
Bregmanized Domain Decomposition for Image Restoration

Andreas Langer∗ Stanley Osher† Carola-Bibiane Schönlieb‡

January 31, 2012

Abstract

Computational problems of large-scale data are gaining attention recently due to better
hardware and hence, higher dimensionality of images and data sets acquired in applica-
tions. In the last couple of years non-smooth minimization problems such as total variation
minimization became increasingly important for the solution of these tasks. While be-
ing favourable due to the improved enhancement of images compared to smooth imaging
approaches, non-smooth minimization problems typically scale badly with the dimension
of the data. Hence, for large imaging problems solved by total variation minimization
domain decomposition algorithms have been proposed, aiming to split one large problem
into N > 1 smaller problems which can be solved on parallel CPUs. The N subproblems
constitute constrained minimization problems, where the constraint enforces the support
of the minimizer to be the respective subdomain.

In this paper we discuss a fast computational algorithm to solve domain decomposi-
tion for total variation minimization. In particular, we accelerate the computation of the
subproblems by nested Bregman iterations. We propose a Bregmanized Operator Splitting
- Split Bregman (BOS-SB) algorithm, which enforces the restriction onto the respective
subdomain by a Bregman iteration that is subsequently solved by a Split Bregman strat-
egy. The computational performance of this new approach is discussed for its application
to image inpainting and image deblurring. It turns out that the proposed new solution
technique is up to three times faster than the iterative algorithm currently used in domain
decomposition methods for total variation minimization.

1 Introduction

Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. We are interested in the
minimization in BV (Ω) of the functional

J (u) := ‖Tu− g‖2L2(Ω) + 2α |Du| (Ω), (1)

where T : L2(Ω) → L2(Ω) is a bounded linear operator, g ∈ L2(Ω) is a datum, and α > 0 is
a fixed regularization parameter [13]. We recall, that for u ∈ L1(Ω)

V (u,Ω) := sup

{∫
Ω
udivϕ dx : ϕ ∈

[
C1
c (Ω)

]2
, ‖ϕ‖∞ ≤ 1

}
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is the variation of u. Further, u ∈ BV (Ω), the space of bounded variation functions [1, 14], if
and only if V (u,Ω) <∞. In this case, we denote |Du|(Ω) = V (u,Ω) the total variation of u.
If u ∈ W 1,1(Ω) (the Sobolev space of L1-functions with L1-distributional derivatives), then
|Du|(Ω) =

∫
Ω |∇u| d x. In order to guarantee the existence of minimizers for (1) we assume

that:

(C) J is coercive in L2(Ω), i.e., there exists a constant C > 0 such that {u ∈ L2(Ω) : J (u) ≤
C} is bounded in L2(Ω).

It is well known that if 1 /∈ ker(T ) then condition (C) is satisfied, see [30, Proposition 3.1].

In image restoration the minimization of the total variation (1), first proposed by Rudin,
Osher and Fatemi [27], plays a fundamental role as a regularization technique, since it pre-
serves edges and discontinuities in images. Since this pioneering work several numerical strate-
gies to perform efficiently total variation minimization have been suggested in the literature,
see for example [2, 4, 5, 6, 7, 8, 10, 12, 19, 25, 26, 30].

In this paper we are concerned with the numerical minimization of (1) for large scale
imaging problems. Due to the continuous improvement of hardware, the dimensionality of
images and measurements in general is increasing, resulting into large-scale data sets that
want to be processed. A typical choice for image enhancement, e.g., image restoration, image
denoising and image deblurring, is total variation minimization (1). While existing state-of-
the-art numerical algorithms for the solution of (1) - as listed above - perform very efficiently
for small- and medium-scale problems, none of them is able to address in real-time extremely
large problems. In these situations subspace correction, domain decomposition and coordinate
descent methods are fundamental allowing us to split the computational workload and solve
a sequence of smaller problems rather than one large problem. Recently such methods have
been successfully introduced for `1-norm and total variation minimization in [15, 16, 17, 28].
In particular, in [17] and [16] decomposition methods for the minimization of (1) have been
proposed, splitting the spatial domain into non-overlapping and overlapping subdomains re-
spectively. Note, that to the best of our knowledge, the latter two contributions are the first
ones to propose a convergent domain decomposition strategy for total variation minimiza-
tion. In both approaches the domain decomposition strategy amounts to minimize a convex
functional under some linear constraints on each subdomain iteratively. These constraints are
needed to ensure the correct treatment of the solution on the interfaces of the domain decom-
position patches, i.e., to preserve crossing discontinuities. In particular, on each subdomain
a constrained optimization problem of the general type

min
u∈H
{F (u) := ‖u− z‖2L2(Ω) + 2α|Du|(Ω) subject to Au = f} (2)

has to be solved, where z and f are functions given on a Hilbert space H and A is a linear
operator in H. For the overlapping domain decomposition method the linear constraint
is simply a trace condition, while for the non-overlapping algorithm the constraint is the
orthogonal projection onto a subspace. In [16, 17] these subminimization problems were
solved by the Iterative Oblique Thresholding, which is based on an iterative proximity map
algorithm and the computation of a Lagrange multiplier by a fixed point iteration, see [17,
Section 4.2].
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1.1 Our Approach

In this paper we are concerned with increasing the performance of the non-overlapping domain
decomposition algorithms proposed in [17], by using a more efficient technique to solve the
subminimization problems (2).

There already exist several numerical methods which solve (2) efficiently, such as the Aug-
mented Lagrange Method [21] and its variations known under the name of Bregman iterations
[26, 31], because of their relation to the Bregman distance. In this paper, instead of using the
Iterative Oblique Thresholding technique proposed in [16, 17], we suggest to use the recently
introduced Bregmanized Operator Splitting technique [32] combined with the Split Bregman
method [19] for the solution of (2). This approach avoids the computation of a costly fixed
point iteration in each domain decomposition step and consequently speeds up the overall
computational time of the domain decomposition algorithms, cf. the numerical examples in
Section 4.

Organization of the paper The rest of the paper is organized as follows. In Section
2 we propose a new algorithm for solving constrained minimization problems occurring in
the subdomains of a domain decomposition. The non-overlapping domain decomposition
approach is studied in Section 3, where also the integration of the new algorithm for such a
approach is discussed. In Section 4 we describe the numerical implementation which we used
for our numerical examples in Section 5.

2 Bregman Algorithms

Let us start this section with introducing some notations, which will be useful in the sequel.
For a convex functional F : H → R̄, we define the subdifferential of F at v ∈ H, as the set
valued function

∂F (v) :=

{
∅ if F (v) =∞
{v∗ ∈ H : 〈v∗, u− v〉+ F (v) ≤ F (u) ∀u ∈ H} otherwise.

It is clear from this definition that 0 ∈ ∂F (v) if and only if v is a minimizer of F . The Bregman
distance, associated with a convex functional F : H → R̄, of the vectors u, v ∈ Dom(F ) is
defined by

Dp
F (u, v) := F (u)− F (v)− 〈p, u− v〉,

for p ∈ ∂F (v). Note that the Bregman distance is not a distance in the usual sense, since it is
in general not symmetric and also the triangle inequality does not hold. However it satisfies
Dp
F (u, v) ≥ 0 and Dp

F (u, v) = 0 if u = v [3].
In [26] the authors proposed the so-called Bregman Iteration to solve constrained opti-

mization problems of the type (2):

Algorithm 1. Bregman Iteration: Let λ > 0 and u(0) = 0 then for k = 0, 1, . . . do

p(k) ∈ ∂F (u(k))

u(k+1) = arg min
u∈H

Dp(k)

F (u, u(k)) + λ‖Au− f‖2L2(Ω)

(3)



Bregmanized Domain Decomposition 4

In [26] the weak convergence of this algorithm to a solution of (2) is ensured and it is
shown that the sequence of residuals (‖Au(k)−f‖)k is monotonically decreasing to zero. Since
the Bregman Iteration is equivalent to an augmented Lagrangian method its convergence is
guaranteed by the results in [18]. Moreover, in [31] it has been shown that the Bregman
Iteration is equivalent to the following simplified iterative scheme:

Algorithm 2. Simplified Bregman Iteration: Let λ > 0. Initialize u(0) = 0 and f (0) = f then
for k = 0, 1, . . . do

u(k+1) = arg min
u∈H

F (u) + λ‖Au− f (k)‖2L2(Ω)

f (k+1) = f (k) −Au(k+1)+f.
(4)

The direct computation of the update u(k+1) in (3) and (4) is sometimes not efficiently
and exactly solvable, in particular if the constraint is ill-posed. In order to overcome this
drawback we may suggest to solve the minimization problem in (4) via a forward-backward
operator splitting, see [8] for more details. In particular, we are interested in the Bregmanized
Operator Splitting algorithm [32], which is based on one forward-backward operator splitting
iteration and a suitable update of the Lagrange multiplier:

Algorithm 3. Bregmanized Operator Splitting (BOS): Let λ, δ > 0. Initialize u(0) = 0 and
f (0) = f then for k = 0, 1, . . . do

u(k+1) = arg min
u∈H

F (u) +
λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω)

f (k+1) = f (k) −Au(k+1)+f.

(5)

This algorithm is ensured to converge to a minimal solution of (2) if 0 < δ < 1
‖A∗A‖ .

Moreover, it is very stable in practice, and is usually easy to implement.
We note that the minimization problem in (5) is equivalent to the famous ROF-problem

[27], i.e.,

arg min
u∈H
‖u− z‖2L2(Ω) + 2α|Du|(Ω) +

λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω)

= arg min
u∈H

∥∥∥∥∥u− 1

1 + λ
δ

(
z +

λ

δ

(
u(k) − δA∗(Au(k) − f (k))

))∥∥∥∥∥
2

L2(Ω)

+ 2
α

1 + λ
δ

|Du|(Ω).

(6)

Hence there exist several numerical methods which solve this problem efficiently, see for
example [4, 5, 11, 19, 20]. Among the fastest is the Split Bregman Method [19], whose main
idea is to consider instead of (6) the following equivalent constrained problem

arg min
u,d
‖u− z‖2L2(Ω) + 2α|d|(Ω) +

λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω) s.t. d = Du.

Solving this constrained minimization problem by the simplified Bregman Iteration we get
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the Split Bregman Method:

(u(`+1), d(`+1)) = argminu,d ‖u− z‖2L2(Ω) + 2α|d|(Ω) +
λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω)

+ µ‖d−Du− b(`)‖2L2(Ω)

b(`+1) = b(`) + (Du(`+1) − d(`+1)),

(7)

where µ > 0. We propose to combine the Bregmanized Operator Splitting with the Split
Bregman Iteration to solve (2), which results in an algorithm using two nested iterations:

Algorithm 4. Bregmanized Operator Splitting - Split Bregman (BOS-SB): Let λ, δ, µ > 0
be regularization parameters. Initialize u(0,L0) = 0 and f (0) = f then for k = 0, 1, . . . do

u(k+1,0) = u(k,Lk), d(k+1,0) = b(k+1,0) = 0
for ` = 0, . . . , Lk+1 do

u(k+1,`+1) = arg minu∈H ‖u− z‖2L2(Ω) + λ
δ ‖u− (u(k,Lk) − δA∗(Au(k,Lk) − f (k)))‖2L2(Ω)

+µ‖d(k+1,`) −Du− b(k+1,`)‖2L2(Ω)

d(k+1,`+1) = arg mind 2α|d|(Ω) + µ‖d−Du(k+1,`+1) − b(k+1,`)‖2L2(Ω)

b(k+1,`+1) = b(k+1,`) +Du(k+1,`+1) − d(k+1,`+1)

f (k+1) = f (k) −Au(k+1,Lk+1)+f.
(8)

The number of inner iteration Lk is chosen such that ‖u(k,Lk) − u(k,Lk−1)‖ ≤ tol.

3 Non-overlapping domain decomposition

In this section we discuss the minimization of functional (1) by using the non-overlapping
domain decomposition approach suggested in [17] and propose to solve the corresponding
subminimization problems with the help of Algorithm 4.

We decompose the spatial domain Ω into two disjoint subdomains Ω1 and Ω2 such that
Ω = Ω1 ∪ Ω2 and Ω1 = Ω \ Ω2. Note that in the discussion which follows we consider a
splitting into two subdomains only. However, as also illustrated with our numerical examples
in Section 4, everything works for multiple subdomains as well. Associated to this splitting
we define Vi = {u ∈ L2(Ω) : supp(u) ⊂ Ωi} and orthogonal projections πVi : L2(Ω) → Vi
for i = 1, 2. Since L2(Ω) = V1 ⊕ V2 is a direct sum and πVi(u) = u1Ωi , every u ∈ L2(Ω)
can be uniquely represented as u = πV1(u) + πV2(u). In the following we denote ui = πVi(u),
for i = 1, 2. With this splitting in [17] the following alternating algorithm is proposed to

minimize J : pick an initial V1 ⊕ V2 3 u(0)
1 + u

(0)
2 := u(0) ∈ BV (Ω), for example u(0) = 0, and

iterate 
u

(n+1)
1 ≈ argminv1∈V1

J (v1 + u
(n)
2 )

u
(n+1)
2 ≈ argminv2∈V2

J (u
(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2 .

(9)

Here we use ”≈” (the approximation symbol), since in practice we never perform the exact
minimization.
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3.1 Solution of the subspace minimization problems

In [17] an implementation of the individual subproblems of (9) is suggested by introducing
so-called surrogate functionals of J [9, 10] on V1 ⊕ V2 for u1 ∈ V1, u2 ∈ V2, and a ∈ Vi by

Ji(u1, u2; a) := J (u1 + u2) + ‖ui − a‖2L2(Ω) − ‖T (ui − a)‖2L2(Ω)

= ‖ui − (a+ πViT
∗(g − Tuî − Ta))‖2L2(Ω) + 2α |D(u1 + u2)| (Ω) + Φ(a, g, uî),

(10)

for i = 1, 2 and î ∈ {1, 2} \ {i}, where Φ is a function of a, g, uî only. Assuming that ‖T‖ < 1,
the subminimization iterations

u
(m+1)
i = arg min

ui∈Vi
Ji(u1, u2;u

(m)
i ) m ≥ 0 (11)

converge to a minimizer of the corresponding subproblems of (9), i.e.,

arg min
ui∈Vi

J (u1 + u2)

for i = 1, 2 [10]. We remark that the assumption ‖T‖ < 1 is not a restriction at all, since when
the norm is exceeding 1, we just rescale the problem easily by multiplying the functional J
by a positive constant γ < 1

‖T‖2 , and we minimize the resulting functional

Jγ(u) = ‖√γTu−√γg‖2L2(Ω) + 2γα|D(u)|(Ω),

which has the same minimizers as J .
Let us further decompose Ω2 = Ω̂2 ∪ (Ω2 \ Ω̂2) with ∂Ω̂2 ∩ ∂Ω1 = ∂Ω2 ∩ ∂Ω1, where

Ω̂2 ⊂ Ω2 is a neighborhood stripe around the interface ∂Ω2 ∩ ∂Ω1. Analogously we split
Ω1 = Ω̂1 ∪ (Ω1 \ Ω̂1) with ∂Ω̂1 ∩ ∂Ω2 = ∂Ω1 ∩ ∂Ω2. Associated to these decompositions we
define V̂i = {u ∈ L2(Ω) : supp(u) ⊂ Ω̂i}. By the splitting of the total variation

|D(u1 + u2)|(Ω) =|D(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)|(Ω1 ∪ Ω̂2) + |Du2|Ω2\Ω̂2
|(Ω2 \ Ω̂2)

+

∫
∂Ω̂2∩∂(Ω2\Ω̂2)

|u+
2 − u

−
2 |dHd−1(x), (12)

whereHd is the Hausdorff measure of dimension d and u|Ω1∪Ω̂2
is the restriction of u to Ω1∪Ω̂2,

we can restrict the minimization in (11) to the domain Ω1 ∪ Ω̂2 and Ω2 ∪ Ω̂1 respectively, i.e.,

u
(m+1)
1 = arg min

u1∈V1

‖u1 − (u
(m)
1 + πV1T

∗(g − Tu2 − Tu(m)
1 ))‖2

L2(Ω1∪Ω̂2)

+2α
∣∣∣D(u1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)
∣∣∣ (Ω1 ∪ Ω̂2), m ≥ 0,

u
(m+1)
2 = arg min

u2∈V2

‖u2 − (u
(m)
2 + πV2T

∗(g − Tu1 − Tu(m)
2 ))‖2

L2(Ω1∪Ω̂2)

+2α
∣∣∣D(u1|Ω2∪Ω̂1

+ u2|Ω2∪Ω̂1
)
∣∣∣ (Ω2 ∪ Ω̂1), m ≥ 0.

Eventually, these subminimization problems can be rewritten as problems on Vi⊕V̂î, i ∈ {1, 2}
and read

arg min
u∈V1⊕V̂2

‖u− z1‖2L2(Ω1∪Ω̂2)
+ 2α

∣∣∣D(u|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)
∣∣∣ (Ω1 ∪ Ω̂2) s.t. πV̂2

u = 0, (13)
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arg min
u∈V2⊕V̂1

‖u− z2‖2L2(Ω1∪Ω̂2)
+ 2α

∣∣∣D(u1|Ω2∪Ω̂1
+ u|Ω2∪Ω̂1

)
∣∣∣ (Ω2 ∪ Ω̂1) s.t. πV̂1

u = 0, (14)

where z1 = u
(m)
1 + πV1T

∗(g − Tu2 − Tu(m)
1 ) and z2 = u

(m)
2 + πV2T

∗(g − Tu1 − Tu(m)
2 ). Let us

rewrite the constrained minimization problems (13) and (14) in another way. More precisely,
we consider the problems

arg min
ξ1∈V1⊕V̂2

‖ξ1 − u2 − z1‖2L2(Ω1∪Ω̂2)
+ 2α

∣∣∣D(ξ1|Ω1∪Ω̂2
)
∣∣∣ (Ω1 ∪ Ω̂2) s.t. πV̂2

ξ1 = u2 (15)

arg min
ξ2∈V2⊕V̂1

‖ξ2 − u1 − z2‖2L2(Ω1∪Ω̂2)
+ 2α

∣∣∣D(ξ2|Ω2∪Ω̂1
)
∣∣∣ (Ω2 ∪ Ω̂1) s.t. πV̂1

ξ2 = u1 (16)

and note that for i = 1, 2 and î = {1, 2} \ {i} indeed ξi is optimal if and only if ui = ξi − uî
is optimal. Moreover notice that the new problems (15) and (16) are now of the type (2).

3.1.1 Oblique Thresholding (OT)

In [17] the constrained minimization problems (13)-(14) are solved by Oblique Thresholding,
which is based on an iterative proximity map algorithm and the computation of a Lagrange
multiplier by a fixed point iteration. More precisely, iteration (11) for i = 1 is explicitly
computed by

u
(m+1)
1 = (I − PαK)(z1 + u2|Ω1∪Ω̂2

− η(m)
1 )− u2|Ω1∪Ω̂2

, (17)

where η
(m)
1 is a solution of the fixed point iteration

η1 = πV̂2
PαK(η1 − z1 − u2|Ω1∪Ω̂2

),

with K being the closure of the set {div p : p ∈
[
C1
c (Ω)

]2
, |p(x)| ≤ 1 ∀x ∈ Ω}, |p(x)| =√

(p1(x))2 + (p2(x))2, and PK(u) = arg minv∈K ‖u − v‖L2(Ω) is the orthogonal projection
onto K. Indeed, the following proposition tells us that the oblique thresholding iteration (17)
converges to a minimizer of J on the subspaces.

Proposition 3.1. [17, Theorem 4.9] Assume u2 ∈ V2 and ‖T‖ < 1. Then the iteration (17)
converges weakly to a solution u∗1 ∈ V1 of arg minu1∈V1 J (u1 + u2) for any initial choice of

u
(0)
1 ∈ V1.

In [17] the computation of the orthogonal projection PK was implemented by using Cham-
bolle’s projection method [4]. For more details see [17, Section 4.2]. The oblique thresholding
iteration can be very slow in general, cf. [24]. In the next section we shall see how we can
accelerate this computation by replacing (17) and its solution via Chambolle’s method by
BOS-SB.

3.1.2 Bregmanized Operator Splitting - Split Bregman (BOS-SB)

In order to speed up the computation of algorithm (9) we suggest to solve each subproblem
by using Algorithm 4. Actually by Algorithm 4 we can directly compute a solution of the
constrained optimization problems (15) and (16). That is, for example, the minimizer for
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(15) is computed by the following algorithm: Let A = πV̂2
and λ, δ, µ > 0 be regularization

parameters. Initialize ξ
(0,L0)
1 = ξ

(m)
1 = u

(m)
1 + u

(m)
2 and f (0) = u2 then for k = 0, 1, . . . do

ξ
(k+1,0)
1 = ξ

(k,Lk)
1 , d(k+1,0) = b(k+1,0) = 0

for ` = 0, . . . , Lk+1 do

ξ
(k+1,`+1)
1 = arg minξ1∈V1⊕V̂2

1
2α‖ξ1 − u2 − z1‖2L2(Ω1∪Ω̂2)

+λ
δ ‖ξ1 − (ξ

(k,Lk)
1 − δA∗(Aξ(k,Lk)

1 − f (k)))‖2
L2(Ω1∪Ω̂2)

+µ‖d(k+1,`) −D(ξ1|Ω1∪Ω̂2
)− b(k+1,`)‖2

L2(Ω1∪Ω̂2)

d(k+1,`+1) = arg mind |d|(Ω1 ∪ Ω̂2) + µ‖d−D(ξ
(k+1,`+1)
1|Ω1∪Ω̂2

)− b(k+1,`)‖2
L2(Ω1∪Ω̂2)

b(k+1,`+1) = b(k+1,`) +D(ξ
(k+1,`+1)
1|Ω1∪Ω̂2

)− d(k+1,`+1)

f (k+1) = f (k) −Aξ(k+1,Lk+1)
1 + u2.

(18)

Then by setting u
(k+1,Lk+1)
1 = ξ

(k+1,Lk+1)
1 − u2 for all k = 0, 1, . . . we obtain a sequence

(u
(k,Lk)
1 )k, which is converging to a solution of (13). Instead of making a detour by computing

the sequence (ξ
(k,Lk)
1 )k we would like to find a solution of (13), i.e., the update u

(m+1)
1 , directly.

Therefore we note that ξ
(k+1,`+1)
1 is a minimizer of

arg min
ξ1∈V1⊕V̂2

1

2α
‖ξ1 − u2 − z1‖2L2(Ω1∪Ω̂2)

+
λ

δ
‖ξ1 − (ξ

(k,Lk)
1 − δA∗(Aξ(k,Lk)

1 − f (k)))‖2
L2(Ω1∪Ω̂2)

+ µ‖d(k+1,`) −D(ξ1|Ω1∪Ω̂2
)− b(k+1,`)‖2

L2(Ω1∪Ω̂2)

if and only if u
(k+1,`+1)
1 = ξ

(k+1,`+1)
1 − u2 is a minimizer of

arg min
u1∈V1⊕V̂2

1

2α
‖u1 − z1‖2L2(Ω1∪Ω̂2)

+
λ

δ
‖u1 − (u

(k,Lk)
1 − δA∗(Au(k,Lk)

1 + u2 − f (k)))‖2
L2(Ω1∪Ω̂2)

+ µ‖d(k+1,`) −D(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)− b(k+1,`)‖2
L2(Ω1∪Ω̂2)

,

where u
(k,Lk)
1 = ξ

(k,Lk)
1 − u2. By this observation, by the fact that f (k) = f (0) +

∑k
i=1 u2 −

Aξ
(i,Li)
1 = f (0)−

∑k
i=1Au

(i,Li)
1 , and because f (0) = u2 in the algorithm in (18) we can directly

compute the update u
(m+1)
1 by the following algorithm: Let A = πV̂2

and λ, δ, µ > 0 be

regularization parameters. Initialize u
(0,L0)
1 = u

(m)
1 and f (0) = 0 then for k = 0, 1, . . . do

u
(k+1,0)
1 = u

(k,Lk)
1 , d(k+1,0) = b(k+1,0) = 0

for ` = 0, . . . , Lk+1 do

u
(k+1,`+1)
1 = arg minu1∈V1⊕V̂2

1
2α‖u1 − z1‖2L2(Ω1∪Ω̂2)

+λ
δ ‖u1 − (u

(k,Lk)
1 − δA∗(Au(k,Lk)

1 − f (k)))‖2
L2(Ω1∪Ω̂2)

+µ‖d(k+1,`) −D(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)− b(k+1,`)‖2
L2(Ω1∪Ω̂2)

d(k+1,`+1) = arg mind |d|(Ω1 ∪ Ω̂2) + µ‖d−D(u
(k+1,`+1)
1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)− b(k+1,`)‖2

L2(Ω1∪Ω̂2)

b(k+1,`+1) = b(k+1,`) +D(u
(k+1,`+1)
1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)− d(k+1,`+1)

f (k+1) = f (k) −Au(k+1,Lk+1)
1 .

(19)



Bregmanized Domain Decomposition 9

Hence we can rewrite the algorithm in (19) for the domain Ωi, for i = 1, 2, in the following
compact form:

Algorithm 5. Bregmanized Operator Splitting - Split Bregman in Ωi:
BOS-SBi(u1, u2, zi, A, α)

Input: u1, u2 ∈ H, zi ∈ H, A ∈ L(H), α > 0
Output: approximate solution of (13) if i = 1 and of (14) if i = 2

Initialize: λ > 0, 0 < δ < 1
‖A∗A‖ , u

(0)
i = ui, f

(0) = 0

for k = 0, 1, . . . ,K
u

(k+1)
i = SBi(u

(k)
i , uî, zi, f

(k), A, α, λ, δ)

f (k+1) = f (k) −Au(k+1)
i

end.

where î ∈ {1, 2} \ {i}, K ∈ N, and

Algorithm 6. Split Bregman in Ωi: SBi(u
(k)
i , uî, zi, f

(k), A, α, λ, δ)

Input: u
(k)
i , uî ∈ H, zi ∈ H,A ∈ L(H), α > 0, λ > 0, δ > 0

Output: approximate solution of (20)

Initialize: µ > 0, τ > 0, d(0) = 0, b(0) = 0
for ` = 0, 1, . . . , Lk+1

u
(`+1)
i = arg minui∈V1⊕V̂2

1
2α‖ui − zi‖

2
L2(Ωi∪Ω̂î)

+λ
δ ‖ui − (u

(k)
i − δA∗(Au

(k)
i − f (k)))‖2

L2(Ωi∪Ω̂î)

+µ‖d(`) −D(ui|Ωi∪Ω̂
î

+ uî|Ωi∪Ω̂
î

)− b(`)‖2
L2(Ωi∪Ω̂î)

d(`+1) = arg mind |d|(Ωi ∪ Ω̂î) + µ‖d−D(u
(`+1)
i|Ωi∪Ω̂

î

+ uî|Ωi∪Ω̂
î

)− b(`)‖2
L2(Ωi∪Ω̂î)

b(`+1) = b(`) +D(u
(`+1)
i|Ωi∪Ω̂

î

+ uî|Ωi∪Ω̂
î

)− d(`+1)

end.

In the finite dimensional setting, i.e., for Vi = RN×M , where N,M � 1 is the dimension
of the problem, Algorithm 5 enjoys the following convergence properties.

Proposition 3.2. For i = 1, 2 and î ∈ {1, 2} \ {i} let u
(0)
i = u

(k)
i ∈ Vi, uî ∈ Vî, d

(0) = 0

and (u
(`)
i )` and (d(`))` be sequences generated by Algorithm 6 (Split Bregman Iteration). Then

u
(`)
i → u∗i and d(`) → d∗ = D(u∗i + uî) for `→∞, where u∗i solves the minimization problem

given by one iteration of the Bregmanized Operator Splitting, i.e.,

arg min
ui∈Vi

1

2α
‖ui − zi‖2L2(Ωi∪Ω̂î)

+
λ

δ
‖ui − (u

(k)
i − δA

∗(Au
(k)
i − f

(k)))‖2
L2(Ωi∪Ω̂î)

+

∣∣∣∣D(ui|Ωi∪Ω̂
î

+ uî|Ωi∪Ω̂
î

)

∣∣∣∣ (Ωi ∪ Ω̂î).

(20)

The proof is analogue to the one in [29], where the convergence of the Split Bregman
Iteration is shown.

In the case when we solve the minimization problem in (20) exactly, for example via
the Split Bregman Algorithm by setting formally Lk+1 =∞, then the following convergence
property for Algorithm 5 holds:
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Proposition 3.3. Let 0 < δ < 1
‖A∗A‖ and u

(k+1)
i be the exact solution of the minimization

problem in (20). Then the sequences (u
(k)
i )k generated by Algorithm 5 converges for k → ∞

to a solution u∗1 of (13) if i = 1 and to a solution u∗2 of (14) if i = 2.

The proof of this result can be found in [32].

3.2 Convergence Properties of the Sequential Domain Decomposition Al-
gorithm

In this section we describe the convergence properties of the sequential non-overlapping do-
main decomposition algorithm (9), which can be expressed explicitly as follows: Pick an initial

V1 ⊕ V2 3 u(0,M1)
1 + u

(0,M2)
2 := u(0) ∈ BV (Ω), for example u(0) = 0, and iterate

{
u

(n+1,0)
1 = u

(n,M1)
1

u
(n+1,m1+1)
1 = argminu1∈V1

J1(u1, u
(n,M2)
2 ;u

(n+1,m1)
1 ) m1 = 0, . . . ,M1 − 1{

u
(n+1,0)
2 = u

(n,M2)
2

u
(n+1,m2+1)
2 = argminu2∈V2

J2(u
(n+1,M1)
1 , u2;u

(n+1,m2)
2 ) m2 = 0, . . . ,M2 − 1

u(n+1) := u
(n+1,M1)
1 + u

(n+1,M2)
2 .

(21)
Note that we do prescribe a finite number M1 and M2 of inner iterations for each subspace
respectively. Then we have the following properties:

Proposition 3.4. [17, Theorem 5.1] The algorithm in (21) produces a sequence (u(n))n∈N in
BV (Ω) with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖L2(Ω) = 0;

(iii) the sequence (u(n))n∈N has subsequences which converge weakly in L2(Ω) and in BV (Ω)
with the weak-*-topology.

Remark 3.5. Note that Proposition 3.4 does in general not guarantee the convergence of
the sequence u(n) to a minimizer of J . In [17] this convergence could be ensured only under
some additional technical assumptions on the decomposition, cf. [17, Theorem 5.1 (iv)]. The
numerical discussion in [17] as well as the numerical results presented in Section 5 in this
paper, however suggest that the proposed method still works well in practice. Indeed when
we are dealing with the discrete setting (i.e., all the considered function spaces are finite di-
mensional), which is the important case for numerical implementations, it is proven in [22]
that the non-overlapping domain decomposition algorithm in (9) produces a sequence whose
accumulation points are indeed minimizers of the original functional J , see also [23]. More-
over in [16] the convergence picture is complemented for a modified version of algorithm (21),
where convergence to minimizers of J is proven in the discrete setting and for overlapping
subdomains.

Remark 3.6. The BOS-SB approach can be also used for an overlapping domain decompo-
sition, as it is considered in [16]. Then the operator A becomes a trace operator. Moreover,
for this case it is possible to restrict the subproblems completely to Ω1 and Ω2, which is due
to the induced trace condition.
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3.3 Parallel Versions

One initial motivation of introducing domain decomposition algorithms is parallelization.
Simultaneously computing the solution of each subproblem on a multiple processor reduces the
computational time of the algorithms significantly, as it was shown in [16] for total variation
minimization. Therefore we introduce a parallel version of the previously discussed domain
decomposition approaches.

The parallel non-overlapping domain decomposition algorithm reads as follows: Pick an

initial V1 ⊕ V2 3 u(0,M1)
1 + u

(0,M2)
2 := u(0) ∈ BV (Ω), for example u(0) = 0, and iterate



{
u

(n+1,0)
1 = u

(n,M1)
1

u
(n+1,m1+1)
1 = argminu1∈V1

J s1 (u1 + u
(n,M2)
2 , u

(n+1,m1)
1 ) m1 = 0, . . . ,M1 − 1{

u
(n+1,0)
2 = u

(n,M2)
2

u
(n+1,m2+1)
2 = argminu2∈V2

J s2 (u
(n,M1)
1 + u2, u

(n+1,m2)
2 ) m2 = 0, . . . ,M2 − 1

u(n+1) :=
u

(n+1,M1)
1 +u

(n+1,M2)
2 +u(n)

2 .
(22)

Similar convergence properties as stated in Proposition 3.4 for the sequential algorithm (21)
hold for the parallel algorithm (22), cf. [17].

4 Numerical Implementation

We want to implement algorithm (21) and (22) for the minimization of J . To solve its
subiterations (11) we consider two approaches: OT [17] and the proposed BOS-SB iteration.
In the following we sketch the numerical implementation of both algorithms for the domain Ω1

only, since the implementation is analogue for the other domain by just adjusting the notations

accordingly. Hence we denote u2 = u
(n,M2)
2|Ω1∪Ω̂2

, u1 = u
(n+1,m1+1)
1 , and z1 = u

(n+1,m1)
1 +πV1T

∗(g−

Tu2 − Tu(n+1,m1)
1 ) and we would like to compute the minimizer

u1 = argminu∈V1
‖u− z1‖2L2(Ω1∪Ω̂2)

+ 2α|D(u+ u2)|(Ω1 ∪ Ω̂2). (23)

4.1 Oblique Thresholding

By means of oblique thresholding the solution of (23) is computed by

u1 = (I − PαK)(z1 + u2 − η)− u2,

where K is the closure of the set{
div ξ : ξ ∈

[
C1
c (Ω)

]2
, |ξ(x)| ≤ 1 ∀x ∈ Ω

}
.

and the element η ∈ V2 is a limit of the corresponding fixed point iteration

η(0) ∈ V̂2, η(m+1) = πV̂2
PαK(η(m) − (z1 + u2)), m ≥ 0. (24)

For the computation of the projection in the oblique thresholding we use an algorithm
proposed by Chambolle in [4].



Bregmanized Domain Decomposition 12

4.2 BOS-SB

Instead of using the above described oblique thresholding strategy we suggest to use Algorithm
5 to solve the minimization problem (23). Hence the minimizer u1 is the limit of the sequence

(u
(k)
1 )k generated by Algorithm 5.

Let us rewrite the non-overlapping domain decomposition algorithm (21) explicitly for
this case as



u
(n+1,0)
1 = u

(n,M1)
1

for m1 = 0, . . . ,M1 − 1

z
(m1)
1 = u

(n+1,m1)
1 + πV1T

∗(g − Tu(n,M2)
2 − Tu(n+1,m1)

1 )

u
(n+1,m1+1)
1 = BOS-SB1(u1, u

(n,M2)
2 , z

(m1)
1 , πV̂2

, α)

end

u
(n+1,0)
2 = u

(n,M2)
2

for m2 = 0, . . . ,M2 − 1

z
(m2)
2 = u

(n+1,m2)
2 + πV2T

∗(g − Tu(n+1,M1)
1 − Tu(n+1,m2)

2 )

u
(n+1,m2+1)
2 = BOS-SB2(u1, u2, z

(m2)
2 , πV̂1

, α)

end

u(n+1) := u
(n+1,M1)
1 + u

(n+1,M2)
2 .

(25)

The Split Bregman iteration (Algorithm 6), which is used in BOS-SBi (i=1,2), is implemented
as suggested in [19], with the small adaptation that the distributional derivative of the sum
of functions, i.e., D(ui|Ωi∪Ω̂

î

+ uî|Ωi∪Ω̂
î

), is considered on each subdomain.

4.3 Discretization

In order to guarantee the concrete computability and the correctness of these procedures, we
need to discretize the problem and approximate it in finite dimensions. The continuous image
domain Ω = [a, b] × [c, d] ⊂ R2 is approximated by a finite grid {a = x1 < . . . < xN = b} ×
{c = y1 < . . . < yM = d} with equidistant step-size h = xi+1 − xi = b−a

N = d−c
M = yj+1 − yj

equal to 1 (one pixel). The digital image u is an element in H := RN×M . We denote
u(xi, yj) = ui,j for i = 1, . . . , N and j = 1, . . . ,M . The gradient ∇u is a vector in H × H
given by forward differences

(∇u)i,j = ((∇xu)i,j , (∇yu)i,j),

with

(∇xu)i,j =

{
ui+1,j − ui,j if i < N

0 if i = N,

(∇yu)i,j =

{
ui,j+1 − ui,j if j < M

0 if j = M,

for i = 1, . . . , N , j = 1, . . . ,M . The discretized functional in two dimensions is given by

J δ(u) :=
∑

1≤i,j≤N

(
((Tu)i,j − gi,j)2 + 2α|(∇u)i,j |

)
,
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with |y| =
√
y2

1 + y2
2 for every y = (y1, y2) ∈ R2. To give a meaning to (Tu)i,j we assume, for

instance, that T is applied on the piecewise linear interpolant û of the matrix (ui,j)
N,M
i=1,j=1

We further introduce the discrete divergence ∇· : H ×H → H in two dimensions defined,
by analogy with the continuous setting, by ∇· = −∇∗ (∇∗ is the adjoint of the gradient ∇).
That is, the discrete divergence operator is given by backward differences

(∇ · p)ij =


(px)i,j − (px)i−1,j if 1 < i < N

(px)i,j if i = 1

−(px)i−1,j if i = N

+


(py)i,j − (py)i,j−1 if 1 < j < M

(py)i,j if j = 1

−(py)i,j−1 if j = M,

for every p = (px, py) ∈ H ×H.

4.4 Domain decompositions

4.4.1 Sequential algorithm

For the sequential algorithm we split the domain Ω into horizontal stripes, i.e., the domain
Ω = [a, b]× [c, d] is split with respect to its rows. In particular we have Ω1 = [a, xdN2 e]× [c, d]

and Ω2 = [xdN2 e+1, b] × [c, d], compare Figure 1. The splitting in more than two domains is

done similarly, cf. also [17].

a = x1

Ω1

xdN/2e
——- ——- ∂Ω1 ∩ ∂Ω2 ——- ——-

xdN/2e+1

Ω2

b = xN

Figure 1: Decomposition of the discrete image in two domains for the Ω1 and Ω2 with interface
∂Ω1 ∩ ∂Ω2

In both subminimization strategies we additionally have to introduce stripes Ω̂1 and Ω̂2

on the interfaces of the domain patches. These stripes arise naturally from the splitting of
the total variation (12). In case of oblique thresholding, the stripe Ω̂1∪ Ω̂2 defines the domain
in which the η-computation (24) takes place. This is motivated by the observation that η is
only supported on Ω2 and that the due to the restriction to this stripe produced errors are in
practice negligible, cf. [17] for more details. In the other case when we use Algorithm 4 we
just expand Ω1 by the domain Ω̂1, in which an additional constraint is constituted, see (13)
and (14).

We note that the size of the neighborhood stripe around the interface is not important
from a theoretical point of view and hence in practice one is naturally interested to keep it
as small as possible, in order to keep the size of the subproblems as small as possible.
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4.4.2 Parallel algorithm

The splitting in the parallel version of the algorithm when applied to image deblurring is
done as described above, cf. Figure 1. For image inpainting we choose a different strategy
in the parallel case. While the choice of a different splitting for the parallel version has no
theoretical motivation (in fact all the theory holds true for arbitrary domain splittings), it
shows that the domain decomposition algorithm and its implementation are quite flexible
with respect to the type of domain splitting.

For the parallel algorithm applied to inpainting the domain Ω = [a, b]× [c, d] is split with
respect to its rows and its columns. More precisely, we split Ω into powers of 4 rectangles, i.e.,
into 4, 16, 64, . . . rectangles. This is done as shown in Figure 2. Note, that it is necessary to
expand each of the subdomains by stripes around the interfaces (as in the previous section).

Figure 2: Domain decomposition for the parallel algorithm in four subdomains Ωi, i = 1, 2, 3, 4. The
stripes for the subminimization on Ω1 are located around the interfaces ∂Ω1 ∩ ∂Ω2 and ∂Ω1 ∩ ∂Ω3.

5 Numerical Evaluation

We conclude this paper with a numerical evaluation of the performance of the newly pro-
posed subminimization strategy in Algorithm 4, i.e, Bregmanized Operator Splitting - Split
Bregman (BOS-SB). To do so, we compare both the sequential- and parallel version of the
non-overlapping domain decomposition algorithm, where the subminimization problems are
solved with iterative oblique thresholding (OT) (17) and with BOS-SB (19) as a submini-
mization solver respectively. Here, we focus on its application to image inpainting. In this
case the operator T is given by the multiplier T = 1Ω\D, where D is a hole in the given image.

Let us first discuss the choice of the different parameters. For the choice of the regular-
ization parameter see the respective examples discussed below. In the domain decomposition
algorithm, we consider domain splittings into D = 2, 3, 4, 5 for the sequential version, and
D = 4, 16 and D = 2, 4, 6, 8 for the parallel version, cf. also section 4.4 for more details on
the splitting strategy. The domain decomposition algorithm (9) is iterated until the error
e(n) = ‖uorg−u(n)‖2/‖u(n)‖2 is smaller than a certain tolerance tol, where uorg is the original
image. While this stopping criterion is rather unrealistic for practical applications, it serves
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us as a good basis for comparing the computational behaviour of the subminimization solvers.
Note however, that in our experience the choice of this tolerance has a slightly different impact
on the domain decomposition algorithm when we solve the subminimization problems with
OT rather than BOS-SB. We shall discuss this in more detail when presenting the numerical
examples.

The number of subminimization iterations M1 and M2 has been chosen to optimize the
computation time for both OT and BOS-SB. In each subdomain we choose the same number
of subiteration, i.e., M1 = M2 =: sub. For OT it turned out that sub = 1 is optimal (also see
[17]). For BOS-SB sub = 1 or sub = 4 subminimization iterations give similar computational
results in the sequential algorithm (see Table 3), while sub = 4 performs noticeably better in
the parallel version of the algorithm. The reasons seem to be that each BOS-SB computation
is much cheaper in terms of computational time than the OT solution (cf. Table 1), but also
that the BOS-SB computation makes more progress in terms of decreasing the error e(n) in
each subspace iteration than OT does (cf. Figure 8).

Next, we discuss the parameter choice taken for the subminimization algorithms. We start
with oblique thresholding.

Parameter choice for oblique thresholding (OT) The choice of parameters in the
oblique thresholding algorithm and their reasoning is discussed in much detail in [17]. In
particular, in [17] this choice has been optimized with respect to the computational efficiency
of the domain decomposition algorithm, for both its sequential (21) and its parallel (22)
version. Therefore, we borrow the parameter values from there and only report them here.
The width of the stripe in which η is computed is taken equal to 6 (this can be decreased
or increased depending on the size of the regularization parameter α; again see [17] for a
discussion on this). The fixed point algorithm for η either terminates when the normalized
L2 distance between two subsequent iterates is smaller than tolη = 10−6 or after a maximal
number of 10 iterations. The fixed point algorithm of Chambolle [4] for the computation of
the projection PαK(·) terminates when the normalized L2 distance between two subsequent
iterates is smaller than tolp = 10−3.

Parameter choice for Bregmanized operator splitting - split Bregman (BOS-SB)
Algorithm 4, i.e., BOS-SB, consists of two nested iterations. The outer iteration is the
Bregmanized operator splitting (BOS) iteration Algorithm 3, in which the corresponding
minimization problem in each iteration is solved via the Split Bregman (SB) algorithm (7)
that is again solved iteratively (inner iteration), cf. also Algorithm 5 and Algorithm 6.

The number of BOS-iterations has been chosen equal to 1. In fact, our numerical tests
confirm that there is absolutely no gain in terms of computational performance when iterating
more. In particular, the number of domain decomposition iterations undertaken to reach a
certain accuracy e(n) < tol is exactly the same when iterating BOS once or iterating twice or
more. The reason for this is that we chose the parameter λ/δ in front of the Bregman fidelity
term ‖u−(u(k,Lk)−δA∗(Au(k,Lk)−f (k)))‖22 very small, i.e., λ/δ = 10−8/2. Although this means
that we ensure the constraint Au = 0 very loosely only, this is adjusted by the reconsideration
of this constraint in every domain decomposition iteration. If the value λ/δ is increased also
the number of subiterations has to be increased in order to preserve computational accuracy.
Additionally our numerical tests showed that in this case also the overall convergence is slower
and more outer iterations n are needed. However, note that the BOS-iterations are proven to
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converge for every choice of the parameters λ > 0, 1
‖A∗A‖ > δ > 0, cf. Proposition 3.3.

In our experiments it turned out that the parameter µ in the Split Bregman algorithm
(7) should be reasonable large in order to keep the computational cost low. Hence we choose
µ = 10, and iterated the Split Bregman algorithm until the normalized L2 distance of two
subsequent iterates u(l) and u(l+1) is smaller than 10−3. This choice of the stopping criterion
is comparable to the tolerance for the Chambolle algorithm in the previous paragraph.

Numerical results - sequential algorithm We present numerical results for the sequen-
tial version of the domain decomposition algorithm (9) first. We compare the performance
of OT and BOS-SB in terms of quality of the inpainting results and the computational time
needed to achieve them. The numerical examples presented here have been computed on a
2 × 3.2 GHz-Quad-Core MacPro. In Figure 3(a) we start our numerical discussion with an
inpainting task for an image of size 270 × 167. The decompositions of the image domain
into D subdomains are done differently for the sequential- and the parallel version of the
algorithm, cf. Section 4.4. For further reference, we plotted the decompositions for the image
in Figure 3(a) in D = 4 domains for the sequential- and parallel case in Figure 3(b) and 3(c)
respectively.

In Figure 4 we apply the sequential domain decomposition algorithm (21) with D = 5
subdomains for inpainting the image in 3(a). The inpainting results computed with OT and
with BOS-SB are presented in Figure 4(a) and 4(b) respectively.

For a first comparison between the two algorithms, we report their computational speed
for solving one subspace minimization averaged over the first 100 domain decomposition
iterations in Table 1. For the OT algorithm, we have to differ between the subdomains,
which are at the border of the image domain, i.e., the first and the last stripe in Figure
3(b), and the ones which are in the inner part of the image domain. The subdomains on
the borders share only one interface with the neighbouring subdomain, resulting in only one
η-iteration (24), while the other one require the solution of two η-iterations on the lower and
upper interfaces. Consequently, the solution of the subspace minimization problem with OT
for the border elements is a bit faster than its solution for the inner elements. In either case,
BOS-SB by far outperforms the OT algorithm in terms of computational speed. BOS-SB is
about three times faster than OT in the computation of one subminimization problem.

Next we compare OT and BOS-SB in their ability to solve the domain decomposition
problem accurately and fast. To do so, we first have to find a reasonable basis for comparison.
In particular, we have to find the right stopping criterion. One standard choice for stopping
an algorithm is to check the distance between two subsequent iterates, i.e., the value of
‖u(n+1) − u(n)‖2. If this value is smaller than a prescribed tolerance, i.e., if we are close to
a fixed point of the algorithm, the iteration is stopped and the current iterate is accepted
as a good approximation to the minimizer. While this is a good criterion for stopping an
algorithm, it is not a good one for comparing two algorithms with each other. The iterative
behaviour of two algorithms can be very different and being close to a fixed point does not
necessarily mean that the algorithm is close to the desired solution. The next generic choice
then is the value of the energy evaluated in the iterates. But again, the energy value does
not seem to be applicable either because the energy decrease and the energy values seem to
be different for the two algorithm, cf. Figure 5.

For image inpainting one quality measure is, how close the inpainted image is to the
original image. While the original image is usually unknown in practice, for the comparative
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(a) Vandalized image

(b) Splitting for the sequential algorithm (c) Splitting for the parallel algorithm

Figure 3: The vandalized image and its domain splitting for the sequential and the parallel version of
the algorithm for D = 4 domains.

OT BOS-SB

D = 2: ø CPU time / iteration 0.6 s 0.2 s

D = 3: ø CPU time / iteration 0.52 s (border), 0.74 s (inner) 0.17 s

D = 4: ø CPU time / iteration 0.46 s (border), 0.72 s (inner) 0.14 s

D = 5: ø CPU time / iteration 0.46 s (border), 0.72 s (inner) 0.14 s

Table 1: Computational performance of the subminimization solvers in the sequential version of the
domain decomposition algorithm (21) with D subdomains for inpainting of Figure 3(a) with α = 0.005:
CPU times are compared for the OT strategy [17] and the proposed Bregman Operator Splitting - Split
Bregman strategy (BOS-SB) Algorithm 4. The reported CPU time is the time in seconds needed for
one subspace minimization, averaged over the subdomains and over the first 100 domain decomposi-
tion iterations. For the evaluation of the OT algorithm one has to defer between a subminimization
problem on the border of the image domain (only one interface and hence only one η-iteration) and a
subminimization problem in the inner of the image domain (two interfaces and hence two η-iterations).
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(a) Image inpainted with OT (b) Image inpainted with BOS-SB

Figure 4: Inpainting with the sequential version of domain decomposition (21) in D = 5 subdomains
and with α = 0.005: (a) inpainted image with OT used to solve the subminimization problems; (b)
inpainted image with BOS-SB used to solve the subminimization problems.

Figure 5: Decrease of the energy J (1) for the OT algorithm and BOS-SB iteration for the inpainting
example in Figure 4, shown for the iterative minimization of J on the whole domain and the domain
decomposition iteration with D = 5 subdomains.
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# domains OT BOS-SB (sub= 1)

D = 2 223 iterations / 263.32 CPU s 399 iterations / 192.02 CPU s

D = 3 290 iterations / 510.45 CPU s 405 iterations / 210.38 CPU s

D = 4 843 iterations / 2004.82 CPU s 372 iterations / 210 CPU s

D = 5 224 iterations / 636.65 CPU s 394 iterations / 242.39 CPU s

D = 6 245 iterations / 817.45 CPU s 375 iterations / 251.62 CPU s

Table 2: Inpainting for Figure 3(a) with α = 0.005: Comparison of computational performance for the
sequential version of the domain decomposition algorithm (21) for using iterative thresholding versus
BOS-SB to solve the subminimization problems. The domain decomposition algorithm with OT has
been run until e(n) < tol1 = 0.02662, the domain decomposition algorithm with BOS-SB terminated
when e(n) < tol2 = 0.0225. When increasing the number of subdomains D, the CPU time seem to
increase tremendously for OT, while the computational time for BOS-SB only slightly increases.

tests we are running, it seems to be a good measure for comparing the computational time
of the two algorithms to reach a certain qualitative result. More precisely, let e(n) = ‖uorg −
u(n)‖2/‖u(n)‖2, n = 1, 2, . . . be the error between the current iterate u(n) and the original
image uorg. The algorithms are stopped when e(n) falls below a certain tolerance tol the
first time. We stick to this choice for a quality measure and a stopping criterion for the two
algorithms, although we again have to adapt the aspired tolerance to the two algorithms, cf.
Figure 6.

Moreover, in Figure 7 we check the respective inpainting results in detail for the chosen
tolerances tol1 = 0.02662 for OT domain decomposition and tol2 = 0.0225 for BOS-SB domain
decomposition. The inpainting results seem to be comparable for these choices of stopping
criteria.

From our numerical discussion up to now we have seen the BOS-SB is three times faster
than OT in each subminimization problem, cf. Table 1, but that BOS-SB needs a larger
number of iterations to achieve the same quality in the inpainting result as OT. What is the
effect of these two subminimization strategies onto the performance of the domain decompo-
sition algorithm as a whole? Looking at Figure 8 and Table 2 one immediately sees that the
domain decomposition algorithm with BOS-SB is faster than OT, where the computational
advantage of BOS-SB increases with the number of subdomains. In particular, a surprising
result for us was, that the CPU time for the sequential version of the algorithm computed
with BOS-SB is - in contrast to the same computation with OT - only slightly increasing.
Note, that we have not parallelized our computations yet.

Numerical results - parallel algorithm Finally, we also compare the parallel perfor-
mance of the domain decomposition algorithm when computed with OT and BOS-SB. The
computations are made in Matlab on a PC with 8 kernels. The multithreading-option in
Matlab is activated such that all algorithms (including the restoration algorithms without
domain decomposition) are able to take advantage of the parallel infrastructure offered by
the hardware. Also, kindly remember that the number of kernels is 8 when inspecting the
computational times for a splitting into 16 subdomains.

Note, that for the sequential version it turned out that solving the subminimization prob-
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(a) OT iterate with e(40) = 0.0579 (b) BOS-SB iterate with e(100) = 0.0456

(c) OT iterate with e(100) = 0.0333 (d) BOS-SB iterate with e(200) = 0.0290

(e) OT iterate with e(160) = 0.0277 (f) BOS-SB iterate with e(300) = 0.0241

(g) OT iterate with e(220) = 0.02663 (h) BOS-SB iterate with e(400) = 0.0224

Figure 6: Intermediate results of the inpainting result in Figure 4. The error e(n) in the sequential
domain decomposition algorithm (21) evolves differently when computed with OT and when computed
with BOS-SB.
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(a) OT with tol1 = 0.0225 (b) BOS-SB with tol2 =
0.0225

(c) Original image

Figure 7: Detail of the inpainting result in Figure 4 and the original image. The sequential domain
decomposition algorithm (21) with OT stops after 620 iterations with an error e(620) = 0.02662, while
the same algorithm with BOS-SB used for solving the subminimization problems terminates after 406
iterations with an error of e(406) = 0.0225. Again the error e(n) = ‖uorg − u(n)‖2/‖u(n)‖2.

# domains BOS-SB (sub= 1) BOS-SB (sub=4)

D = 2 399 iterations / 192.02 CPU s 102× 4 iterations / 191.18 CPU s

D = 3 405 iterations / 210.38 CPU s 103× 4 iterations / 206.8 CPU s

D = 4 372 iterations / 210 CPU s 95× 4 iterations / 208.69 CPU s

D = 5 394 iterations / 242.39 CPU s 101× 4 iterations / 245.54 CPU s

D = 6 375 iterations / 251.62 CPU s 95× 4 iterations / 247.86 CPU s

Table 3: Inpainting for Figure 3(a) with α = 0.005: Comparison of computational performance for
the sequential version of the domain decomposition algorithm (21) solved with BOS-SB with sub = 1
subminimization iteration (11) and with sub = 4 subminimization iterations.
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Figure 8: Error decrease for inpainting of Figure 3(a) with α = 0.005 with the sequential version
of the domain decomposition (21) in D = 4 subdomains: In each domain decomposition iteration we
measure the error between the original- and inpainted image, i.e., e(n) = ‖uorg − u(n)‖2/‖u(n)‖2 for
iterations n = 1, 2, . . . 372. While the OT error decreases much faster at the beginning than the error
in BOS-SB, it slows down as iterations progress and BOS-SB catches up.
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# domains OT BOS-SB

D = 4 161 iterations / 135.87 CPU s
(reached accuracy e(k) = 0.029)

92 × 4 iterations / 65.95 CPU s
(reached accuracy e(k) = 0.025)

Table 4: Inpainting for Figure 3(a) with α = 0.005: Comparison of computational performance for
the parallel version of the domain decomposition algorithm (22) for using OT versus BOS-SB to solve
the subminimization problems.

# domains Figure 10 (tol = e(k) = 0.0127) Figure 11 (tol = e(k) = 0.0046)

D = 1 200 iterations / ≈ 115 CPU min 50 iterations / ≈ 295 CPU min

D = 4 47× 4 iterations / ≈ 47 CPU min 21× 4 iterations / ≈ 139 CPU min

D = 16 50× 4 iterations / ≈ 43 CPU min 21× 4 iterations / ≈ 113 CPU min

Table 5: Inpainting for the images in Figure 10 and 11 with α = 0.05: Computational performance
for the parallel version of the domain decomposition algorithm (22) when using BOS-SB to solve the
subminimization problems.

lems (11) with sub = 1 or sub = 4 BOS-SB computations does not make a significant difference
in terms of computational time needed to solve the inpainting task with the domain decom-
position algorithm, cf. Table 3. We take advantage of this fact for the parallel computations.
Here, choosing sub = 4 and making more progress in each domain decomposition iteration
with approximately the same computational effort, reduces the computational time as a whole
because we reduce the number of domain decomposition iterations and hence, the amount
of communication we have to do between the processes. As already discussed in [17], this
strategy cannot be applied for the domain decomposition algorithm solved with OT. For the
parallel computations we therefore choose sub = 1 for the algorithm with OT and sub = 4 for
the algorithm solved with BOS-SB. See Table 4 and Figure 9 for the computational results
for inpainting of the image in Figure 3(a).

We also test the parallel BOS-SB domain decomposition algorithm for vandalized images of
larger scale. In Figure 10 we consider an image of size 1768×2656 pixels where we decomposed
it into four non-overlapping domains in order to restore it on multiple processors. As before,
the algorithms are compared with respect to the computational time they need to reach a
certain accuracy tol, cf. Table 5 left column. A similar example is shown in Figure 11. For
getting a different viewpoint on the computational performances, for this example the CPU
times are compared for a fixed number of 50 iterations (which seem to be sufficient to inpaint
the image satisfactorily), cf. Table 5 right column. The number of subiterations in this case
is set to sub = 1. We see that by increasing the number of domains, the number of iterations
and the CPU time decrease.

Up to now we have only presented numerical examples for the task of inpainting an image.
In this case, the operator T = χΩ\D is a local operator and can be easily decomposed with
respect to a domain splitting. The same holds true for image denoising, i.e., T = Id, and
the numerical discussion for this case would look approximately the same. However, we shall
also discuss the applicability of the proposed domain decomposition approach for operators
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Figure 9: Error decrease for inpainting of Figure 3(a) with the parallel version of domain decomposi-
tion (22) in four subdomains and with α = 0.005: In each domain decomposition iteration we measure
the error between the original- and inpainted image, i.e., e(n) = ‖uorg − u(n)‖2/‖u(n)‖2 for iterations
n = 1, 2, . . . 1000. The final error of OT is e(1000) = 0.028, while the error in BOS-SB in the final
iteration is e(1000) = 0.0246.
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Figure 10: Inpainting with the parallel domain decomposition strategy (22) with α = 0.05: (l.) the
vandalized image of size 1768×2656 pixels; (m.) its decomposition into four domains; (r.) the restored
image computed with (22)

Figure 11: Inpainting with the parallel domain decomposition strategy (22) with α = 0.05: (l.) the
vandalized image of size 5000 × 3333 pixels; (r.) the restored image computed with (22) with four
subdomains.
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Figure 12: Deblurring with the parallel domain decomposition strategy (22) with α = 0.05: (l.) the
image of size 1768× 2656 pixels blurred with a Gaussian kernel of size 30× 30 and standard deviation
σ = 10; (m.) its decomposition into four domains; (r.) the deblurred image computed with (22)

that are not splittable with respect to a domain decomposition. In particular, in what follows
we consider the application of our algorithm to image deblurring where the operator T is
a convolution with a Gaussian kernel Gσ of standard deviation σ = 10. For the example
in Figure 12 we set the mask size of the Gaussian kernel to be equal to 30 × 30 pixels,
which results in a rather small blurring effect, whereas in Figure 13 an example with stronger
blurring is considered with a Gaussian kernel of mask size 40× 40 pixels. Note, that the size
of the Gaussian kernel should be considered relative to the respective image size.

In Table 6 the computational times for different splittings are reported. While for the
inpainting examples we choose a threshold on the error e(k) as the stopping criterion for the
algorithms, in the case of image deblurring such a choice does not make much sense, especially
if the blurring kernel is large. Hence, for simplicity we let each algorithm run for a fixed
number of iterations and compare the CPU times needed. Again, the domain decomposition
strategy takes advantage of the parallel structure of the computer. The deblurring example
also nicely shows the limitations of this parallel procedure. The deblurring operator T is a
global linear operator, i.e., is not splittable with respect to a domain decomposition. Hence,
in each domain decomposition iteration the whole solution u has to be communicated to all
parallel processes to be able to compute Tu. This results in a trade-off between the reduction
of computational time needed for the solution of the subminimization problems and increase
of communication time when increasing the number of subdomains, cf. CPU times for D = 6
and D = 8 in Table 6.
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