07], k-t FOCUSS [Jung09], k-t PCA 

[Pedersen09] and k-t SLR [Goud10]. 

Cardiac MRI, as perhaps the most challenging and inspiring 

dynamic MRI application, serves nowadays as a major imaging 
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modality for noninvasive diagnosis of heart disease in clinic 

practice [Lee05, Finn06]. With fast scanning, such as the high-

speed spiral sampling [Ahn86, Meyer92], which can be further 

enhanced by the parallel imaging [Sodickson97, 

Pruessmann99], cardiac MRI offers cine reconstruction of the 

beating heart through steady-state free precession (SSFP) cine 

imaging or real-time SSFP cine imaging. 

A major need of cardiac MRI is the simultaneous realization 

of higher spatial and temporal resolution. However, they 

usually conflict each other [Lee05]. For example, in the ECG-

gated cardiac cine imaging, both resolutions are limited by the 

tradeoff balance between them and the acquisition time, while 

the acquisition time is inherently limited by individual breath-

holding time. On the other hand, despite without gating or 

breath-holding, the real-time cardiac cine imaging also suffers 

from the low resolution since the acquisition window is 

intrinsically restricted by the R-R interval. 

In this paper, we are going to present a new model by further 

exploring the use of image coherence and data redundancy. 

Our approach addresses the question of maintaining the image 

quality with the least amount of the data. As a result, the total 

data acquisition time can be significantly reduced. In turn, the 

consequent relaxed requirement on the breath-holding time 

alleviates respiratory motion artifacts and regularizes the heart 

rate in cine imaging; the reduced data acquisition time allows 

the real-time cine imaging of the patients with fast heart rate. 

That is, we introduce the “divide-and-conquer” 

spatiotemporal matrix decomposition approach, namely Prior 

Rank, Intensity and Sparsity Model (PRISM), for dynamic 

MRI with emphasis on cardiac MRI. PRISM is motivated by 

the abstracted observation that dynamically correlated images 

can usually be approximated by the superposition of the 

background component and the motion component. Here, the 

background component refers to temporally stationary or 

slowly varying component, and thus has a large degree of 

dynamic similarity or coherence; the motion component refers 

to dynamically moving or rapidly changing component, which 

is usually either sparse itself or can be sparsified in certain 

basis. The reason of this decomposition treatment is that each 

component can be mathematically regularized according to its 

own different characteristic. Thus we first “divide” the 

dynamic images into two matrix components in model, and 

“conquer” both components in reconstruction. Please notice 

that both components are assumed to be unknown and 

recovered simultaneously rather than to have been divided 

prior to the image reconstruction. 
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Specifically, we enforce the temporal similarity or coherence 

of the background component through the rank regularization, 

and regularize the motion component through the sparsity 

regularization. Here both regularizations are with respect to the 

proper basis, i.e., in the transform domain rather than in the 

image domain. Moreover, other general prior facts or specific 

prior knowledge, such as the intensity characteristics of 

structures, can be based upon in PRISM. These ingredients are 

exactly the critical components and the name origin of PRISM. 

This matrix decomposition idea was originally proposed and 

analyzed for the rank-sparsity incoherence [Chandrasekaran09] 

and the so-called Robust PCA (Principle Component Analysis) 

(RPCA) [Candes10]. In particular, the rank regularization in 

the context of matrix completion [Recht10, Candes09] can be 

regarded as sparser representation for matrices than the 

traditional sparsity for vectors [Donoho06, Candes06]. Inspired 

by RPCA, we have generalized it in the more appropriate form 

for image processing and medical imaging, with existing 

applications in computed tomography (CT). The first 

generalization, namely RPCA-4DCT model, included the 

sparsity regularization in the transform domain, such as total 

variation (TV) or tight framelet (TF) transform [Gao10]. 

Please notice that, due to its multilevel structure and redundant 

representation, the sparse regularization with TF is more 

efficient than that by TV or wavelet. The second 

generalization, i.e., PRISM, incorporated the rank 

regularization in the transform domain as well, besides the 

inclusion of intensity priors [Gao11]. 

Among the existing dynamic MRI techniques, several 

methods utilized the global property of the spatiotemporal 

matrix as a single entity, such as the use of PCA in k-t PCA 

[Pedersen09], the use of rank regularization based on PSF 

[Zhao10, Haldar10], the use of hybrid rank and sparsity 

regularization in k-t SLR [Goud11], and the presented results 

there showed that the global regularization for enforcing the 

image coherence considerably improves the reconstruction 

quality.  

However, it is rarely the case that the dynamic images are 

low-rank. It should be more appropriate to model them as the 

supposition of the low-rank background component and the 

sparse motion component.  

In the next section we will formulate the divide-and-conquer 

PRISM for dynamic MRI in the setting of cardiac MRI. Its 

validation will be presented with both synthetic and 

experimental data in the result section, where we will compare 

PRISM with the start-of-art techniques, such as sparsity 

regularization [Lustig07, Jung09], rank regularization [Zhao10, 

Haldar10], and hybrid rank and sparsity regularization 

[Goud11]. 

II. METHODOLOGY 

A. Image Coherence and Data Redundancy 

By image coherence, we mean the temporal similarity or 

coherence among image frames that often arise in dynamic 

MRI. By data redundancy, we mean the consequent data 

correlation or redundancy in k-space. By fully exploring the 

use of both image coherence and data redundancy, the scope of 

this article aims at maintaining the reconstruction quality with 

the least amount of data with emphasis on cardiac MRI. 

Consequently, the reduction of data acquisition time can relax 

the breath-holding constraint with less respiratory motion 

artifact and more regular heart rate in cardiac cine imaging, 

and enable the imaging of patients with faster heart rate in real-

time cardiac cine imaging. 

To utilize the image coherence, we will introduce the divide-

and-conquer approach via PRISM. That is we view dynamic 

image frames as the supposition of the background component 

and the motion component, since each component can be 

mathematically regularized differently according to its own 

characteristic, i.e., the low-rank matrix regularization for the 

background component, and the sparse matrix regularization 

for the motion component, with row in space and column in 

frame. Despite the fact that cardiac image frames are rarely 

stationary or low-rank due to the motion, through PRISM, they 

are first “divided” into the coherent background component 

and the sparse motion component, and “conquered” through 

the appropriate mathematical regularization and solution 

algorithm. As a side remark, we can think of the low-rank 

matrix characterization as sparser transform than the frame-

wise spatial sparse regularization, which intuitively allows to 

reconstruct with fewer data. 

We briefly discuss the reduction of data redundancy for the 

potential speedup of dynamic MRI. First it is important to 

realize that the full dynamic dataset is redundant, which is the 

consequence of the image coherence between frames, i.e., the 

background component. In Sec. IIB, we will introduce a 

dynamic sampling strategy that, together with PRISM, is 

potentially capable of maintaining the image quality with much 

fewer samples. The key is to form the sampling pattern that is 

complementary between frames while being specific to each 

frame. 

B. Dynamic Spiral Sampling 

 
To reduce the total data acquisition time, we adopt a 

dynamic sampling strategy as illustrated in Fig. 1. That is, 

instead of collecting all samples, we acquire samples partially 

 
Fig. 1. Dynamic Spiral Sampling. The data samples for reconstructing an 

individual MRI image frame are acquired at the dynamically interleaved 

spiral interleaves in a periodic fashion. In this illustrative example, the 

dynamic spiral sampling pattern is repeated for every 4 MRI image frames, 

and the spiral interleaves belonging to each frame are colored differently. 

Therefore, 25% partial data are acquired, and the total data acquisition time 

can be reduced to ¼ or the temporal resolution can be increased by 4-fold. 



 

 

 

 

 

along those dynamically interleaved spiral interleaves in a 

periodic fashion. In any period, each interleaf is collected for 

one and only one frame so that there is no missing or 

overlapping of interleaves. 

The immediate benefit of this dynamic sampling is the 

reduction of the total data acquisition time, which is 

proportional to the number of interleaves for each frame. 

Consequently, it promises us the access to cardiac cine imaging 

with higher temporal resolution or/and less breath-holding 

time, and real-time cardiac cine imaging with higher temporal 

or/and spatial resolution. For example, assuming 256 

interleaves as the full dataset for each frame, 640 milliseconds 

as the usable R-R interval (TH), 4 milliseconds as the 

repetition time (TR), and 8 views per segment (VPS), the total 

acquisition time is about 20 seconds and the temporal 

resolution is 32 milliseconds with 20 frames. Using 8-fold 

downsampling, the possible gains include: the reduction of the 

total acquisition time to 2.5 seconds, which is almost breath-

holding free; the 4 milliseconds temporal resolution with 160 

frames; multi-slice imaging with 8 slices and 20 frames each. 

The above gains can be further increased through the parallel 

imaging and view-sharing technique. 

However, without the proper reconstruction method, the 

MRI image quality can be severely degraded due to the 

downsampling. Before introducing our new reconstruction 

model PRISM and its solution algorithm, let us notice that the 

interleaves for individual frames in Fig.1 form complementary 

views so that any interleaf is covered for certain frame during 

each period. In this way, despite its downsampling, the 

proposed dynamic sampling strategy periodically fills up the 

missing common features for all frames, when in conjunction 

with PRISM. 

C. Forward Model: Regridding Method via Oversampling 

 
To bridge from Cartesian grid to spiral grid in k-space, the 

appropriate interpolation, i.e., the regridding method, is 

required. Please note that we need the interpolation from 

Cartesian grid to spiral grid, not vice versa, since we will 

formulate the reconstruction problem as the model-based 

optimization problem in PRISM. 

To maintain the accuracy of the regridding, we employ the 

oversampling strategy (Fig. 2). That is we first oversample the 

k-space (Fig. 2(b)), and then interpolate with the standard 

bilinear form (Fig. 2(d)). Due to its redundancy, this 

oversampling strategy reduces the interpolation error caused by 

the mismatch of grid density between spiral grid and Cartesian 

grid, particularly for the central low-frequency samples. 

Empirically the twice-oversampled Cartesian grid is generally 

sufficient for reconstruction. To avoid the inverse crime, the 

forward data are generated using much larger oversampling 

ratio. For example, 8-fold oversampling is utilized for a 2D 

256µ256 Cartesian grid, during which each spiral sample is 

usually interpolated from four unique Cartesian samples. In the 

future work, we will explore the possibility of more accurate 

regridding methods, such as the use of Pseudo-Polar Grid 

(PPG) together with Pseudo-Polar Fast Fourier Transform 

(PPFFT) that is mathematically exact from Cartesian grid to 

PPG [Averbuch06, Averbuch08, Lustig04], which is 

conceptually similar to the well-known linogram method in 

computed tomography [Buzug08]. 

Consequently, the forward model of spiral MRI can base 

upon this interpolation operator I and the discrete Fourier 

transform F, i.e., the matrix multiplication 

FIM ⋅= ,          (1) 

which maps MRI images to the k-space spiral data. 

Moreover, let Pj correspond to the dynamic selection of 

samples (Fig. 1) for the jth frame with Nt as the number of 

frames, i.e., a diagonally binary matrix with 1 (resp. 0) for the 

samples on (resp. off) the jth trajectory, and thus the system 

matrix of cardiac MRI can be formulated as 

}  ,{ tjj NjMPAA ≤⋅== ,       (2) 

which will be used next in PRISM as the forward model for 

cardiac MRI. To simplify the notation, we will use A for Aj for 

the rest of the paper without further remarks. 

D. PRISM 

The major contribution of this paper is to introduce the 

PRISM for dynamic MRI. As a spatiotemporal model, instead 

of individual reconstructing each frame, PRISM 

simultaneously reconstructs images at all frames using the 

“divide-and-conquer” approach. “Divide” means that all image 

frames as a single entity are modeled as the superposition of 

the background component and the motion component as 

explained in Sec. I and Sec. IIA; “conquer” means that each 

component is targeted with the pertinent mathematical 

regularization. Specifically, the dynamic coherence or 

similarity of the background component is enforced through 

the rank regularization up to certain transform; the sparsity of 

the motion component is promoted through the sparsity 

regularization up to the proper basis. Please notice that both 

mathematical regularizations are consistent with the empirical 

 
Fig. 2. Cartesian Oversampling. Here blue dots are on the Cartesian grid, red 

circles are on the spiral grid, and black squares are the corresponding 

nearest-neighbor Cartesian grid for the spiral grid. (a) The standard 

Cartesian grid; (b) the twice-oversampled Cartesian grid; (c) zoom-in view 

of the interpolation from the standard Cartesian grid to the spiral grid; (d) 

zoom-in view of the interpolation from the twice-oversampled Cartesian grid 

to the spiral grid. 



 

 

 

 

 

fact that, image frames usually share the similar background, 

while each frame has its unique feature that are approximately 

sparse in certain basis. This motivated the PRSIM [Gao11], 

which generalizes the model in [Gao10]. 

Because of the fusion of all frames through PRISM, dynamic 

images to be reconstructed are a single matrix rather than 

multiple vectors. That is 

[ ]
tNj xxxX LL1= ,      (3) 

where X is the matrix representing dynamic images with Nt 

temporal frames, and xj is the column vector corresponding to 

the sorted spatial pixels in the jth frame. 

Following the “divide-and-conquer” approach, as an 

alternative for directly reconstructing X, we introduce a pair of 

unknown matrices: XL denotes the low-rank background 

component and XS denotes the sparse motion component. 

SL XXX += .         (4) 

As mentioned in Sec. I and Sec. IIA, this decomposition (4) 

offers an alternative view of dynamic images that is consistent 

with the practice. More importantly, it is mathematically 

pertinent since each component can be regularized accordingly 

with its unique feature, i.e., the temporal rank of the 

background and the spatial sparsity of the motion. Besides, it is 

sometimes desirable to separate the motion from the 

background, which is exactly the outcome of (4). Moreover, 

we can obtain both components with roughly the same 

computational cost for X, using the split Bregman method in 

Sec. IIE. 

The goal of PRISM is to recover both XL and XS. And X can 

be obtained as a consequence of (4). The “conquer” step in 

PRISM is through the following regularization, 

||||||)(||||)(||)( 11* XXTXTXR tSSLL λλλ ++= ∗ ,  (5) 

where TL (resp. TS) denotes some proper transform so that the 

component is more low-rank (resp. sparser), ||·||* the nuclear 

norm for penalizing the matrix rank, which is defined as the 

sum of its singular values {σk} with the regularizing parameter 

λ* , i.e., 

∑=
k kX σ*|||| ,        (6a) 

||·||1 the L1 norm for promoting the sparsity, which is defined as 

the absolute sum of its entries or the sum of the L1 norm of 

each column vector (image frame) with the regularizing 

parameterλ1, i.e.,  

∑=
j jxX 11 |||||||| ,          (6b) 

and ||·|| is certain regularizing norm on the total images with the 

regularizing parameter λt. 

In this study, we select TL to be the identity transform and TS 

to be the tight framelet transform (TF) [Ron97, Daubechies03, 

Dong10] denoted by W, and the regularization norm on total 

images X to be W as well. That is, 

11* ||||)||||||(||)( WXWXrXXR tSL λλ ++= ∗ ,    (7) 

and the choice of parameters will be clarified in Sec. IIE. TF 

can be regarded as a generalization of total variation transform 

[Rudin92] and wavelet transform [Daubechies92]. Due to its 

multiscale structure and redundant representation, TF is 

extremely rich in terms of the dictionary for sparse 

representation. In this study, a multilevel tight framelet 

decomposition without downsampling under the Neumann 

(symmetric) boundary condition is used with piecewise linear 

framelets [Chai07, Cai08]. 

Combining the forward model (2) of cardiac MRI and the 

regularization term (7) for modeling background coherence 

and motion sparsity, PRISM is formulated as the following 

optimization problem for solving XL and XS  

)(||||
2

1
minarg),( 2

2
),(

XRYAXXX
SL XX

SL +−= .      (8) 

Please notice that PRISM can be further strengthened when the 

intensity-based prior information on X is available [Gao11]. 

E. Solution Algorithm via Split Bregman Method 

In this section, we develop an efficient solution algorithm to 

the model problem (8) involving the non-differentiable L1-type 

norms. The algorithm is based on split Bregman method 

[Osher05]. That is we optimize (8) with the regularization term 

replaced by its Bregman distance, and consequently (8) is 

simplified to the “add-noise-back” iterative scheme. The 

similar strategy can be utilized for relaxing the non-

differentiable L1 norms by introducing some dummy variables 

[Goldstein09]. We summarize the solution algorithm based on 

split Bregman method in Fig. 3 without deriving it and refer the 

interested readers to [Osher05, Goldstein09, Cai09] for theory 

and other details. 

 
As shown in Fig. 3, the model problem (8) is solved through 

a single split Bregman loop involving four steps. The first step 

 
Fig. 3. Solution Algorithm by Split Bregman Method. The algorithm is 

composed of a single loop with four steps, initialized with zeros, i.e., XL
0= 

XS
0=0, f0=0, dL

0=vL
0=0, dS

0=vS
0=0 and d0=v0=0. Here, dL, dS, and d are 

dummy variables for relaxing the non-differentiable nuclear norm of XL, TF 

norm of XS, and TF norm of X respectively; f and v’s come from optimizing 

the Bregman distance of regularization terms, and are updated with the add-

residual-back formula. Step 1: the update of XL and XS by the standard L2 

minimization. Step 2: the update of dL by SVT formula (9). Step 3: the 

update of dS by the shrinkage formula (11a). Step 4: the update of d by the 

shrinkage formula (11b).  



 

 

 

 

 

corresponds to one iteration step in a standard L2 minimization, 

and the solution is simply from its optimal condition. The 

resulting linear system can be solved through conjugate 

gradient method (CG), during which the explicit matrix 

inversion is avoided by matrix multiplications and additions, 

such as AX and WX.  

The second step has the explicit formula, i.e., the so-called 

singular value thresholding (SVT) [Cai10], 

)( 1
/

1

**

k
L

k
L

k
L vXDd += ++

µλ ,     (9) 

where the thresholding is with respect to singular values σ of 

the input matrix, i.e., 

T

T

VUXD

VUX

⋅−⋅=

⋅⋅=

))0,(max(diag)(

)(diag

τσ

σ

τ

.  (10) 

The major computational cost of (10) is from singular value 

decomposition (SVD). However overall it is computationally 

negligible, since the number of columns of the matrix 

considered here or image frames is considerably small. If 

necessary, the fast computation of SVT can be utilized, such as 

the one without SVD [Cai10]. 

Similarly, the third and the fourth step have the analytical 

solution as well, i.e., the so-called shrinkage formula, 

)( 1
/

1

1*

k
S

k
Sr

k
S vWXTd += ++

µλ ,       (11a) 

)( 1
/

1 kkk vWXTd
tt

+= ++
µλ ,        (11b) 

with the shrinkage operator defined as 

)0,|max(|)sgn(:)( ττ −⋅= XXXT .    (12) 

Please note that the shrinkage formula (11) is a local scalar 

operation for each entry, while SVT (9) is a global matrix 

operation. 

For the regularization parameters in Fig. 3, we recommend  

2/1
21 ),max( −= nnr  and *1* λλµµµ ==== tt ,  (13) 

with n1 (n2) as the number of rows (columns) of the matrix X. 

Here the choice of r is supported by the rigorous analysis for 

RPCA [Candes10]. Empirically, λ*∈[0.1, 10] is sufficient in 

terms of both accuracy and speed. 

Overall, the computationally dominant component of Fig. 3 

is the first step for updating XL and XS. In this step solved by 

CG, it is not necessary to solve it with very high accuracy in 

order for the main loop to achieve fast convergence, besides 

the fact that the resulting linear system from the optimal 

condition has a relatively small condition number for dynamic 

MRI (2). We find that CG with 10 inner iterations is adequate 

for the algorithm to have the acceptable reconstruction 

accuracy within 30 split Bregman iterations. 

F. Summary of Reconstruction Methods for Comparison 

In the result section, we compared the divide-and-conquer 

PRISM (8) with the classic model “FFT” with X regularized by 

L2 norm when the system is underdetermined, i.e., 

2
22 ||||)( XXR λ= ,        (14) 

and other three state-of-art approaches: the model “TF” with X 

regularized by TF norm that is similar to k-t SPARSE 

[Lustig07] and k-t FOCUSS [Jung09] 

11 ||||)( WXXR λ= ,        (15) 

the model “LR” with X regularized by nuclear norm that is 

similar to MC-based PSF [Zhao10, Mallad10] 

∗= ||||)( * XXR λ ,         (16) 

and the model “TF-LR” with X regularized by the hybrid TF 

and nuclear norm that is similar to k-t SLR [Goud11] 

11* ||||||||)( WXXXR λλ += ∗ .   (17) 

G. Comparison Setting with Synthetic Data 

We compared reconstruction results from PRISM and other 

methods with the synthetic cardiac phantom (Fig. 4) as the 

ground truth. To avoid the inverse crime, the spiral data were 

generated with 8-fold oversampling (Fig. 2). In reconstruction, 

the forward model (2) with the twice-oversampled regridding 

method was utilized for all reconstructions. 

 
The synthetic cardiac phantom with 28 temporal frames was 

constructed based upon the 256µ256 Shepp-Logan phantom 

(Fig. 4a) with the dynamic change following the established 

cardiac motion model [Wang02] (Fig. 4b). 

The spiral data were acquired through dynamic sampling 

(Fig. 1) with each period involving 8 frames and 32 interleaves 

for each frame, i.e., 12.5% partial data. This 8-fold reduction 

of k-space spiral interleaves corresponds to the reduction of 

data acquisition time to 1/8 or the increase of temporal 

resolution by 8-fold. The same 1% Gaussian noise was added 

to the data for all reconstructions. 

H. Comparison Setting with Experimental Data 

With the experimental cardiac data, the reconstruction 

images from “FFT” using the full dataset were regarded as the 

ground truth (Fig. 6). Again, the forward model (2) with the 

twice-oversampled regridding method was utilized. 

 The experimental data were measured for a volunteer at 1.5 

Tesla whole body MRI (CHORUS, ISOL Co).  Balanced spiral 

SSFP sequence was used for cardiac cine imaging with a breath 

hold. The repetition time was 4miliseconds with echo time of 

1miliseconds. The number of interleaves was 256, and the 

number of interleaves per segment was 8. Total 28 frames were 

measured.  Flip angle was 15 degrees, slice thickness was 

8mm, and field-of-view (FOV) was 400mm. 

 
Fig. 4. Components of Synthetic Cardiac Phantom: (a) the modified Shepp-

Logan phantom; (b) the cardiac phases according to the established model 

[Wang02]. The temporal variations consist of the intensity increase and the 

area change of the top circle “1” to model the heart motion, the horizontal 

movement of two ellipses “2” to model the lung motion, and the vertical 

movement of the lower central circle “3” to model the small deformation. 



 

 

 

 

 

Ideally, the cardiac data can be acquired directly through 

dynamic sampling (Fig. 1) by modifying the MRI pulse 

sequence accordingly. However, in this proof-of-concept study, 

the full dataset was acquired instead, and then post-selected 

according to the aforementioned dynamic sampling (Fig. 1) to 

form the 25% partial data and 12.5% partial data respectively. 

All the reconstruction results had 28 temporal frames with 

256µ256 spatial resolution. Please notice that the quantitative 

comparison was biased towards “FFT” since the images from 

“FFT” with the full dataset were referred as the ground truth. 

III. RESULTS 

A. Synthetic Cardiac Data 

With the simulation setup in Sec. IIG, the reconstructed 

images from various models in Sec. IIF with 12.5% partial data 

are presented in Fig. 5. 

As shown in Fig. 5, comparing with the synthetic cardiac 

phantom (Fig. 4), the reconstructed image quality was severely 

degraded by the classic approach “FFT”, with spiral artifacts, 

blurring and missing of small features, such as those small 

ellipses at the bottom (Fig. 4(a)); the state-of-art methods 

“TF”, “LR”, and “TF-LR”  improved the image quality, 

however some details were still missing and a few spiral 

artifacts survived; in contrast, PRISM reconstructed not only 

those missing features, but also the overall images with the 

least error. This is also consistent with the quantitative 

comparison with the ground truth as summarized in Table I. In 

summary, it is clear that PRISM offered the best image quality 

due to its divide-and-conquer decomposition approach with 

rank regularization on the background component and sparsity 

regularization on the motion component. 

 

 
 

B. Experimental Cardiac Data 

With the simulation setup in Sec. IIH, the reconstructed 

images from various models in Sec. IIF with 25% partial data 

and 12.5% partial data are presented in Fig. 6 and Fig. 7 

respectively. Here the reconstructed images from “FFT” with 

the full dataset were used as the ground truth for comparison. 

Please note that the zoom-in views of the heart are displayed in 

Fig. 6 and 7 for clarity.  

As shown in Fig. 6 and Fig. 7, PRISM still offered the best 

reconstruction image quality among all methods when using 

the experimental cardiac data. Similar to the comparison with 

synthetic data, “FFT” blurred the images with severe spiral 

artifacts; despite the improved image quality, the state-of-art 

techniques “TF”, “LR”, “TF-LR” still missed some details; in 

contrast, the reconstructed images from PRISM were quite 

satisfactory in terms of overall image quality and small feature 

recovery. The quantitative error is also summarized in Table I.

 
Fig. 5. Reconstructions with 12.5% Synthetic Data. The ground truth in the 1st column was based upon on the synthetic cardiac phantom (Fig. 4). 

With 12.5% partial dataset from dynamic sampling (Fig. 1), reconstructed images with FFT, TF, LR, TF-LR, PRISM are displayed in the 2nd to 

6th columns respectively. 



        

       

 
Fig. 7. Reconstructions with 12.5% Cardiac MRI Data. The ground truth in the 1st column was obtained with FFT using the full dataset. With 

12.5% partial dataset from dynamic sampling (Fig. 1), reconstructed images with FFT, TF, LR, TF-LR, PRISM are displayed in the 2nd to 6th

columns respectively. 

 
Fig. 6. Reconstructions with 25% Cardiac MRI Data. The ground truth in the 1st column was obtained with FFT using the full dataset. With 25% 

partial dataset from dynamic sampling (Fig. 1), reconstructed images with FFT, TF, LR, TF-LR, PRISM are displayed in the 2nd to 6th columns 

respectively. 



III. CONCLUSION 

We have introduced the divide-and-conquer matrix 

decomposition model, namely PRISM, for dynamic MRI with 

emphasis on cardiac MRI. Through model comparison with 

both synthetic and experimental data, we have validated that 

PRISM is superior to some state-of-art approaches, and has the 

potential for maintaining the reconstruction image quality with 

much fewer samples. Here the total data acquisition time of 

experimental cardiac data took roughly 24 seconds. With 

12.5% partial data, the reconstruction result from PRISM was 

quite satisfactory (Fig. 7). If only those 12.5% partial data were 

acquired experimentally, this would correspond to the 

reduction of total data acquisition time to 3 seconds, which is 

almost free of the breath hold. 

In this proof-of-concept study, the dynamic sampling was 

realized through the post-selection of the acquired full spiral 

dataset. In the future work, the real-time dynamic sampling will 

be investigated. 

The regridding method as part of the forward model is 

crucial for the image quality, since Cartesian grid and spiral 

grid have the different sampling density distribution, 

particularly for those low-frequency samples near the origin. In 

the future work, we will further study the regridding method, 

e.g., the one based on PPG together with PPFFT. 

Last but not the least, PRISM should be more robust and 

accurate when incorporating the image registration into the 

model. This would reflect more temporal coherence than the 

current version since the registered images share more 

similarity. As a result, the MRI data can be more redundant 

with respect to the reconstruction to allow for further reduction 

of data acquisition time, or higher temporal or spatial 

resolution in dynamic MRI, particularly cardiac MRI. 
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