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Abstract of the Dissertation

Particle-laden thin film flow:

An alternating direction implicit scheme and

comparison between theory, numerical

simulations, and experiments

by

Matthew Ross Mata

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2011

Professor Andrea Bertozzi, Chair

Gravity-driven thin film flows have been analyzed in terms of fourth-order lubrica-

tion models, similarity solutions, traveling wave solutions, numerical simulations,

and experiments. However, in the case where particle are suspended within the

fluid, studies have been largely limited to lubrication models, one-dimensional

numerical simulations, and experiments. We present a numerical scheme for a

lubrication model derived for particle-laden thin film flow in two dimensions with

surface tension. The scheme relies on an alternating direction implicit process to

handle the higher-order terms, and an iterative procedure to improve the solution

at each timestep. Several aspects of the scheme are examined for a test problem,

such as the timestep, runtime, and number of iterations. The results from the

simulation are compared to experimental data. The simulation shows good qual-

itative agreement. It also suggests further lines of inquiry for the physical model.

For constant-volume particle-laden thin film flow, a lubrication model with pre-

cursor and experiments are compared to a power law for the position of the front

xvi



of the flow with respect to time. This power-law behavior was originally derived

for clear fluid flows. In the lubrication model, the precursor has a large effect

on the speed of the front, independent of the settling of the particles. Compar-

ison between theory and experiments indicates that this scaling law persists to

leading order for particle-laden thin film flows with particle settling. For gravity-

driven particle-laden thin film flows on an inclined plane, three distinct regimes

can be observed: particles settling to the substrate, a particle-rich ridge forming

at the front of the flow, and the particles staying well-mixed. Experiments are

conducted for a variety of particle sizes and liquid viscosities. We compare ex-

perimental results with equilibrium theory that balances shear-induced migration

and hindered settling. We find that the well-mixed regime is transient, with the

particle size and liquid viscosity influencing its time scale.

xvii



CHAPTER 1

Introduction

Gravity-driven particle-laden thin film flow occurs in many different contexts,

from mudslides to oil spills. A lubrication model has been derived for such flows

in two dimensions [CBH08, CAB09]. The model is formulated in terms of the

film thickness and particle concentration, with the two dimensions lying in the

substrate (see Figure 2.1). It assumes that the particles migrate to the front of the

flow, forming a particle-rich ridge. This is one of three possible regimes observed

in experiments: particles settling to the substrate, migrating to the front of the

flow and forming a particle-rich ridge, or staying well-mixed within the fluid.

These regimes are determined by varying the initial particle concentration and

inclination angle. Particle-laden thin film flows can be examined using numerical

simulations of the model, experiments, and theory existing for similar problems

such as clear fluid flows.

In recent years, the problem of numerically solving gravity-driven thin film

flow for clear fluids has had ample work done in both one and two dimensions.

However, the case when the film contains particles suspended within it has re-

ceived less attention, especially in two dimensions. The evolution of a clear fluid

down an inclined plane is modeled using a single partial differential equation and

numerical schemes have been derived using finite differences [DK02, Kon03a] and

finite elements [SRX07]. For similar equations, such as spreading thin films, there

are methods for finite elements in one dimension [GR00, GR01, ZB00] and for

1



finite differences in two dimensions [WB03]. The incorporation of particles into

such a flow leads to another variable in the model, namely the particle concen-

tration, and an accompanying equation related to the evolution of the particles.

The result is a system of equations that requires a different approach from the

clear fluid case to formulate a practical numerical scheme, due to the coupling of

the equations.

An active area of research in the last decade has been the development of

numerical methods for higher-order thin film equations including complex flu-

ids described by systems of equations. Related problems include methods for

coupled systems of nonlinear parabolic equations [LCS06, Pao99]. The scheme

presented here is, in part, inspired by recent models for surfactants [WCM05] and

thin films [WB03]. We choose an Alternating Direction Implicit (ADI) scheme

as a tractable method for implicit timesteps, because surface tension introduces

a severe restriction on the timestep in the case of explicit schemes. This ADI ap-

proach also allows for an implicit scheme while avoiding to have to solve the large

sparse linear algebra problems by an iterative method, such as GMRES, that re-

sult from linearizing the two-dimensional operators in Newton’s method [WB03].

ADI is also amenable to parallelization. While ADI schemes for numerically solv-

ing parabolic equations date back to the 1950’s [PR55], their use in higher-order

problems is rather new, e.g., [WB03], and not all that well-studied. However,

the ease of parallelization makes such schemes a viable choice for multiprocessor

platforms. Since their inception, ADI schemes have been extended to handle

parabolic problems with mixed derivative terms [BW80, CS88, McK71, SIJ76],

variable coefficients [Kar09, WB03], and high-order terms [WB03].

The ideas present in these schemes can be combined to create an efficient

way to numerically solve the particle-laden thin film flow equations. The nonlin-

2



earity and higher-order terms are handled in a similar manner to Witelski and

Bowen [WB03], which dealt with thin film equations, and the remaining terms are

treated as in Warner et al. [WCM05], which devised a semi-implicit scheme for

surfactants. This combined approach is fine-tuned to draw out better efficiency,

via adaptive timestepping and an iterative procedure within each timestep. At

the cost of the extra calculations due to the iterative nature of the scheme, the

timestep needed for stability can be improved over recent methods. The result is

an efficient method to simulate the continuum model in two dimensions.

The full physics of particle-laden thin film flow is not well understood. Re-

cent experiments, and their comparison to the model, have raised questions. We

present such a comparison in this paper, where the results show qualitative agree-

ment. In particular, by performing two-dimensional simulations, we are able to

observe finger formation and compare directly with experiments. The develop-

ment of quantitatively correct models for these systems is an ongoing active area

of research. Thus, there is a need for accurate, fully two-dimensional simulations

of the model.

Particle-laden thin film flow, as treated in two-dimensional simulations, is

most practical as a constant-flux problem. However, experiments are done for

the constant-volume problem. A scaling law for the front of the flow, x(t) ∼ Ct1/3

[Hup82] exists in the constant-volume case for clear fluids and our results indicate

that this is still valid for the particle-laden case, to leading order. We also test the

impact of choosing different hindered settling functions, which model the effects

of particles settling amongst other particles. For particle-laden flows, we compare

the results for theory, numerical simulations, and experiments. This comparison

is performed using the scaling constants C for each to see how well the three

cases agree.
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For the particle-laden thin film flow lubrication model, we assume that we are

in the regime where a particle-rich ridge forms at the front of the flow. However,

depending on the initial particle concentration and inclination angle, different

behaviors can be observed. We carry out a systematic study of the regimes

for various particle sizes and liquid viscosities. We compare experiments with

equilibrium theory to reveal the transient nature of the well-mixed regime, where

the particles neither appear to settle to the substrate nor form a particle-rich

ridge. The experiments also reveal how the particle size and liquid viscosity

affect the time scale of this transient regime.

This dissertation is organized as follows: Chapter 2 discusses the model for

particle-laden thin film flow in two dimensions. In Chapter 3, we present a full

derivation of the numerical scheme for this problem, with both temporal and

spatial discretizations as well as a discussion of a moving reference frame. Simu-

lations and choices for implementing the numerical scheme are given in Chapter 4.

The constant-volume problem and comparison between theory, numerical simula-

tions, and experiments are presented in Chapter 5. A comparison of experiments

to equilibrium theory is given in Chapter 6. A summary of the previous chapters

and results is presented in Chapter 7.
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CHAPTER 2

Model

The results from experiments indicate that particle-laden thin film flows exhibit

three distinct regimes, based on the initial particle concentration and angle of

inclination [ZDB05]. For low concentrations and angles, the particles settle to the

substrate with clear fluid flowing over the top. The behavior after sedimentation

is similar to clear fluid experiments, such as those performed by Huppert [Hup82].

High concentrations and angles cause a particle-rich ridge to emerge at the front

of the flow. Medium concentrations and angles lead to a particle concentration

which appears to stay well-mixed throughout the duration of the experiment.

Based on Cook [Coo08], this behavior likely belongs to one of the two previously

mentioned regimes, but may not have evolved to the point where this distinction

can be made.

The evolution equations for the flow are based on the regime where the in-

clination angle and particle concentration are both high enough to induce the

formation of a particle-rich ridge. The equations are formulated in terms of the

thickness of the film, h, and the particle concentration by volume, ϕ (see Figure

2.1). The equations for modeling this regime were first derived in Zhou et al.

[ZDB05]; re-derived in Cook et al. [CBH08], using conservation of volume rather

than mass; and modified in Cook et al. [CAB09], adding in a shear-induced dif-

fusion term to correct for an instability affecting ϕ. The dimensionless system

[CAB09] is
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Figure 2.1: The coordinate system and variables considered in this problem. x

is in the plane, in the direction of the flow; y is in the plane, perpendicular to

x; and z is normal to the plane. h is the film thickness and ϕ is the particle

concentration.

ht +∇ · (hvav) = 0, (2.1)

(ϕh)t +∇ · [ϕh (vav + (1− ϕ)vrel)− Fdiff ] = 0. (2.2)

The orientation for (2.1)-(2.2) is such that x lies in the plane and is parallel to

the direction of the flow, y is across the plane and perpendicular to x, and z is

normal to the plane. A one-dimensional form of the problem considers only the

x-direction, while two dimensions includes both x and y. The two velocity terms,

vav and vrel, are the volume-averaged velocity of the fluid and the velocity of the

particles relative to the liquid, respectively. We use the term liquid to refer to the

substance that the particles are suspended in and fluid to refer to the mixture
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as a whole. In Equation (2.2), vav + (1 − ϕ)vrel is the individual velocity of the

particles [CBH08] and Fdiff is shear-induced diffusion of the particles.

The volume-averaged velocity of the liquid and the particles together is

vav =
h2

µ(ϕ)
∇∇2h−D(α)

[
h2

µ(ϕ)
∇ (ρ(ϕ)h)− 5

8

h3

µ(ϕ)
∇ (ρ(ϕ))

]
+

ρ(ϕ)

µ(ϕ)
h2x̂, (2.3)

where the terms in (2.3) come from surface tension, the effects of gravity normal

to the inclined plane, and the effects of gravity parallel to the inclined plane.

The density of the fluid as a whole is ρ(ϕ) = 1 + ρfϕ; ρf =
ρp − ρl

ρl
is the

difference in the densities between the particles and the liquid. The function

µ(ϕ) = (1 − ϕ/ϕmax)
−2 [Kri72, SP05] is the effective fluid viscosity, where ϕmax

is the maximum packing fraction of particles, assuming the particles are spheres.

For this problem, the maximum packing fraction has been empirically determined

to be 0.58, while the theoretical value is 0.64 [WWG09]. D(α) = (3Ca)1/3 cotα

[BB97] is a modified capillary number, where Ca is the capillary number of the

liquid and α is the angle of inclination of the plane on which the fluid is flowing

(α = 0 corresponds to the plane being horizontal while α = π/2 to vertical).

The settling velocity of the particles, relative to the velocity of the liquid, is

a combination of three factors, assumed to be multiplicative,

vrel = Vsf(ϕ)w(h)x̂. (2.4)

The coefficient Vs =
2

3
a2ρf in (2.4) is the Stokes settling velocity of a single

sphere settling in a viscous liquid, where a is the dimensionless particle ra-

dius. A hindered settling function, in this case the Richardson-Zaki function

f(ϕ) = (1 − ϕ)5 [RZ54a], accounts for the effect of sedimentation. The parti-

cles settling parallel to the substrate is modeled using a wall effects function,
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w(h) = A(h/a)2/
√

1 + (A(h/a)2)2 with A = 1/18. This function is an approx-

imation to a method of images solution to a single sphere falling parallel to a

vertical wall [HB65]. This has the property that it is near 0 for h small and near

1 for h large.

Since the system (2.1)-(2.2) is fourth-order and (2.3) contains higher-order

terms but (2.4) does not, vrel is not regularized. This leads to an instability

affecting the particle concentration in numerical simulations [CAB09]. To correct

for this, a shear-induced diffusion term (2.5) was added in,

Fdiff =
3

2
a2(3Ca)1/3D̂(ϕ)

h2ρ(ϕ)

µ(ϕ)
∇ϕ. (2.5)

This behavior can be seen in a one-dimensional example on the domain x : 0−

50 with ∆x = 0.05. The initial film thickness is a jump, from 1 to 0.05 at x = 25,

smoothed by hyperbolic tangent. The initial particle concentration is taken to be

ϕ = 0.3. This simulation is similar to those described in Chapter 4, and a moving

reference frame is used, as discussed in Section 3.4. By time t = 1000, the solution

without the extra diffusion term has developed an instability near x = 10 (Figure

2.2) while the one with it is still stable (Figure 2.3). Note that the oscillations

trailing the particle-rich ridge, between x = 0 and x = 10, are a result of the

discretization of the moving reference frame and are discussed in Section 3.4.

Equation (2.5) accounts for horizontal diffusion of particles in the fluid caused by

horizontal gradients of ϕ and was derived based on results from Leighton [Lei85]

and Leighton and Acrivos [LA87b]. The term D̂(ϕ) = (1/3)ϕ2
(
1 + (1/2)e8.8ϕ

)
is

a dimensionless diffusion coefficient.
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Figure 2.2: The numerical solution of ϕ at time t = 1000 without shear-induced

diffusion. By this time, an instability has developed near x = 10.
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Figure 2.3: The numerical solution ϕ at time t = 1000 with shear-induced diffu-

sion (2.5). The solution is still stable due to the extra term.
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CHAPTER 3

Numerical Scheme

3.1 Time-Discretized Scheme

In the case of a gravity-driven clear fluid flow, the model reduces to a single

equation [BB97] for the film thickness, h,

ht + (h3)x +∇ ·
(
h3∇∇2h−D(α)h3∇h

)
= 0. (3.1)

Solving (3.1), and similar problems, numerically in one and two dimensions has

been performed using several different methods [BBG98, DK02, Kon03a, LGP02,

SRX07, WB03]. Including particles in the physics not only adds a second equa-

tion, but couples it to the equation for the film thickness. The particle-laden case

has been solved numerically in one dimension with methods such as forward Euler

with upwind differencing [ZDB05] and the Lax-Friedrichs method [CBH08] when

the high-order terms are omitted, and backward Euler with centered differencing

[ZDB05] when the terms are included.

This system of PDEs in two dimensions poses numerical difficulties beyond

those present in the clear fluid problem. For both the clear and particle-laden

cases, fully explicit schemes typically have the problem that an O(∆x4) timestep,

assuming ∆x = ∆y, is needed for stability. One solution is to use an implicit

scheme. For the clear fluid and similar problems, the nonlinearity combined with
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an implicit scheme amounts to solving the problem at each timestep using an

iterative process, such as Newton’s method, to converge to the solution [WB03].

For the particle-laden case, using an implicit scheme typically requires that both

equations be solved simultaneously, using an iterative process to account for the

nonlinearity. This results in a linear algebra problem with twice the number of

unknowns and a matrix that is twice as large in each dimension, compared to

the clear fluid problem. Therefore, solving the particle-laden case leads to larger

linear algebra problems to solve at each timestep and the matrix from Newton’s

method will have a more complex structure than for clear fluids.

The goal of the scheme presented here is to circumvent some of the afore-

mentioned difficulties. The advantages of this approach, over a purely explicit

scheme or implicit with Newton’s method, are that the timestep is more lenient

than for a fully explicit scheme and the linear algebra problem that results from

the implicit part of the scheme is reduced to a series of smaller banded matrix

solves, which can be done efficiently and independently for each equation.

The numerical scheme that we employ for the particle-laden thin film flow

problem is inspired by the schemes presented in Witelski and Bowen [WB03] for

higher-order parabolic PDEs and Warner et al. [WCM05] for surfactants. In

Witelski and Bowen, several ADI schemes, based on backward Euler, second-

order backward difference formulas, as well as Newton-like schemes, are derived

for solving the nonlinear PDE known as the thin film equation,

ht +∇ ·
(
f(h)∇∇2h

)
= 0. (3.2)

The backward Euler-based ADI scheme for (3.2) uses approximate values of h in

the nonlinear and mixed-derivative implicit terms. It is suggested to start with

approximations, such as time-lagged values, for evaluating these terms and calcu-
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lating the numerical solution at the timestep. Then use this solution for the new

approximate values within the same timestep and recalculate. This results in an

iterative scheme at each timestep. However, for solving the thin film equation, it

was noted that the iterations did not provide a noticeable improvement. Warner

et al. use this method for a coupled system of nonlinear PDEs relating to sur-

factants. They handle the higher-order terms implicitly using Crank-Nicolson,

and apply ADI to this. The remaining terms, which are at least second-order

in space, are treated explicitly. For the nonlinearity and mixed-derivative terms,

the values are time-lagged and the problem is solved only once per timestep. In

the simulations, ∆x = ∆y = π/100 ≈ 0.0314 required a timestep of O(10−5).

Our approach is to handle applicable terms implicitly, using ADI, and treat

the remaining terms explicitly, as we show below. The terms handled implicitly

are those with spatial derivatives on the same variable as the time derivative.

For example, Equation (2.1) has the time derivative on h, so the terms treated

implicitly should have spatial derivatives on h. Making this choice allows for the

splitting of the two-dimensional operators into the product of two one-dimensional

operators in the derivation of the ADI scheme. Iterations within each timestep

allow for a larger ∆t to be taken at the cost of some extra calculations. In general,

the increase in the size of the timestep outweighs the extra computational work,

as shown in Chapter 4.

For Equation (2.1), the terms

∇ ·
(

h3

µ(ϕ)
∇∇2h+

ρ(ϕ)

µ(ϕ)
h3x̂

)
(3.3)

can be handled implicitly. This is because the spatial derivatives on these terms

are applied to h. Of these terms, some parts of them will be handled by ap-

proximation, as in Witelski and Bowen [WB03]. Including the first-order terms

12



in the implicit treatment allows them to be discretized spatially using centered

differencing to maintain stability. Solving this equation numerically assumes that

ϕ is known, or can be approximated, and we are solving for h. First discretize

the terms in (3.3) in time with backward Euler, including the time derivative,

hn+1 +∆t∇ ·
(

h3

µ(ϕ)
∇∇2h+

ρ(ϕ)

µ(ϕ)
h3x̂

)n+1

= hn. (3.4)

Write out the operators in (3.4) fully,

hn+1 +∆t

[
∂x

(
h3

µ(ϕ)
hxxx

)
+ ∂y

(
h3

µ(ϕ)
hyyy

)
+∂x

(
ρ(ϕ)

µ(ϕ)
h3

)]n+1

+∆t

[
∂x

(
h3

µ(ϕ)
hyyx

)
+ ∂y

(
h3

µ(ϕ)
hxxy

)]n+1

= hn.(3.5)

The idea behind the ADI approach is to reduce the implicit part of (3.5),

with derivatives in both x and y, to a product of two operators, each with only

derivatives in either x or y. To achieve this, the terms involving only x-derivatives

and only y-derivatives are grouped together. Define the operators

Dx = ∂x

(
h3

µ(ϕ)
∂xxx +

ρ(ϕ)

µ(ϕ)
h2I

)n+1

, Dy = ∂y

(
h3

µ(ϕ)
∂yyy

)n+1

. (3.6)

Then replacing the terms in (3.5) with the definitions in (3.6), we have

hn+1 +∆t(Dx +Dy)h
n+1

+∆t

[
∂x

(
h3

µ(ϕ)
hyyx

)
+ ∂y

(
h3

µ(ϕ)
hxxy

)]n+1

= hn. (3.7)

In order to obtain an ADI scheme from (3.7), note that I +∆tDx +∆tDy =

(I+∆tDx)(I+∆tDy)−(∆t)2DxDy and so the left-hand side, with the addition of

an O (∆t2) term, can be written as a product of two one-dimensional operators.
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(I +∆tDx)(I +∆tDy)h
n+1 − (∆t)2DxDyh

n+1

+∆t

[
∂x

(
h3

µ(ϕ)
hyyx

)
+ ∂y

(
h3

µ(ϕ)
hxxy

)]n+1

= hn. (3.8)

To handle the nonlinear terms, which occur in front of derivatives, and mixed-

derivative terms in (3.8), define them as approximate, denoted by a tilde (e.g.,

h̃n+1). The approximate terms can be chosen in some reasonable manner, such as

time-lagged or extrapolated. This will be discussed in more detail later. Subtract

the mixed-derivative terms from and add the O(∆t2) term to both sides. This

leaves a scheme in which all the terms operating on hn+1 are known, as is the

entire right-hand side.

(I +∆tD̃x)(I +∆tD̃y)h
n+1 = hn

+

{
(∆t)2D̃xD̃y −∆t

[
∂x

(
h̃3

µ(ϕ̃)
∂yyx

)
+ ∂y

(
h̃3

µ(ϕ̃)
∂xxy

)]}n+1

h̃n+1. (3.9)

For simplicity, define the operators in (3.9) as

L̃x = I +∆tD̃x, L̃y = I +∆tD̃y.

Subtracting L̃xL̃yh̃
n+1 from both sides of (3.9), which cancels the O(∆t2) term,

yields

L̃xL̃y

(
hn+1 − h̃n+1

)
= −

(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(ϕ̃)
∇∇2h̃+

ρ(ϕ̃)

µ(ϕ̃)
h̃3x̂

)n+1

. (3.10)
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At this point, the implicit part of the scheme is complete and the explicit terms

can be added back into (3.10) using forward Euler.

L̃xL̃y

(
hn+1 − h̃n+1

)
= −

(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(ϕ̃)
∇∇2h̃+

ρ(ϕ̃)

µ(ϕ̃)
h̃3x̂

)n+1

+∆t∇ ·
{
D(α)

[
h3

µ(ϕ)
∇ (ρ(ϕ)h)− 5

8

h4

µ(ϕ)
∇ (ρ(ϕ))

]}n

. (3.11)

Define

u = hn+1 − h̃n+1,

which can be thought of as a correction term to the approximation of hn+1, and

(3.11) can be written as a three-step process: two one-directional solves (3.12)-

(3.13) and an update step (3.14).

L̃xv = −
(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(ϕ̃)
∇∇2h̃+

ρ(ϕ̃)

µ(ϕ̃)
h̃3x̂

)n+1

+∆t∇ ·
{
D(α)

[
h3

µ(ϕ)
∇ (ρ(ϕ)h)− 5

8

h4

µ(ϕ)
∇ (ρ(ϕ))

]}n

, (3.12)

L̃yu = v, (3.13)

hn+1 ≈ h̃n+1 + u. (3.14)

Since the operators L̃x and L̃y involve at most fourth-order terms, the spatial

discretization of them will lead to a five-point stencil in the x- and y-direction,

15



respectively. This discretization is discussed fully in Section 3.3. Along each

row/column of the discretized domain, this results in a pentadiagonal linear alge-

bra problem. This can be solved using a pentadiagonal solver, or a more generic

banded matrix solver.

To help with the inaccuracy in the nonlinear and mixed-derivative terms re-

sulting from approximation, an iterative procedure can be used at each timestep

to improve the solution and size of the timestep. This was first suggested for

the ADI scheme in the context of thin film equations [WB03]. This procedure

amounts to repeating the three-step process associated with solving each equa-

tion at each timestep and updating the approximate solution with the most recent

solution, until the new and approximate solutions sufficiently converge. For ex-

ample, one would solve (3.12)-(3.14), solve (3.24)-(3.26), and examine how much

the approximate solution differs from this computed solution. If this difference

is significant, one can replace the old approximate terms with the computed so-

lution and solve the same timestep again. This process can be continued until

the approximate and computed solutions are close. This is similar to fixed-point

iteration.

For Equation (2.1), when entering the timestep, a choice must be made as to

the value of h̃n+1 and (ϕ̃h̃)n+1. Using h as an example, two reasonable choices

would be a time-lagged approximation, hn, which is a first-order accurate ap-

proximation in time, or an extrapolated approximation, 2hn − hn−1, which is

second-order in time. For adaptive timestepping, this extrapolation is given by

hn+(∆t/∆told)(h
n−hn−1), where ∆t is the prospective timestep between tn and

tn+1 and ∆told is the timestep between tn−1 and tn. While the second choice of

an approximation is second-order, it also requires storing an extra set of data,

namely hn−1. Other choices for estimating hn+1 and (ϕh)n+1 based on previous
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data could be used as well. With this choice made, the three-step process for

each equation can be implemented, obtaining a solution for hn+1 and (ϕh)n+1.

We refer to the case when the solution obtained here is accepted as perform-

ing One Iteration. However, at this point, the approximation can be redefined,

h̃n+1 = hn+1, and the process repeated. This can be continued until convergence

between the approximate and new solution, or equivalently when the correction

term u is small in a chosen norm. We refer to this case as Iterations since the

problem is solved iteratively for each timestep.

For (2.2), the ADI method is applied to ϕh as a whole, since the time derivative

is on this term. The applicable terms in the equation are

∇ ·
[
−D(α)

(
ρf

(ϕh)h2

µ(ϕ)
∇(ϕh)

)
+ϕh

(
ρ(ϕ)

µ(ϕ)
h2 + (1− ϕ)Vsf(ϕ)w(h)

)
x̂

]
. (3.15)

As with (2.1), the time discretization of (3.15) is based on a backward Euler

method

(ϕh)n+1 +∆t∇ ·
[
−D(α)

(
ρf

(ϕh)h2

µ(ϕ)
∇(ϕh)

)
+ϕh

(
ρ(ϕ)

µ(ϕ)
h2 + (1− ϕ)Vsf(ϕ)w(h)

)
x̂

]n+1

= (ϕh)n. (3.16)

Writing out the operators in (3.16) explicitly,

(ϕh)n+1 −∆tD(α)ρf

[
∂x

(
(ϕh)h2

µ(ϕ)
∂x(ϕh)

)
+ ∂y

(
(ϕh)h2

µ(ϕ)
∂y(ϕh)

)]n+1

+∆t∂x

[
ϕh

(
ρ(ϕ)

µ(ϕ)
h2 + (1− ϕ)Vsf(ϕ)w(h)

)]n+1

= (ϕh)n. (3.17)

17



Define the operators in (3.17) involving only x-derivatives and only y-derivatives

as Dx and Dy, respectively.

Dx = −D(α)ρf∂x

(
(ϕh)h2

µ(ϕ)
∂x

)n+1

+∂x

([
ρ(ϕ)

µ(ϕ)
h2(1− ϕ)Vsf(ϕ)w(h)

]
I

)n+1

,

Dy = −D(α)ρf∂y

(
(ϕh)h2

µ(ϕ)
∂y

)n+1

. (3.18)

Using (3.18), the equation can be compactly written as

(ϕh)n+1 +∆t (Dx +Dy) (ϕh)
n+1 = (ϕh)n. (3.19)

Note that there are no mixed-derivative terms to handle in (3.19). The left-hand

side can be written as the product of two one-dimensional operators, incurring

an O(∆t2) term in the process.

(I +∆tDx) (I +∆tDy) (ϕh)
n+1 − (∆t)2DxDy(ϕh)

n+1 = (ϕh)n. (3.20)

Add the O(∆t2) term to both sides of (3.20), and make all terms that occur

nonlinearly at time tn+1 approximate, as before.

(
I +∆tD̃x

)(
I +∆tD̃y

)
(ϕh)n+1 = (ϕh)n + (∆t)2D̃xD̃y(ϕ̃h̃)

n+1. (3.21)

Define

L̃x = I +∆tD̃x, L̃y = I +∆tD̃y
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and subtract L̃xL̃y(ϕ̃h̃)
n+1 from both sides of (3.21) to obtain

L̃xL̃y

(
(ϕh)n+1 − (ϕ̃h̃)n+1

)
= −

(
(ϕ̃h̃)n+1 − (ϕh)n

)
−∆t∇ ·

[
−D(α)

(
ρf

(ϕ̃h̃)h̃2

µ(ϕ̃)
∇(ϕ̃h̃)

)

+ϕ̃h̃

(
ρ(ϕ̃)

µ(ϕ̃)
h̃2 + (1− ϕ̃)Vsf(ϕ̃)w(h̃)

)
x̂

]n+1

. (3.22)

The remaining terms can be incorporated into (3.22) via forward Euler.

L̃xL̃y

(
(ϕh)n+1 − (ϕ̃h̃)n+1

)
= −

(
(ϕ̃h̃)n+1 − (ϕh)n

)
−∆t∇ ·

[
−D(α)

(
ρf

(ϕ̃h̃)h̃2

µ(ϕ̃)
∇(ϕ̃h̃)

)

+ϕ̃h̃

(
ρ(ϕ̃)

µ(ϕ̃)
h̃2 + (1− ϕ̃)Vsf(ϕ̃)w(h̃)

)
x̂

]n+1

−∆t∇ ·
[
ϕh

(
h2

µ(ϕ)
∇∇2h−D(α)

(
h2

µ(ϕ)
∇h− 5

8

h3

µ(ϕ)
∇ (ρ(ϕ))

))
−Fdiff ]

n . (3.23)

Define

w = (ϕh)n+1 − (ϕ̃h̃)n+1.

Then (3.23) can be written out as the three-step process (3.24)-(3.26):
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L̃xv = −
(
(ϕ̃h̃)n+1 − (ϕh)n

)
−∆t∇ ·

[
−D(α)

(
ρf

(ϕ̃h̃)h̃2

µ(ϕ̃)
∇(ϕ̃h̃)

)

+ϕ̃h̃

(
ρ(ϕ̃)

µ(ϕ̃)
h̃2 + (1− ϕ̃)Vsf(ϕ̃)w(h̃)

)
x̂

]n+1

−∆t∇ ·
[
ϕh

(
h2

µ(ϕ)
∇∇2h−D(α)

(
h2

µ(ϕ)
∇h− 5

8

h3

µ(ϕ)
∇ (ρ(ϕ))

))
−Fdiff ]

n , (3.24)

L̃yw = v, (3.25)

(ϕh)n+1 ≈ (ϕ̃h̃)n+1 + w. (3.26)

The spatial operators in the L̃x and L̃y terms are at most second-order, and

spatial discretization leads to a three-point stencil in each direction. Similar to

(3.12) and (3.13), a tridiagonal solver or banded matrix solver can be used to

solve along each row/column.

Solving the system, as a whole, at each timestep can be then achieved by

solving (2.1) using (3.12)-(3.14) for hn+1, solving (2.2) using (3.24)-(3.26) for

(ϕh)n+1, then recovering the particle concentration as ϕn+1 = (ϕh)n+1/hn+1. Note

that each solve only uses values hn, h̃n+1, ϕn, and ϕ̃n+1, all of which are known.

This scheme can be solved in other possible ways. One might choose to use,

after solving (2.1), hn+1 in lieu of an approximation for h̃n+1 for solving (2.2).

Alternatively, the equations could be solved in the opposite order.

20



3.2 Adaptive Timestepping

We use an adaptive timestepping scheme to advance the solution. The scheme

utilizes the solution at consecutive timesteps tn−1, tn, tn+1. Based on a measure of

error, it decides whether or not to accept the new solution, and if it is reasonable

to increase the size of the timestep. This is a modification of the scheme used in

Bertozzi et al. [BBD94], in which it serves as an estimate of a dimensionless local

truncation error in time. Consider the solution of the film thickness, h, at times

tn−1, tn, and tn+1. Calculate en+1 = (hn+1 − hn)/hn and en = (hn − hn−1)/hn.

The modification from the original method is to divide by the value hn at each

point rather than hn
max = maxi,j{hn

i,j}, since it produces a better-working adaptive

scheme for this problem. Denote the timestep going from time tn to tn+1 as ∆t

and from tn−1 to tn as ∆told. Then define

Error =

∣∣∣∣∣∣∣∣en+1 − ∆t

∆told
en
∣∣∣∣∣∣∣∣ . (3.27)

This provides a dimensionless estimate of the local truncation error in time,

accumulated over the grid. The solution will be accepted if this error is less

than some tolerance, denoted Tol1. If the error is less than a smaller tolerance,

Tol2 < Tol1, for a fixed number of steps, the timestep is increased by a scale

factor. If the error is larger than Tol1, the maximum number of iterations within

a timestep is surpassed, or the solution becomes negative, the timestep is reduced

by a factor of 2. An example for Tol1 and Tol2 would be 10−7×( Area of Domain)

and 10−9× ( Area of Domain) respectively, where the difference in the tolerances

is at least an order of magnitude apart to prevent the error from alternating

between too large to accept and small enough to increase the timestep. The form

of these tolerances were chosen to make it convenient for various size domains
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without having to change the tolerances manually for each domain.

Since (3.27) only takes into account one of the two variables, this error can

be computed for ϕh, or merely ϕ, as well. These two errors can be combined into

an overall measure of the error by taking the maximum of the two, or by some

other reasonable combination such as adding the two errors together or choosing

a separate set of tolerances for each.

3.3 Spatial Discretization

We use centered finite differences for all spatial discretizations. Using the nota-

tion, hi+1/2,j ≈ (hi,j + hi+1,j)/2, the fourth-order term in (2.1) is

∇ ·
(

h3

µ(ϕ)
∇∇2h

)
i,j

≈

(
h3
i+1/2,j

µ(ϕi+1/2,j)
hxxx,i+1/2,j −

h3
i−1/2,j

µ(ϕi−1/2,j)
hxxx,i−1/2,j

)
/∆x

+

(
h3
i+1/2,j

µ(ϕi+1/2,j)
hyyx,i+1/2,j −

h3
i−1/2,j

µ(ϕi−1/2,j)
hyyx,i−1/2,j

)
/∆x

+

(
h3
i,j+1/2

µ(ϕi,j+1/2)
hxxy,i,j+1/2 −

h3
i,j−1/2

µ(ϕi,j−1/2)
hxxy,i,j−1/2

)
/∆y

+

(
h3
i,j+1/2

µ(ϕi,j+1/2)
hyyy,i,j+1/2 −

h3
i,j−1/2

µ(ϕi,j−1/2)
hyyy,i,j−1/2

)
/∆y. (3.28)

Here, the third derivatives are calculated at half-grid points by differencing con-

secutive standard second-order approximations. Two representative examples

are
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hxxx,i+1/2,j ≈ (hi+2,j − 3hi+1,j + 3hi,j − hi−1,j) /∆x3,

hxxy,i,j+1/2 ≈ ((hi+1,j+1 − 2hi,j+1 + hi−1,j+1)/∆x2

−(hi+1,j − 2hi,j + hi−1,j)/∆x2) /∆y. (3.29)

The two second-order terms are discretized as

∇ ·
(

h3

µ(ϕ)
∇(ρ(ϕ)h)

)
i,j

≈

(
h3
i+1/2,j

µ(ϕi+1/2,j)
(ρ(ϕi+1,j)hi+1,j − ρ(ϕi,j)hi,j)

−
h3
i−1/2,j

µ(ϕi−1/2,j)
(ρ(ϕi,j)hi,j − ρ(ϕi−1,j)hi−1,j)

)
/∆x2

+

(
h3
i,j+1/2

µ(ϕi,j+1/2)
(ρ(ϕi,j+1)hi,j+1 − ρ(ϕi,j)hi,j)

−
h3
i,j−1/2

µ(ϕi,j−1/2)
(ρ(ϕi,j)hi,j − ρ(ϕi,j−1)hi,j−1)

)
/∆y2, (3.30)

∇ ·
(

h4

µ(ϕ)
∇(ρ(ϕ))

)
i,j

≈

(
h4
i+1/2,j

µ(ϕi+1/2,j)
(ρ(ϕi+1,j)− ρ(ϕi,j))

−
h4
i−1/2,j

µ(ϕi−1/2,j)
(ρ(ϕi,j)− ρ(ϕi−1,j))

)
/∆x2

+

(
h4
i,j+1/2

µ(ϕi,j+1/2)
(ρ(ϕi,j+1)− ρ(ϕi,j))

−
h4
i,j−1/2

µ(ϕi,j−1/2)
(ρ(ϕi,j)− ρ(ϕi,j−1))

)
/∆y2. (3.31)
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The advective term is discretized using a standard centered-differencing scheme.

The terms in (2.2) are discretized in the same manner since many of them are

similar to those in (2.1). The fourth- and second-order terms that come from vav

are discretized as in (3.28)-(3.31), with h replaced by ϕh. Both advective terms

are discretized via standard centered differencing.

The shear-induced diffusion term is discretized the same way as (3.30)-(3.31).

∇ ·
(
D̂(ϕ)

h2ρ(ϕ)

µ(ϕ)
∇ϕ

)
i,j

≈

(
D̂(ϕi+1/2,j)

h2
i+1/2,jρ(ϕi+1/2,j)

µ(ϕi+1/2,j)
(ϕi+1,j − ϕi,j)−

D̂(ϕi−1/2,j)
h2
i−1/2,jρ(ϕi−1/2,j)

µ(ϕi−1/2,j)
(ϕi,j − ϕi−1,j)

)
/∆x2

+

(
D̂(ϕi,j+1/2)

h2
i,j+1/2ρ(ϕi,j+1/2)

µ(ϕi,j+1/2)
(ϕi,j+1 − ϕi,j)

−D̂(ϕi,j−1/2)
h2
i,j−1/2ρ(ϕi,j−1/2)

µ(ϕi,j−1/2)
(ϕi,j − ϕi,j−1)

)
/∆y2. (3.32)

Centered differencing is not used for the moving reference frame, if one is

employed. Instead, a second-order upwind differencing scheme is used, which

will be discussed in the next section.

3.4 Reference Frame

The area of interest in the simulations is near the front of the flow, where effects

like the capillary and particle-rich ridges occur. With a fixed reference frame,

the spatial domain would need to be taken as the entire area over which the

flow would evolve, leading to large portions of the domain where no change is
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occurring. This issue can be easily addressed by using a moving reference frame.

To implement a moving reference frame, we add an extra term to each equa-

tion, −shx on the left-hand side of (2.1) and −s(ϕh)x on (2.2). Here, s > 0

is the speed at which the moving reference frame travels. Zhou et al. [ZDB05]

approximate the front speed by removing all terms from the equations which are

higher than first order, leaving only the advective terms. They observe that these

terms capture the large scale dynamics, including the speed of the shocks, and

the ridges that develop in h and ϕ. This leaves a 2 × 2 system of conservation

laws of the form

ht + [F (h, ϕh)]x = 0, (3.33)

(ϕh)t + [G(h, ϕh)]x = 0, (3.34)

where F and G are defined as

F (h, ϕh) =
ρ(ϕ)

µ(ϕ)
h3,

G(h, ϕh) =
ρ(ϕ)

µ(ϕ)
(ϕh)h2 + (ϕh)(1− ϕ)Vsf(ϕ)w(h).

The initial conditions for (3.33)-(3.34) are

h(x, 0) =

 hl, x ≤ 0,

hr, x > 0,
(3.35)

(ϕh)(x, 0) =

 ϕ0hl, x ≤ 0,

ϕ0hr, x > 0.
(3.36)
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where hl and hr in (3.35) and (3.36) are the initial film thickness and the height of

the precursor b, respectively, and ϕ0 in (3.36) is the initial particle concentration

of the fluid. These initial conditions specify a Riemann problem [Lax73]. From

the initial shock in both equations, an intermediate state emerges, (hi, (ϕh)i).

The weak form of this system produces two Rankine-Hugoniot jump conditions,

which define the shock speeds, ahead and behind the intermediate states. For s1,

the speed of the shock behind the intermediate state, and s2, the speed ahead,

these conditions are given by

s1 =
F (hi, (ϕh)i)− F (hl, (ϕh)l)

hi − hl

=
G(hi, (ϕh)i)−G(hl, (ϕh)l)

(ϕh)i − (ϕh)l
,

s2 =
F (hr, (ϕh)r)− F (hi, (ϕh)i)

hr − hi

=
G(hr, (ϕh)r)−G(hi, (ϕh)i)

(ϕh)r − (ϕh)i
. (3.37)

Figure 3.1: The intermediate states that develop in the film thickness (left) and

particle concentration (right) for the first-order system of equations.

The intermediate states and shocks can be seen in Figure 3.1. This nonlinear

system (3.37) of four equations and four unknowns, hi, (ϕh)i, s1, and s2, can

be solved via Newton’s method. For the simulations shown in Chapter 4, our

reference frame speed is an average of the two speeds, s = (s1 + s2)/2.
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The discretization of the terms for the moving reference frame is done explic-

itly using forward Euler combined with second-order upwind-differencing,

−shx ≈ −s
−hi+2,j + 4hi+1,j − 3hi,j

2∆x
.

This was chosen over explicit first-order upwind and implicit centered differencing.

For a test run to time t = 10 with no variation in the y-direction, implicit

centered differencing produced the highest particle-rich ridge, but introduced

small oscillations ahead of the flow that were approximately 2% of the height of

the ridge. First-order upwind was dissipative and lead to the ridge being 28%

smaller than implicit centered differencing. The effects of choosing second-order

upwind appear to be some minor dissipation, about 17% as compared to implicit

centered differencing, and dispersion, which was not seen in this test case, behind

the particle-rich ridge.

The moving reference frame can be used for both the one- and two-dimensional

cases (see Figures 3.2 and 3.3). To demonstrate this, simulations were run un-

der the same conditions as those in Chapter 4. The theory-based solution for

the problem without higher-order terms (3.33)-(3.36) aligns well with the one-

dimensional numerical solution for the full problem. The two-dimensional solu-

tion for the full problem with a perturbation to the initial film thickness leads to

a finger that moves faster than the one-dimensional case and the troughs, to the

sides of the finger, move slower.

This can be viewed more succinctly in Figures 3.4 and 3.7, where the contours

of the perturbed two-dimensional case are shown. The position of the finger runs

ahead of the one-dimensional front, which is approximately at x = 15, while the

troughs lag behind. The averaging of the front position was first investigated by

Huppert [Hup82] for experiments involving clear fluids. Both simulations start
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with the same volume and, after an initial transient, the average front positions

for the one- and perturbed two-dimensional case (measured at h = 0.5) stay close

to each other (Figure 3.5). Figure 3.6 shows the position of the finger and the

trough in the two-dimensional case over time.
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Figure 3.2: Comparison of theory and simulations at time t = 100 for the film

thickness, h: theory without higher-order terms (solid line), one-dimensional so-

lution to the full problem (dashed line), perturbed two-dimensional finger (dotted

line), and perturbed two-dimensional trough (dot-dashed line). The domain in

the y-direction is 15 units long, with the finger slice taken at y = 7.5 and the

trough slice taken at y = 1 (see Figure 3.4).
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Figure 3.3: Comparison of theory and simulations at time t = 100 for the particle

concentration, ϕ. The labels are the same as in Figure 3.2.
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Figure 3.4: A contour plot of the simulation at times t = 0 (left) and t = 100

(right) for the film thickness, h, in the perturbed two-dimensional case. The

perturbation in two dimensions leads to a fingering instability not seen in the

one-dimensional case.
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Figure 3.5: The average front position of the film thickness, h, of the one-dimen-

sional and perturbed two-dimensional case up to time t = 100. After an initial

transient, the average front positions stay close to each other.
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Figure 3.6: The front position of the film thickness, h, of the perturbed two-di-

mensional case up to time t = 100 along the finger and trough.
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Figure 3.7: A contour plot of the simulation data at time t = 100 for the particle

concentration, ϕ, in the perturbed two-dimensional case. The perturbation leads

to a particle-rich ridge that outlines and begins to fill in the finger.
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CHAPTER 4

Simulations and Comparison to Experiments

4.1 Benchmark Simulations

A rectangular domain is used with the x-direction oriented down the inclined

plane and the y-direction across the inclined plane. In all cases, the particle

concentration is initially taken to be ϕ(x, y, 0) = ϕ0, where 0 ≤ ϕ0 ≤ ϕmax. This

corresponds to having a well-mixed initial fluid. The film thickness far behind

the contact line is set at h(x, y, 0) = 1 and ahead of the flow, a precursor of height

h(x, y, 0) = b is assumed. At the contact line, a perturbation to a linear front can

be applied to induce behavior such as a fingering instability. The parameters in

the model are taken to be: a = 0.1, ρf = 1.7, Ca = 10−3, α = π/4. The constant

ϕmax is taken to be 0.67, in line with the simulations in Cook et al. [CAB09].

The initial timestep is set to ∆t = 10−6 and the mesh width is ∆x = ∆y = 0.05.

For the model, two sources contribute to the height of the film thickness and

particle concentration near the front of the flow. The first is the higher-order

terms, such as surface tension, which produce smooth ridges in both h and ϕ.

Second, even without these terms, an intermediate state at the front emerges for

both variables, higher than either of their respective left or right states. These

heights are dependent on the precursor b.

The height of the precursor in the following simulations is chosen to be the

same as ∆x. In general, the choice of precursor has a small effect on the speed of
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the flow, but a large effect on both the film thickness and particle concentration.

To illustrate this, Table 4.1 shows the height of the intermediate states for both

h and ϕ as well as the speeds of the trailing and leading shocks obtained from

the theory-based solution to the system of conservation laws (3.33)-(3.36) (see

Section 3.4 for a more in-depth discussion).

b hi ϕi s1 s2

0.1 1.01653 0.307566 0.459323 0.510221

0.05 1.03478 0.315538 0.459314 0.483782

0.025 1.07107 0.330331 0.459301 0.471418

0.0125 1.1427 0.356006 0.459289 0.465441

0.00625 1.28276 0.396078 0.459294 0.462488
...

...
...

...
...

0.001 9.14247 0.635545 0.459788 0.459916

Table 4.1: The intermediate states and shock speed solutions from Equation

(3.37) based on the precursor thickness b. As the precursor decreases, both hi

and ϕi increase and the shock speeds converge.

The intermediate film thickness hi and particle concentration ϕi increase as the

height of the precursor b decreases. For the shock speeds, a smaller precursor leads

to the trailing shock speed s1 staying relatively the same, but the leading shock

speed s2 slows down and approaches s1. These results agree with the previous

ones related to solving the system of conservation laws [CBH08, ZDB05]. For

this model, the smallest precursor for which a solution exists is b ≈ 9 × 10−4

[CBH08]. A precursor close to this case, b = 0.001, produces shocks speeds which

are close together and an intermediate particle concentration near the maximum
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packing fraction. An alternative settling function that permits solutions with

smaller precursors, fB(ϕ) = (1− ϕ/ϕmax)
5, is examined in Cook et al. [CBH08].

The boundary conditions for h are Dirichlet in front and behind, in the x-

direction, the flow and Neumann on the sides, in the y-direction. The same is

employed for ϕ. In addition, all third derivatives in h, normal to the boundary,

are set to 0. More specifically, for a rectangular domain with length X0 and width

Y0, the boundary conditions are

h(0, y) = 1, hxxx(0, y) = 0, h(X0, y) = b, hxxx(X0, y) = 0,

hy(x, 0) = 0, hyyy(x, 0) = 0, hy(x, Y0) = 0, hyyy(x, Y0) = 0,

ϕ(0, y) = ϕ0, ϕ(X0, y) = ϕ0, ϕy(x, 0) = 0, ϕy(x, Y0) = 0.

The simulations are all run using moving reference frames, with the speed of the

frame determined as in Section 3.4.

The code is written in parallel using the C++ OpenMP package. This choice

of parallelization was made since the majority of calculations are done via for

loops and OpenMP works well with loop-heavy code. This includes the calcula-

tion of all finite differences and the solves along rows and columns associated with

the ADI part of the scheme. This is especially useful since rows/columns can be

solved independently of each other for each equation. In addition, writing special

solvers for linear systems of equations across multiple processors [NS09, PS06] is

avoided by this approach. The speed-up attained using N processors is calcu-

lated by dividing the runtime for one processor by the runtime for N processors

(Speed-Up = Time(1 Processor)/Time(N Processors)).

Based on Figure 4.1, the scaling is close to linear up to 4 processors, with

a small drop-off in performance as the number increases. This almost-linear
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Figure 4.1: The speed-up gained by going from 1 to N processors using OpenMP.

The line y = N is shown as a point of reference.

behavior is a result of all of the code, outside of a few minor calculations and the

recording of the data, being amenable to parallelization.

To test some preferences that need be chosen a priori in the simulation, we

conducted short-time tests to gauge the effectiveness of each approach. The ones

considered here are (a) whether to time-lag or extrapolate the approximate terms

and (b) whether or not to perform iterations past a single solve to improve the

approximate terms, and therefore the solution at each timestep (see Table 4.2).

(a) Approximate Terms Time-Lagged Extrapolation

(b) Number of Iterations One Iteration Iterations

Table 4.2: The two choices to be made when implementing the numerical scheme.

One must choose whether to (a) time-lag or extrapolate the approximate terms

and (b) whether or not to perform additional iterations past the initial solve.
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Consider an initial condition of ϕ0 = 0.3 and a front perturbed from Riemann

initial data, h(x, y, 0) = 1 far behind the front, h(x, y, 0) = 0.05 far ahead of the

front. At the jump from fluid to precursor, the shape of the front is given as

xfront = X0/2− cos(2πy/Y0). This initial data is then smoothed using hyperbolic

tangent and matched to the boundary condition (see Figure 4.4). This has the

effect that the initial timestep can be taken more leniently.

We ran this initial simulation for each of the four combinations in Table 4.2 to

time t = 1 and the maximum timestep allowed, average number of iterations per

timestep, and the total runtime, in seconds, are listed in the table below (Table

4.3). This and Table 4.4 provide some global measures to compare the different

schemes rather than illustrating convergence studies for any particular method.

The choice of t = 1 was made as the timestep changes dramatically over this time

interval and can provide insight as to which methods seem practical for long-time

runs. Since adaptive timestepping is utilized here, the tolerances are tuned so as

to ensure that the simulation stays stable, not only to time t = 1 but for some

time afterwards as well (it is taken up to t = 100 in this case, which is the length

of the long-run simulations).

∆tmax Avg. Iter. Runtime

Time-Lagged and One Iteration 0.000568341 1.0 518.2

Time-Lagged and Iterations 0.00183296 2.20997 601.468

Extrapolation and One Iteration 4.07743× 10−5 1.0 19596.1

Extrapolation and Iterations 0.00486338 1.29668 376.603

Table 4.3: Results for time t = 1 based on various choices for implementation.

Using Iterations performs well for both choices of approximate terms in that

the total runtimes are low, the maximum timesteps are large, and the number
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of iterations stays close to 1. Between these two, Extrapolation and Iterations

does best, with nearly one fewer iteration required per timestep, on average,

and a runtime that is 37% shorter. Performing One Iteration, the runtime for

Time-Lagged is in between the two cases with Iterations, but for Extrapolation,

it performs poorly, producing a runtime that is 33 to 52 times worse than the

other three options. This is due to the small maximum timestep that is associated

with this approach, which is 14 to 119 times smaller than the other three. At this

point, it makes sense to discard the Extrapolation and One Iteration approach

due to its excessive runtime and explore the remaining ones.

Under the same conditions, we ran a longer simulation, this time to t = 100.

Using the best remaining options, we can glean some idea as to which one(s) will

work best for a longer simulation.

∆tmax Avg. Iter. Runtime

Time-Lagged and One Iteration 0.00107169 1.0 17811.3

Time-Lagged and Iterations 0.00329173 2.95498 13153.8

Extrapolation and Iterations 0.0106161 2.01204 3364.93

Table 4.4: Results for time t = 100.

Comparing Tables 4.3 and 4.4, the maximum timestep for each approach

has increased. Using Iterations, the average number has gone up for both Time-

Lagged and Extrapolation. However, the average number of iterations per timestep

for Extrapolation is approximately one iteration fewer than for Time-Lagged. Also

the runtime takes about 2.9 times longer for Time-Lagged compared to Extrapo-

lation. One can see the benefit of performing iterations instead of using a smaller

timestep in comparing the results for Time-Lagged and One Iteration and Time-

Lagged and Iterations. Time-Lagged and One Iteration advances the solution
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approximately the same time forward with three timesteps as Time-Lagged and

Iterations does with one timestep and three iterations. However, doing two extra

timesteps costs more than two extra iterations, as seen in their respective run-

times. This is because the explicit terms do not need to be re-calculated for each

iteration while they do for each timestep. Therefore, the only two options which

make sense to use are the ones involving Iterations. Of these, Extrapolation is

the clear favorite.
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Figure 4.2: The adaptive timestep up to time t = 20. The timestep, ∆t, is

recorded in intervals of 0.25 for the three cases. Extrapolation and Iterations

has a significantly larger timestep than either Time-Lagged and One Iteration or

Time-Lagged and Iterations.

In Figure 4.2, we see that by time t = 8, all three approaches have settled into

a respective timestep. The timestep for Extrapolation and Iterations does best,

followed by Time-Lagged and Iterations and Time-Lagged and One Iteration. The

timestep for Extrapolation and Iterations is 3.2 times better than Time-Lagged

and Iterations and 9.9 times better than Time-Lagged and One Iteration. The
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benefit of the larger timestep for both approaches with Iterations is partially

offset by the need for extra calculations related to the iterations.
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Figure 4.3: The number of iterations up to time t = 100. The iterations are

recorded in intervals of 0.25 for the two cases. Using Extrapolation and Itera-

tions does better than Time-Lagged and Iterations in terms of fewest number of

iterations.

Figure 4.3 shows the number of iterations required throughout the simulation.

For Extrapolation and Iterations, the increase in iterations approximately between

times t = 20 and t = 30 corresponds to the finger forming and stretching out

ahead of the flow in the film thickness and the particle-rich ridge growing higher

and outlining the finger. While the number of iterations jumps once to 3 and

then back down to 2 for Extrapolation and Iterations, it remains constant at 3

for Time-Lagged and Iterations. The cost of storing extra data and performing a

small computation to find the extrapolated approximations seems a small price

to pay to save one iteration per timestep, which includes recalculating values

involving the approximate terms and performing the ADI solves.

Using the simulation data up to t = 100, we can examine the effects of the

initial perturbation graphically. For the film thickness, a small capillary ridge

forms in the center of the perturbation (Figure 4.5) and begins to stretch out
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Figure 4.4: The initial film thickness. It is perturbed by a cosine wave along y

and smoothed along x by hyperbolic tangent.

Figure 4.5: Film thickness (left) and particle concentration (right) at time t = 25.

A small ridge forms in both, with the highest point in the perturbation.

ahead of the bulk flow (Figures 4.6 and 4.7). This is the well-known fingering

instability present in thin film flows. For the particle concentration, a particle-

rich ridge initially forms at the contact line (Figure 4.5) and, as the fingering

instability evolves, outlines the shape of the finger (Figures 4.6 and 4.7). Directly
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Figure 4.6: Film thickness (left) and particle concentration (right) at time t = 50.

A fingering instability and particle-rich ridge form.

Figure 4.7: Film thickness (left) and particle concentration (right) at time

t = 100. The fluid finger stretches out ahead of the bulk flow. The particle-rich

ridge increases in concentration and has a higher concentration in and around

the fingering instability.

behind the ridge, a pocket of lower concentration forms. The interior of the

finger is slowly encroached upon by the particles that have accumulated near the

back and sides of the finger. This can be seen in Figure 4.7 as an interior layer

along the inside of the particle-rich ridge. It is possible that this phenomenon
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is not physical, meaning that it occurs only in the simulations and not in the

experiments, and may be a result of the current model not containing all of the

necessary physics.

4.2 Comparison to Experiments

Experiments for constant-volume particle-laden thin film flows have been com-

pared in one dimension to the solution, both analytically and numerically, for

constant-volume clear fluid flows. The average front position for clear fluids is

given by a power law, where the location of the front scales like Ct1/3, where

C is a scaling constant [Hup82]. Ward et al. [WWG09] compare the average

front position of the flow to this scaling and find agreement for particle concen-

trations below ϕ = 0.45 and deviations at later times for higher concentrations.

Grunewald et al. [GLM10] compare the average front position to a re-derived

one-dimensional model, based on results from Huppert [Hup82] with a precur-

sor, and to experiments and numerical solutions of the one-dimensional problem.

The Ct1/3 scaling appears valid for concentrations of 0.25 to 0.45, and the scaling

constant for experiments and numerics are within 20% of the theoretical constant

(see Chapter 5 for a full discussion). We seek to compare the numerical solution

in two dimensions to images of experiments, taking into account that variations

occur across the front of the flow.

We use 1000 cSt polydimethylsiloxane (PDMS), a silicone oil, for the liquid

component of the fluid. For the particles, glass beads with diameters in the range

of 250− 425 µm are used. The two components are then well-mixed and released

down an inclined plane from a reservoir. This corresponds to a constant-volume

experiment, whereas our simulations are constant-flux. The approximation of a

constant-volume problem by a constant-flux one may be invalid at early times,
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as the height of the fluid will be changing rapidly. However, the height of the

flow changes slower at later times, at which point a constant-flux approximation

may be valid.

The experiment, which we will compare to simulation, is a fluid of approxi-

mately 90 cm3 containing a volume which is 35.9% particles. The plane is inclined

at a 32-degree angle. The fluid is allowed to flow down the plane, which is 14 cm

across and 90 cm down. In the experiments, the flow starts out close to uniform

across the front, away from the edges, and over time develops instabilities, in

the form of fingers stretching out ahead of the bulk flow. Since, for simulations,

starting with a uniform front along the y-direction leads to a uniform solution,

we start the simulation some time after the start-time to add a perturbation to

the initial data, which induces the type of behavior seen in the latter stages of

the experiments.

In order to avoid simulating the problem over the entire domain, we truncate

the solution near the front and treat the problem locally as being constant-flux.

We are interested in the dynamics of finger formation during which time the film

thickness only changes by at most 20% , so a local approximation by constant-flux

is reasonable.

We use two images, taken three minutes apart, to compare with the simulation

(Figures 4.8 and 4.10). The first image is taken when the front of the flow has

reached approximately 53 cm down the plane. The shape of the front is parabolic-

like with two large perturbations at either end of the front. In between, smaller

perturbations exist which lead to fingering instabilities. The two outer perturba-

tions lead to longer and thicker fingers than the smaller inner perturbations. We

take a front similar to this in our simulation.

The scales for a constant-flux problem can be taken from Cook et al. [CBH08],
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Figure 4.8: The initial condition of the experiment, used for comparing with the

simulation. At this point, the front of the flow has begun to develop perturba-

tions, which will lead to fingering instabilities.

which are the same as for the clear fluid case. The height scale is taken to be

h0 = 1 mm. The length scale is x0 = (l2h0)
1/3, where the capillary length, l,

is l =
√
γ/ρlg∥. The constants are γ, the coefficient of surface tension; ρl, the

liquid density; and g∥, the component of gravity parallel to the inclined plane.

The time scale is t0 = (3µl/γ)x0l
2/h2

0, where µl is the dynamic liquid viscosity.

The capillary number is given by Ca = µlx0/γt0 = h2
0/3l

2.

The scales, given these parameters, are h0 = 0.001 m, x0 = 0.00161396 m,

l = 0.00205041 m, t0 = 0.93235 s, and Ca = 0.0792863. Using this, we can

construct an initial condition which resembles the experiment and will produce

similar results. This is done by measuring the features of the initial image and

creating a similar condition. While the flow in the experiment is asymmetric, we

take a symmetric initial condition in the simulation which has features that are
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approximately, in both location and size, the same as in the experiment. The

track is taken to be 86.75 units wide (rounded up to the nearest 0.05 increment,

which is the value of ∆x,∆y), which corresponds to the 14 cm wide track. The

precursor in the simulation is set to b = 0.05, as in the previous simulations.

A moving reference frame is used since this is taken to be a constant-flux

problem locally. The speed of the moving reference frame is approximately

s = 0.343198, calculated as in Section 3.4. Running a simulation over the course

of three minutes leads to a distance traveled for the frame of approximately

10.69 cm, where the actual displacement, based on the experiment, is around

12 cm, so using the constant-flux assumption seems to produce a decent approx-

imation of the distance the fluid will flow.

Figure 4.9: The initial condition for the film thickness, h, used in the simulation.

This is an artificially-created starting condition to be representative of the state

shown for the experiment. The height is in mm.

The initial data is generated using a sine wave to form the two large perturba-
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tions and the space away from the edges. The three fingers that develop between

these two perturbations are simulated with a cosine wave of small amplitude,

0.25 in dimensionless units (Figure 4.9). The simulation is run to t = 193.06, the

equivalent of three minutes of real-time.

Figure 4.10: The evolution of the experiment after three minutes. The fingering

instability starts to form at the front.

Over the course of the three minutes, the exterior of the outer fingers in the

experiment go from 4 cm and 6.5 cm on the left and right, respectively, to 7.5 cm

and 12 cm. The interior of these fingers go from less than 1 cm on each side to

about 3 cm. The interior fingers are not discernable in the initial image. The flow

as a whole, measured from where the fluid touches the walls, has moved about

11 cm down the plane. The interior fingers in the experiment extend about 0.5 cm

ahead of the flow.

In the simulation (Figure 4.11), the moving reference frame accounts for

10.69 cm of movement, so the position where the fluid touches the edges has
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Figure 4.11: The evolution of the film thickness, h, in the simulation after three

minutes. Both the experiment and simulation exhibit a fingering instability, but

the instability in the simulation is less pronounced. The height is in mm.

Figure 4.12: Particle concentration, ϕ, for the film thickness in Figure 4.11.
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moved approximately 11.4 cm. The evolution of the fingers in the simulation is

slightly less pronounced than in the experiment. This is likely due to the sim-

ulation initially undergoing a transient state where the fluid travels slower than

at later times, while the transient in the experiment has occurred prior to this

three-minute interval. The exterior of the outer fingers is approximately 4.2 cm

and interior 1.2 cm. The interior fingers extend ahead of the flow about 0.8 cm.

The tip of the longest finger in the experiment has moved 15 cm while in the

simulations, it has advanced approximately 11.4 cm. The tips of the fingers, in

the z-direction, reach up to 1.37 mm.

The particle concentration cannot be determined accurately at the particle-

rich ridge in the experiment, but the increased opacity at the leading edge of the

flow indicates an increase in the concentration, relative to the ambient concen-

tration. This change in shade is approximately 1 cm long in the direction of the

flow. In the simulation (Figure 4.12), the thickness of the ridge ranges from 0.6

to 1.1 cm, which is consistent with the experiment.

4.3 Summary

Schemes originally derived for numerically solving high-order parabolic problems

have recently been extended to high-order systems, such as the case of surfactants

and particle-laden thin films. Handling the higher-order terms in a practical way

is necessary for fast and efficient computation. The scheme we have presented

in Chapter 3 for particle-laden thin film flow provides an easy-to-program and

effective way to solve this high-order coupled system. This scheme can provide a

blueprint for approaches to solving similar problems.

The numerical scheme developed for particle-laden thin film flow has several
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nice attributes. The timestep required for this scheme is in the range of O(∆x2),

which is much better than the O(∆x4) for a fully explicit scheme. The structure

of the scheme allows for the possibility of solving each equation with its own

unique timestep for better efficiency, as the particle concentration is typically the

equation that fails the timestep restriction criteria. The linear algebra problem

that results from an implicit time discretization along with the nonlinearity is

reduced to a series of tri- and pentadiagonal solves, which can be done in parallel

along the rows/columns of the grid.

The parallelization of the code is straightforward using OpenMP. The loops

for computing the explicit and approximate terms as well as the solves along

rows and columns can be done in parallel, leading to a code that scales close to

linearly for up to 8 processors, getting close to 8 times speed-up. Adding OpenMP

implementation to C++ code on any multicore machine is easy to implement,

as it only requires adding a few lines of code to existing for loops and needs no

managing of the movement of data on the programmer’s part. Since the code is

predominantly such loops, it is easy to parallelize and is highly effective in getting

better runtimes.

Implementing Iterations within each timestep, which is first presented in Wi-

telski and Bowen [WB03], but not used in Warner et al. [WCM05], seems to work

best for this problem, in terms of allowing for a larger timestep and producing an

accurate solution. Among the choices for the approximate terms when performing

Iterations, Extrapolation seems to produce the best runtime and fewest iterations.

Implementation requires only storing an extra set of data used in extrapolating

the approximate terms but, using the adaptive timestepping discussed here, this

data is stored anyway.

The choice of Extrapolation and Iterations may work best for this problem,
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but for other problems or initial conditions, another choice may fare better. It

is recommended, as in this case, that a short-term simulation be performed for

the different choices of approximate terms and whether or not to perform extra

iterations. The small cost of these short runs may allow for a more efficient run

for actual simulations. It is also recommended that one examines the results

to make sure that the scheme is not only fast with the choice, but sufficiently

accurate.

The numerical solution agrees reasonably well with the behavior seen in ex-

periments. This is in part because the model was derived for the case when a

particle-rich ridge forms. This is seen in the experiments for high angles of incli-

nation and high concentrations, but will occur in the model for all concentrations

and angles. The particle-rich ridge in the simulations is two thin layers of parti-

cles, one which originates at the front of the flow and the other from the troughs

of the emerging fingers, which may not be physical.

The current model assumes a constant, or average, particle concentration

throughout the fluid layer in the z-direction. The same is true for the velocity,

which is averaged in the z-direction. Theory exists for the vertical movement

of the particles [Coo08], whether they will settle to the inclined plane or form a

ridge, and incorporating this behavior into a new model is the current research

of the authors. It is hoped that the current numerical scheme will be adaptable

to this new model.
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CHAPTER 5

Self-Similarity of Particle-Laden Flow at

Constant Volume

This chapter compares the behavior of a constant-volume particle-laden fluid flow

down an incline with a clear fluid flow. We compare the analytical solutions of

the clear fluid flow to both physical experiments and numerical simulations of

the particle-laden fluid flow, using a model proposed in Cook et al. [CBH08] and

Zhou et al. [ZDB05].

In Huppert [Hup82], a simple scaling law is derived for the average front posi-

tion x(t) ∼ Ct1/3 in the case of clear fluids. Comparison to both the particle-laden

flow lubrication model and to physical experiments suggests that the Huppert

scaling law is still valid to leading order for particle-laden fluids with moderate

particle concentrations in the range 25-45%. In this range, the particle-laden fluid

still behaves fluid-like, and settling of the particles is present but does not domi-

nate the large-scale dynamics. The effects of settling in the direction of the flow

can be visually observed in the experiments as a particle-rich ridge at the leading

edge of the flow. We compare different settling functions in our model to analyze

this effect numerically. We also note that the lubrication models with settling

require a precursor; they are singular at vanishing precursor [CBH08, ZDB05].

Thus, it makes sense to compare the dynamics of the lubrication model with

settling to an exact solution of the problem without settling and with precursor.
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5.1 One-Dimensional Lubrication Model

The flow of a particle-laden fluid down an inclined plane has been modeled by a

system of conservation laws [CBH08, Coo07],

ht + (hvtot)x = 0, (5.1)

(ϕh)t + (ϕhvp)x = 0. (5.2)

This is similar to the system of conservation laws (3.33)-(3.34) in Section 3.4.

The total volume of the fluid is conserved in (5.1), where h(x, t) is the height

of the liquid-particle mixture at position x (oriented down the inclined plane)

and time t. We assume uniformity in the transverse direction. The total volume

of particles ϕh is conserved in (5.2), where ϕ is the particle concentration in the

fluid. The average velocity of the fluid vtot is a depth-average as well as a volume-

average of the speeds of the liquid and the particles. The velocity of the particles

vp consists of vtot and an extra term (1 − ϕ)vrel due to the sedimentation of the

more dense particles in the fluid:

vp = vtot + (1− ϕ)vrel.

We assume that the particle concentration ϕ is uniform in the direction perpen-

dicular to the inclined plane. It is shown in Cook [Coo08] that this assumption

can be improved to a distribution that is stationary in time which balances sedi-

mentation and shear-induced migration. We refer to Cook [Coo08] for a precise

discussion. The depth-average of the velocity of the fluid, vtot found in (5.1), can

then be derived via standard techniques in lubrication theory for thin liquid films
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[Coo07], which is valid for fluids with small Reynolds numbers and characteristic

height much smaller than the characteristic length. The first-order term describes

its dominant behavior as:

vtot =
ρ(ϕ)

3µ(ϕ)
h2g∥. (5.3)

Note that the terms discussed in this chapter (e.g., ρ(ϕ), µ(ϕ), . . .) have not been

nondimensionalized. Following the modeling suggested in Krieger [Kri72] and

Stickel and Powell [SP05], we model the viscosity with the empirically derived

model

µ(ϕ) = µl(1− ϕ/ϕmax)
−2 (5.4)

with dynamic liquid viscosity µl. The value ϕmax is as defined in Chapter 2. We

use ϕmax = 0.58, which is our experimentally determined value [WWG09]. This

value is also used in the literature; see e.g., [ZHL00]. The density is a linear

combination of the density of the liquid ρl and the density of the particles ρp

ρ(ϕ) = ρl(1− ϕ) + ρpϕ.

The other constant in (5.3) is the component of gravitational acceleration g∥ =

|g| sinα, where α is the inclination angle of the plane.

The velocity vp in the second conservation law (5.2) requires a more explicit

description, since the theory for particle-laden flow is still relatively novel and con-

tinues to present many open questions, especially for shear-driven flows. Recall

that the lubrication approximation used to derive (5.3) employs a depth-averaged

velocity. We also employ a depth-averaged model for vrel as in Chapter 2, which

we assume is a product of three factors:
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vrel = Vsf(ϕ)w(h). (5.5)

The Stokes settling velocity Vs is given as:

Vs =
2

9

(ρp − ρl)g∥a
2

µl

.

The other factors account for phenomena that reduce the speed of a single par-

ticle: hindered settling from adjacent particles and slowing due to proximity of

particles to the substrate.

A classical model for hindered settling was proposed by Richardson and Zaki

[RZ54a] and Buscall et al. [BGO82]:

f(ϕ) = (1− ϕ/ϕmax)
m (5.6)

with ϕmax = 1 and empirically determined exponentm = 5.1. Cook [Coo07] mod-

ified the function to include the maximum packing fraction of particles (ϕmax =

0.67 in their case) to avoid singular shocks in solutions to the Riemann problem

for (5.1) and (5.2) that occur when ϕmax = 1. This form also ensures that sed-

imentation stops once the maximum concentration is reached. We will compare

results for m = 1 and m = 5 to probe the effect of the exponent in the hin-

dered settling function. This is particularly relevant when comparing numerical

results and physical experiments, since the division by the maximum packing

fraction may have altered the appropriate choice of exponent for comparison to

experiments. Note that, although the singular limits for both functions

lim
ϕ→ϕmax

f(ϕ) = 0, lim
ϕ→0

f(ϕ) = 1,

54



are appropriate, we will not consider extreme values of ϕ, since the comparison

to experiments is most appropriate for moderate concentrations of particles.

The third factor in (5.5) models the slowing of particles due to their proximity

to the substrate, called the wall effects function [ZDB05, Coo07] (see Chapter

2). The full system of equations for h(x, t) and ϕ(x, t) is now fully specified by

incorporating (5.3) into (5.1) and (5.5) into (5.2).

As has been shown for clear fluids [BB97], a first-order model such as the

one proposed here can correctly capture quantities such as front speed but does

not contain the physics necessary to model fingering due to surface tension and

the component of gravity normal to the substrate. Numerical evidence in Cook

[Coo07] for constant-flux boundary conditions indicates that higher-order terms

smooth solutions but do not affect the speed of the leading front of the film.

Nevertheless, quite a lot of information can be gained by studying the dominant

physics in the flow direction, in particular with regard to the competition between

settling of particles and overall motion of the fluid.

Nondimensionalizing the reduced system with length scale h0 (half of the

upstream gate height) and time scale t0 = (sinα)t, we obtain

ht +

(
gρ(ϕ)

3µ(ϕ)
h3

)
x

= 0, (5.7)

(ϕh)t +

(
gρ(ϕ)

3µ(ϕ)
ϕh3 + Vsϕh(1− ϕ)f(ϕ)w(h)

)
x

= 0, (5.8)

which we solve numerically and compare to experimental results. This nondi-

mensionalization is slightly different than the one given for the two-dimensional

system in Chapter 2. Note that this system has been studied for constant-flux

boundary conditions [Coo07]. Since the physical experiment (described in Sec-
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tion 5.3) more closely resembles a constant volume of particle-laden fluid than

a constant flux (for the purpose of numerical simulations), we will choose initial

conditions to approximate a constant volume of fluid.

5.2 Well-mixed similarity theory including precursor

We begin our discussion of similarity solutions by considering a model for a well-

mixed fluid flow down an inclined plane. Let ϕ0 be the initially constant particle

concentration in the fluid. For a well-mixed fluid without particle settling, the

concentration stays constant in space and time. We compare the settling model

(5.7) and (5.8) to solutions of the well-mixed model:

ht +
gρ

3µ

(
h3
)
x
= 0, (5.9)

with

ρ = ρ(ϕ0) and µ = µ(ϕ0).

This model from Huppert [Hup82] captures the dominant behavior of the flow

with no particles. For simulations with no precursor, the solution of (5.9) for an

initial fluid profile

h(x, 0) =

 β, 0 ≤ x ≤ L,

0, otherwise

can be solved explicitly. We consider (5.9) in its natural time scale

τ =
gρ0
3µ0

t.
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After an initial transient time τ ≥ τ ⋆ =
3L

2β2
a similarity solution

h(x, τ) =


√

x/τ, 0 ≤ x ≤ xs(τ),

0, otherwise

develops with

xs(τ) =

(
3

2
βL

)2/3

τ 1/3 = Ct1/3, (5.10)

where

C =

(
3

2
βL

)2/3(
gρ0
µ0

)1/3

. (5.11)

The constant C, when measured experimentally, provides a method for measuring

the effective viscosity of the fluid by inverting (5.11)

µ =
9

4
β2L2gρ0C

−3.

The effectiveness of this quantity as a measure for bulk viscosity of the particle-

laden fluid is explored in Ward et al. [WWG09]. For comparison between nu-

merical experiments and simulations, we focus on the variation in the scaling

constant C for experiments with and without particles.

It is also possible to consider analytical solutions of (5.9) with a small uniform

precursor layer of height b. We consider (5.9) with Riemann initial data

h(x, 0) =

 β, 0 ≤ x ≤ L,

b, otherwise .
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The discontinuity in the initial data at x = 0 will immediately become a rarefac-

tion, while the shock at x = L will persist. At a critical time

τc =
L

β2 − (1/3) (β2 + βb+ b2)
,

the trailing rarefaction and leading shock will merge, creating a wedge shape that

continues to evolve in time above the precursor. The shape of this profile can be

described analytically [Lax73, Eva98]. Above the precursor the solution still has

the shape of
√
x/τ . The excess volume above the precursor

V = L(β − b) (5.12)

remains constant. One can therefore use the conservation of volume to determine

the speed of the shock. Let xs be the position of the shock. Then

∫ xs

b2τ

√
x/τ dx− b(xs − b2τ) = V.

Therefore the shock position is defined implicitly by the solution of

2

3

(
xs

√
xs/τ − b3τ

)
− b

(
xs − b2τ

)
− V = 0. (5.13)

and the solution of the double Riemann problem with precursor after τc is

h(x, τ) =


b, x < b2τ,√

x/τ, b2τ < x < xs,

b, x > xs.

(5.14)

To explore the difference in evolution of the solutions analytically, let
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H =
√

x/τ (5.15)

be the maximum height of h. Rewriting (5.13) in V and H gives:

2

3
H3 − V/τ = bH2 − b3/3.

This illustrates by (5.15) and (5.12) that, as long as b ≪ H, the right-hand

side is negligible and xs approximates the shock position of the solution without

precursor (5.10). Figure 5.1 shows the deviation of the shock positions. The

data start from time τc after which (5.13) is valid. For increasing time and

precursor, the relation b ≪ H gets less valid and therefore the deviation of the

shock positions increases. Note that for the settling model the limit b → 0 is

singular [ZDB05, CBH08]. We therefore have to introduce a precursor for the

numerical simulations.

5.3 Experimental Results

The experimental apparatus consists of a 90 cm long, 50 cm wide acrylic sheet

mounted to an adjustable stand capable of inclination angles ranging from 5◦ to

80◦ (see Figure 6.1). Down the length of the sheet is a track approximately 14

cm wide. Side walls, approximately 3.2 cm high near the top and 1.4 cm near

the lower part of the track, are designed so the fluid does not escape over the

sides. Near the top of the acrylic sheet is a gated reservoir from which a finite

well-mixed volume of liquid and particles is released.

The experiments shown are all conducted at an inclination angle of 45◦ and

particle concentrations of 25-45%, in increments of 5%. For these values, we

avoid the rapid settling of the particles toward the substrate associated with low
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Figure 5.1: Comparison of front position for different precursor heights, at

L = 2.5, β = 2 and ϕ = 0.4.

concentrations and low inclination angles which leads to deposits of particles at

the rear of the flow and clear fluid fingers at the leading edge. We also avoid

particle jamming, clumping, and sliding that is associated with higher particle

concentrations and higher inclination angles. Additional experimental data have

been collected for other inclination angles [WWG09]; but the data presented here

for 45◦ provide representative results.

The particle-laden fluid is a mixture of 1000 cSt silicone oil (Clearco Products)

with a density of approximately 0.96 g/cm3, and soda-lime glass beads (Ceroglass)

with a density of approximately 2.5 g/cm3. The diameter of the beads is 0.025

cm. For smaller particles, the settling in the direction of the flow to form a

particle ridge at the front is less evident.

This experimental setup has a Péclet number Pe on the order of 1010, with
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Pe = Vsa/D where Vs = (2/9)(ρp − ρl)g∥a
2/µl is the settling velocity, a is the

particle radius, and D = kbT/6πµl is the diffusivity with Boltzmann constant

kb and temperature T . We note that a high Péclet number in the experiments

suggests that we may neglect Brownian motion in the derivation of the model.

The maximum packing fraction of beads is determined experimentally as de-

scribed in Ward et al. [WWG09]. The value of ϕmax is measured to be approxi-

mately 0.57-0.58. Each preparation of particle-laden fluid has a constant volume

of 90 cm3 with approximately 70 cm3 actually being transferred from the jar into

the reservoir. The particle-liquid mixture is prepared according to the desired

concentration of beads and silicone oil.

To begin the experiment, the particle-laden flow materials are placed in a

plastic container and hand-mixed using a stirring rod for 4 minutes, creating a

homogeneous mixture. Since the density of the particles is greater than that

of the liquid, the particles settle out fairly quickly and the experiments must

be performed immediately after the particle-laden fluid is well-mixed. The fluid

is placed in the reservoir and the gate is opened. A camera positioned above

the track and perpendicular to the inclined plane records still images at prede-

termined time intervals. The images for the 25 and 30% particle concentration

experiments are recorded at 4 fps (frames per second), the 35 and 40% at 2 fps,

and the 45% at 1 fps.

The images are analyzed by an image-processing code and an average front

position is calculated for each image. Figure 5.2 shows a time-series of images

taken at 45 second intervals. In these images, the development of the fingering

instability and a dark particle-rich ridge at the front of the fluid can be observed.

Figure 5.3 contains a series of plots each taken two minutes into the experiment

for a range of particle concentrations. Note that the fluids with more particles

61



move more slowly, and have a darker particle ridge at the front.

Figure 5.2: Time series 45 seconds apart, 35% particle concentration, 45◦ incli-

nation.

Figure 5.3: Varying particle concentrations 25, 30, 35, 40, and 45% at two min-

utes.

The images recorded by the camera are processed to extract the profile of the

leading edge of the fluid. A front position for the central half of the flow (away

from the side walls), measured in pixels and averaged over approximately 125 data
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points, is calculated and later converted into a physical distance. The average

front position (cm) is plotted against the rescaled time τ (see Section 5.2) to the

one-third power in Figure 5.4. After an initial transient, the data is approximately

linear with slope (found using least squares) analogous to the scaling constant C of

(5.11), which decreases with increasing particle concentration. This qualitatively

confirms the well-mixed model. A quantitative comparison of the theoretical,

experimental, and numerical scaling constants is given in Figure 5.9. Note also

that the data for the different particle concentrations almost collapse.

Figure 5.4: Experimental results tracking the average front position and plotting

it against the rescaled time τ 1/3.

5.4 Numerical Simulations

In this section, we describe numerical simulations for the model of a particle-

laden film with settling, i.e., (5.7) and (5.8). This model requires a precursor as
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it has been shown that solutions with settling depend singularly on the precursor

thickness [CBH08, ZDB05]. The simulations employ an upwind finite-difference

scheme, which is efficient for conservation laws with a unidirectional velocity. We

use the experimental parameters described in Section 5.3 for the viscosity, density,

and the diameter of the particles. For the maximum packing fraction ϕmax, we

use the experimentally determined value of 0.58; see Ward et al. [WWG09]. We

assume initial data of the step-like form described in Section 5.2, with initial

height β = 2 and width L = 2.5. The precursor height for the numerical data

is b = 0.01 unless otherwise stated. The initial particle concentration is uniform,

representing the well-mixed initial fluid in the physical experiment.

We compute solutions with settling function (5.6) for m = 1 and m = 5. Re-

call that the value for the exponent m was determined experimentally [RZ54a].

For each of the settling functions, Figure 5.5 contains snapshots in time of nu-

merical solutions of (5.8). In the left-hand plot which contains solutions using

the settling function (5.6) with m = 1, the magnitude of the plots in the vertical

direction is larger than solutions using the settling function (5.6) with m = 5.

This phenomenon has been described in Cook et al. [CBH08] as a singular shock.

However, at these scales, the plots are qualitatively similar. From the modeling

point of view, the exponent m = 1 seems to be more appropriate as it shows a

stronger ridge that is also observed experimentally. For m = 5, the concentra-

tions vary less than 1%. From the data in Figure 5.5, one can determine the

spatial variations in the viscosity by the empirically derived model (5.4).

In Figure 5.6, we compare the profile shapes for the analytical solution with

precursor (left) and the numerical solution with settling function (right). To

compare profile shapes, we rescale the data by the maximum height in h and by

front position in x. We see that the addition of particle settling exhibits depar-

64



Figure 5.5: Numerical simulations of the particle concentration of solutions

of (5.7) and (5.8) with initial concentration ϕ0 = 0.3, precursor height 0.01

and for settling function (5.6) with m = 1 (left) and m = 5 (right) at times

t = 30, 60, 90, 120. While the plots look qualitatively similar, the more singular

solutions for m = 1 have larger maxima.

Figure 5.6: A comparison of scaled solutions. On the left, simulations of

(5.7)-(5.8) with precursor but no particle settling. On the right, simulations

with precursor and settling with m = 1. Both simulations have precursor height

0.05 and initial particle concentration ϕ0 = 0.4.
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tures from pure self-similarity, as seen in the profile shapes, for times relevant to

us. Another comparison of the fronts is illustrated in Figure 5.7. It shows that

the height of the precursor makes a much more significant difference in the front

speed than the addition of particle settling. With a precursor, the front speed is

similar for both the analytical solution and the settling models of either power

and faster than that of the similarity solution with no precursor.

Figure 5.7: Comparison of solutions to the settling model (5.7)-(5.8) with ana-

lytical solutions (5.14) of the Riemann problem with precursor height b = 0.01

and without precursor for initial particle concentration ϕ0 = 0.3, at time t = 30.

Figure 5.8 is the numerical version of Figure 5.4, which is for physical experi-

ments. It shows the same near-collapse of the front positions in the right scaling.

The data is ordered monotone with the particle concentration. The qualitative

agreement of Figures 5.4 and 5.8 is very good, whereas the quantitative agreement

is not yet fully reached.

A quantitative comparison between analytical, numerical, and experimental

results is provided in Figure 5.9. It shows the scaling constants derived from the
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Figure 5.8: The front position xs(τ) plotted versus τ 1/3 for different particle

concentrations. The data is nearly independent of the choice of settling function.

It has precursor height b = 0.01.

experiments, the numerics, and the theory, all divided by the theoretical con-

stants, in dependence of the particle concentration. The solid line at 1 represents

the theoretical constants (5.11) derived from the analytical solutions without

precursor. The theoretical constants with precursor height b = 0.01 derived in

Section 5.2 are bigger than the ones for b = 0. They are similar to the numerical

data for precursor height b = 0.01. The numerical values for C for the different

settling functions are so similar that the points are virtually indistinguishable on

this plot and are represented by a single averaged point. The numerical data is

the same as in Figure 5.8. The numerical (experimental) constants are found by

the slope of a linear interpolation of the data in Figure 5.8 (Figure 5.4). The best

agreement between the numerical results from the system (5.7) and (5.8) and the

experimental results is for an initial particle concentration of approximately 0.45.
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We conjecture that this is a balancing point between low particle concentrations

when settling to the substrate is dominant and high particle concentrations when

clumping and sliding behavior dominates. We see that numerics as well as theory

overestimate the scaling constant found in the physical experiment for low con-

centrations. For high concentrations, the numerical and the experimental scaling

constants almost agree.

Figure 5.9: Dependence of the scaling constant C on the particle concentration

ϕ. The theoretical scaling constant is computed from (5.11). The numerical and

experimental data come from Figures 5.8 and 5.4.

5.5 Summary

We have developed a new understanding of the role of the precursor in lubrication

models for particle-laden thin film flows, in determining the position of the front

of a particle-laden fluid. Settling of the particles in the direction of the flow

primarily affects the profile of the film as a particle-rich ridge develops at the

68



front, and has a less significant effect on the speed of the front. The scaling for

the front position that is exact for analytical solutions with and without precursor

is also appropriate to leading order for numerical simulations of the model with

particle settling, as well as for the physical experiments.

The development of a particle-rich ridge at the front of the fluid is seen in

the numerical data and in the physical experiments, where it appears as a dark

ridge at the front. However, it is also clear that the model does not quantita-

tively reproduce this departure from self-similarity of the fluid profile. A separate

paper, on the transverse fingering instability with surface tension [CAB09] also

suggests that some important physics is missing from the lubrication model, even

when surface-tension effects are included in the mathematics. One possibility of

additional physics to include in this analysis is shear-induced migration (e.g.,

[LA86, LA87b]) which has recently been shown to give quantitatively accurate

predictions of phase transitions between settling to the substrate and settling to

the contact line in constant-flux experiments [Coo08]. It would also be interesting

to incorporate a precursor into the physical experiments.

The understanding of particle-laden fluid flows and the relationship to clear

fluid and pure granular models is still at a preliminary stage. Appropriate mod-

eling for low concentrations, in which settling to the substrate creates a phase

transition in which part of the fluid becomes particle-free needs more modeling.

The high particle concentrations that exhibit sliding of large clumps will require

yet another (if fluid, then non-Newtonian) model.
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CHAPTER 6

Experiments Compared with Equilibrium

Theory

6.1 Background

While many studies address gravity-driven clear liquid flows [Hup82, SD85, THS89,

JB92, KB99, Kon03b] and pure granular flows [NHS89, SH89, PDS97], com-

paratively fewer studies have centered on particle-laden thin film flows [ZDB05,

CBH08, Coo08, WWG09]. Apart from complexities associated with moving con-

tact lines, the study of slurries also involves an intricate interplay between particle

settling/migration and viscous fingering mechanisms.

The settling of particles in quiescent liquids and sedimentation in suspensions

have also garnered significant attention [RZ54b, Bat72, BM73, BGO82, DA85,

SM00]. For rigid spherical particles, the well-known Stokes’ Law applies, neglect-

ing inertial effects of the liquid due to the smallness of the Reynolds number.

In order to account for the presence of a large number of identical particles, the

velocity given by Stokes’ Law is typically modified by a purely empirical mul-

tiplicative hindrance function which depends on the particle concentration, ϕ.

This function, typically denoted by f(ϕ), has been a matter of much discus-

sion through the decades. A so-called Richardson-Zaki expression was proposed,

where f(ϕ) = (1−ϕ)m, withm ≈ 5.1, and found to compare favorably with exper-
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imental data for moderately dilute suspensions [RZ54b]. For dilute dispersions,

f(ϕ) ∼ (1 − 6.55ϕ) was suggested in Batchelor [Bat72]. Other, more complex,

expressions for f(ϕ) have been discussed [BM73, BGO82, DA85, SM00]. In the

presence of shear, a hindrance function of form f(ϕ) ∼ (1− ϕ) was shown to be

appropriate in Schaflinger et al. [SAZ90].

Concentrated suspensions of spherical particles have been shown to behave

curiously when subjected to shear. This phenomena was first detected in ex-

periments with a Couette viscometer, where an unusual decrease in measured

viscosity occurred during prolonged shearing. The theoretical framework for this

phenomena was laid out by Leighton and Acrivos [LA87a, LA87b] and subse-

quently rephrased in Phillips et al. [PAB92]. Its key element was shear-induced

migration, a diffusive mechanism resulting from gradients in both the particle con-

centration and suspension viscosity, µ(ϕ). Net fluxes caused by these gradients

were deduced by considering irreversible interactions between pairs of smooth

spherical particles (for details, see [LA87b]). In Phillips et al. [PAB92], the

predictions of this model were shown to be in excellent agreement with exper-

imental data for Couette flows, and the use of the model was also extended to

flows of concentrated suspensions through cylindrical tubes. Recently, the model

was employed in Kim [KLK08] to carry out numerical simulations for suspension

flows in more complex geometries. Other studies, focusing on the migration of

particles in pressure-driven channel flows [NB94], steady and unsteady flows in

various geometries [MB99], and inclined free-surface channel flows [TM05], were

carried out using a different approach, based on Stokesian dynamics.

More recent studies addressed particle-laden thin film flows with contact lines.

Zhou et al. [ZDB05] reported on their preliminary experimental results for in-

cline flows of suspensions of polydisperse glass beads with diameter ∼ O(100µm),
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focusing on a single bead size. As they varied the bulk particle concentration,

ϕ0, and the inclination angle, α, they identified three distinct settling regimes:

for small ϕ0 and α values, the particles would settle out of the flow, clear liquid

film would flow over the particulate bed, and the fingering instability resulted;

for large values of ϕ0 and α, the particles would move faster than the liquid,

leading to an aggregation of particles in the contact line region, the formation of

a particle-rich ridge, and almost complete suppression of the fingering instability;

finally, intermediate values of these parameters would lead to a well-mixed regime

in which a fingering instability occurred. A theoretical model was also derived in

Zhou et al. [ZDB05], based on the Navier-Stokes equations for the liquid and a

diffusive model for the particle concentration, including capillary effects and hin-

dered settling. A simplified version of this model, which neglected higher-order

capillary terms was studied in a shock dynamics framework [ZDB05, CBH08].

Although successful in explaining qualitatively the formation of the particle-rich

ridge, they did not provide a quantitative model nor did they ever attempt to

model the other regimes. In an effort to improve the understanding of these

regimes, Cook [Coo08] included shear-induced migration in his model. He as-

sumed that the outcome of particle settling is guided by the balance between

shear-induced migration and hindered settling. Through his steady state formu-

lation, he derived a system of ODEs for ϕ and the shear stress, σ. However, this

model did not include a significant hindrance effect due to the presence of the

solid track. Furthermore, while he found good agreement between the model’s

predictions regarding the well-mixed regime and the experimental data, the data

itself was from Zhou et al. [ZDB05] - old, preliminary, and rather limited. Ad-

ditional work in Ward et al. [WWG09] focused on studying the propagation of

contact lines in particle-laden thin film flows experimentally. Apart from varying

ϕ0 and α, particle size and density, and liquid viscosity were all varied in order
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to examine their influence on the front speed. It was found that the dependence

of the front position on time was of a power-law type, with exponents similar to

the one-third proposed in Huppert [Hup82].

In this chapter, we carry out a systematic study of the settling regimes over

a range of particle sizes and liquid viscosities. Through comparison between

our experimental results and the predictions of equilibrium theory, we uncover

the transient nature of the well-mixed regime, where a bifurcation to either of

the remaining regimes eventually occurs. In addition, our experimental results

clearly indicate how the particle size and the liquid viscosity affect the time scale

on which we observe this transient regime.

In contrast to the preliminary experimental results from Zhou et al. [ZDB05],

we perform experiments with three different particle sizes and two different liquid

types, and vary ϕ0 and α over wide ranges of values. The liquid viscosity and the

particle size are found to affect the width of the region in (ϕ0, α)-space over which

the transition between the settled and ridged regimes occurs. Therefore, we show

that these parameters dictate both the likelihood of observing the well-mixed

regime for given ϕ0 and α values, and the time scale over which the well-mixed

suspension is preserved. Next, a theoretical model is derived. We consider the

steady state of the system where hindered settling balances the shear-induced

migration of particles. Our modeling approach is similar to the one in Cook

[Coo08], with one important difference: we also include the hinderance to settling

due to the presence of the solid track. We proceed by showing excellent agreement

between the model’s predictions and our experimental results over all ranges of

viscosities and particle sizes. Furthermore, we show how the results of numerical

simulations of our model provide additional evidence for the transiency of the

well-mixed regime.
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6.2 Experimental Apparatus and Techniques

Figure 6.1 shows the experimental apparatus we use, which is the same as in

Section 5.3. A liquid/particle mixture prepared beforehand is poured into the

reservoir situated at the top of the track and the gate is lifted, allowing it to

flow down the track, with the contact line initially straight. Here, we only focus

on experiments with finite, constant suspension volume. The evolution of the

flow is monitored using a digital camera, which is positioned above the track and

captures images of the moving front at predetermined time intervals, typically

0.25-4 seconds. Using this setup, we are able to monitor the film motion, starting

from release, until the front has reached approximately 0.6 m down the track.

Several fluorescent lights are placed below the track for imaging purposes, while

food-coloring dye is employed to enhance contrast. Images are subsequently

analyzed, and each experimental run is classified, based on the observed settling

regime, as either ‘settled’, ‘well-mixed’ or ‘ridged’ (see Section 6.3 for details).

Figure 6.1: The experimental apparatus.
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Our experiments involve three different particle types and two different liq-

uids. The particles are smooth spherical glass beads (Ceroglass), and we consider

three different diameters: d = 0.143 mm (‘P1’), 0.337 mm (‘P2’), and 0.625 mm

(‘P3’). The standard deviation of the particle diameters is 26% for all particle

sizes. For the suspending liquid, we use polydimethylsiloxane (PDMS) (Alfa Ae-

sar) in two different kinematic viscosities: ν = 10−4m2/s (‘L1’) and 10−3m2/s

(‘L2’). The particles are heavy, i.e., ρp > ρl for all particle and liquid types,

where ρp and ρl are particle and liquid densities respectively. Relevant material

parameters are summarized in Table 6.1.

Suspensions are prepared by first weighing the particles and PDMS individ-

ually, pouring PDMS into a container, and then adding particles; slow manual

stirring is used until a uniform mixture is obtained. This procedure prevents the

formation of air bubbles. Typically, no haste is required between the preparation

of the suspension and its release down the track since uniformity of the mixture

is preserved for sufficiently long time-intervals. The bulk particle concentration,

ϕ0, is defined as ϕ0 = Vp/V , where V = Vl+Vp is the total volume of the mixture,

and Vl and Vp are the liquid and particle volumes respectively. Here, we focus on

V between 75 ml and 103 ml.

ν(m2/s) ρl(kg/m
3) ρp(kg/m

3) d(mm)

L1 10−4 966 - -

L2 10−3 971 - -

P1 - - 2475 0.143

P2 - - 2475 0.337

P3 - - 2475 0.625

Table 6.1: Physical properties of the liquids and particles used in the experiments.
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The experiments are carried out in open air and at room temperature (298 K),

maintained by the air-conditioning unit. The fluorescent lights we use for imaging

purposes radiate heat, but the amount is insufficient to affect either the viscosity

of the liquid, flow dynamics, or observed particle behavior in any significant

manner. The track, gate, and reservoir are cleaned after each experimental run

using a squeegee to remove the excess particulate and dust which may accumulate.

Although this cleaning procedure does not remove the PDMS entirely, it ensures

reproducibility of our experimental results.

P1 P2 P3

L1 Experiment C Experiments A,C -

L2 Experiment B Experiments A,B Experiment B

Table 6.2: The different liquid/particle combinations we consider. We study the

manner in which the viscosity of the suspending liquid (Experiment A) or particle

size (Experiments B and C) affects the settling regime.

We carry out three different sets of experiments, conveniently summarized

in Table 6.2. In all experiments, we vary ϕ0 between 0.25 and 0.50, and α

between 20◦ and 50◦. In Experiment A, we consider medium-sized particles,

P2, and both PDMS types in order to study the influence of the viscosity of

the suspending liquid on the settling regime. Experiments B and C focus on

studying the influence of particle size, by fixing the liquid type (L2 in B and

L1 in C) and varying the particle size. When L1 PDMS and P3 particles are

used, rapid settling occurs. Regardless of our best efforts, a significant fraction

of particles often settles to the bottom of the reservoir before the suspension is

ever released down the track. Hence, we omit experiments with this mixture.
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6.3 Experimental Results

In all experiments, the observed flows are relatively slow. In addition, settling

behavior can only be classified after an initial transient stage which typically lasts

up to 900 seconds. The settling regimes observed in our experiments resemble the

ones discussed in Zhou et al. [ZDB05]: each experimental run is labeled as either

settled, well-mixed, or ridged. Typical examples of these regimes are shown in

Figure 6.2. In general, these three regimes occur in each experimental set, A, B,

and C (an exception is discussed below). In the settled regime, the particles tend

to quickly settle out of the flow, forming a particulate bed, with the suspending

liquid moving down the track faster than the particles. Virtually clear liquid

film ultimately leaves the particulate bed far behind and develops the fingering

instability as described in Huppert [Hup82]. Typically, this regime occurs for

small values of ϕ0 and α. In contrast, when ϕ0 and α are large, the particles

move faster than the suspending liquid and aggregate in the contact line region,

forming a particle-rich ridge, often several times thicker than the trailing film.

Hence, we refer to this regime as ridged. Large particle concentrations at the

front appear to suppress the fingering instability. Intermediate values of ϕ0 and

α lead to the well-mixed regime, where the particle concentration remains almost

uniform throughout the film. The fingering instability occurs, but compared to

the settled regime, it is typically characterized by a longer wavelength.

For any particular liquid/particle combination, we classify each experimental

run and compile the results of the classification in a corresponding (ϕ0, α) phase

diagram (see Figures 6.3, 6.4, and 6.5). Same-type settling behaviors cluster in

these diagrams, forming distinct bands. We use color to label these regime bands:

white for settled, light for well-mixed, and dark for ridged. Figures 6.3, 6.4, and

6.5 each include a curve superposed on the experimental results. These curves
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represent a well-mixed regime prediction (i.e. ϕ′ = 0, where ϕ(z) is particle

concentration) of our theoretical model. The discussion regarding the model and

the agreement between its predictions and the experimental results is given in

Sections 6.4 and 6.5.

Figure 6.2: The settling regimes: a) settled, b) well-mixed, and c) ridged. The

fingering instability typical of clear liquid flows is only observed in the settled

and well-mixed regimes.

We note that other more complex behavior also occurs. In some experimental

runs, we notice capillary motion of the particles along the side walls or their

alignment in linear streaks along the track. Irregularities in the shape and size

of fingers, and extreme cases of the ridged regime, where sections of the contact

line experience jamming with particles, become solid-like and virtually break

off in blocks are also observed. These phenomena are attributed to either the

finite width of the track and the presence of side walls or complex interplay

between particle migration and contact line effects. While very intriguing, we

leave detailed study of such complex behavior for future work, and focus here

on the three settling regimes described above. We proceed by discussing the

dependence of settling behavior on the viscosity of the suspending liquid and the

particle size by presenting results of Experiments A, B, and C.
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In Experiment A, we consider intermediate size particles, P2, and both the

low and the high viscosity liquid (L1 and L2 respectively). This allows us to

study the dependence of observed settling behavior on PDMS viscosity. Since,

based on Stokes’ Law (e.g., [Bat72]), the settling velocity of particles is inversely

proportional to the liquid viscosity, a decrease in PDMS viscosity should result

in an enhanced tendency of the particles to settle out of the flow. Figure 6.3

shows phase diagrams which result for low a) and high viscosity b). At first

glance, the outcomes appear to be rather similar for the two liquids, although

the band for the settled regime is somewhat wider in Figure 6.3 a) compared to

b), confirming our expectations based on the settling time. A closer inspection

also reveals that the well-mixed band is noticeably wider when the viscosity of

the suspending liquid is lower (Figure 6.3 a)). In order to better understand

this difference, we consider the time scales of the motion of the front and the

settling of the particles. For clear fluid inclined flows, the former time scale is

proportional to the viscosity of the liquid (e.g., [ZDB05]), T ∝ µ. However,

for suspensions µ = µ(ϕ). For estimation purposes, we may assume uniformity

of the slurry (i.e., well-mixed case), and by using µ = ρlν(1 − ϕ/ϕmax)
−2 as in

[TM05], we get that T ∝ ν. It is now clear that a decrease in the viscosity of the

suspending liquid, with all the other material parameters fixed, leads to a faster

propagation of the suspension front. On the other hand, for purely gravity-driven

particle settling, the relevant time scale is viscous and also directly proportional

to ν (see Section 6.4) - a decrease in viscosity leads to a faster settling of particles.

Therefore, if gravity were the only mechanism responsible for particle settling,

the width of the well-mixed bands in Figure 6.3 would have been independent of

the viscosity. The fact it is not suggests that some part of the relevant settling

dynamics occurs on a time scale other than the viscous one. In Section 6.4, we

conjecture that the settling behavior is governed by a balance between settling
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due to gravity and shear-induced migration. This balance may lead to settling

which occurs on a different time scale, introducing a correction to the purely

viscous one. Accordingly, while a decrease in the viscosity clearly affects the

motion of the front, it may only have a relatively minor effect on the settling

rate.

Figure 6.3: Phase diagrams for Experiment A. Particle type is fixed (P2), viscos-

ity of the suspending liquid is varied: a) low (L1); and b) high (L2). The symbols

denote the regimes observed in experimental runs: circles (•) for settled, triangles

(N) for well-mixed, and diamonds (�) for ridged. The solid curve represents the

prediction of our theoretical model (see Sections 6.4 and 6.5) for a regime where

ϕ′ = 0 (well-mixed).

Next, we examine the manner in which particle size affects the settling regime.

For this purpose, we carry out Experiments B and C, where the liquid type is

fixed and the particle size is varied.

In Experiment B, we consider the high viscosity suspending liquid, L2, and all

three particle sizes, P1, P2, and P3 (note: experimental runs with the L2/P2 com-

bination have already been carried out in Experiment A). According to Stokes’

Law, the settling velocity is proportional to a2, and hence, the largest particles
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are most likely to settle out of the flow. Based on this reasoning, the settled band

should be widest for P3. The phase diagrams resulting from Experiment B are

shown in Figure 6.4.

Figure 6.4: Phase diagrams for Experiment B. Viscosity of the suspending liquid

is fixed (high viscosity, L2), particle size is varied: a) small (P1); b) intermediate

(P2); and c) large (P3). The symbols denote the regimes observed in experimental

runs: circles (•) for settled, triangles (N) for well-mixed, and diamonds (�) for

ridged. The solid curve represents the prediction of our theoretical model (see

Sections 6.4 and 6.5) for a regime where ϕ′ = 0 (well-mixed).

Compared to Experiment A, the differences between the diagrams are much

more pronounced. The speculation based on Stokes’ Law is again proven correct

compared to Figures 6.4 a) and b), the band corresponding to the settled regime

is widest in Figure 6.4 c); it is narrowest for the smallest particles in Figure 6.4

a). But, the most striking feature here is a complete absence of the well-mixed

regime for the largest particles in Figure 6.4 c) - all considered runs with the

L2/P3 configuration resulted in either settled or ridged behavior. In addition, we

notice that the well-mixed band is significantly wider for the smallest particles

in Figure 6.4 a) compared to the intermediate ones in Figure 6.4 b). Hence, the

trend is obvious: for a fixed liquid viscosity, an increase in particle size makes the

well-mixed outcome less likely. This result further supports our hypothesis re-
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garding the transient nature of the well-mixed regime. In particular, the diffusive

fluxes of particles due to hindered settling and shear-induced migration are both

proportional to a2 (see Section 6.4). Since these are, in our opinion, the two main

mechanisms of particle motion in the system we study, the smallest particles P1

are moving on a time scale much longer than the larger particles P2 and P3.

Consequently, and as seen in Figure 6.4 a), many runs involving P1 remain well-

mixed for the duration of the experiment. We suspect that given a longer track

and larger sample volume, the majority of these flows would eventually bifurcate

to either the settled or ridged regime. On the other hand, the largest particles

P3 move on shorter time scale compared to both P1 and P2. Therefore, the flows

involving particles P3 quickly bifurcate to either settled or ridged, with the latter

regime likely for most ϕ0 and α values. The complete absence of the well-mixed

band in Figure 6.4 c) serves as an indicator of just how rapid this process is.

Finally, in Experiment C, we study the influence of particle size on the settling

behavior for low viscosity PDMS, L1. We focus on small and intermediate size

particles, P1 and P2. As discussed in Section 6.2, we do not consider the L1/P3

combination since the particles in all suspensions of that type undergo rapid

settling while still in the reservoir. We also note that runs with the L1/P2

combination have already been carried out in Experiment A.

The results of Experiment C are shown in Figure 6.5. The trend observed

in Experiment B is very much noticeable here too: as the particle size increases,

the uniformity of the suspension is less likely to be preserved. In particular,

the well-mixed band is significantly wider in Figure 6.5 a) compared to the one

in b) for larger particles. The explanation for this trend is identical to one for

Experiment B. For small particles, the time scale of particle settling is much

longer than for larger ones; therefore, uniformity of the suspension is likely to
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Figure 6.5: Phase diagrams for Experiment C. Viscosity of the suspending liquid

is fixed (low viscosity, L1), particle size is varied: a) small (P1) and b) intermedi-

ate (P2). The symbols denote the regimes observed in experimental runs: circles

(•) for settled, triangles (N) for well-mixed, and diamonds (�) for ridged. The

solid curve represents the prediction of our theoretical model (see Sections 6.4

and 6.5) for a regime where ϕ′ = 0 (well-mixed).

be preserved longer for small particles. Furthermore, a comparison of diagrams

in Figures 6.3, 6.4, and 6.5 reveals that the well-mixed regime is more likely to

occur for L1/P1 than for any other liquid/particle combination we consider -

the well-mixed band in Figure 6.5 a) is by far the widest. This is particularly

evident when Figures 6.4 a) and 6.5 a) are compared (small particle size, high and

low viscosity suspending liquid respectively). The latter comparison also shows

that for the smallest particles, the influence of viscosity on both prolonging the

transient phase and making it more likely for a wider range of ϕ0 and α values is

much more pronounced than in Experiment A.

To summarize, Experiments A, B, and C show that the particle size partic-

ularly affects settling behavior. It dictates the likelihood of occurrence for the

settled regime and the time scale for particle-motion in general. The viscosity
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of the suspending liquid also influences the particles’ motion, and increasingly

so for smaller particles. The experiments also reveal the transient nature of the

well-mixed regime. This is evident from the manner in which both the particle

size and the viscosity of the suspending liquid affect the persistence of the well-

mixed regime. We argue that given a longer track length, a majority of, if not all,

the well-mixed flows would bifurcate to either the settled or ridged regime. We

revisit this argument again when we compare the predictions of our theoretical

model and the experimental results in Section 6.5.

6.4 Theoretical Model

We consider a continuum model for the particle concentration, ϕ. The dynamics

of ϕ are described by a conservation equation for particles, written in an Eulerian

reference frame

Dϕ

Dt
= −∇ · (Jbd + Jgrav + Jcoll + Jvisc) . (6.1)

Here t denotes time, and D/Dt = ∂/∂t + v · ∇, where v = (u,w), u and

w are the components of the liquid velocity vector v in the x-direction (down

the track) and z-direction (normal to track) respectively. Equation (6.1) includes

hindered settling (Jgrav), and shear-induced migration effects (Jcoll and Jvisc). It

also includes Brownian diffusive flux, Jbd = −D∇ϕ. We note that since the Péclet

number corresponding to our problem is large (i.e., Pe = γ̇a2/D ∼ O(103), where

γ̇ is the magnitude of the local shear rate), we neglect this effect. The viscosity of

the suspension is a function of the particle concentration, µ = µ(ϕ). Here, we use

the expression from [TM05], µ(ϕ) = µl(1 − ϕ/ϕmax)
−2, where ϕmax denotes the

maximum packing fraction, and restricts the meaningful interval of values for ϕ
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to [0,ϕmax], with the mixture becoming almost solid-like as ϕ → ϕmax. Different

values of ϕmax have appeared in the literature, usually within the range 0.57-

0.68 (e.g., see [Coo08, WWG09, BGO82, SM00, LA87b, SAZ90, PAB92, MB99,

TM05]). We use the procedure described in [WWG09] and obtain ϕmax = 0.61.

Also, µl = νρl.

The settling of a particle due to gravity is hindered by the presence of other

particles and the solid track/wall [ZDB05]. The net flux of particles caused by

this effect is given by

Jgrav = −2a2ϕ(ρp − ρl)

9µl

f(ϕ)w(z)g. (6.2)

Here, we use the hindrance function from Schaflinger et al. [SAZ90]: f(ϕ) =

µl(1 − ϕ)/µ(ϕ). The presence of a solid track at z = 0 is taken into account

through w(z) = A(z/a)2/
√
1 + A2(z/a)4 [ZDB05]; A = 1/18 so that w(z) → 0

as z → 0, and w ≈ 1 away from z = 0. We note that this is the main difference

between our model and the one derived in [Coo08]: we include the hindrance w(z)

in our settling model, while in Cook [Coo08], this effect is neglected altogether.

The effect of shear-induced migration is included in Equation (6.1) through

two separate terms, Jcoll and Jvisc. These terms are defined as in Leighton and

Acrivos [LA87b] and Phillips et al. [PAB92]. The net flux of particles due to

irreversibility of collisions between pairs of particles is given by

Jcoll = −Kcolla
2
(
ϕ2∇γ̇ + ϕγ̇∇ϕ

)
. (6.3)

On the other hand, the net flux due to gradients in viscosity, µ(ϕ), is given as

Jvisc = −Kvisca
2ϕ2γ̇

1

µ(ϕ)

dµ

dϕ
∇ϕ. (6.4)
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Here, Kcoll and Kvisc are proportionality constants determined from experiments.

We follow Phillips et al. [PAB92] and use Kcoll = 0.41 and Kvisc = 0.62.

The fluxes given in Equations (6.2), (6.3), and (6.4) are all proportional to a2,

a fact we have employed in Section 6.3, in our argument regarding the influence

of particle size on the settling behavior of particles. It is interesting to note that

in Equation (6.3), the first term suggests that even if the particle distribution is

uniform (i.e., ∇ϕ = 0), migration will occur due to gradients in the frequency of

irreversible particle collisions. This migration will then induce gradients in ϕ and

hence, the second term in Equation (6.3) is activated.

The governing equation given in (6.1) is accompanied by boundary conditions

(zero normal flux at both z = 0 and z = h, where h is film thickness) and coupled

to the Navier-Stokes equations for a liquid with viscosity µ(ϕ). However, in order

to gain insight into the settling behavior of particles, it is sufficient to consider

Equation (6.1) at steady state [Coo08]. Assuming the thin film is flat, the steady

state is achieved when the fluxes given in Equations (6.2), (6.3), and (6.4) balance

in z-direction

Jgrav + Jcoll + Jvisc = 0. (6.5)

We also assume that the flow is simple and unidirectional, so that γ̇ = ∂u/∂z.

Henceforth, instead of using γ̇, we revert to the shear stress, σ = µ(ϕ)γ̇. By

scaling Equation (6.5) using H as the length scale in z-direction and ρlgH sinα

as the scale for σ, and differentiating, we arrive at the following ODE

[
1 +

2(Kvisc −Kcoll)

Kcoll

ϕ

ϕmax − ϕ

]
σϕ′ = −σ′ϕ− 2ρf cotα

9Kcoll

(1− ϕ)w̄(z), (6.6)

where ρf = (ρp − ρl)/ρl, and w̄(z) is the scaled version of w(z). Since we assume
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that the film is flat, the pressure is hydrostatic in the suspension and the (scaled)

gradient in shear stress is given as [Coo08]

σ′ = −(1 + ρfϕ). (6.7)

By substituting the expression from Equation (6.7) into (6.6), we obtain

[
1 +

2(Kvisc −Kcoll)

Kcoll

ϕ

ϕmax − ϕ

]
σϕ′ = (1 + ρfϕ)ϕ− 2ρf cotα

9Kcoll

(1− ϕ)w̄(z). (6.8)

Finally, the accompanying boundary conditions are σ(0) = (1+ρfϕ0) and σ(1) =

0 [Coo08].

The system of ODEs given by Equations (6.7)-(6.8) and accompanying bound-

ary conditions may be solved numerically for ϕ(z) and σ(z). The numerical so-

lutions of this system are discussed in Section 6.5.

6.5 Predictions of Theoretical Model vs. Experimental

Results

The system of equations for ϕ(z) and σ(z) given by (6.7)-(6.8) is solved using a

shooting method. The shooting is carried out from z = 0, with ϕ(0) adjusted in

order to satisfy σ(1) = 0. Since ∂u/∂z = σ(z)/µ(ϕ(z)), once ϕ(z) and µ(z) are

known, u(z) is readily found, by simply integrating once and using the no-slip

boundary condition, u(0) = 0.

As previously noted in Cook [Coo08], due to the fact that σ is nonnegative, ϕ

is a monotonic function of z. This is because σϕ′ in Equation (6.8) is determined

by a function of ϕ only, with a single unstable root ϕ̄(α) in the interval [0, ϕmax].

Hence, either ϕmax > ϕ(0) > ϕ0 and ϕ(1) = 0, or ϕ(0) < ϕ0 and ϕ(1) = ϕmax,
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corresponding to the experimentally observed settled and ridged regimes respec-

tively. The well-mixed regime occurs when ϕ′ = 0 and ϕ(z) = ϕ0 for 0 < z < 1.

Setting ϕ′ = 0, ϕ = ϕ0 in Equation (6.8) allows us to obtain an expression for α

in terms of ϕ0

α = tan−1

[
2ρf
9Kcoll

1− ϕ0

(1 + ρfϕ0)ϕ0

]
. (6.9)

The curve corresponding to this expression is shown as a solid line compared

with the experimental results in the phase diagrams of Figures 6.3, 6.4, and 6.5.

The profiles for ϕ(z) and u(z) obtained by numerically solving Equations (6.7)-

(6.8) using several representative combinations of ϕ0 and α values are shown in

Figures 6.6, 6.7, and 6.8.

Figure 6.6: Numerical solution for ϕ0 = 0.250 and α = 15◦: (a) particle concen-

tration, ϕ(z); and (b) velocity, u(z). Note that ϕmax > ϕ(0) > ϕ0 and ϕ(1) = 0.

This corresponds to the settled regime.

Figure 6.6 shows the profiles for (ϕ0, α) = (0.250, 15◦), corresponding to

the settled regime in all phase diagrams in Figures 6.3, 6.4, and 6.5. From

Figure 6.6 a), it is evident this is the scenario where ϕmax > ϕ(0) > ϕ0 and
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ϕ(1) = 0. Most of the particles are in z ≤ 0.5, after which ϕ decreases rapidly.

Effectively, the particle-rich lower layer is covered by a less viscous clear liquid

layer. Furthermore, in Figure 6.6 b), the velocity increases sharply for z > 0.5,

causing the clear liquid layer to flow faster than the particle-rich one. This is

equivalent to the regime seen in Figure 6.2 a) in which particles settle to the

substrate and clear liquid continues down the track. In this case, the prediction

of our model agrees well with the experimental results.

Figure 6.7: Numerical solution for ϕ0 = 0.475 and α = 45◦: (a) particle concen-

tration, ϕ(z); and (b) velocity, u(z). Note that ϕ(0) < ϕ0 and ϕ(1) = ϕmax. This

corresponds to the ridged regime.

In Figure 6.7, the profiles for ϕ and u resulting from (ϕ0, α) = (0.475; 45◦)

are given. We note that in all our experiments with these values of ϕ0 and α,

the ridged regime occurs (see Figures 6.3, 6.4 and 6.5). Figure 6.7 a) shows, in

contrast to Figure 6.6 a), that ϕ(0) < ϕ0 and ϕ(1) = ϕmax. Therefore, particles

aggregate close to the free surface of the film, and according to Figure 6.7 b), flow

faster than the more dilute lower layer. This behavior is typical in the ridged

regime observed in experiments and the model predictions are again in good
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agreement with our experimental results.

Figure 6.8: Numerical solution for ϕ0 = 0.310 and α = 45◦: (a) particle concen-

tration, ϕ(z); and (b) velocity, u(z). Note that ϕmax > ϕ(0) > ϕ0 and ϕ(1) = 0

still apply.

Finally, for (ϕ0, α) = (0.310, 45◦), the resulting ϕ and u profiles are given in

Figure 6.8. With the exception of the experiments with the largest particles (see

Figure 6.4 c)), this combination of ϕ0 and α values leads to a well-mixed regime.

From Figure 6.8 a), we see that for most of the film thickness, the particles

are uniformly distributed. However, a close inspection reveals that this case still

belongs to the category of solutions to Equations (6.7)-(6.8) where ϕmax > ϕ(0) >

ϕ0 and ϕ(1) = 0, namely the settled regime. In addition, Figure 6.8 b) indicates

that the very thin layer of clear liquid at the free surface still flows faster than

the particle-laden layer below it. While our model is a steady state one, one

could clearly see how, in a dynamic setting, the situation shown in Figure 6.8

eventually leads to a settled regime, with the top layer of clear liquid becoming

ever thicker and flowing ever faster as the system evolves.

Next, we examine the agreement between the α(ϕ0) well-mixed curve, given
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by Equation (6.9), and the experimental results. We note that, apart from the

inclusion of the hindrance due to the presence of a solid track in our model,

another important difference between this study and the one in Cook [Coo08]

is that we compare the predictions of our model to the results of much more

extensive experiments. For this purpose, we go back to Figures 6.3, 6.4, and

6.5. In all diagrams, except the one in Figure 6.4 c), the curve lies completely

within the well-mixed band, in excellent agreement with the experimental results.

For the largest particles in Figure 6.4 c), the well-mixed regime does not occur;

however, the curve overlaps a large section of the border between the settled

and ridged bands marking the transition between these two regimes. This again

hints at the transiency of the well-mixed regime. The structure of Equations

(6.7)-(6.8) also indicates that the well-mixed regime is an unstable root of the

system. Even if ϕ0 and α values are adjusted to lie exactly on the well-mixed

curve, even the smallest of perturbations will eventually cause a bifurcation to

either the settled or ridged regime. The strongest evidence for this argument is

given by Figure 6.4 c), where the relevant settling time scales are short enough so

that the bifurcation occurs rapidly and the well-mixed band simply collapses to

the well-mixed curve. Other phase diagrams in Figures 6.3, 6.4, and 6.5 are also

in line with our argument, only the time scales at which the bifurcation occurs

are much longer compared to the one in Figure 6.4 c), leading to an observable

well-mixed regime. A sufficiently long experimental track would allow for the

bifurcation to occur, resulting in the eventual collapse of all well-mixed bands in

Figures 6.3, 6.4, and 6.5.

Finally, it is worthwhile to emphasize that our model is a steady state one

while the behavior shown (e.g., in Figure 6.2 a)), where a clear film leaves a

particle-rich sediment behind and develops fingers, is clearly a dynamic process

which could only be captured by a more complete evolutionary-type model. How-
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ever, the settling behavior, which our simple model correctly predicts, is the most

crucial ingredient, as it truly sets the stage for these more complex dynamic pro-

cesses. Therefore, our model should be considered as one of the main components

of any fully dynamic model.

6.6 Summary

In this chapter, we focus on experiments with particle-laden thin film flows down

an incline, where the effects of the viscosity of the suspending liquid and the parti-

cle size are examined. We observe that the settling behavior of particles proceeds

in three distinct regimes: settled, well-mixed, and ridged, depending on the bulk

particle concentration, ϕ0, and the inclination angle, α. Our theoretical model,

based on equilibrium theory where hindered settling balances shear-induced mi-

gration, is found to be in excellent agreement with our experimental data. More

precisely, its predictions for the transition between the settled and ridged regimes

match the experimental observations exactly over all ranges of viscosities and par-

ticle sizes. Furthermore, both our model and our experimental results suggest

that the intermediate well-mixed regime is a transient. In particular, our equilib-

rium theory predicts no such regime; our experiments show how the well-mixed

band collapses as the relevant time scales are changed by varying the viscosity

and the particle size. Therefore, we argue that the well-mixed regime eventually

leads to a bifurcation to either the settled or ridged regime.

Our experimental results indicate that particle size is a significant parameter.

The likelihood of observing the well-mixed regime increases with a decrease in

particle diameter. The viscosity of the suspending liquid is found to affect the

relevant time scale of the flow. For the smallest considered particle size, the liq-

uid viscosity also significantly affects the likelihood of the well-mixed regime: it
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is more prevalent in the case of a less viscous suspending liquid. A combination

of a low viscosity liquid and small particles significantly affects the relevant time

scales. The flowing film runs out of track length before any substantial distur-

bance to the uniformity of the suspension is observed. We argue that given a

sufficiently long track, the well-mixed bands in phase diagrams such as those in

Figures 6.3, 6.4, and 6.5 might eventually collapse to a well-mixed line given by

Equation (6.9), so that only the settled and ridged regimes are observed.

The development of a tractable theoretical model for particle-laden thin films,

incorporating all the relevant physical mechanisms, is an interesting problem.

This model would have to account for the momentum conservation and continu-

ity in the liquid, and include the capillary and contact line effects, along with

those relevant to particle migration. Hence, this task is still a formidable one.

Instead, a simplified steady state model is derived here. The model considers a

balance between the hindered settling and shear-induced migration of particles,

and it is shown to provide useful new information about the settling behavior.

This chapter therefore makes a significant step toward a fully quantitative model

by identifying the dominant equilibrium physics for the flow. In addition, it also

implies further modifications required in order to fully understand the transiency

of the well-mixed regime and the intricacies connected to the time scales rele-

vant to the front motion and particle settling. Our study also raises interesting

questions regarding the motion of the contact lines and the fingering instability.

A more complete theoretical model would allow for a comparison with the time

dependent experimental results from Ward et al. [WWG09], regarding the front

motion in particle-laden films. In addition, the experiments with clear liquid

flows in Jerrett and de Bruyn [JB92] showed that once the fingering instability

occurred, the exponent in the power law (e.g., [Hup82]) describing the evolution

of the front position was modified. Carrying out a similar study in the particle-
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laden setting would indeed be compelling, especially since it would also allow

for the examination of the connection between different settling regimes and the

wavelength of the fingering instability.
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CHAPTER 7

Dissertation Summary

In Chapter 1, we presented the motivation for the ADI scheme for the particle-

laden thin film flow equations as well as outlined our work on constant-volume

problems, equilibrium theory, and experiments.

Chapter 2 described the system of equations for particle-laden thin film flow.

One equation is related to the film thickness, h, and the other to the particle

concentration, ϕ. The equations are obtained using conservation of volume, for

the fluid as a whole and for the particulate phase. The two velocity terms, vav

and vrel, are the average velocity of the liquid and particles and the velocity of

the particle relative to the liquid, respectively. A shear-induced diffusion term is

added in to correct for an instability in the particle concentration.

Chapter 3 gave the derivation for the semi-implicit ADI scheme for the particle-

laden thin film flow equations. ADI is used for applicable terms and the remaining

ones are treated explicitly. Forward Euler is employed for the explicit terms and

backward Euler for the implicit terms. The spatial discretizations are done via

centered differencing. A moving reference frame is utilized to reduce the size of

the domain needed for simulations, and the speed for the frame can be determined

based on shock theory for the first-order system of equations.

Various choices for the implementation of the scheme and results from the

simulations were discussed in Chapter 4. Based on simulations, the best choice,
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in terms of runtime, is performing iterations at each timestep and extrapolating

the approximate terms. The scheme parallelizes well, with nearly eight times

speed-up for eight processors. The scheme serves as a means to compare the

model to experiments. A mixture of silicone oil and glass beads is used in an

experiment, and the results from this are compared with a numerical simulation

with the same parameters. The comparison shows good qualitative agreement,

but lacks some quantitative agreement. We also discuss the advantages of using

this scheme and future work.

In Chapter 5, we compared results for constant-volume particle-laden flows

in terms of theory, numerics, and experiments. A similarity solution without the

settling of particles is derived with and without a precursor. In comparison with

the one-third power law, we observe qualitative agreement from experiments.

Testing a different hindered settling function, we find that for ϕmax = 0.67, the

exponent m = 1, instead of m = 5, produces a more pronounced particle-rich

ridge, which is consistent with the behavior seen in experiments. Comparing the

effects of the precursor and settling, the front speed of the fluid is more influenced

by the precursor thickness than the addition of particle settling. For the scaling

constant, C, the best agreement between theory, numerics, and experiments oc-

curs at ϕ0 = 0.45, which is theorized to be the point which separates the regimes

where the particles settle to the substrate and where the particles migrate to the

front of the flow, forming a particle-rich ridge.

We examined the effects of various liquid viscosities and particle sizes on the

behavior of the liquid/particle mixture in Chapter 6. The size of the particles has

an effect on the settling behavior, with larger particle settling to the substrate

faster. This produces the appearance of large well-mixed regions for smaller

particles. Due to the speed of the settling, the time scale for particle motion
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is affected as well. The viscosity of the liquid component influences particle

motion, especially for smaller particles. The transient nature of the well-mixed

regime is observable as the particle size increases. The equilibrium theory, based

on the model and numerics, predicts that the well-mixed regime is an unstable

equilibrium separating the settled and ridged regimes.
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