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2011



c© Copyright by

Nancy Rodŕıguez
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Abstract of the Dissertation

Applied Partial Differential Equations

in Crime Modeling and Biological Aggregation

by

Nancy Rodŕıguez

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2011

Professor Andrea L. Bertozzi, Chair

Recently, there has been sustained interest in the use of partial differential equa-

tion (PDE) models to obtain insight into biological and sociological phenomena.

This work is separated into two parts were we study the well-posedness two such

PDE systems.

In particular, in the first part we study a fully-parabolic system of PDEs for

residential burglary ‘hotspots’ (spatio-temporal areas of high density of crime).

Although crime is a ubiquitous feature of all societies, certain geographical loca-

tions have a higher propensity to crime than others. In fact, residential burglary

data exhibit areas of high crime density surrounded by areas of low crime den-

sity. There have been many studies indicating that the “repeat and near-repeat

victimization effect,” which states that crime in an area induces more crime in

that and neighboring areas, leads to the residential burglary hotspots seen in real

data. Short et al . develop in [92] an agent-based statistical crime model whose

dynamics rely on this repeated victimization effect. The formal continuum limit

of this model is a nonlinear couple system of PDEs. This models exhibits the

right qualitative behavior (with certain parameters), that is, the existence of

xi



crime ‘hotspots’. In this work we are concerned with the existence and unique-

ness of solutions of this model. In two-dimensions we prove local existence and

uniqueness of classical solutions with Hm-initial data on periodic domains. Fur-

thermore, we prove a continuation argument that provides a sufficient condition

for global existence of the solution. More specifically, we prove that ‖∇ρ‖∞ is

a controlling quantity; hence, the solution continues to exist while this quantity

remains bounded. Finally, motivated by the relation between this PDE system

and the Keller-Segel model for chemotaxis (the movement of cellular organisms

in response to some chemical concentration in their environment), we conclude

this section by studying a modified model; which provides insight into the global

theory of the original model.

In the second part we study an aggregation equation with degenerate diffusion.

Aggregation equations have been studied for a wide variety of biological applica-

tions in migration patterns in ecological systems and Patlak-Keller-Segel models

for chemotaxis. We study the local and global well-posedness of weak-solutions

of an equation that models the competition between aggregation (modeled via a

convolution with a kernel) and over-crowding effects (modeled via general degen-

erate diffusion). We divide they system into three types: subcritical, supercritical,

and critical. We prove global existence for subcritical problems, which correspond

to the diffusion dominating aggregation. We prove finite time blow-up for a sub-

class of supercritical problems, which correspond to the aggregation dominating

the diffusion. Finally, we show that there is a critical mass phenomena for the

critical problems, which correspond to the aggregation and diffusion balancing

out.
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Part I

A PDE Model Residential

Burglaries
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CHAPTER 1

Introduction and Background

1.1 Introduction and Motivation

The study of crime hardly needs motivation, it is a phenomenon that affects all

individuals. The city of Los Angeles, nicknamed the “Gang Capital of the Na-

tion,” is of particular interest. Violent and non-violent crimes from burglaries

to drive-by-shootings have affected the citizens of this city since the beginning

of the 20th century. One of the most frequently occurring crimes is residential

burglaries, a crime which will affect most people at some point. The observation

that residential burglaries are not spatially homogeneously distributed and that

certain neighborhoods have more propensity to crime than others led Short et

al. to study the dynamics of residential burglary hotspots [92]. A hotspot is a

spatio-temporal aggregation of criminal occurrences and the understanding how

they evolve can be extremely useful. For example, it can help the police force

mobilize their resources optimally. This would ideally lead to the reduction or

even eliminations of these crime hotspots. This spatial heterogeneity in crime

can be seen in Figure 1.1. The figure on the left is a snapshot of The Times’s

database of Los Angeles crime reports. The Times creates and updates this crime

map of over 200 neighborhoods in the Los Angeles area daily using data provided

by the Los Angeles Police Department and the Los Angeles County Sheriff’s De-

partment. The figure on the right is a density map of residential burglary data
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from Long Beach, CA for three consecutive months (this figure taken from [92]).

A theoretical understanding of dynamics of hotspots can help predict how these

hotspots will change and thus aid law enforcement agencies fight crime.

Short et al. modeled the dynamics of hotspots using an agent-based statisti-

cal model based on the ‘broken window’ sociological effect [108].The idea of the

‘broken window’ effect is that crime in an area leads to more crime. It has been

observed in the residential burglary data that houses which are burglarized have

an increased probability of being burglarized again for some period of time after

the initial burglary. This increased probability of burglary also affects neighbor-

ing houses and is referred to as the ‘repeat near-repeat effect’ [4, 60, 61, 62, 94].

Figure 1.2 shows burglary data from from Long Beach binned by two-week in-

tervals (this figure was taken from [94]). The model is based on the assumption

that criminal agents are walking randomly on a two-dimensional lattice and com-

mitting burglaries when encountering an opportunity. Furthermore, there is an

attractiveness value assigned to every house, which refers to how easily the house

can be burgled reduces negative consequences for the criminal agent. The crim-

inal agents, in addition to walking randomly, have a biased movement toward

areas of high attractiveness values and move with a speed inversely proportional

to the value in their current position. Let A(x, t) and ρ(x, t) be the attractive-

ness value and the criminal density at position x and time t respectively, then

the continuum limit of the agent-based model gives the following PDE model:

∂A

∂t
= η∆A− A+ Aρ+ Ao, (1.1a)

∂ρ

∂t
= ∆ρ− 2∇ · [ρ∇χ(A)] +B − Aρ; (1.1b)

where χ(A) = log(A). A formal derivation of this model can be found in [92].

From (1.1) we observe that criminal agents are being created at a constant rate B

and are removed from the model when a burglary is committed. In essence, the

3



number of burglaries being committed at time t and location x is given by the

A(x, t)ρ(x, t). Furthermore, the attractiveness value increases with each burglary.

As we will discuss later the system (1.1) can be seen as a nonlinear version of

the Keller-Segel model for chemotaxis with growth and decay. The Keller-Segel

model is a reaction-diffusion system that models the movement of some mobile

specie that is being influenced by an external chemo-attractant [26, 38, 43, 56,

106, 97]. In the Keller-Segel model literature the function χ(A) is referred to

as the sensitivity function. Various forms of the sensitivity function have been

analyzed including logA and A [71, 91]. For these cases global existence has been

proved in one-dimension [36, 85]. Furthermore, in two-dimension global existence

has been proved for small enough initial mass of the cell density [15, 28]. It is

important to note that these models do not include growth or decay. Although

the logarithmic sensitivity function has been analyzed most of the research done

on the Keller-Segel model has been for χ(A) = A. Recall that the model (1.1)

is the continuum limit of an discrete agent-based model. In the discrete model

the probability of an agent moving from node s to node n is given by the ratio

of the attractiveness value at node n over the sum of attractiveness values of the

neighboring nodes of node s. This gives the logarithmic sensitivity function we

see in (1.1). Therefore, it makes sense for us to analyze the more complicated

sensitivity function. In fact, we will see later that the logarithmic velocity field

helps prevent finite time blow-up. From the numerical analysis performed in

[92] this model seems to have appropriate qualitative properties, i.e. existence of

hotspots. However, to show that this model is truly robust the unique existence

of a solution, which does not blow-up in finite time, is essential.

4



Figure 1.1: Left – Snap shot of The Time’s database of Los Angeles crime report

(red corresponds to violent crimes, orange corresponds to property crime, and

purple corresponds to both). Right – Density map of burglary data from Long

Beach, CA from June 2001–August 2001.

1.2 Background Work

Despite the recent introduction of the system (1.1) there has been a significant

amount of research done on the model, particularly qualitative analysis, see for

example [92, 93]. In the original work, Short and collaborators determined the

parameter regimes that lead to hotspots via the use of linear stability analysis.

Furthermore, in [93] the authors studied the suppression of hotspots via the use

weakly-nonlinear analysis. The effect of different policing strategies on hotspots,

see [63], and strategies to measure and model the ‘repeat and near-repeat victim-

ization’ effect have also been studied, see [94]. In the following sections we give

a brief summary of these works.
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Figure 1.2: Probability distribution of the time interval τ between repeated of-

fenses computed from residential burglary data from Long Beach, CA using a

moving window method.

1.2.1 Linear Stability Analysis

The motivation for the development of (1.1) was the need to understand the

spatio-temporal dynamics of residential burglary hotspots. Hence, one would

expect the PDE system to reproduce similar behavior. In fact, one can study the

existence and nonexistence of hotspots via linear stability. The system (1.1) has

one flat steady-state given by

As = A0 +B and ρs =
B

A0 +B
. (1.2)

Linear stability analysis gives that the system has some unstable modes pro-

vided the parameters and steady-state solutions satisfy the following inequality

3ρs − ηAs − 1 > 2
√
ηAs. (1.3)

When the parameters satisfy condition (1.3) then numerical simulations per-

formed in [92] show that stationary hotspots appear (see Figure 1.3). When this

condition is not satisfied then hotspots do not appear. Simulations of the dis-

crete model show a third parameter regime: transient hotspots. This regime is
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Figure 1.3: Numerical simulation of the continuous system. Figure (a) shows the

hotspot-free parameter regime. Figures (b) and (c) show the hotspot regime with

different hotspots sizes (Figured obtained from [92]).

not observed in the numerical simulations for continuous model. The transitiv-

ity is predicted to be a consequence of the stochasticity of the discrete model,

which is lost in the continuous system. Examining (1.3) further, one can see that

hotspots can only be formed if areas of high attractiveness value are separated

enough, the diffusion coefficient η playing a key role in this.

1.2.2 The Effects of Law Enforcement Agents

One weakness of the (1.1) is that it lack the effect that law enforcement agents

have on deterring and stopping crime. In [63] the authors extended the agent

based model from [92] to include the effect of law enforcement agents. This en-

abled the authors to study the effectiveness of different police deployment strate-

gies. While law enforcement agents play multiple roles in the reduction of crime

only the deterring effect was considered. Hence, for example the incarceration of

criminals was not considered. Studies have shown that presence of police force

can be sufficient to prevent crime (see for example [37]). Two different methods
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of modifying the behavior of criminal agents in response to the presence of the

police are discussed in this work. The first via the attractiveness value. That is,

assuming that the presence of law enforcement agents decrease the attractiveness

value of an area automatically leads to a reduction of criminal agents in that

area. The second method is to consider the direct interaction between the law

enforcement agents and the criminal agents. This interaction leads to the removal

of the criminal agent, as they are motivated to return home.

The authors also considered and modeled various policing strategies. Three

strategies are considered: random policing, cops on the dots, and peripheral inter-

diction. In the random policing strategy law enforcement are deployed on random

routes, mathematically this lead to diffusion of the law enforcement agents. If

κ(x, t) corresponds to the police density then the corresponding equation is the

heat equation

κt =
1

4
∆κ.

In the cops on the dots strategy the law enforcement agents behave similar

to the criminal agents. They walk randomly with a bias towards areas of high

attractiveness values. As expected, the corresponding equation is

κt =
1

4
∆κ− 1

2
∇ · (κ∇A) .

Finally, the peripheral interdiction takes into account the limited resources.

They use the fact that the area of a hotspot grows quadratically with the growth

of the radius while the perimeter grow linearly. Hence, the strategy is to deploy

the law enforcement agents to the perimeter of the hotspots. One disadvantage of

this strategy is the difficulty of expressing this with a partial differential equation.

These different strategies where explored with computer simulations and the

authors found that the cops on the dots and peripheral interdiction strategies
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are more effective in reducing crime than the random strategy. Furthermore, the

authors observed that in certain cases seemingly eradicated hotspots re-emerged

in the same or nearby locations. We discuss this in more detail in the following

section.

1.2.3 Bifurcation Theory

While the linear stability analysis answers some questions on the qualitative

behavior of (1.1), it does not provide a full picture and many questions remain

unanswered. In particular, the question of the effectiveness of hotspot policing is

especially important. This is a point of contention between criminologist that can

be observed in the literature. Indeed, some studies claim that hotspot suppression

can successfully eliminate hotspots (see for example [88, 66]), while others claim

that this strategy only displaces crime (see for example [24]). In [93] the authors

explore the question of whether or not the policing strategy of hotspot suppression

is an effective strategy via the use of weakly-nonlinear analysis (see [40, 104]).

Another way to understand the linearly stability of the steady state (1.2)

depends on the parameter Ao. If Ao is less than some critical A∗ and linearly

stable for Ao > A∗, where

Ao < Ao∗ =
2

3
A− 1

3
ηA

2 − 2

3
A

√
ηA.

In fact, a deeper mathematical analysis shows that there are three differ-

ent parameter regimes: linearly unstable, weakly nonlinearly unstable, and lin-

early stable. In the linearly stable regime hotspots are never formed. On the

other hand, the two other regimes do result in hotspots. The linearly unstable

regime parameters lead to supercritical hotspots. The weakly nonlinearly unsta-

ble regimes are those whose parameters lead to a steady state which is linearly
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stable. However, these parameters are close enough to the the critical A∗ that

the solutions develop hotspots in the slow time scale. Hence, parameters in this

regime lead to subcritical hotspots. Interestingly, these two types of hotspots

react differently to hotspot suppression. The authors of [93] showed the exis-

tence of two qualitatively different hotspots, supercritical and subcritical, which

react very differently to crime suppression. The suppression was included in the

reaction term of criminal density equation of (1.1). while suppression can de-

stroy subcritical hotspots, it tends to only displace supercritical hotspots. More

specifically, for the supercritical case, the effect of crime suppression is to push

the burglaries outwards, forming an annulus-shaped area of high crime density

with interior and exterior areas of low crime density. These ring solutions then

break up into multiple hotspots; hence, with respect to the model described by

(1.1), crime suppression in supercritical hotspots is qualitatively different than

suppression for subcritical hotspots.

1.3 Outline

In Chapter 2 we first prove local existence of classical solutions and a continuation

argument, which gives a necessary and sufficient conditions for global existence

in R2. In Chapter 3 we first discuss the Keller-Segel model for chemotaxis and its

relation to residential burglaries system (1.1). We then explore the importance

of the logarithmic velocity field in the prevention of finite time blow-up. Please

refer to each individual chapter for a more detailed outline. This work is in

collaboration with Andrea Bertozzi. In particular, Chapter 2 and §3.3 in Chapter

3 are part of published work, see [90].

10



CHAPTER 2

Existence and Uniqueness of Classical Solutions

In this section we analyze the well-posedness of classical solution the 1.1 in R2.

Assuming that the criminals entering the city and the criminals leaving are ap-

proximately the same we consider no-flux boundary condition in a bounded do-

main Ω ⊂ R2:

∂A

∂ν
|∂Ω = 0 and (−∇ρ+ 2

ρ

A
∇A) · ~ν|∂Ω = 0; (2.1)

where ν is the outer normal vector. The initial conditions are given by:

A(0, x) = A0(x), ρ(0, x) = ρ0(x). (2.2)

Outline: This chapter is divided into two sections. In §2.1 we prove local

existence and uniqueness to (1.1) with no-flux boundary conditions. In §2.2 we

prove a continuation theorem.

2.1 Local Existence and Uniqueness in R2

2.1.1 Definitions and Notation

We begin this section by establishing the notation that will be used throughout

the paper. The proof of the main result follows the techniques used in [82] for

the Navier-Stokes Equation in 3-D (see also [102] Taylor for symmetric hyperbolic

systems). In the Keller-Segel literature there are two principal methods used to
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prove global existence of solutions to various versions of the model[57]. The first

one involves finding L∞ estimates for the advection term. The second method

involves finding a Lyapunov function. Both of these methods use fixed point

theory to obtain local solutions. Since we do not know of the existence of a

Lyapunov function for (1.1) our method is more closely related to the first method

mentioned. We use an abstract version of Picard’s Theorem for ODEs to obtain

a local solution to (1.1). We will see that global existence depend on some L∞

estimates.

2.1.1.1 Notation

We have a initial-boundary value problem with no-flux boundary conditions. For

simplicity assume that our domain is a square. This problem can be mapped

into the periodic problem with symmetry on a domain four times the size of the

original domain. This is true provided Ao and the initial data satisfy reflection

symmetry, in which case the model preserves symmetry. Hence, from now on we

work with periodic boundary conditions and Ω = T2 unless otherwise specified.

It is useful to define the following notation:∫
vdx =

∫
Ω

vdx,

‖v‖2
0 =

∫
Ω

v2dx.

The notation ‖u‖Lp = |u|p will be used interchangeably throughout this work

to denote that Lp-norm. Furthermore, for a multi-index α = (α1, α2, ..., αN),

αi ∈ Z+ ∪ {0}, we define the Hm(Ω)-norm as follows:

‖v‖m :=

∑
|α|≤m

‖Dαv‖2
0

 1
2

. (2.3)

Finally, we define the spaces with their corresponding norms to be used:
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• For X a Banach Space with norm ‖·‖X , C ([0, T ] ;X) is the space of contin-

uous functions mapping [0, T ] into X. This space has the following norm:

‖v‖C([0,T ];X) := sup
0≤t≤T

‖v‖X .

• L∞(0, T ;X) is the space of functions such that v(t) ∈ X for a.e. t ∈ (0, T )

has finite norm:

‖v‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖v(t)‖X .

• L2(0, T ;X) is the space of functions such that v(t) ∈ X for a.e. t ∈ (0, T )

with finite norm:

‖v‖L2(0,T ;X) :=

(∫ T

0

‖v(t)‖2
X dt

) 1
2

.

Definition 1. The space Cweak([0, T ];Hs(Ω)) denotes continuity on the interval

[0, T ] with values in the weak topology of Hs. In other words, for any fixed Φ ∈ Hs,

(Φ, u(t))s is a continuous scalar function on [0, T ]. The inner-product of Hs is

given by:

(u, v)s =
∑
α≤s

∫
Dαu ·Dαvdx. (2.4)

The Hilbert spaces we will be working on for most of the time is:

V m = {(u, v) ∈ Hm(Ω)×Hm(Ω)} . (2.5)

Since we are working extensively with different bounds and the constants are

not always important, we introduce the notation A . B to mean that there exists

a positive constant c such that A ≤ cB. This notation will be used when the

constants are irrelevant and become tedious.

13



2.1.1.2 Main Result and Outline of its Proof

Our main contribution is to prove local existence and uniqueness of solutions to

the system (1.1). More precisely, we prove the following theorem.

Theorem 1 (Local Existence of Solutions to the PDE Residential Burglar-

ies Model). Given initial conditions (A0(x), ρ0(x)) ∈ V m for m > 3 such that

A0(x) > Ao there exists a positive time, T > 0, such that A, ρ ∈ C([0, T ];C2(Ω))∩

C1([0, T ];C(Ω)) form a unique solution to (1.1) on the time interval [0, T ].

We first modify the system (1.1) by regularizing it, for the purpose of bounding

differential operators in . This is useful because finding a family of solutions to

the regularized system is straightforward. Given v ∈ Lp(T2) for 1 ≤ p ≤ ∞ we

define the mollification of v by

Jεv(x) =
∑
k∈Z2

v̂(k)e−ε
2|k|2+2πik·x, (2.6)

where v̂(k) =
∫

Ω
v(x)e−2πik·xdx. The mollified function, Jεvε, has many useful

properties, some of which are summarized in the following lemma. For more

details we refer the reader to [11]. Furthermore, a proof can be found in [51]. We

note that this is analogous to mollification by convolution with smooth functions

in R2. The interested reader is referred to [48].

Lemma 1 (Properties of Mollifiers). Let Jε be a mollifier defined in (2.6). Then

Jεv ∈ C∞ and has the following properties:

1. ∀ v ∈ C1(Ω) Jεv → v uniformly and

|Jεv|∞ ≤ |v|∞ .

2. Mollifiers commute with distribution derivatives,

DαJεv = JεD
αv ∀ |α| ≤ m, v ∈ Hm.
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3. ∀ u, v ∈ L2(Ω), ∫
Ω

(Jεu)vdx =

∫
Ω

(Jεv)udx.

4. ∀ v ∈ Hs(Ω), Jεv converges to v in Hs and the rate of convergence in the

Hs−1 norm is linear in ε:

lim
ε↘0
‖Jεv − v‖s = 0,

‖Jεv − v‖s−1 ≤ Cε ‖v‖s .

5. ∀ v ∈ Hm(Ω), γ, k ∈ Z+ ∪ 0, and 0 ≤ ε ≤ 1:

‖Jεv‖m+γ ≤
cmγ
εγ
‖v‖m ,

∣∣JεDkv
∣∣
∞ ≤

ck
εN/2+γ−k ‖v‖k .

Once the original system has been regularized it is easy to show that the

assumptions of the Picard Theorem on a Banach Space are satisfied by the reg-

ularized model for any fixed ε > 0. We now state this theorem along with its

natural continuation theorem. A proof of the following two theorems can be

found in [53].

Theorem 2 (Picard Theorem on a Banach Space). Let O ⊆ B be an open subset

of a Banach Space B, and let F : O → B be a mapping satisfying:

1. F(x) maps O to B

2. F is locally Lipschitz continuous i.e. for any x ∈ O there exists L > 0 and

an open neighborhood Ux ⊂ O of x such that for all x, x̂ ∈ Ux we have

‖F (x)− F (x̂)‖B ≤ L ‖x− x̂‖B

15



Then for any xo ∈ O, there exist a time T such that the ODE

dx

dt
= F (x), x|0 = x(0) ∈ O

has a unique local solution x ∈ C1((−T, T );O).

Theorem 3 (Continuation on a Banach Space). Let O ⊆ B be an open subset

of a Banach Space B, and let F : O → B be a locally Lipschitz-continuous map.

Then the unique solution X ∈ C1([0, T );O) to the autonomous ODE

dx

dt
= F (x), x|0 = x(0) ∈ O,

either exists globally in time, or T <∞ and X(t) leaves the open set O as t→ T .

We will see that the above theorem can be applied provided an appropriate

functional framework is chosen. We use some calculus inequalities in the Sobolev

Spaces to show that this theorem can be used to obtain a family of solutions

which depend on the regularizing parameter ε. Refer to [82] for a proof of the

following lemma in the case when Ω = RN . The proof for the case when Ω is the

torus follows exactly.

Lemma 2 (Calculus Inequalities in the Sobolev Spaces).

1. ∀ m ∈ Z+ ∪ 0, there exists c ≥ 0 such that for all u, v ∈ L∞(Ω) ∩Hm(Ω):

‖uv‖m ≤ c {|u|∞ ‖D
mv‖0 + ‖Dmu‖0 |v|∞} ,

∑
0≤|α|≤m

‖Dα(uv)− uDαv‖0 ≤ c
{
|∇u|∞

∥∥Dm−1v
∥∥

0
+ ‖Dmu‖0 |v|∞

}
.

2. ∀ s > N
2
, Hs(Ω) is a Banach algebra. That is, there exists c > 0 such that

for all u, v ∈ Hs(Ω):

‖uv‖s ≤ c ‖u‖s ‖v‖s .
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The next step is to pass to the limit as ε → 0. Energy estimates, which are

independent of the regularizing parameter, are essential for this purpose.

2.1.2 Local Existence and Uniqueness for a Regularized Crime Model

We consider the following regularization of (1.1):

∂Aε

∂t
= ηJ2

ε ∆Aε − Aε + ρεAε + Ao, (2.7a)

∂ρε

∂t
= Jε(Jε∆ρ

ε)− 2Jε[∇ · (
ρε

Aε
Jε∇Aε)]− ρεAε +B. (2.7b)

This choice of regularization will become clear when we perform the energy es-

timate calculations. The goal of this section is to prove the local existence and

uniqueness of solutions to the system (2.7) for fixed ε. Consider the function

space for the solution to (2.7) to be the Banach Space V 2, m = 2 in (2.5), with

norm ‖(A, ρ)‖V 2 := ‖A‖2 + ‖ρ‖2.

Theorem 4 (Local Existence of solutions to the Regularized Residential Burglary

Model). For any ε > 0 and initial conditions (A0(x), ρ0(x)) ∈ V 2 such that

A0(x) > Ao there exists a solution, (Aε, ρε) ∈ C1([0, Tε);V
2), for some Tε > 0,

to the regularized system (2.7). Furthermore, the following energy estimate is

satisfied,

d

dt
‖(Aε, ρε)‖V 2 ≤ c3 ‖(Aε, ρε)‖3

V 2 + c2 ‖(Aε, ρε)‖2
V 2 + c1 ‖(Aε, ρε)‖V 2 ; (2.8)

where c1, c2, and c3 are constants that depend only on 1
Ao
, ε and η.

Proof. Define the map F ε = [F ε
1 , F

ε
2 ] : O ⊆ V 2 → X. To use Theorem 2 we need

a suitable set O such that F ε maps O to V 2, (i.e. X = V 2). Defined the function

by:

F ε
1(Aε, ρε) = ηJ2

ε ∆Aε − Aε + ρεAε + Ao, (2.9a)

F ε
2(Aε, ρε) = J2

ε ∆ρε − 2Jε[∇ · (
ρε

Aε
Jε∇Aε)]− ρεAε +B. (2.9b)
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Hence, if vε = (Aε, ρε) ∈ V 2, the original model reduces to an ODE in V 2.

dvε

dt
= F ε(v), (2.10a)

vε(0) = (A0(x), ρ0(x)). (2.10b)

With this framework we can prove that the conditions of Theorem 2 are satisfied.

Let vεi = (Aεi , ρ
ε
i) ∈ V 2 (i = 1, 2), we drop ε for notational convenience. By

definition of the V 2-norm and F we have:

‖F (v1)− F (v2)‖V 2 = ‖F1(v1)− F1(v2)‖2 + ‖F2(v1)− F2(v2)‖2 .

After substituting (2.9) above and using (5) of Lemma 1 and (1) of Lemma 2 we

obtain a suitable bound for F1. Initially we have:

‖F1(v1)− F1(v2)‖2≤η
∥∥J2

ε ∆(A1 − A2)
∥∥

2
+ ‖A1 − A2‖2 + ‖ρ1A1 − A2ρ2‖2 .

The last term in the above inequality will appear repeatedly and can be bounded

using (2) of Lemma 2 by:

‖ρ1A1 − A2ρ2‖2 . ‖ρ2‖2 ‖A1 − A2‖2 + ‖A1‖2 ‖ρ1 − ρ2‖2 . (2.11)

Using (2.11) we easily obtain the final estimate for F1:

‖F1(v1)− F1(v2)‖2. (
η

ε2
+ 1 + ‖ρ2‖2) ‖A1 − A2‖2 + ‖A1‖2 ‖ρ1 − ρ2‖2 . (2.12)

For F2 we only state the final bound, refer to Appendix A.1 for more detailed

computations. If we define the open set

O =

{
(u, v) ∈ V 2 :

∣∣∣∣1u
∣∣∣∣
∞
< K1, ‖u‖2 < L1, ‖v‖2 < L2

}
,

we obtain similar estimates for F2. In particular, if v1, v2 ∈ O then

‖F2(v1)− F2(v2)‖2. C̃1 ‖A1 − A2‖2 + C̃2 ‖ρ1 − ρ2‖2 ; (2.13)

18



where,

C̃1 =
K1

ε3
(
‖ρ1‖2 +K1 ‖A1‖1 |ρ1|∞ +K1 ‖A2‖2 ‖ρ2‖2 +K2

1 ‖A2‖2
2 ‖ρ2‖2

)
+
K1

ε

3

‖A1‖1 ‖A2‖2 ‖ρ2‖2 +
K1

ε2
|ρ1|∞ + ‖ρ2‖2 ,

C̃2 =
1

ε2
+ ‖A1‖2 +

C2
1

ε3
‖A2‖2 ‖A1‖2 (1 +K1 ‖A2‖1 +K1 ‖A1‖1) .

The important thing to note is that C̃1 and C̃2 depend only on ‖Ai‖2, ‖ρi‖2,

ε, and K1 for i = 1, 2. Combining (2.12) and (2.13) gives:

‖F (v1)−F (v2)‖V 2≤C(η, L1, L2, K1, ε) ‖A1−A2‖2+C(L1, L2, K1, ε) ‖ρ1−ρ2‖2 .

(2.14)

Setting A2 = 0 and ρ2 = 0 we see that F does map O to V 2. Furthermore,

F : O → V 2 is locally Lipschitz therefore the conditions of Theorem 2are satisfied

for fixed ε. Consequently, we obtain a family of unique local solutions to (2.7),

{(Aε, ρε)}ε>0, such that (Aε, ρε) ∈ C1([0, Tε);V
2 ∩ O). A careful look at the

computations performed (see B.1.1) enables us to see that the constants in the

above inequality are at most cubic in ‖(A, ρ)‖V 2 . Once again, setting A2 = 0 and

ρ2 = 0 in (2.14) from (2.10) we obtain the desired inequality (2.8). Note that the

constants c1, c2 and c3 depend solely on C1, ε, and η. We by taking K1 = 1
Ao

we

obtain the dependence on 1
Ao

.

2.1.3 Local Existence and Uniqueness to Crime Model

In the previous section we successfully showed the unique existence of a solution

to (2.7) on [0, Tε) for fixed ε. The next step is to show that a subsequence of

these solutions converge to a solution of the original system (1.1). To do this we

need estimates that are independent of ε. The following section is devoted for

this purpose.
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2.1.3.1 Energy Estimates

From Theorem (4) we see that the time interval on which the solutions to (2.7) ex-

ist depend on ε. To be able to pass to the limit it is essential that we find a uniform

time interval of existence. To obtain such an interval we look at energy estimates

which are essential to show that the solution to (2.7) is in C ([0, T ) ;V m). We

will see that provided m is chosen large enough then we obtain that the solution

is classical. For simplicity from now on we denote C1 = 1
Ao

.

Proposition 1 (Higher-Order Energy Estimates). Let (Aε, ρε) be a solution to

the regularized system (2.7) with initial conditions (Aε(0), ρε(0)) ∈ V m, where V m

is defined by (2.5) for m ≥ 3, such that A0(x) > Ao. If M is chosen large enough

then Eε
m(t) = M

2
‖Aε‖2

m + ‖ρε‖2
m satisfies the following differential inequalities:

• For m = 3: d
dt
Eε

3(t) . C (M,C1) (Eε
3)10 + C(Ao, B,M).

• For m > 3:

d

dt
Eε
m(t) . C (M,C1, |A|∞ , |ρ|∞ , |∇ρ

ε|∞ , |∇A
ε|∞)Eε

m(t) + C(Ao, B,M).

The proof of this proposition requires a sequence of lemmas. For these lemmas

we let Aε and ρε be as in Proposition 1.

Lemma 3. If M is an arbitrary constant then the following holds:

M

2

d

dt
‖Aε‖2

m . −Mη ‖J ε∇Aε‖2
m +

M

2
‖Ao‖2

0 +M (|∇Aε|∞+ |ρε|∞+ |A|∞) ‖Aε‖2
m

+M (|∇Aε|∞ + |A|∞) ‖ρε‖2
m . (2.15)
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Proof. Following standard procedure we first look at the time evolution equation

of ‖A‖2
m. We drop ε for notational simplicity. Recalling the multi-index notation

from Section 2.1 and using the chain rule we obtain:

1

2

d

dt
‖A‖2

m =
∑
|α|≤m

∫
(DαA)(DαAt)dx.

For fixed α substitute in (2.7a) and obtain:∫
(DαA)(DαAt)dx =

∫
(DαA)Dα(ηJ2

ε ∆A− A+ Aρ+ Ao)dx

= −η ‖J εDα∇A‖2
0 − ‖D

αA‖2
0 +

∫
(DαA)(DαAo)dx

+

∫
(DαA)(Dα(Aρ))dx.

Note that the third term of the last equality will only contribute when α = ~0.

For now consider the case α 6= ~0. The Cauchy-Schwarz inequality gives:∫
(DαA)(DαAt)dx ≤ −η ‖J εDα∇A‖2

0 − ‖D
αA‖2

0 + ‖DαA‖0 ‖D
α(Aρ)‖0 . (2.16)

To simplify the computations we first look at the following claim. The derivation

can be found in Appendix A.2 and uses part (1) of Lemma 2.

Claim 1:∑
|α|≤m

‖Dαu‖0 ‖D
α(uv)‖0 . (|∇u|∞ + |u|∞ + |v|∞) ‖u‖2

m + (|∇u|∞ + |u|∞) ‖v‖2
m .

Adding (2.16) over |α| ≤ m:

1

2

d

dt
‖A‖2

m≤−η ‖J
ε∇A‖2

m−‖A‖
2
m+‖Ao‖0‖A‖0+

∑
|α|≤m

‖DαA‖0 ‖D
α(Aρ)‖0 .

Applying Cauchy-Schwarz Inequality to M‖Ao‖0 ‖A‖0 and Claim 1 to the

summation term gives the final result.

Since the computations for ρ are more complicated we first look at the advec-

tion term.
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Lemma 4. For Iα =
∫ {

Dα(Jε∇ρε) ·Dα
(
ρε

Aε
J ε∇Aε

)}
dx the following estimate

holds for any 0 < δ < 1:

2
∑
|α|≤m

Iα . δ ‖Jε∇ρε‖2
m +

(C1C2)2

δ
‖Jε∇Aε‖2

m +
1

δ
(C1 |∇Aε|∞)2 ‖ρε‖2

m

+
1

δ

(
C1 |∇ρε|∞+ C2

1 |ρε|∞ |∇A
ε|∞ + |ρε|∞

m−1∑
k=0

CkC
k+2
1 |∇Aε|k+1

∞

)2

‖Aε‖2
m .

The proof can be found in the appendix. We note that the power 10 in the

energy inequality for the case when m = 3 in Proposition 1 is comes from that

fact that we are taking multiple derivatives of 1/A.

Lemma 5.

1

2

d

dt
‖ρε‖2

m . (1− δ) ‖J ε∇ρε‖2
m +

1

2

∥∥B∥∥2

0
+

1

2
‖ρε‖2

0 + β1 ‖Aε‖2
m + β2 ‖ρε‖2

m

(2.17)

+
(C1C2)2

δ
‖Jε∇Aε‖2

m .

where,

• β1 = |∇ρ|∞+|ρ|∞+
C1
δ

(
|∇ρε|∞+ C1 |ρε|∞ |∇Aε|∞+ |ρε|∞

∑m−1
k=0 CkC

k+1
1 |∇Aε|k+1

∞

)2
,

• β2 = |∇ρε|∞ + |Aε|∞ + |ρ|∞ + 1
δC

2
1 |∇A|

2
∞.

Proof. For fixed α substitute in (2.7b):∫
(Dαρ)(Dαρt) dx =

∫
(Dαρ)Dα

(
J2
ε ∆ρ− 2Jε∇ ·

( ρ
A
J ε∇A

)
− Aρ+B

)
dx

≤ −‖J εDα∇ρ‖2
0 + ‖Dαρ‖0

∥∥DαB
∥∥

0
+ ‖Dαρ‖0 ‖D

α(Aρ)‖0

+ 2

∫
Dα(Jε∇ρ) ·Dα

( ρ
A
J ε∇A

)
dx.︸ ︷︷ ︸

Iα

Simply using Lemma 4 and Claim 1 we obtain the final estimate for ρ given by

(2.17).
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Combining Lemma 3 and Lemma 5 gives the proof of Proposition 1.

Proof. (Proposition 1) Recalling that we have the estimate |ρ|∞ ≤ c ‖ρ‖2 then

|ρ0(x)|∞ ≤ cL2 =: C2. Combine (2.15) and (2.17) by first fixing δ < 1 and then

choosing M > 1
ηδ

(C1C2)2. In fact, if δ1 = (1−δ) > 0 and δ2 = Mηδ−(C1C2)2 > 0

then:

d

dt
Em(t)+δ1 ‖Jε∇ρε‖2

m+δ2 ‖Jε∇Aε‖2
m≤D1 ‖Aε‖2

m+D2 ‖ρε‖2
m+C(Ao, B,M).

(2.18)

where,

• C(Ao, B,M) = M
2
‖Ao‖2

0 + 1
2

∥∥B∥∥2

0
,

• D1 = β1 +M (|∇Aε|∞ + |ρε|∞ + |A|∞),

• D2 = β2 +M (|∇Aε|∞ + |A|∞).

Observe that the coefficients of ‖ρε‖2
m and ‖Aε‖2

m depend only on |∇Aε|∞, |∇ρε|∞,

|Aε|∞, |ρε|∞, and C1. From Sobolev embedding estimates we have |∇u|∞ ≤

c ‖u‖3; hence, it is natural to first consider the case m = 3. This case is useful to

get an initial estimate of T from (2.18). Indeed, we obtain the desired result for

this case:

d

dt
E3(t) . C (M,C1) (E3)10 + C(Ao, B,M). (2.19)

The power ten on E3 in (2.19) comes from Lemma 4. Fortunately, this estimate is

independent of the regularizing parameter ε. Hence, there exists a positive time,

T , such that the H3-norms of A and ρ are bounded on [0, T ]. Considering the

case where m > 3 gives the second desired inequality:

d

dt
Em(t) + δ1 ‖Jε∇ρε‖2

m + δ2 ‖Jε∇Aε‖2
m . CEm(t) + C(Ao, B,M), (2.20)

with C = C (M,C1, |A|∞ , |ρ|∞ , |∇ρε|∞ , |∇Aε|∞).
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Remark 1. Note that for the above argument we needed |ρ|∞ < C2. Due to the

Sobolev Embedding Theorem the L∞-norm is controlled by the H2-norm. From

Theorem 4 each ε > 0 we know that ‖ρε‖2 < L2 for t ∈ [0, Tε). However, we know

that [0, T ] ⊂ [0, Tε).

The bound on the higher-norms of the regularized solutions prove to be

extremely useful in multiple ways. To begin with, all higher-order norms are

bounded on [0, T ]. Moreover, we know that there exists some τ > 0 such that

Aε(x, t) ≥ Ao for all (x, t) ∈ Ω × [0, τ ] if Aε(x, 0) > Ao. Indeed, if we define

Aε∗ = minx∈Ω A
ε(x, t) then we have a point-wise bound on its time derivative

thanks Proposition 1. In fact, we know that:∣∣∣∣dAε∗dt
∣∣∣∣ ≤ η |∆Aε|∞ + |Aε + Aερε + Ao|∞

≤ η ‖∆Aε‖2 + ‖Aε + Aερε + Ao‖2 ,

where we need Aε ∈ Hm for m > 4 to use 1 of Lemma 1 and then Sobolev

embedding estimates. Since ‖Aε‖4 is bounded independent of ε then Aε∗ > Ao

on [0, τ ] for some τ ∈ [0, T ]. For simplicity let T = min{T, τ}, from now on we

interval [0, T ] to be the interval on which the higher-order norms are bounded and

Aε ≥ Ao. Now that we have a non-trivial interval on which all the higher-order

norms are bounded we show that the family of solutions to the regularized system

(2.7), {(Aε, ρε)}ε>0, form a Cauchy sequence in the L2-norm. This enables us to

obtain the necessary limiting functions A, ρ, which are a solutions to (1.1).

Lemma 6. The family of solutions {(Aε, ρε)}ε>0 to (2.7) form a Cauchy sequence

in C([0, T ];L2(Ω) × L2(Ω)). In particular, there exists a constant C and a time

T > 0 such that for all ε and ε′

sup
0≤t≤T

{∥∥∥Aε − Aε′∥∥∥
0

+
∥∥∥ρε − ρε′∥∥∥

0

}
≤ C max(ε, ε′).
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Proof. Let (Aε, ρε) and (Aε
′
, ρε

′
) solve their respective regularized systems (2.7)

and satisfy the conditions of the lemma. Take the inner-product of Aε −Aε′ and

Aεt − Aε
′
t .

1

2

d

dt

∥∥∥Aε–Aε′∥∥∥2

0
=

∫ (
Aε–Aε

′
)(

Aεt–A
ε′

t

)
dx

=

∫ (
Aε–Aε

′
)(

ηJ2
ε ∆Aε– ηJ2

ε ∆Aε
′
)
dx –

∥∥∥Aε–Aε′∥∥∥2

0

+

∫ (
Aε–Aε

′
)(

Aερε–Aε
′
ρε
′
)
dx = I1 + I2 + I3.

Since I2 has a negative sign it is not problematic. The other two terms can be

easily dealt with using (4) of Lemma 1.

I1 = −η
∥∥∥Jε′∇(Aε − Aε′)

∥∥∥2

0
+ η

∫
(J2
ε − J2

ε′)∆A
ε(Aε − Aε′)dx

≤ −η
∥∥∥Jε′∇(Aε − Aε′)

∥∥∥2

0
+ ηmax(ε, ε′) ‖A‖3

∥∥∥Aε − Aε′∥∥∥
0
.

For the last term,

I3 =

∫
ρε(Aε − Aε′)2dx+

∫
Aε
′
(
Aε − Aε′

)(
ρε − ρε′

)
dx

≤
(
|ρε|∞ +

1

2
|Aε|∞

)∥∥∥Aε − Aε′∥∥∥2

0
+

1

2
|Aε|∞

∥∥∥ρε − ρε′∥∥∥2

0
.

Combine these inequalities and return to the initial estimate to obtain:

1

2

d

dt

∥∥∥Aε–Aε′∥∥∥2

0
≤
(
|ρε|∞+

1

2
|Aε|∞−1

)∥∥∥Aε–Aε′∥∥∥2

0
+ ηmax(ε, ε′) ‖A‖3

∥∥∥Aε–Aε′∥∥∥
0

+
1

2
|Aε|∞

∥∥∥ρε–ρε′∥∥∥2

0
. (2.21)

Perform a similar computation for ρ:

1

2

d

dt

∥∥∥ρε − ρε′∥∥∥2

0
=

∫ (
ρε − ρε′

)(
ρεt − ρε

′

t

)
dx

=

∫ (
ρε−ρε′

)(
J2
ε ∆ρε−J2

ε ∆ρε
′
)
dx+

∫ (
ρε−ρε′

)(
Aερε−Aε′ρε′

)
dx

+

∫ (
ρε − ρε′

)(
Jε

(
∇ · ρ

ε

Aε
Jε∇Aε

)
− Jε′

(
∇ · ρ

ε′

Aε′
Jε′∇Aε

′
))

dx

= F1 + F2 + F3.
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The terms F1 and F2 are dealt with exactly as was done for the attractiveness

value. F3 is not as straight forward but it can be simplified using Cauchy-Schwarz

inequality:

F3 ≤
(∥∥∥∥Jε(∇ · ρεAεJεAε

)∥∥∥∥
0

+

∥∥∥∥Jε′ (∇ · ρε′Aε′ Jε′∇Aε′
)∥∥∥∥

0

)∥∥∥ρε − ρε′∥∥∥
0
.

We can extract an ε at the expense of a higher-order norm and the loss of a

mollifier. For example we have:∥∥∥∥Jε(∇ · ρεAεJε∇Aε
)∥∥∥∥

0

≤ ε

∥∥∥∥ ρεAεJε∇Aε
∥∥∥∥

2

. ε

{∣∣∣∣ ρεAε
∣∣∣∣
∞

∥∥D2∇Aε
∥∥

0
+ |∇Aε|∞

∥∥∥∥D2

(
ρε

Aε

)∥∥∥∥
0

}
.

From the proof of Lemma 4, refer to the inequality (B.3), the above inequal-

ity has a bound that depends only on ‖ρε‖2, ‖Aε‖3, and C1. Define v2 =∥∥Aε − Aε′∥∥2

0
+
∥∥ρε − ρε′∥∥2

0
. Since ‖Aε‖3 and ‖ρε‖2 are bounded on [0, T ] then

we have the following differential inequality:

d

dt
v . C(max(ε, ε′) + v).

Notice that the constant depends on C1, ‖ρε‖2 and ‖Aε‖3. The above differential

inequality gives v(t) ≤ eCt (v(0) + max(ε, ε′)) − max(ε, ε′). Since (Aε, ρε) and

(Aε
′
, ρε

′
) satisfy the same initial conditions we have that v(0) = 0, which implies:

sup
0≤t<T

v(t) ≤ C max(ε, ε′).

2.1.3.2 Existence and Uniqueness of Solutions to the Original Resi-

dential Burglary Model

We have all the tools to prove Theorem (1); however, we first state and prove

the result for uniqueness of solutions. More precisely, if we assume that we have

existence of a smooth enough solution to (1.1) then this solution must be unique.
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Lemma 7 (Uniqueness of Smooth Solutions). Let (A1, ρ1), (A2, ρ2) be local-in-

time solutions, with a common interval of existence [0, T ], to the system (1.1).

Furthermore, suppose these solutions are smooth enough and with the same initial

data in V m, for m ≥ 3, which satisfy the conditions stated in Theorem 1 then

A1 = A2 and ρ1 = ρ2 on [0, T ].

Proof. We consider the difference of both variables u = A1−A2 and v = ρ1− ρ2.

From (1.1) we can see that u and v satisfy the following system:

ut = η∆u− u+ ρ1u+ A2v, (2.22a)

vt = ∆v − 2∇ ·
(
ρ1

A1

∇A1 −
ρ2

A2

∇A2

)
− ρ1u− A2v. (2.22b)

The time evolution of the L2-norm of u multiplied by a constant M (the same

M used in Lemma 1) satisfies the following inequality:

d

dt

M

2
‖u‖2

0 ≤ −Mη ‖∇u‖2
0 +M

(
|ρ1|∞+

1

2
|A2|∞− 1

)
‖u‖2

0 +
M

2
|A2|∞ ‖v‖

2
0 .

(2.23)

The above inequality can be seen simply by taking the L2-inner product of ut and

u. Substituting (2.22a) for ut into this inner product and integrating by parts

gives (2.23). The same is done for v. The following inequality holds:

d

dt

1

2
‖v‖20 .C2

1C
2
2 ‖∇u‖

2
0 +C (|ρ1|∞ , |∇A2|∞) ‖u‖20 +C(|ρ1|∞ , |∇A2|∞ , |A1|∞) ‖v‖20 .

(2.24)

For detailed computations of the upper bound given by (2.24) refer to Appendix

A.3. Define F (t) = M
2
‖u(t)‖2

0 + 1
2
‖v(t)‖2

0, again choosing M > 1
η
(C1C2)2 then

from (2.23) and (2.24) we see that F (t) satisfies the following ode:

dF (t)

dt
≤ CMF (t). (2.25)
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In (2.25) the constant CM = CM(M, |ρ1|∞ , |A1|∞ , |A2|∞ , |∇A1|∞ , C1). We are

set to apply a Grönwall’s lemma [82]. Applying this lemma to (2.25) gives that

sup0≤t≤T {F (t)} ≤ F (0)eCMT . All terms that compose CM are bounded on the

interval [0, T ]. Since the two solutions satisfy the same initial conditions then

F (0) = 0, which implies uniqueness of the solution.

We now progress to the proof of the main result.

Proof. (Theorem 1) From Theorem 4 we have that given the initial conditions in

the hypothesis of Theorem 1, there exists a family of solutions {(Aε, ρε)}ε>0 to

the regularized problem (2.7). These solutions exist on the time interval [0, Tε).

The interval of existence depends on the regularizing parameter; however, from

Lemma 1 we know that the V 2-norm of the solutions are bounded independent

of ε. This gives a uniform interval of existence [0, T ]. Furthermore, from Lemma

6 we conclude that there exist A, ρ ∈ C([0, T ];L2(Ω)) such that:

sup
0≤t≤T

{‖Aε − A‖0 + ‖ρε − ρ‖0} ≤ Cε.

Therefore, the solutions converge strongly in the low-norm. We state an inter-

polation lemma needed to show strong convergence in intermediate norms. This

lemma offers a connection between Lemma 1 and Lemma 6 which leads to the

desired result.

Lemma 8 (Interpolation in Sobolev Spaces). Given s ≥ 0, there exists a constant

Cs so that for all v ∈ Hs(Ω), and 0 < s′ < s the following inequality holds:

‖v‖s′ ≤ ‖v‖
1−s′/s
0 ‖v‖s

′/s
s .

To use Lemma 8 having strong convergence in the L2-norm and some bounds on

the higher norms is essential. For m > 3 we apply the above lemma to A = Aε−A
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and ρ = ρε − ρ.

sup
0≤t≤T

{∥∥A∥∥
m′

+ ‖ρ‖m′
}
.
(∥∥A∥∥1−m′/m

0

∥∥A∥∥m′/m
m

+ ‖ρ‖1−m′/m
0 ‖ρ‖m

′/m
m

)
.
(∥∥A∥∥m′/m

m
ε1−m

′/m + ‖ρ‖m
′/m

m ε1−m
′/m
)
.

The estimate (2.20) implies that Aε, ρε are uniformly bounded in Hm, for m ≥

2. Therefore, the above inequality implies strong convergence in C([0, T ], V m′).

Taking m′ to be larger than three implies strong convergence in C([0, T ], C2(Ω))

due to the Sobolev Embedding Theorem [46]. Now, we simply need to verify that

the limits A and ρ actually satisfy (1.1). Since (Aε, ρε)→ (A, ρ) from (2.7) we see

that Aεt converges to η∆A−A+Aρ+Ao in C([0, T ], C(Ω)). Correspondingly, ρεt

converge to ∇·
[
∇ρ− 2 ρ

A
∇A
]
+B−Aρ. Finally, since Aεt → At and ρεt → ρt then

A and ρ are classical solutions of (1.1). Since the solutions satisfy the smoothness

requirements of Lemma 7 they are unique.

2.2 Continuation of the Solutions to the Residential Bur-

glary Model

In the previous section we proved that if the initial data (A(0, x), ρ(0, x)) ∈ V m

then there exists some positive time T , such that there exists a classical solution

(A(x, t), ρ(x, t)) to (1.1) on [0, T ]. We are interested in whether this solution can

be continued for all time or if there exists a blow-up in finite time. A natural

subsequent step is to prove a continuation argument which gives necessary and

sufficient conditions for global existence. Recall that we used the Picard Theorem

on a Banach Space to prove local existence, for fixed ε, to the regularized system

(2.7) in Lemma 4. This theorem has a natural continuation argument. The

family of solutions can be extended in time provided |1/Aε|∞, ‖Aε‖m, and ‖ρε‖m
remain bounded [82]. This argument does not directly apply to the solution of
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the original system and to prove a similar result we need the following theorem.

Theorem 5 (Continuity in the High Norms). Given initial conditions (A0, ρ0) ∈

V m, for m > 3, which satisfy the conditions stated in Theorem 1. Let {(Aε, ρε)}ε>0

be the family of solutions to (2.7) and (A, ρ) be the solution described in Theorem

1. The following hold:

1. {(Aε, ρε)}ε>0 and (A, ρ) are uniformly bounded in Cweak([0, T ];V m).

2. (A, ρ) ∈ C([0, T ];V m) ∩ C1([0, T ];V m−2).

Proof. From Lemma 1 we conclude that:

sup
0≤t≤T

‖(Aε, ρε)‖Vm ≤ K. (2.26)

Furthermore, automatically from (1.1):

sup
0≤t≤T

∥∥∥∥ ∂∂t(Aε, ρε)
∥∥∥∥
Vm−2

≤ K̃. (2.27)

We need to show that the limiting solution is continuous in the weak topology

of V m(Ω). From Definition 1 in Section 2 it suffices to show that (A, φ1)m and

(ρ, φ2)m, where these inner-products are defined by (2.4), are continuous scalar

functions ∀ φ1, φ2 ∈ Hm. Actually, since H−m is the dual of Hm we simply need

to prove that for all ψ ∈ H−m the following is true: (ψ,Aε)L2 ⇀ (ψ,A)L2 . The

same needs to hold for ρ. Previously we proved that Aε → A in the intermediate

norms, i.e. in C([0, T );Hm′), where m′ < m. This implies that Aε ⇀ A. Consider

the L2-inner product of ψ ∈ H−m and Aε − A:

(ψ,Aε − A)L2 = (ψ − φj, Aε)L2 + (φj, A
ε − A)L2 + (φj − ψ,A)L2 , (2.28)

where {φj}j∈N is a sequence in H−m
′
which converges strongly in H−m to ψ. Such

a sequence exists because H−m
′
is dense in H−m. These terms are bounded above
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on [0, T ]:

(ψ − φj, Aε)L2 ≤ ‖ψ − φj‖−m ‖A
ε‖m ≤ Kδ/3,

(φj, A
ε − A)L2 ≤ ‖φj‖−m′ ‖A

ε − A‖m′ ≤ K2δ/3,

(φj − ψ,A)L2 ≤ ‖ψ − φj‖−m ‖A‖m ≤ Kδ/3.

These inequalities substituted into (2.28) gives that (ψ,Aε−A)L2 → 0. The same

argument can be made for ρ and this wraps up the proof of part 1.

We are left to prove that (A, ρ) ∈ C([0, T ];V m(Ω)) ∩ C1([0, T ];V m−2(Ω)).

Thanks to part 1 it suffices to show that ‖A(t)‖m and ‖ρ(t)‖m are continuous

functions in time. We take advantage of (2.20) by integrating it on the interval

[0, T ]:

Em(T ) + δ1

∫ T

0

‖Jε∇ρε‖2
m dt+ δ2

∫ T

0

‖Jε∇Aε‖2
m dt . Em(0) +

∫ T

0

{CEm(t) +D0} dt.

Applying Grönwall’s Lemma we obtain that Em(T ) ≤ (Em(0) − D0/C)eCT +

D0/C. Taking the limit as T → 0+ we see that Em(t) is continuous at t = 0+.

Furthermore, being that Em(t) is bounded on [0, T ] and δ1, δ2 > 0 the inequality

above implies that (A, ρ) ∈ L2([0, T ];V m+1(Ω)). Thus, for a.e t0 ∈ [0, T ] then

(A(t0), ρ(t0)) ∈ V m+1. Indeed, the initial conditions have gained regularity. Take

an arbitrarily small t0 and let (A(t0), ρ(t0)) to be a new set of initial conditions.

Running through the same existence and uniqueness arguments we obtain a so-

lution (A, ρ) which exist on an interval [t0, T1], (A, ρ) ∈ C([t0, T1];V m′), where

now m′ < m + 1. In view of the fact that for m > 3, Em and Em+1 satisfy the

same differential inequality then T1 ≥ T . Uniqueness and the arbitrary choice

of t0 implies that (A, ρ) ∈ C([0, T ];V m). Furthermore, by virtue of the equation

then (A, ρ) ∈ C1([0, T ];V m−2).

Remark 2. From (2.20) we know we have control of the V m+1 norm as long as
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we have control |A(t0)|∞, |ρ(t0)|∞, |∇A(t0)|∞, |∇ρ(t0)|∞ and M . Furthermore,

control of |1/A(t0)|∞ implies control of M .

Fortunately, we find that the terms mentioned in Remark 2 are interdependent

and we can obtain a dominating term. However, before we discuss this we state

and prove a regularity argument.

Theorem 6 (Regularity). The solutions A, ρ of the system (1.1) obtained from

Theorem 1 are in the space C∞((0, T )× Ω).

Proof. Since (A, ρ) ∈ C([0, T ];V m) ∩ C1([0, T ];V m−2) from Sobolev embedding

estimates (A, ρ) ∈ C([0, T ];Cm−s)∩C1([0, T ];Cm−2−s) for s > 1. This will give us

smoothness in space. To obtain smoothness in time we simply look at the time-

derivates of the system of equations (1.1) and use a bootstrap argument.

Next we show that if the appropriate initial and boundary data are chosen for A

then only control of |∇ρ(t0)|∞ is needed to continue the solution. We prove this

in the following sequence of lemmas. The first one states that |∇ρ|∞ and |∇A|∞
controls |ρ|∞ and |A|∞ respectively. This holds because there is a bound for the

mass of ρ and A on any finite time interval.

Lemma 9. Let A and ρ be solutions from Theorem 1 with initial conditions A0(x)

and ρ0(x), for 1 ≤ p ≤ ∞ the following estimate holds for A and ρ on [0, T ] for

any T > 0:

‖u(·, t)‖Lp ≤ c ‖∇u‖Lp + (B + Ao)T, (2.29)

for all t ∈ [0, T ].

Proof. Adding both equations in the system (1.1) we obtain that
∫
ρ(x, t)dx ≤(

B + Ao
)
t. The same estimate holds for A. Since Ω is the unit torus the average
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value of a function u is given by u =
∫
udx. Now, by Poincaré inequality ‖u‖Lp ≤

c ‖∇u‖Lp + ‖u‖Lp . This gives the final result.

Furthermore, since there is a max principle for the attractiveness value equation

we prove that if A(x, 0) > Ao 6= 0 for all x then A(x, t) ≥ Ao during the interval

of existence. We state this result formally in following lemma.

Lemma 10 (Lower-Bound of Attractiveness Value). Let Ω = T2 and A, ρ ∈

C([0, T ];C2(Ω)) ∩C1([0, T ];C(Ω)) be a solutions to (1.1) with initial conditions:

A(x, 0) = A0(x) > Ao,

ρ(x, 0) = ρ0(x).

Then A(x, t) ≥ Ao in Ω for all t ∈ [0, T ].

Proof. We see directly from (1.1) that A, ρ ≥ 0. Let w = Ao−A then w satisfies:

wt = η∆w − w + wρ− Aoρ. Since both ρ and Ao are nonnegative then we have:

wt − η∆w − λw ≤ 0, (2.30)

where λ = sup0≤t≤T |ρ(·, t)− 1|∞. Then w = eλtv satisfies (2.30) if v satisfies

vt − η∆v ≤ 0. From the initial data we know that w(x, 0) < 0 for all x ∈ Ω

and the same is true for v. By continuity in time v must remain nonnegative for

some nontrivial time interval say 0 < t < t0. Assume that at t0 we have that

v(x0, t0) = 0 for some x0. This means that vt(x0, t0) ≥ 0 and since we have a

maximum then −∆v(x0, t0) ≥ 0 which is a contradiction unless v(x, t0) = 0 for

all x ∈ Ω. Therefore, v(x, t) ≤ 0 and since w and v have the same sign then

w(x, t) ≤ 0. This proves the result.
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Lemma 10 tells us that if |ρ|∞ is bounded then A > Ao, provided we have

appropriate initial and boundary data. We also need for the solutions to the

regularized model to remain bounded from below. However, we know that this

is true on [0, T ] as was discussed earlier. In addition, we prove that if |∇ρ|∞
remains bounded then |∇A|∞ also remains bounded. This will be demonstrated

in the following two lemmas.

Lemma 11. Let (A, ρ) satisfy (1.1) in the classical sense and assume that ‖∇ρ‖∞
is bounded on [0, T ], for T > 0 then

‖∇A(·, t)‖2
L2 ≤

(
‖∇A(·, 0)‖2

L2 − C̃
)
eC(η,|∇ρ|∞,Ao,B)T + C̃, (2.31)

where C̃ = C̃(η, |∇ρ|∞ , Ao, B). This holds ∀t ∈ [0, T ].

Proof.

1

2

d

dt

∫
|∇A|2 dx =

∫
∇A · ∇Atdx

(1.1) =

∫
∇A · ∇ (η∆A− A+ Aρ+ Ao) dx

= −η
∫
|∆A|2 dx−

∫
|∇A|2 dx+

∫
∇A · ∇(Aρ)dx

= −η
∫
|∆A|2 dx−

∫
|∇A|2 dx+

∫
|∇A|2 ρdx+

∫
A∇A · ∇ρdx

Cauchy-Schwarz ≤ −η ‖∆A‖2
L2 + (|ρ|∞ − 1) ‖∇A‖2

L2 + |∇ρ|∞
(
‖A‖2

L2 + ‖∇A‖2
L2

)
(2.29) ≤ C(η, |ρ|∞ , |∇ρ|∞) ‖∇A‖2

L2 + C(|∇ρ|∞ , A
o, B, T ).

Integrating this and using (2.29) for p =∞ gives the desired result (2.31).

Lemma 12. Let (A, ρ) satisfy (1.1) in the classical sense and assume that |∇ρ|∞
is bounded on [0, T ], for T > 0 then

|∇A(·, t)|∞ ≤ c4 max{|∇A(·, 0)|∞ ,
(
‖∇A(·, 0)‖2

L2 − C̃
)
eCT + C̃} (2.32)

∀t ∈ [0, T ]. The constants C and C̃ are defined as in Lemma 11.
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The proof of Lemma 12 uses the Moser-Alikakos iteration [2].

Proof. Let s ≥ 2:

1

s

d

dt

∫
|∇A|s dx =

∫
|∇A|s−1∇Atdx

(1.1) =

∫
|∇A|s−1∇ (η∆A− A+ Aρ+ Ao) dx

≤ −η(s− 1)

∫
|∇A|s−2 |∆A|2 dx−

∫
|∇A|s dx+

∫
|∇A|s ρdx

+

∫
A |∇A|s−1 |∇ρ| dx

Hölder’s Ineq. ≤ −4η(s− 1)

s2

∥∥∥∇(|∇A|s/2)∥∥∥2

L2
+ |∇ρ|∞ ‖∇A‖

s−1
Ls ‖A‖L2

+ (|ρ|∞ − 1) ‖∇A‖sLs

(2.29) = −4η(s− 1)

s2

∥∥∥∇(|∇A|s/2)∥∥∥2

L2
+ c1 ‖∇A‖sLs + c2,

where c1 = c1(|∇ρ|∞ , |ρ|∞ , Ao, B) and c2 = c2(Ao, B). Multiplying both sides by

s, s ≥ 2 gives:

d

dt

∫
|∇A|s dx ≤ −2η

∥∥∥∇(|∇A|s/2)∥∥∥2

L2
+ sc1 ‖∇A‖sLs + sc2.

We need to make use of an extended Sobolev inequality:[49]

−‖∇u‖2
L2 ≤ −

(1− ε)
ε
‖u‖2

L2 +
c

ε2
‖u‖2

L1 . (2.33)

A derivation of (2.33) can be found in Appendix A.4. Taking u = |∇A|s/2 gives:

d

dt

∫
|∇A|s dx ≤ −2η(1− ε)

ε
‖∇A‖ss +

c0

ε2
‖∇A‖sLs/2 + c1s ‖∇A‖sLs + sc2,

Choose ε = η
sc1+η

noting that s > η ∈ [0, 1] (refer to [92]) then:

d

dt

∫
|∇A|sLs dx ≤ −c1s ‖∇A‖sLs + c3s

2 ‖∇A‖sLs/2 + sc2.

By multiplying both sides by ec1st the above inequality is equivalent to

d

dt

{
ec1st ‖∇A‖s

}
≤ ec1st

(
c3s

2 ‖∇A‖2
Ls/2 + c2s

)
.

35



Integrating this over [0, t] gives:

ec1st‖∇A(·, t)‖sLs≤ ‖∇A(·, 0)‖sLs + sup
0≤τ≤t

‖∇A(·, τ)‖sLs/2
∫ t

0

c3s
2ec1sτdτ +

∫ t

0

c2e
c1sτsdτ

≤ ‖∇A(·, 0)‖sLs + sup
0≤τ≤t

‖∇A(·, τ)‖sLs/2 c4s(e
c1st−1) + c5(ec1st−1).

Therefore,

‖∇A(·, t)‖sLs ≤ (|∇A(·, 0)|∞ + c6)s + c4s sup
0≤τ≤t

‖∇A(·, t)‖sLs/2 , (2.34)

where c6 = max{1, c5}.

Define M(s) = max{|∇A(·, 0)|∞ + c6, sup0≤t≤T ‖∇A(·, t)‖Ls}. From (2.34) we

conclude that

M(s) ≤ (c7s)
1/sM(s/2). (2.35)

Let s = 2k for k ∈ N the recursive relation (2.35) gives:

M(2k) ≤ (c7)
∑k
j=1 2−j (2)

∑k
j=1 j2

−j
M(1).

Since both sums
∑k

j=1 2−j and
∑k

j=1 j2
−j converge as k →∞ taking the limit as

s→∞ we get:

|∇A(·, T )|∞ ≤ lim
s→∞

M(s)

≤ (c7)
∑∞
j=1 2−j (2)

∑∞
j=1 j2

−j
M(1),

Applying Lemma 11 gives the final result.

From Theorem 5 and Lemma 10-12 proved above we obtain necessary and suffi-

cient conditions for the continuation of the solution to (1.1).
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Corollary 1. Given initial conditions (A(x, 0), ρ(x, 0)) ∈ V m, m ≥ 4 such

that A(x, 0) > Ao and ‘no-flux’ boundary conditions, there exist a maximal

time of existence 0 < Tmax ≤ ∞ and a unique solution (A(x, t), ρ(x, t)) ∈

C([0, Tmax);V
m)∩C1([0, Tmax);V

m−2) the the system (1.1). Furthermore, if Tmax

is finite then limt→Tmax |∇ρ|∞ =∞.
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CHAPTER 3

Modified Residential Burglaries Models

Though we succeeded in proving local existence and uniqueness of solutions to

(1.1) the question of whether the solutions can be extended for all time has not

been addressed. To be confident that we have a robust model, suitable for the

target application, we need insight on global existence and/or possible finite time

blow-up. Working with a strongly coupled system of nonlinear PDEs makes it

difficult to apply the usual techniques to prove well-posedness. In this section,

we take advantage from the relation of the original model (1.1) to a well-studied

model of chemotaxis, known as the Keller-Segel model, to obtain insight into

the global theory. Indeed, we see that from the work done in this model that we

expect that the logarithmic velocity field will be necessary if we want all solutions,

regardless of initial mass, to be global in time.

Outline: This chapter is divided into three sections. In §3.1 we discuss the

Keller-Segel model for chemotaxis and its connection to the system (1.1). Moti-

vated by this connection we considered alternate crime pattern formation models

in §3.2. In particular, we study the behavior of solutions to a system with loga-

rithmic velocity field vs. linear velocity field. Finally, in §3.3 we prove blow up

of a modified parabolic-elliptic model.
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3.1 Keller-Segel Model for Chemotaxis

There is an evident relation between the model for residential burglaries and the

Keller-Segel model for chemotaxis, developed in [65] by Keller and Segel in 1971.

Chemotaxis is the influence of a chemical substance in the environment on the

movement of a mobile species. This process is key in cellular communications.

Keller and Segel developed a general model for the chemotaxis phase of aggre-

gation of slime mold, i.e Dictyostelium Discoidium in [65]. There has been a

great deal of analysis on various versions of the Keller-Segel model since it was

developed and research is still in progress [34, 41, 45, 47, 55, 68, 42]. Thus far

the most studied version is:

∂u

∂t
= κ∆u− χ∇ · (u∇v) , (3.1a)

ε
∂v

∂t
= kc∆v − αv + βu. (3.1b)

with Neumann boundary conditions. In (3.1) u is the myxamoebae density of

slime mold and v the chemo-attractant concentration. Comparing this model

to (1.1) we can see that the chemo-attractant density is comparable to the at-

tractiveness value. It is worth noting that chemotaxis is sometimes modeled

by an elliptic-parabolic system; however, in the residential burglaries model the

timescale of the change in attractiveness value is similar to the change in crim-

inal density. From (3.1) we see that the myxamoebae move up gradients of

chemo-attract concentration like criminals move up gradients of attractiveness

value. Global existence and finite time blow-up of the (3.1) is highly dependent

on the dimension. In one-dimension finite time blow-up cannot occur [36]. In

two-dimensions it has been shown, by Corrias and Calvez [28], that the solu-

tion exist globally in time if the initial mass is below the critical quantity 8π.

If the initial mass is above 8π then aggregation occurs in the case when ε = 0
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[55, 54]. As far as we know of the blow-up results for the fully parabolic system

has not been proved. For higher dimensions, d, there exists a similar critical

quantity that is governed by the Ld/2-norm of the initial myxamoebae density.

Although the most studied version of the Keller-Segel model is (3.1) various vari-

ations of the model have also been analyzed. A comprehensive summary of much

of this work can be found in [57] and [58]. It is not surprising that (3.1) is

the most studied version of the Keller-Segel model since is possesses properties

that facilitates mathematical analysis. There are three properties worth noting.

First, the system (3.1) conserves mass of the cell density. Furthermore, one can

express the chemo-attractant concentration as the convolution of the Bessel Ker-

nel, Bη(z) = 1
4ηπ

∫∞
0

1
t
e−
|z|2
4ηt
−tdt, and the cell density. In two-dimensions this is

especially useful for proving blow-up results given large enough initial mass of

the cell density. Most importantly, his model, after non-dimensionalization, has

a Lyapunov functional [28]:

F(t) =

∫
u log u dx−

∫
uv dx+

1

2

∫
|∇v|2 dx+

∫
αv2dx.

This functional is key in proving global existence. This connection motivates us

to study alternative residential burglary models.

3.2 Crime Models with General Velocity Field

In this section we assume that the attractiveness value increases proportionally

with the criminal density, as opposed increasing with the number of crimes. In-

deed, criminals walking around an area may automatically increase the vulner-

ability of a neighborhood. This is still modeling the ‘broken-window’ effect but

not the ‘repeat and near-repeat victimization effect’. This assumption leads to

a linear equation for the attractiveness value. In particular, the model we now
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consider is

At = η∆A− A+ βρ+ AT (x) (3.2a)

ρt = ∇ · (∇ρ− ρ∇χ(A))− Aρ+B(x), (3.2b)

with β ≥ 0 and η ∈ [0, 1] defined as in Chapter 1. Similar models have been

studied in [16, 14, 17]. Note that the nonlinearities in the criminal density remain

the same. From the modeling perspective criminals should be removed at the

rate which crimes are committed. Furthermore, as we will see in the subsequent

work the logarithmic velocity field plays an important role in the prevention of

aggregation of criminals. We will pay special attention χ(A) = logA, which

gives the original velocity field seen in (1.1), and linear χ(A) = A. In this

section we explore the difference between these two velocity fields. Recall, that

the original system (1.1) is the formal limit of the agent based system modeling

certain criminology theories deemed to be reasonable. The goal of studying the

well-posedness of the the system is to obtain insight into the robustness of the

model. Indeed, in Chapter 2 we sought classical solutions. However, physical

solutions need not be classical. For example, finite time blow-up in the gradient

of criminal density is perfectly reasonable. Physically, what is required is control

of the criminal density it self. Hence, we expect that |ρ|∞ remains bounded for

the solutions to be physical. We look for weaker solutions, which are physical

solutions, but not necessarily classical. Furthermore, we will see the importance

of the logarithmic velocity field for global existence of solutions.

3.2.1 Global Existence for Logarithmic Velocity Field

A key ingredient missing in our analysis of the original residential burglary system

(1.1) is an energy functional that remains bounded for all time for its solutions.

This is problematic because that we do not obtain enough control over the the
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criminal density to extend our local solution to a global one. One advantage (3.2)

has over (1.1) is that the following functional

Flog(t) =

∫
ρ(log ρ− 1

2
logA)dx (3.3)

is a bounded above for all time for A and ρ solutions to (3.2). The functional

Flog(t) is not necessarily dissipated; however, an upper bound proves to be suffi-

cient for the purpose of our analysis. We take advantage of the specific form of

the velocity field (3.2), i.e. ∇ logA. For the purpose of this work we only provide

a discussion of the importance of the control of Flog(t) for global existence, and

all of the computations are formal. However, we note that this can all be made

rigorous. We consider free boundary conditions for the attractiveness value and

no-flux boundary conditions for the criminal density, i.e.

A = Gη ∗ (βρ+ Ao(x)) and (−∇ρ+ ρ∇χ(A)) · ~ν|∂Ω = 0, (3.4)

where Gη is the fundamental solution to the ∂t − η∆ + 1 in Rn ×R+. Now, from

the integral representation of A(x, t) one can prove that there exists a function

Amin(t) which is a lower bound for A(x, t) for all x ∈ Ω. Recall from Chapter

2 that if the solutions have enough regularity then A(x, t) remains above Ao

(provided the initial condition is larger than Ao). However, we can not assume

such regularity a priori. We first state the relevant bounds on the mass of the

criminal density and the attractiveness value.

Lemma 13 (Bounds on Mass of ρ and A). Let Mv =
∫
|v| dx and let A, ρ be

solutions to (3.2) with initial data (A0, ρ0) then A, ρ satisfy the following bounds

Mρ(t) ≤MB t+ ‖ρ0‖1 , (3.5a)

MA(t) ≤ C(β,MB)t2 + C(‖Ao‖1 , ‖ρ0‖1)t+ ‖A0‖1 . (3.5b)

The proof of Lemma 3.5 is simple and we omit the details.
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Proposition 2 (Bounds on the Energy Functional). Let A, ρ be solutions (3.2)

with χ(A) = logA and initial data, (Ao(x), ρo(x)) ≥ (Ao, 0), such that Flog(0) is

positive and finite then Flog(t) is bounded from above t > 0, i.e.

Flog(t) ≤ e−AmintP(t) <∞ (3.6)

Proof. We look at the evolution equation of Flog(t). We do not specify the domain

of integration for notational simplicity.

d

dt
Flog(t) =

∫ (
log ρ− 1

2
logA

)(
∇ · (∇ρ− ρA−1∇A)− Aρ+B

)
+

∫
ρt −

1

2

∫
ρA−1At

= −
∫

1

ρ
|∇ρ|2 +

3

2

∫
A−1∇ρ · ∇A− 1

2

∫
ρ |∇A|2A−2 +

∫
B −

∫
Aρ

+

∫
(B − Aρ)(log ρ− 1

2
logA)︸ ︷︷ ︸

R1

− 1

2

∫
ρA−1(η∆A− A+ βρ+ Ao)︸ ︷︷ ︸

R2

We can simplify the last term of the above inequality by integrating by parts

−R2 =
η

2

∫
A−1∇ρ · ∇A− η

2

∫
ρA−2 |∇A|2

+
1

2

∫
ρ− 1

2
β

∫
ρ2A−1 − 1

2

∫
Ao(x)ρA−1

≤ η

2

∫
A−1∇ρ · ∇A− η

2

∫
ρA−2 |∇A|2 +

1

2
Mρ(t).

Substituting this back into the evolution equation gives

d

dt
Flog(t) +

∫
Aρ ≤ −

∫
1

ρ
|∇ρ|2 +

1

2
(3 + η)

∫
A−1∇ρ · ∇A

− 1

2
(1 + η)

∫
ρ |∇A|2A−2 +MB +

1

2
Mρ(t) +R1

C.S. ≤MB +
1

2
Mρ(t) +R1.
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Note that this holds for all η = 1 and the only term left to control is

R1 =

∫
B(log ρ− 1

2
logA)−

∫
Aρ(log ρ− 1

2
logA)

≤
∥∥B∥∥∞Mρ(t) +

1

2
|logAmin(t)|MB − Amin(t)Flog(t).

Since the initial energy is positive then the second term in the above equality will

contribute to the decay of the energy. Combining everything gives

d

dt
Flog(t) +

∫
Aρ ≤ α(t)− Amin(t)Flog(t),

where α(t) = MB(1 + 1
2
|logAmin(t)|) + Mρ(t)(

1
2

+
∣∣B∣∣∞). We can integrate this

in time to obtain

Flog(t)+

∫ t

0

∫
Aρ ≤ e−

∫ t
0 Amin(s) ds

(
Flog(0)− 1

Amin(t)

∫ t

0

α(s)ds

)
+

1

Amin(t)

∫ t

0

α(s)ds.

This proves (3.6).

The importance of this Proposition 2 can be seen in the following corollary

Lemma 14 (Entropy Bound). Let A and ρ be weak solutions to (3.2) then∫
ρ log ρdx ≤ P(t) <∞, for all t > 0.

Proof. We prove a lower bound we fix t∗ ≥ 0 and for notational simplicity we

will suppress the time dependence let Mρ = Mρ(t
∗) and dµ = ρ

Mρ
note that then∫

dµ = 1
Mρ

∫
ρ(x, t∗)dx = 1. We will apply Jensen’s inequality with the measure

µ. ∫
ρ(log ρ− logA)dx = −Mρ

∫
ρ

Mρ

(
log

A

ρ

)
dx

≥ −Mρ log

(∫
A

Mρ

dx

)
= Mρ logMρ −Mρ logMA.
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This implies that∫
ρ log ρ ≥

∫
ρ logA+Mρ logMρ −Mρ logMA.

Now, one use this to bound the entropy
∫
ρ log ρ dx

1

2

∫
ρ log ρ ≤

∫
ρ log ρ− 1

2
ρ log ρ ≤

∫
ρ

(
log ρ− 1

2
logA

)
dx+ P2(t)

≤ Flog(t) + P2(t).

where P2(t) := Mρ(t) (logMA(t)−Mρ(t)).

Lemma 14 gives us a global bound on the entropy, which turns out to be key in

extending the solution to global ones.

Remark 3. We can easily see the importance of the logarithmic velocity field via

the Young type inequality∫
|uv| dx ≤

∫
u log u dx+

∫
ev−1dx

Indeed, this provides a better bound that provided by the Lemma. For the loga-

rithmic case we have
∫
|ρ logA| ≤

∫
ρ log ρdx+ e−1

∫
A. Then

1

2

∫
ρ log ρ ≤

∫
ρ log ρ− 1

2
ρ log ρ ≤ Flog(t) +

e−1

2
MA(t).

3.2.2 Linear Velocity Field

In this section we consider a linear velocity field, χ(A) = A. It will be come

apparent in this section why the log velocity field is important for the global

existence. The corresponding energy functional for (3.2) with this velocity field

is

FL(t) =

∫
ρ(log ρ− A)dx+

1

2

∫
A2dx+

η

2

∫
|∇A|2 dx−

∫
AAodx

:= SL(t) +WL(t), (3.7)
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where SL(t) =
∫
ρ(log ρ − A)dx and the remaining part corresponds to WL(t).

As in the previous section, this energy remains bounded along trajectories of the

dynamical system associated with our system with linear velocity field.

Proposition 3 (Bounds on Energy for the Linear Velocity Field). Let A, ρ be

solutions (3.2) with χ(A) = A and initial data, (Ao(x), ρo(x)) ≥ (Ao, 0), such

that FL(0) is positive and finite then FL(t) is bounded from above t > 0.

Proof.

d

dt
SL(t) =

∫
(log ρ− A)

(
∇ · (∇ρ− ρ∇A)− Aρ+B(x)

)
dx

+

∫
ρt −

∫
Atρ dx

= −
∫
ρ |∇(log ρ− A)|2 dx+

∫
(log ρ− A)(B − Aρ)dx

+

∫
Bdx−

∫
Aρdx−

∫
Atρ dx.

Now, multiplying (3.2a) by At and integrating gives∫
|At|2 dx = −η

2

d

dt

∫
|∇A|2 dx− 1

2

d

dt

∫
A2dx+ β

∫
ρAt +

∫
AoAtdx.

From this we see that the time evolution of FL(t) is bounded as follows

d

dt
FL(t) ≤ −

∫
ρ |∇(log ρ− 2A)|2 dx−

∫
|At|2 dx−

∫
Aρdx

+ (β − 2)

∫
ρAtdx+MB +

∫
(log ρ− 2(A))(B − Aρ)dx.

The last term in the above inequality can be bounded as was done in §3.2.1.

Hence, if 2 ≥ β the energy FL(t) remains bounded for all t > 0.

As in the case with logarithmic velocity field we have an upper bound on FL(t).

However, recall that control of
∫
ρ log |ρ| dx is ultimately what provided the global

existence. To obtain this we need a lower bound on FL(t) as well. To explore this
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issue we will make use of a generalized Moser-Trudinger inequality (see [35]-Prop.

2.3).

Lemma 15 (Generalized Moser-Trudinger Inequality). Let v ∈ H1(Ω), Ω with

piecewise C2 boundary and minimal interior angle of corners θ then∫
Ω

ev ≤ C exp

(
1

|Ω|

∣∣∣∣∫
Ω

vdx

∣∣∣∣+
1

8θ

∫
Ω

|∇v|2 dx
)
.

Our objective now is to try to obtain a lower bound for SL, following the proof

for the lower bound of Flog(t) we get

SL(t∗) = −Mρ

∫
ρ

Mρ

log

(
eA

ρ

)
dx

≥ −Mρ log

(
1

Mρ

∫
eAdx

)
≥Mρ logMρ −Mρ log

∫
eAdx.

Immediately we see that this lower bound is not as nice that the one obtained

from the logarithmic velocity field. We use Lemma 15 to bound the last term in

the above inequality

log

(∫
eAdx

)
≤ log

{
C exp

(
1

|Ω|

∣∣∣∣∫
Ω

A

∣∣∣∣+
1

8θ

∫
|∇A|22

)}
≤ logC +

1

|Ω|
MA +

1

8θ

∫
|∇A|22 .

We conclude that

0 ≤ SL(t) +Mρ(t)C +
1

|Ω|
M2

A(t) +
Mρ(t)

8θ
|∇A|22 −Mρ(t) logMρ(t)

= FL +

(
Mρ(t

∗)

8θ
− η

2

)∫
|∇A|2 dx− 1

2

∫
|A|2 dx+ B(t)

Therefore, if 2Mρ(t) < 8θη, (3.8)

then this implies that FL controls |∇A|2, which then provides controls of∫
ρ log |ρ| dx. However, since our bound on the mass of ρ is only linear we cannot

verity that (3.8) holds for all t > 0.
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3.3 Blow-up for Model with Linear Velocity Field and

Bounded Mass

In the previous section we saw that we could not prove global existence to (3.2)

with a linear velocity field for arbitrary mass. This problem was caused because

the linear upper-bound on the mass was was not good enough. Motivated by

this problem we consider another modification to (3.2). This will ease the math-

ematical analysis while maintaining fundamental assumptions made in [92]. The

model we propose is:

ε
∂A

∂t
= η∆A− A+ βρ+ Ao(x), (3.9a)

∂ρ

∂t
= ∆ρ− 2∇ · (ρ∇A) +B(x)− f(A)ρ. (3.9b)

From now on we work in all of R2. Notice that now Ao and B are functions of

the space variable and must have sufficient decay as |x| → ∞. Model (3.9) makes

three simplifications to (1.1). First, the advection speed is now given simply by

|∇A|. The second modification is that the attractiveness value increases with the

number of criminals with constant of proportionality β, i.e we replace Aρ with

βρ in (1.1a). We have no reason to believe that this modification will decrease

the accuracy of the model. Finally, the criminal density decays with a rate of

f(A) and we assume that f(A) has a lower and upper bound.

3.3.1 Useful Properties of the Modified Residential Burglaries Model

The model (3.9) does not possess these exact properties; however, it does possess

ones which are useful enough. For v ∈ L1(Ω) let Mv(t) =
∫

Ω
v(x, t)dx. As an

example of a useful property if A, ρ are solutions to (3.9) then Mρ(t) is bounded
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above and below. Define fmin = minA∈R+ f(A) then:

Mρ(t) ≤ e−fmint
(
Mρ(0)− MB

fmin

)
+
MB

fmin
. (3.10)

Replacing fmin with fmax gives a similar lower bound for Mρ(t). Another key

property is the explicit expression of the attractiveness value in terms of the

criminal density in the quasi-static case, i.e ε = 0:

A(x) = Bη ∗ (βρ+ Ao) (3.11)

We conjecture that solutions to (3.9) satisfy an energy functional whose upper

bound can be controlled with time. Being that this is beyond the scope of this

paper we only mention that proving such an energy functional is important for

proving global existence via the Lyapunov functional method discussed in the

introduction.

3.3.2 Blow-up of a Modified Residential Burglaries Model

In this section we explore the possibility of blow-up in finite time of the solution

to the modified residential burglaries model (3.9) in the case where ε = 0. It turns

out, that similar to the Keller-Segel model, if the lower-bound on the mass of the

criminal density is large enough there is mass concentration on a set of measure

zero. Let Mmin
ρ = min {Mρ(0),MB/fmax} and Mmax

ρ = max {Mρ(0),MB/fmin}

and for a function v we denote the finite second moment by Iv =
∫
|x|2 vdx. We

state this blow-up result in the following theorem.

Theorem 7 (Blow-up of a Modified Residential Burglaries Model). Let

(A(x, 0), ρ(x, 0)) ∈ L1(R2) be initial data such that
(
βMmin

ρ − 4π
)
Mmin

ρ > πIB.

Furthermore, let ρ be the non-negative smooth solution to (3.9b) and that A has

reached a steady state and is defined by (3.11), then A, ρ are a non-negative
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smooth solutions to (3.9) (when ε = 0). Then, if the initial second moment is

small enough. That is if∫
|x|2 ρdx ≤ 1

K2

[(
β

π
Mmin

ρ − 4

)
Mmin

ρ − IB
]2

, (3.12)

where IB(x) =
∫
Bdx, K =

[
2β
π
C
(
Mmax

ρ

)3/2
+ a1

(
Mmax

ρ

)1/2
]
,

a1 = 4 ‖∇Bη(x)‖1 |A
o(x)|∞ and C a constant, then there exists a finite time

singularity.

Proof. Consider the time evolution of the second moment of ρ, I(t) =
∫
R2 |x|2 ρdx:

dI

dt
=

∫
R2

|x|2
(
∆ρ− 2∇ · (ρ∇A)− f(A)ρ+B

)
dx

≤ 4

∫
R2

ρ dx+ 4β

∫
R2

ρ (x · ∇Bη ∗ ρ) dx+ 4

∫
R2

ρ (x · ∇Bη ∗ Ao(x)) dx+ IB.

(3.13)

The third term of on the right in the above inequality can be bounded above

using Cauchy-Schwarz Inequality and Young’s inequality for convolutions [110]:

4

∫
R2

ρ |x| |∇Bη ∗ Ao(x)| dx ≤ 4 |∇Bη ∗ Ao(x)|∞
∫
ρ |x| dx.

≤ 4 ‖∇Bη‖L1 |Ao(x)|∞︸ ︷︷ ︸
a1

M1/2
ρ (t)

√
I(t) (3.14)

We use the explicit expression of the gradient of the Bessel Kernel, ∇Bη(z) =

− 1
2π

z
|z|2
∫∞

0
e−s−

|z|2
4ηs ds, to bound the second term. Let gη(z) =

∫∞
0
e−s−

|z|2
4ηs ds and

dA = dxdy then, omitting the time dependence, we obtain

4β

∫
R2

ρ (x · ∇Bη ∗ ρ) dx ≤ −2β

π

∫
R2

∫
R2

ρ(x)x · (x− y)

|x− y|2
gη(x−y)ρ(y)dydx

≤ β

π

∫∫
ρ(x)[1− gη(x− y)] ρ(y)dA− β

π

∫∫
ρ(x)ρ(y)dA

= −β
π
M2

ρ (t) +
β

π

∫∫
ρ(x) [1− gη(x− y)] ρ(y)dA.
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Observe that gη(z) is a positive, radially symmetric, decreasing function with

maximum of one. This implies that 0 ≤ (1− gη(z)) ≤ 1. Now, consider the

derivative of (1− gη(r)) with respect to r = |z|:

d

dr
(1− gη(r)) ≤

r

2η

∫ ∞
0

1

s
e−s−

r2

4ηsds

≤ 2π

η
rB1(

r
√
η

)

≤ 2π
√
η

sup
r̃∈(0,1)

(r̃B1(r̃)),

where, r̃ = r√
η

for 0 ≤ r ≤ √η . If C = 2π√
η

max(supr̃∈(0,1) {r̃B1(r̃)} , 1) then

(1− gη(z)) ≤ C |z|. Hence, we have:

4β

∫
R2

ρ (x · ∇Bη ∗ ρ) dx ≤ −β
π
M2

ρ (t) +
2β

π
CMρ(t)

∫
R2

ρ(x, t) |x| dx

C.S. ≤ −β
π
M2

ρ (t) +
2β

π
C (Mρ(t))

3/2
√
I(t). (3.15)

Substituting (3.14) and (3.15) into (3.13) gives:

dI

dt
≤
(

4− β

π
Mρ(t)

)
Mρ(t) +

2β

π
CM3/2

ρ (t)
√
I(t) + a1M

1/2
ρ (t)

√
I(t) + IB

≤
(

4− β

π
Mρ(t)

)
Mρ(t) +

(
2β

π
CM3/2

ρ (t) + a1M
1/2
ρ (t)

)√
I(t) + IB

≤
(

4− β

π
Mmin

ρ

)
Mmin

ρ +

(
2β

π
C
(
Mmax

ρ

)3/2
+ a1

(
Mmax

ρ

)1/2
)

︸ ︷︷ ︸
K

√
I(t) + IB.

In the last inequality we use the fact that the initial conditions are chosen so that

βMmin
ρ > 4π. Integrating on [0, t) gives the integral inequality:

I(t) ≤ I(0) +

∫ t

0

g(I(s))ds, (3.16)

where g(I(t)) =
(
4− β

π
Mmin

ρ

)
Mmin

ρ + K
√
I(t) + IB. The function g(I) is contin-

uous, increasing and such that g(I(t∗)) = 0 for t∗ > 0 such that:

I(t∗) =
1

K2

[(
β

π
Mmin

ρ − 4

)
Mmin

ρ − IB
]2

,
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where K is defined in the theorem. Since I(0) ≤ I(t∗) by continuity of g there

exists a t̃ > 0 such that
∫ t̃

0
g(I(s))ds < 0. Hence, I(t̃) < I(0). Repeating this

process will eventually give that I(t) = 0 for some positive t which proves the

result.

From Theorem 7 we conjecture that a logarithmic sensitivity function is more

suitable than a linear sensitivity function. Moreover, from the maximum principle

of the attractiveness value a lower bound on f(A) is implicit in the original model.

Hence, setting f(A) = A is only eliminating the upper bound on f(A). This would

only help prevent blow-up. The remaining difference between the two models is

less obvious to analyze. We conjecture that the nonlinear Aρ aids blow-up more

than βρ. This is because we expect, and indeed we observe numerically, that A

and ρ grow and decay together. Hence, we have that Aρ ≈ ρ2 which would aid

blow-up more so than βρ would.

3.3.3 Exploring Blow-up of a Modified Residential Burglaries Model

in 1D

Although we see blow-up in the modified model for large enough mass of the

initial criminal density in two dimensions, a similar type of blow-up in finite

time of the model (3.9) cannot occur in one dimension. This is due to change of

properties of the Bessel Kernel in one dimension. In fact, a simple computation

shows that the second moment will always be bounded below by something pos-

itive. For simplicity of notation we take η = 1, in this case in one-dimension we

have that B(x) = 1
2
√
π

∫∞
0

1
t1/2

e−
|x|2
4t
−tdt and ∂xB(x) = − x√

π

∫∞
0

1
4t3/2

e−
|x|2
4t
−tdt =

− 1√
π

∫∞
0
e−
|x|2

4s2
−s2ds. In contrast to the previous section we now seek a bound

from below for the second moment.
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dI

dt
= 2Mρ(t)+4β

∫
R2

ρ (x∂xB ∗ ρ) dx+4

∫
R2

ρ (x∂xB ∗ Ao(x)) dx−
∫
R2

f(A) |x|2ρdx+IB

≥ 2Mmin
ρ +IB+4β

∫
R2

ρ (x∂xB ∗ ρ) dx+4

∫
R2

ρ (x∂xB ∗ Ao(x)) dx−fmaxI(t)

≥ 2Mmin
ρ +IB −fmaxI(t)−

[
4 |Bx|∞

(
β
(
Mmax

ρ

)3/2
+ ‖Ao‖1M

max
ρ

)]
I(t)1/2

≥ C1 − C2I(t),

where, C1 = 2Mmin
ρ +IB − δ

[
4 |Bx|∞

(
β
(
Mmax

ρ

)3/2
+ ‖Ao‖1M

max
ρ

)]2

and C2 =

1
δ
− fmax. We choose δ small enough such that C1 > 0. This implies that

I(t) ≥ e−C2t (I(0)− C1/C2) +C1/C2, which has a bound from below for all time.

Hence, if there is blow-up in finite time we cannot show it via this method.

This agrees with preliminary numerical results which show finite time blow-up in

two-dimensions but not in one-dimension.
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Part II

Biological Aggregation and

Dispersal
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CHAPTER 4

The Aggregation Diffusion Equation with

Degenerate Diffusion

4.1 Introduction and Motivation

Nonlocal aggregation phenomena have been studied in a wide variety of biological

applications such as migration patterns in ecological systems [23, 103, 84, 52,

25] and Patlak-Keller-Segel (PKS) models of chemotaxis [47, 87, 54, 65, 71].

Diffusion is generally included in these models to account for the dispersal of

organisms. Classically, linear diffusion is used, however recently, there has been

a widening interest in models with degenerate diffusion to include over-crowding

effects [103, 25]. The parabolic-elliptic PKS is the most widely studied model

for aggregation, where the nonlocal effects are modeled by convolution with the

Newtonian or Bessel potential. On the other hand, in population dynamics,

the nonlocal effects are generally modeled with smooth, fast-decaying kernels.

However, all of these models are describing the same mathematical phenomenon:

the competition between nonlocal aggregation and diffusion. For this reason,

we are interested in unifying and extending the local and global well-posedness

theory of general aggregation models with degenerate diffusion of the form

ut +∇ · (u~v) = ∆A(u) in [0, T )×D, (4.1a)

~v = ∇K ∗ u. (4.1b)
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Mathematical works most relevant this paper are those with degenerate diffu-

sion [10, 98, 99, 100, 20, 70, 69, 27] and those from the classical PKS literature

[59, 44, 22, 21]. See also [64].

Existence theory is complicated by the presence of degenerate diffusion and

singular kernels such as the Newtonian potential. Bertozzi and Slepčev in [10]

prove existence and uniqueness of models with general diffusion but restrict to

non-singular kernels. Sugiyama [100] proved local existence for models with

power-law diffusion and the Bessel potential for the kernel, but uniqueness of

solutions was left open. We extend the work of [10] to prove the local existence

of (4.1) with degenerate diffusion and singular kernels including the Bessel and

Newtonian potentials. The existing work on uniqueness of these problems in-

cluded a priori regularity assumptions [70] or the use of entropy solutions [25]

(see also [30]). The Lagrangian method introduced by Loeper in [79] estimates

the difference of weak solutions in the Wasserstein distance and is very useful for

inviscid problems or problems with linear diffusion [78, 8, 33]. In the presence

of nonlinear diffusion, it seems more natural to approach uniqueness in H−1,

where the diffusion is monotone (see [105]). This is the approach taken in [6, 10],

which we extend to handle singular kernels such as the Newtonian potential,

proving uniqueness of weak solutions with no additional assumptions, provided

the domain is bounded or d ≥ 3.The main difference is the use of more refined

estimates to handle the lower regularity of ∇K∗u, similar to the traditional proof

of uniqueness of L1 ∩ L∞-vorticity solutions to the 2D Euler equations [111, 81]

and a similar proof of the uniqueness of L1 ∩L∞ solutions to the Vlasov-Poisson

equation [89].

There is a natural notion of criticality associated with this problem, which

roughly corresponds to the balance between the aggregation and diffusion. For

problems with homogeneous kernels and power-law diffusion, K = c |x|2−d and
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A(u) = um, a simple scaling heuristic suggests that these forces are in balance

if m = 2 − 2/d [20]. If m > 2 − 2/d then the problem is subcritical and the

diffusion is dominant. On the other hand, if m < 2 − 2/d then the problem is

supercritical and the aggregation is dominant. For the PKS with power-law dif-

fusion, Sugiyama showed global existence for subcritical problems and that finite

time blow-up is possible for supercritical problems [100, 99, 98]. We extend this

notion of criticality to general problems by observing that only the behavior of

the solution at high concentrations will divide finite time blow-up from global

existence (see Definition 7). We show global well-posedness for subcritical prob-

lems and finite time blow-up for certain supercritical problems.

If the problem is critical, it is well-known that in PKS there exists a critical

mass, and solutions with larger mass can blow-up in finite time [22, 59, 13, 44, 21,

28, 20, 98, 99, 27]. For linear diffusion, the same critical mass has been identified

for the Bessel and Newtonian potentials [22, 28]; however for nonlinear diffusion,

the critical mass has only been identified for the Newtonian potential [20]. In

this paper we extend the free energy methods of [20, 44, 27, 21] to estimate the

critical mass for a wide range of kernels and nonlinear diffusion, which include

these known results. For a smaller class of problems, including standard PKS

models, we show this estimate is sharp.

The problem (4.1) is formally a gradient flow with respect to the Euclidean

Wasserstein distance for the free energy

F(u(t)) = S(u(t))−W(u(t)), (4.2)

where the entropy S(u(t)) and the interaction energy W(u(t)) are given by

S(u(t)) =

∫
Φ(u(x, t))dx,

W(u(t)) =
1

2

∫ ∫
u(x, t)K(x− y)u(y, t)dxdy.
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For the degenerate parabolic problems we consider, the entropy density Φ(z) is

a strictly convex function satisfying

Φ′′(z) =
A′(z)

z
, Φ′(1) = 0, Φ(0) = 0. (4.3)

See [32] for more information on these kinds of entropies. Although there is

a rich theory for gradient flows of this general type when the kernel is regular

and λ-convex [83, 3, 31] the kernels we consider here are more singular and

the notion of displacement convexity introduced in [83] no longer holds. For this

reason, the rigorous results of the gradient flow theory are not directly applicable,

however, certain aspects may be recovered, such as the use of steepest descent

schemes [18, 19]. Moreover, the free energy (4.2) is still the important dissipated

quantity in the global existence and finite time blow-up arguments. The free

energy has been used by many authors for the same purpose, see for instance

[98, 22, 27, 20, 7, 21]. For the remainder of the paper we only consider initial

data with finite free energy, although the local existence arguments may hold in

more generality.

There is a vast literature of related works on models similar to (4.1). For

literature on PKS we refer the reader to the review articles [58, 57]; see also [56,

42, 28] for parabolic-parabolic Keller-Segel systems. For the inviscid problem, see

the recent works of [72, 7, 6, 8, 31]. For a study of these equations with fractional

linear diffusion see [73, 74, 12]. When the diffusion is sufficiently nonlinear and

the kernel is in L1, (4.1) may be written as a regularized interface problem, a

notion studied in [95]. Critical mass behavior is also a property of other related

critical PDE, such as the marginal unstable thin film equation [109, 9] and critical

nonlinear Schrödinger equations [107, 67].

Outline: This chapter was work done in collaboration with Jacob Bedrossian

and Andrea Bertozzi and was published in [5]. In §4.2 we discuss the definitions
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and notation that will be used in the remainder of the chapter. Note that this

might differ from the notation used in Part I of this work. We also summarize

the results in this section. Following, in §4.3 we prove the uniqueness of weak

solutions. We remark that this section was done exclusively by Jacob Bedrossian.

The local existence is proved in §4.4. A continuation argument is proved in

§4.5, which connects the local theory to the global theory. The global theory is

discussed in §4.6.

4.2 Definitions and Notation

We consider either D = Rd with d ≥ 3 or D smooth, bounded and convex with

d ≥ 2, in which case we impose no-flux conditions

(−∇A(u) + u∇K ∗ u) · ν = 0 on ∂D × [0, T ), (4.4)

where ν is the outward unit normal to D. We neglect the case D = R2 for

technicalities introduced by the logarithmic potential.

We denote DT := (0, T ) ×D. We also denote ‖u‖p := ‖u‖Lp(D) where Lp is the

standard Lebesgue space. We denote the set {u > k} := {x ∈ D : u(x) > k}, if

S ⊂ Rd then |S| denotes the Lebesgue measure and 1S denotes the standard

characteristic function. In addition, we use
∫
fdx :=

∫
D
fdx, and only indicate

the domain of integration where it differs from D. We also denote the weak Lp

space by Lp,∞ and the associated quasi-norm

‖f‖Lp,∞ =

(
sup
α>0

αpλf (α)

)1/p

,

where λf (α) = |{f > α}| is the distribution function of f . Given an initial con-

dition u(x, 0) we denote its mass by
∫
u(x, 0)dx = M . In formulas we use the

notation C(p, k,M, ..) to denote a generic constant, which may be different from
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line to line or even term to term in the same computation. In general, these

constants will depend on more parameters than those listed, for instance those

associated with the problem such as K and the dimension but these dependencies

are suppressed. We use the notation f .p,k,... g to denote f ≤ C(p, k, ..)g where

again, dependencies that are not relevant are suppressed.

We now make reasonable assumptions on the kernel which include important

cases of interest, such as when K is the fundamental solution of an elliptic PDE.

To this end we state the following definition.

Definition 2 (Admissible Kernel). We say a kernel K is admissible if K ∈ W 1,1
loc

and the following holds:

(R) K ∈ C3 \ {0}.

(KN) K is radially symmetric, K(x) = k(|x|) and k(|x|) is non-increasing.

(MN) k′′(r) and k′(r)/r are monotone on r ∈ (0, δ) for some δ > 0.

(BD) |D3K(x)| . |x|−d−1.

This definition ensures that the kernels we consider are radially symmetric, non-

repulsive, reasonably well-behaved at the origin, and have second derivatives

which define bounded distributions on Lp for 1 < p < ∞ (see Section §4.2.1).

These conditions imply that if K is singular, the singularity is restricted to the

origin. Note also, that the Newtonian and Bessel potentials are both admissible

for all dimensions d ≥ 2; hence, the PKS and related models are included in our

analysis.

We now make precise what kind of nonlinear diffusion we are considering.
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Definition 3 (Admissible Diffusion Functions). We say that the function A(u)

is an admissible diffusion function if:

(D1) A ∈ C1([0,∞)) with A′(z) > 0 for z ∈ (0,∞).

(D2) A′(z) > c for z > zc for some c, zc > 0.

(D3)
∫ 1

0
A′(z)z−1dz <∞.

This definition includes power-law diffusion A(u) = um for m > 1. Note that

(D3) requires the diffusion to be degenerate at u = 0, however it is permitted to

behave linearly at infinity. Furthermore, on bounded domains condition (D3) can

be relaxed without any significant modification to the methods. Following [10],

the notions of weak solution are defined separately for bounded and unbounded

domains.

Definition 4 (Weak Solutions on Bounded Domains). Let A(u) and K be admis-

sible, and u0(x) ∈ L∞(D) be non-negative. A non-negative function u : [0, T ] ×

D → [0,∞) is a weak solution to (4.1) if u ∈ L∞(DT ), A(u) ∈ L2(0, T,H1(D)),

ut ∈ L2(0, T,H−1(D)) and∫ T

0

∫
uφt dxdt =

∫
u0(x)φ(0, x)dx+

∫ T

0

∫
(∇A(u)− u∇K ∗ u) · ∇φ dxdt,

(4.5)

for all φ ∈ C∞(DT ) such that φ(T ) = 0.

It follows that u∇K ∗ u ∈ L2(DT ); therefore, definition 4 is equivalent to the

following,

〈ut(t), φ〉 =

∫
(−∇A(u) + u∇K ∗ u) · ∇φ dx, (4.6)

for all test functions φ ∈ H1 for almost all t ∈ [0, T ]. Above 〈·, ·〉 denotes the

standard dual pairing between H1 and H−1. Similarly for Rd we define the

following notion of weak solution as in [10].
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Definition 5 (Weak Solution in Rd, d ≥ 3). Let A and K be admissible, and

u0 ∈ L∞(Rd) ∩ L1(Rd) be non-negative. A function u : [0, T ] × Rd → [0,∞)

is a weak solution of (4.1) if u ∈ L∞((0, T ) × Rd) ∩ L∞(0, T, L1(Rd)), A(u) ∈

L2(0, T, Ḣ1(Rd)), u∇K ∗ u ∈ L2(DT ), ut ∈ L2(0, T, Ḣ−1(Rd)), and for all test

functions φ ∈ Ḣ1(Rd) for a.e t ∈ [0, T ] (4.6) holds.

We show below (Theorem 10) that weak solutions satisfying Definition 4 or

5 are in fact unique. Moreover, we show the unique weak solution satisfies the

energy dissipation inequality (Proposition 4),

F(u(t)) +

∫ t

0

∫
1

u
|A′(u)∇u− u∇K ∗ u|2 dxdt ≤ F(u0(x)). (4.7)

As (4.7) is important for the global theory, one could also refer to these solutions

as free energy solutions, as is done in [20]. Uniqueness implies that there is no

distinction between free energy solutions in [20] and weak solutions.

Since (4.1) conserves mass, the natural notion of criticality is with respect to

the usual mass invariant scaling uλ(x) = λdu(λx). A simple heuristic for under-

standing how this scaling plays a role in the global existence is seen by exam-

ining the case of power-law diffusion and homogeneous kernel, A(u) = um and

K(x) = |x|−d/p. Under this mass invariant scaling the free energy (4.2) becomes,

F(uλ) = λdm−dS(u)− λd/pW(u).

As λ → ∞, the entropy and the interaction energy are comparable if m =

(p + 1)/p. We should expect global existence if m > (p + 1)/p, as the diffusion

will dominate as u grows, and possibly finite time blow-up if m < (p+1)/p as the

aggregation will instead be increasingly dominant. We consider inhomogeneous

kernels and general diffusion, however for the problem of global existence, only

62



the behavior as u → ∞ will be important, in contrast to the problem of local

existence. Noting that |x|−d/p is, in some sense, the representative singular kernel

in Lp,∞ leads to the following definition. This critical exponent also appears

indirectly in [77].

Definition 6 (Critical Exponent). Let d ≥ 3 and K be admissible such that

K ∈ Lp,∞loc for some d/(d− 2) ≤ p <∞. Then the critical exponent associated to

K is given by

1 < m? =
p+ 1

p
≤ 2− 2/d.

If D2K(x) = O(|x|−2) as x→ 0, then we take m? = 1.

Remark 4. The case m? = 1 implies at worst a logarithmic singularity as x→ 0

and if d = 2 then all admissible kernels have m? = 1.

Now we define the notion of criticality. It is easier to define this notion in terms

of the quantity A′(z), as opposed to using Φ(z) directly.

Definition 7 (Criticality). We say that the problem is subcritical if

lim inf
z→∞

A′(z)

zm?−1
=∞,

critical if

0 < lim inf
z→∞

A′(z)

zm?−1
<∞,

and supercritical if

lim inf
z→∞

A′(z)

zm?−1
= 0.

Notice that in the case of power-law diffusion, A(u) = um, subcritical, critical

and supercritical respectively correspond to m > m?,m = m? and m < m?.

Moreover, in the case of the Newtonian or Bessel potential, m? = 2−2/d and the

critical diffusion exponent of the PKS models discussed in [99, 98, 20] is recovered.
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The proof of local existence follows the work of Bertozzi and Slepčev [10],

where (4.1) is approximated by a family of uniformly parabolic problems. The

primary new difficulty, due to the singularity of the kernel, is obtaining uniform

a priori L∞ bounds, which is overcome here using the Alikakos iteration [2].

Solutions are first constructed on bounded domains.

Theorem 8 (Local Existence on Bounded Domains, d ≥ 2). Let A(u) and

K(x) be admissible. Let u0(x) ∈ L∞(D) be a non-negative initial condition,

then (4.1) has a weak solution u on [0, T ] × D, for some T > 0. Additionally,

u ∈ C([0, T ];Lp(D)) for p ∈ [1,∞).

In dimensions d ≥ 3 we also construct local solutions on Rd by taking the

limit of solutions on bounded domains.

Theorem 9 (Local Existence in Rd, d ≥ 3). Let A(u) and K(x) be admissible.

Let u0(x) ∈ L∞(Rd) ∩ L1(Rd) be a non-negative initial condition, then (4.1) has

a weak solution u on Rd
T , for some T > 0. Additionally, u ∈ C([0, T ];Lp(Rd))

for all 1 ≤ p <∞ and the mass is conserved.

As previously mentioned, the free energy is a dissipated quantity for weak

solutions and is a key tool for the global theory.

Proposition 4 (Energy Dissipation). Weak solutions to (4.1) satisfy the energy

dissipation inequality (4.7) for almost all t ≥ 0.

As in [10], uniqueness holds on bounded, convex domains in d ≥ 2 or on Rd

for d ≥ 3. The proof also holds for more general diffusion (e.g. fast or strongly

degenerate diffusion) or no diffusion at all.

Theorem 10 (Uniqueness). Let D ⊂ Rd for d ≥ 2 be bounded and convex, then

weak solutions to (4.1) are unique. The conclusion also holds on Rd for d ≥ 3.
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We also prove the following continuation theorem, which generalizes similar

theorems used in for instance [22, 20]. The proof follows the well known approach

of first bounding intermediate Lp norms and using Alikakos iteration [2] to con-

clude the solution is bounded in L∞ (for instance, see [69, 100, 20, 39, 59, 22]).

Theorem 11 (Continuation). The weak solution to (4.1) has a maximal time

interval of existence T? and either T? =∞ or T? <∞ and

lim
k→∞

lim sup
t↗T?

‖(u− k)+‖ 2−m
2−m?

> 0. (4.8)

Here m is such that 1 ≤ m ≤ m? and lim infz→∞A
′(z)z1−m > 0. In particular,

for all p > (2−m)/(2−m?),

lim
t↗T?
‖u‖p =∞.

Remark 5. Note that the order of the limits in Theorem 11 is important. In

fact, if the ordered is reversed the limit is always zero.

For the case m? = 2− 2/d, Blanchet et al. [20] identified the critical mass for

the problem with the Newtonian potential, K = cd |x|d−2, and A(u) = um.The

authors show that if M < Mc then the solution exists globally and if M > Mc

then the solution may blow-up in finite time. There Mc is identified as

Mc =

(
2

(m? − 1)Cm?cd

)1/(2−m?)

,

where Cm? is the best constant in the Hardy-Littlewood-Sobolev inequality given

below in Lemma 19. It is natural to ask the same question for more general

cases. In this work we generalize these results to include inhomogeneous kernels

and general nonlinear diffusion. First, we state the generalization of the finite

time blow-up results.
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Theorem 12 (Finite Time blow-up for Critical Problems: m? > 1). Let D either

be bounded and convex with a smooth boundary or D = Rd. Let K and A(u) be

admissible and satisfy

(B1) K(x) = c |x|−d/p + o(|x|−d/p) as x→ 0 for some c > 0 and d/(d− 2) ≤ p <

∞.

(B2) x · ∇K(x) ≤ −(d/p)K(x) + C1 for all x ∈ Rd, for some C1 ≥ 0.

(B3) A′(z) = mAzm−1 + o(zm−1) as z →∞ for some m > 1, A > 0.

(B4) A(z) ≤ (m− 1)Φ(z) for all z > R, for some R > 0 .

Suppose the problem is critical, that is m = m?. Then the critical mass Mc

satisfies

Mc =

(
2A

(m? − 1)Cm?c

)1/(2−m?)

,

and for all M > Mc there exists a solution to (4.1) which blows up in finite time

with ‖u0‖1 = M .

Theorem 13 (Finite Time blow-up for Supercritical Problems). Let D be as

in Theorem 12. Let K satisfy (B1) and (B2) in Theorem 12 and A(u) satisfy

(B3) and (B4) in Theorem 12 with 1 < m < m?. Then for all M > 0 there

exists a solution which blows up in finite time with ‖u0‖1 = M .

The Newtonian and Bessel potentials both satisfy these conditions with C1 =

0 (Lemma 2.2, [98]), and so the results apply to PKS with degenerate diffusion.

Due to the decay of admissible kernels (Definition 2) condition (B2) should only

impose a significant restriction on the behavior of K at the origin. Power-law

diffusion satisfies conditions (B3) and (B4); however, (B4) is also restrictive,

for example, A(u) = um − u for u large does not satisfy the condition.
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The accompanying global existence theorem is significantly more inclusive

than the blow-up theorems, both in the kinds of kernels and nonlinear diffusion

considered. As in Theorem 12, the estimate of the critical mass only depends

on the leading order term of an asymptotic expansion of the kernel at the origin

and the growth of the entropy at infinity. The approach used here and in [20,

22] relies on using the energy dissipation inequality (4.7) and the continuation

theorem (Theorem 11). The third key component is an inequality which relates

the interaction energy W(u) to the entropy S(u). For m? > 1 this is the Hardy-

Littlewood-Sobolev inequality given in Lemma 19. In this case, the estimate of

the critical mass is given by (4.9).

Theorem 14 (Global Well-Posedness for m? > 1). Suppose m? > 1. Then we

have the following:

(i) If the problem is subcritical, then the solution exists globally (i.e. T? =∞)

and is uniformly bounded in the sense u ∈ L∞((0,∞)×D).

(ii) If the problem is critical then there exists a critical mass Mc > 0 such that if

‖u0‖1 = M < Mc, then the solution exists globally and is uniformly bounded

in the sense u ∈ L∞((0,∞) ×D). The critical mass is estimated below in

(4.9).

Proposition 5 (Critical Mass For m? > 1). If K = c |x|−d/p+o(|x|−d/p) as x→ 0

for some c ≥ 0 and p, d/(d− 2) ≤ p <∞, then Mc satisfies,

lim
z→∞

Φ(z)

zm?
− Cm?

2
cM2−m?

c = 0. (4.9)

If c = 0 or limz→∞Φ(z)z−m
?

=∞ then we define Mc =∞.

Remark 6. By Lemma 35, if K ∈ Lp,∞loc then ∃ δ, C > 0 such that ∀x, |x| < δ,

K(x) ≤ C |x|−d/p. Then, if the kernel does not admit an asymptotic expansion as
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in Proposition 5, the critical mass Mc can be estimated by,

lim
z→∞

Φ(z)

zm?
− Cm?

2
CM2−m?

c = 0.

Remark 7. Note, limz→∞Φ(z)z−m
?

is always well-defined but is not necessarily

finite unless

lim sup
z→∞

A′(z)z1−m? <∞.

If the problem is critical then necessarily limz→∞Φ(z)z−m
?
> 0 so there always

exists a positive mass which satisfies (4.9). Moreover, if the problem is subcritical

then necessarily limz→∞Φ(z)z−m
?

=∞.

The case m? = 1 is analogous to the classical PKS problem in 2D, where linear

diffusion is critical. For the 2D PKS, the critical mass is given by Mc = 8π for

both the Newtonian and Bessel potentials [22, 28]. In this work we treat the

m? = 1 case for d ≥ 2 on bounded domains, recovering the critical mass of the

classical PKS, although (D3) technically requires the diffusion to be nonlinear

and degenerate. The case d ≥ 3 and m? = 1 is approached in [64], but the

optimal critical mass is not identified. Our estimate is given below in (4.10). As

above, the critical mass only depends on the asymptotic expansion of the kernel

at the origin and the growth of the entropy at infinity. We first state the analogue

of Theorem 12.

Theorem 15 (Finite Time blow-up for Critical Problems m? = 1). Let D be a

smooth, bounded and convex domain and d ≥ 2. Suppose K satisfies

(C1) K(x) = −c ln |x|+ o(ln |x|) as x→ 0 for some c > 0 .

(C2) x · ∇K(x) ≤ −c+ C |x| for all x ∈ Rd, for some C ≥ 0 .

(C3) A(z) ≤ Az for some A > 0.
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Then the critical mass Mc satisfies

Mc =
2dA

c
,

and for all M > Mc there exists a solution which blows up in finite time with

‖u0‖1 = M .

The corresponding global existence theorem includes more general kernels and

nonlinear diffusion. The proof is similar to Theorem 14, except that the loga-

rithmic Hardy-Littlewood-Sobolev inequality (Lemma 20) is used in place of the

Hardy-Littlewood-Sobolev inequality.

Theorem 16 (Global Well-Posedness for m? = 1 on Bounded Domains). Suppose

m? = 1 and d ≥ 2, let D be bounded, smooth and convex. Then we have the

following:

(i) If the problem is subcritical, then the solution exists globally and is uniformly

bounded in the sense u ∈ L∞((0,∞)×D).

(ii) If the problem is critical then there exists a critical mass, Mc > 0, such

that if ‖u0‖1 = M < Mc, then the solution exists globally and is uniformly

bounded in the sense u ∈ L∞((0,∞) × D). The critical mass is estimated

below in (4.10).

Proposition 6 (Critical Mass for m? = 1 on Bounded Domains). If K(x) =

−c ln |x|+ o(ln |x|) as x→ 0 for some c ≥ 0, then Mc satisfies,

lim
z→∞

Φ(z)

z ln z
− c

2d
Mc = 0. (4.10)

If c = 0 or limz→∞Φ(z)(z ln z)−1 =∞ then we define Mc =∞.
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Remark 8. By (BD) and (MN), ∃ δ, C > 0 such that ∀x, |x| < δ, K(x) ≤

−C lnx. Therefore, if the kernel does not have the asymptotic expansion required

in Proposition 6 then the critical mass Mc may be estimated as,

lim
z→∞

Φ(z)

z ln z
− C

2d
Mc = 0.

Remark 9. These theorems include many known global existence and finite time

blow-up results in the literature including [99, 98, 99, 10, 20, 69, 27]. Our main

contributions to the existing theory is the unification of these results and the

estimate of the critical mass for inhomogeneous kernels and general nonlinear

diffusion. In the case of the Newtonian potential Blanchet et al. showed in [20]

that solutions at the critical mass also exist globally. See [44, 13, 21] for the

corresponding result for classical 2D PKS.

4.2.1 Properties of Admissible Kernels

Definition 2 implies a number of useful characteristics which we state here and

reserve the proofs for the Appendix C.3. First, we have that every admissible

kernel is at least as integrable as the Newtonian potential.

Lemma 16. Let K be admissible. Then ∇K ∈ Ld/(d−1),∞. If d ≥ 3, then K ∈

Ld/(d−2),∞.

In general, the second derivatives of admissible kernels are not locally integrable,

but we may still properly define D2K ∗ u as a linear operator which involves a

Cauchy principal value integral. By the Calderón-Zygmund inequality (see e.g.

[Theorem 2.2 [96]]) we can conclude that this distribution is bounded on Lp for

1 < p < ∞. The inequality also provides an estimate of the operator norms,

which is of crucial importance to the proof of uniqueness.

70



Lemma 17. Let K be admissible and ~v = ∇K ∗ u. Then ∀p, 1 < p <∞, ∃C(p)

such that ‖∇~v‖p ≤ C(p) ‖u‖p and C(p) . p for 2 ≤ p <∞.

One can further connect the integrability of the kernel with the integrability of

the derivatives at the origin, which provides a natural extension of Lemma 17

through the Young’s inequality for Lp,∞.

Lemma 18. Let d ≥ 3 and K be admissible. Suppose γ is such that 1 < γ < d/2.

Then K ∈ L
d/(d/γ−2),∞
loc if and only if D2K ∈ Lγ,∞loc . The same holds for ∇K ∈

L
d/(d/γ−1),∞
loc . In particular, m? = 1 + 1/γ− 2/d for some 1 < γ < d/2 if and only

if D2K ∈ Lγ,∞loc . Moreover, m? = 1 if and only if D2K ∈ Ld/2,∞loc .

The following lemma clarifies the connection between the critical exponent and

the interaction energy.

Lemma 19. Consider the Hardy-Littlewood-Sobolev type inequality, for all f ∈

Lp, g ∈ Lq and K ∈ Lt,∞ for 1 < p, q, t <∞ satisfying 1/p+ 1/q + 1/t = 2,∣∣∣∣∫ ∫ f(x)g(y)K(x− y)dxdy

∣∣∣∣ . ‖f‖p ‖g‖q ‖K‖Lt,∞ . (4.11)

See [75]. In particular, if (p+ 1)/p = m? > 1, then for all u ∈ L1 ∩ Lm?,∫
u(x)u(y) |x− y|−d/p dxdy ≤ Cm? ‖u‖2−m?

1 ‖u‖m
?

m? . (4.12)

Here Cm?, depending only on p and d, is taken to be the best constant for which

(4.12) holds for all such u.

Remark 10. It is not necessarily the case that Cm? is easily related to the optimal

constant in (4.11). It is shown in [20] that C2−2/d is acheived for a fairly explicit

family of extremals, but to our knowledge, extremals of (4.12) have not been

constructed for other values of m?.
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If m? = 1 then we will need the logarithmic Hardy-Littlewood-Sobolev inequality,

as in for instance [44, 21].

Lemma 20 (Logarithmic Hardy-Littlewood-Sobolev inequality [29]). Let d ≥ 2

and 0 ≤ f ∈ L1 be such that
∣∣∫ f ln fdx

∣∣ <∞. Then,

−
∫ ∫

Rd×Rd
f(x)f(y) ln |x− y| dxdy ≤ ‖f‖1

d

∫
Rd
f ln fdx+ C(‖f‖1). (4.13)

4.3 Uniqueness

We now prove the uniqueness of weak solutions stated in Theorem 10.

Proof. ( Theorem 10) The proof follows [6, 10] and estimates the difference

of weak solutions in H−1, motivated by the fact that the nonlinear diffusion is

monotone in this norm [105]. To this end, if the domain is bounded, we define

φ(t) as the zero mean strong solution of

∆φ(t) = u(t)− v(t) in D (4.14)

∇φ(t) · ν = 0, on ∂D, (4.15)

where ν is the outward unit normal of D. If the domain is Rd for d ≥ 3, we let

φ(t) = −N ∗ (u− v) where N is the Newtonian potential. In either case, by the

integrability and boundedness of weak solutions u(t) and v(t) we can conclude

φ(t) ∈ L∞(DT ) ∩ C([0, T ]; Ḣ1), ∇φ(t) ∈ L∞(DT ) ∩ L2(DT ) and φt solves,

∆φt = ∂tu− ∂tv.

Then since ‖u(t)− v(t)‖H−1 = ‖∇φ(t)‖2, we will show that ‖∇φ(t)‖2 = 0.

During the course of the proof, we integrate by parts on a variety of quanti-

ties. If the domain is bounded, then the boundary terms will vanish due to

the no-flux conditions (4.4),(4.15). In Rd, the computations are justified as
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∇K ∗ u,∇A(u),∇K ∗ v,∇A(v),∇φ ∈ L2(DT ).

By the regularity of φ(t) and the no-flux boundary conditions (4.15), (4.4) we

have possibly up to a set of measure zero,

1

2

d

dt

∫
|∇φ(t)|2 dx =< ∇φ(t), ∂t∇φ(t) >= − < ∂tu(t)− ∂tv(t), φ(t) > .

Therefore, using φ(t) in the definition of weak solution and (4.15) we have,

1

2

d

dt

∫
|∇φ(t)|2 dx =

∫
(∇A(u(t))−∇A(v(t))) · ∇φ(t)dx

−
∫

(u− v)(∇K ∗ u) · ∇φdx−
∫
v(∇K ∗ (u− v)) · ∇φdx.

:= I1 + I2 + I3.

We drop the time dependence for notational simplicity. Since A is increasing, we

have the desired monotonicity of the diffusion,

I1 = −
∫

(A(u)− A(v)) (u− v)dx ≤ 0.

We now concentrate on bounding the advection terms.

We follow [10]. By integration by parts we have,

I2 =
∑
i,j

∫
∂iφ(∂ijK ∗ u)∂jφdx+

∑
i,j

∫
∂iφ(∂jK ∗ u)∂ijφdx. (4.16)

If the domain is bounded, we may apply integration by parts,∑
i,j

∫
∂iφ(∂jK ∗ u)∂ijφdx = −

∑
i,j

∫
∂ijφ∂jK ∗ u∂iφdx−

∑
i,j

∫
∂iφ(∂jjK ∗ u)∂iφdx

+
∑
i,j

∫
∂D

|∂iφ|2 ∂jK ∗ uνjdS,

where ν is the unit outward normal to D. As in [10], we have ∇K∗u·ν ≤ 0 on ∂D

since D is convex and K is radially decreasing, so that term is non-positive. If the
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domain were Rd, such boundary terms would vanish. Therefore by integration

by parts again we have,

∑
i,j

∫
∂iφ(∂jK ∗ u)∂ijφdx ≤ −

1

2

∫
(∆K ∗ u) |∇φ|2 dx,

which together with (4.16) implies,

I2 .
∫ ∣∣D2K ∗ u

∣∣ |∇φ|2 dx.
By Hölder’s inequality, Lemma 17 and ∇φ ∈ L∞(DT ) for p ≥ 2,∫ ∣∣D2K ∗ u

∣∣ |∇φ|2 dx ≤ ∥∥D2K ∗ u
∥∥
p

(∫
|∇φ|2p/(p−1) dx

)(p−1)/p

. p ‖u‖p ‖∇φ‖
2/p
∞

(∫
|∇φ|2 dx

)(p−1)/p

. p

(∫
|∇φ|2 dx

)(p−1)/p

, (4.17)

where the implicit constant depends only on the uniformly controlled Lp norms

of u and v.

As for I3, we compute as in [10]. By the computations in the proof of Lemma 17

we may justify integration by parts on the inside of the convolution, that is,∥∥∥∥∥∑
j

∫
∂iK(x− y)∂jjφdx

∥∥∥∥∥
2

. ‖∇φ‖2 .

which by Cauchy-Schwarz implies,

I3 . ‖v‖∞ ‖∇φ‖
2
2 . (4.18)

Letting η(t) =
∫
|∇φ(t)|2 dx, (4.17) and (4.18) imply the differential inequality,

d

dt
η(t) ≤ Ĉpmax(η(t)1−1/p, η(t)),
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where Ĉ again depends only on the uniformly controlled Lp norms of u, v. The

differential equality does not have a unique solution, but all of the solutions are

absolutely continuous integral solutions bounded above by the maximal solution

η(t). By continuity, for t < 1/Ĉ the maximal solution is given by η(t) = (Ĉt)p,

hence,

η(t) ≤ η(t) = (Ĉt)p.

For t < 1/(2Ĉ) we then have

η(t) ≤ η(t) ≤ 2−p,

and we take p → ∞ to deduce that for t ∈ [0, 1/(2Ĉ)), η(t) = 0, therefore the

solution is unique. This procedure may be iterated to prove uniqueness over

the entire interval of existence since the time interval only depends on uniformly

controlled norms.

4.4 Local Existence

4.4.1 Local Existence in Bounded Domains

Let Ã(z) be a smooth function on R+ such that Ã′(z) > η for some η > 0. In

addition, let ~v be a given smooth velocity field with bounded divergence. Classical

theory gives a global smooth solution to the uniformly parabolic equation

ut = ∆Ã(u)−∇ · (u~v) (4.19)

(see [76]). The solutions obey the global L∞ bound

‖u‖L∞(D) ≤ ‖u0‖L∞(D) e
‖(∇·~v)−‖L∞(DT )

t
. (4.20)

We take advantage of this theory to prove existence of weak solutions to (4.1)

by regularizing the degenerate diffusion and the kernel. Consider the modified
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aggregation equation

uεt = ∆Aε(uε)−∇ · (uε (∇JεK ∗ uε)) , (4.21)

with corresponding no-flux boundary conditions (4.4). We define

Aε(z) =

∫ z

0

a′ε(z)dz, (4.22)

where a′ε(z) is a smooth function, such that A′(z) + ε ≤ a′ε(z) ≤ A′(z) + 2ε, and

the standard mollifier is denoted Jεv. We first prove existence of solutions to the

regularized equation (4.21), this is stated formally in the following proposition.

Proposition 7 (Local Existence for the Regularized Aggregation Diffusion Equa-

tion). Let ε > 0 be fixed and u0(x) ∈ C∞(D), then (4.21) has a classical solution

u on DT for all T > 0.

We obtain the proof of Proposition 7 directly from Theorem 12 in [10]. The

proof requires a bound on ‖∇Aε‖L2(DT ), for some T > 0. We state this lemma

for completeness but reference the reader to [10] for a proof.

Lemma 21 (Uniform Bound on Gradient of A(u)). Let ε > 0 be fixed and uε ∈

L∞(DT ) be a solution to (4.21). There exists a constant such that:

‖∇Aε(uε)‖L2(DT ) ≤ C, (4.23)

where, C = C(T, ‖∇JεK ∗ uε‖L∞(D) , ‖uε‖∞).

Remark 11. The estimate given by (4.23) is independent of ε.

Proposition 7 gives a family of solutions {uε}ε>0. To prove local existence to the

original problem (4.1) we first need some a priori estimates which are independent

of ε. Mainly, we obtain an independent-in-ε bound on the L∞ norm of the solution

and the velocity field. This is the main difference in the local existence theory
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from [10]. Due to the singularity of the kernels significantly more is required to

obtain these a priori bounds. We first state a lemma, due to Kowalczyk [69] and

extended to d > 2 and Rd in [27]. The proof is based on the Alikakos iteration.

Lemma 22 (Iteration Lemma [69, 27]). Let 0 < T ≤ ∞ and assume that

there exists a c > 0 and uc > 0 such that A′(u) > c for all u > uc. Then if

‖∇K ∗ u‖∞ ≤ C1 on [0, T ] then ‖u‖∞ ≤ C2(C1) max{1,M, ‖u0‖∞} on the same

time interval.

Lemma 23 (L∞ Bound of Solution). Let {uε}ε>0 be the classical solutions to

(4.21) on DT , with smooth, non-negative, and bounded initial data Jεu0. Then

there exists C = C(‖u0‖1 , ‖u0‖∞) and T = T (‖u0‖1 , ‖u0‖p) for any p > d such

that for all ε > 0,

‖uε(t)‖L∞(D) ≤ C (4.24)

for all t ∈ [0, T ].

Proof. For simplicity we drop the ε. The first step is to obtain an interval for

which the Lp norm of u is bounded. Following the work of [59] we define the

function uεk = (uε − k)+, for k > 0. Due to conservation of mass the following

inequality provides a bound for the Lp norm of u given a bound on the Lp norm

of uk,

‖u‖pp ≤ C(p)(kp−1 ‖u‖1 + ‖uk‖pp). (4.25)

We look at the time evolution of ‖uk‖p and make use of the parabolic regulariza-

tion (4.22).
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Step 1:

d

dt
‖uk‖pp = p

∫
up−1
k ∇ · (∇A

ε(u)− u∇JεK ∗ u) dx

= −p(p− 1)

∫
Aε
′∇uk · ∇udx− p(p− 1)

∫
uup−2

k ∇JεK ∗ u dx.

≤ −4(p− 1)

p

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ p(p− 1)

∫
up−1
k ∇uk · ∇JεK ∗ u dx

+ kp(p− 1)

∫
up−2
k ∇uk · ∇JεK ∗ u dx,

where we used the fact that for l > 0

u(uk)
l = (uk)

l+1 + kulk. (4.26)

Hence, integrating by parts once more gives

d

dt
‖uk‖pp ≤

4(p− 1)

p

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx− (p− 1)

∫
upk∆JεK ∗ udx

− kp
∫
up−1
k ∆JεK ∗ udx

≤ −C(p)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ C(p) ‖uk‖pp+1 ‖∆JεK ∗ u‖p+1

+ C(p)k ‖uk‖p−1
p ‖∆JεK ∗ u‖p

≤ −C(p)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ C(p)
(
‖uk‖p+1

p+1 + ‖u‖p+1
p+1

)
+ C(p)k

(
‖uk‖pp + ‖u‖pp

)
.

In the last inequality we use Lemma 17. Now, using (4.25) we obtain that

d

dt
‖uk‖pp dx ≤ −C(p)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ C(p) ‖uk‖p+1
p+1

+ C(p, k) ‖uk‖pp + C(p, k,M).

An application of the Gagliardo-Nirenberg-Sobolev inequality gives that for any

p such that d < 2(p+ 1) (see Lemma 33 in the Appendix):

‖u‖p+1
p+1 . ‖u‖

α2

p

∥∥up/2∥∥α1

W 1,2 ,

78



where α1 = d/p, α2 = 2(p+ 1)− d. From the inequality arb(1−r) ≤ ra+ (1− r)b

(using that a = δ
∥∥up/2∥∥2

W 1,2 and r = α1/2) we obtain

‖u‖p+1
p+1 .

1

δβ1
‖u‖β2p + rδ2

∥∥∇up/2∥∥2

2
+ rδ2 ‖u‖pp .

Above β1, β2 > 1. For k large enough we have that A′(u) > c > 0 over {u > k};

hence, if we choose δ small enough we obtain the final differential inequality:

d

dt
‖u‖pp . C(p) ‖uk‖β2p + C(p, k, rδ) ‖uk‖pp + C(p, k, ‖u0‖1). (4.27)

The inequality (4.27) in turns gives a Tp = T (p) > 0 such that ‖uk‖p is bounded

on [0, Tp]. Inequality (4.25) gives that ‖u‖p remains bounded on the same time

interval. Next we prove that the velocity field is bounded in L∞(D) on some

time interval [0, T ]. This then allows us invoke Lemma 22 and obtain the desired

bound.

Step 2:

Since ∇K ∈ L1
loc and ∇K1Rd\B1(0) ∈ Lq for all q > d/(d− 1) (by Lemma 16), we

have for all p > d/(d− 1),

‖~v‖p = ‖∇K ∗ u‖p ≤
∥∥∇K1B1(0)

∥∥
1
‖u‖p +

∥∥∇K1Rd\B1(0)

∥∥
p
M.

By Lemma 17 we also have, for all p, 1 < p <∞,

‖∇~v‖p =
∥∥D2K ∗ u

∥∥
p
. ‖u‖p .

By Morrey’s inequality we have ~v ∈ L∞(DT ) by choosing some p > d and invok-

ing step one, and Lemma 22 concludes the proof. Note that the bound depends

on the geometry of the domain through the constant on the Gagliardo-Nirenberg-

Sobolev inequality (Lemma 33). However, this constant is related to the regular-

ity of the domain, and not directly to the diameter of the domain.

In addition to the a priori estimates the proof of Theorem 8 requires precompact-

ness of {uε}ε>0 in L1(DT ).
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Lemma 24 (Precompactness in L1(ΩT )). The sequence of solutions obtained via

Proposition 7, {uε}ε>0, which exist on [0, T ], is precompact in L1(DT ).

The proof of Lemma 24 follows exactly the work in [10]. The key is to prove that

the sequence satisfies the Riesz-Frechet-Kolmogorov Criterion. This relies on the

fact that ‖A(uε)‖L2(0,T ;H1(D)) ≤ C uniformly.

Proof. (Theorem 8) For a given ε > 0, if we regularize the initial condi-

tion uε0(x) = Jεu0(x), Proposition 7 gives a solution uε to (4.21). Further-

more, the proof of Proposition 7 and Lemma 23 gave uniform-in-ε bounds on

‖Aε(u)‖L2(0,T,H1(D)), ‖uε‖L∞(DT ), and ‖uεt‖L2(0,T,H−1(D)). By Lemma 23, all solu-

tions exist on [0, T ], with T independent of ε. Also, recalling that Aε(z) ≥ A(z)

and a′ε(z) ≥ A′(z) gives that

‖A(uε)‖L2(0,T,H1(D)) ≤ C,

where C is independent of ε. Since L2(0, T,H1(D)) is weakly compact there exists

a ρ such that some subsequence of {uε}ε>0 converges weakly, i.e A(uεj) ⇀ ρ in

L2(0, T,H1(D)). Precompactness in L1 implies strong convergence of uεj to some

u ∈ L1(DT ); therefore, A(u) = ρ. In fact, the L∞(DT ) bound on uεj gives

strong convergence in Lp(DT ), for 1 ≤ p < ∞, via interpolation. Also, Young’s

inequality gives∥∥uεj∇JεjK ∗ uεj − u∇K ∗ u∥∥L1(DT )
≤ ‖u‖L∞(DT )

∥∥∇JεjK ∗ uεj −∇K ∗ u∥∥L1(DT )

+
∥∥∇JεjK ∗ uεj∥∥L∞(DT )

‖uεj − u‖L1(DT )

.
(
‖u‖L∞(DT ) ‖∇K‖L1

loc
+ ‖∇K ∗ uεj‖L∞(DT )

)
×

‖uεj − u‖L1(DT ) . (4.28)

Therefore, by interpolation u satisfies (4.5). Furthermore, we obtain that u ∈

C([0, T ];H−1(D)). To prove that u(t) is continuous with respect to the weak
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L2 topology one uses standard density arguments. Since D is a bounded, u is

therefore also continuous in the weak L1 topology. To prove continuity in the

strong L2 topology we define F (z) =
∫ z

0
A(s)ds and show that it is continuous in

the strong L1 topology. Indeed, Lemma 30 in the Appendix, see [10] for a proof,

gives

lim
h→0

∣∣∣∣∫ (F (u(t))− F (u(t+ h))) dx

∣∣∣∣ = lim
h→0

∫ t+h

t

< uτ , A(τ) > dτ. (4.29)

Recall that ‖A(u)‖L∞(DT ) ≤ A(‖u‖L∞(DT )) and so A(u) ∈ L2(0, T,H−1(D)).

Therefore, the left hand side of (4.29) goes to 0 as h → 0. Now, we can invoke

Lemma 31 in Appendix, [10], to obtain that u ∈ C([0, T ];L2(D)). Using interpo-

lation the L∞ bound of u gives that u ∈ C([0, T ];Lp(D)), for 1 ≤ p <∞.

4.4.2 Local Existence in Rd

Now we consider solutions to (4.1) in Rd for d ≥ 3. We obtain such solution

by taking the limit of the solutions in balls centered on the origin with increas-

ing radius n, denoted by Bn. Once again, following [10] we state the following

definition.

Proof. (Theorem 9) Let Bn be defined as above and consider the truncation of

the initial condition on Bn, i.e. un0 = 1Bnu0. By Theorem 8, we have a family of

solutions {un}n>0 on Bn for all t ∈ [0, T ]. Define a new sequence, {ũn}n>0, where

ũn is the zero extension of un. The previous work for bounded domains gives the

uniform bounds

‖ũn‖L∞(RdT ) ≤ C1, (4.30)

‖∇A(ũn)‖L2(RdT ) ≤ C2. (4.31)

The bounds may be taken independent of n since the constant in the Gagliardo-

Nirenberg-Sobolev inequality, Lemma 33, does not depend directly on the diam-
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eter of the domain and may be taken uniform in n→∞.

Therefore, there exist u,w ∈ L2(Rd
T ) for which ũn ⇀ u and ∇A(ũn) ⇀ w in

L2(Rd
T ). Furthermore, (4.30) implies ‖u‖L∞(RdT ) ≤ C1. Precompactness of {ũεn}ε>0

in L1(Bn) for fixed n > 0 and Theorem 2.33 in [1] gives that {ũn}n>0 is precom-

pact in L1
loc(Rd

T ). Therefore, up to a subsequence, not renamed, ũn → u in

L1
loc(Rd

T ); thus, w = ∇A(u). Also, the L∞ bound gives that ũn → u in Lploc(Rd)

for 1 ≤ p <∞.

In addition, we have the estimate

‖ũn∇K ∗ ũn‖L2(RdT ) ≤ ‖∇K ∗ ũn‖L∞(RdT ) ‖ũn‖L2(RdT ) . (4.32)

Therefore, we can extract a subsequence that converges weakly to some w1 ∈

L2(Rd
T ). Since u1Bn ∈ L∞(0, T, L1(Rd)) and u1Bn ↗ u by monotone conver-

gence u ∈ L∞(0, T, L1(Rd
T )). Once again, from the estimates performed in the

bounded domains ũn∇K∗ ũn → u∇K∗ u in L1
loc(Rd

T ). Therefore, we can identify

w1 = u∇K ∗ u.

We now show that u ∈ C([0, T ];L1
loc(Rd)), which we know to be true, implies

that u ∈ C([0, T ];L1(D)). Let tn → t ∈ [0, T ] then for all R > 0 we have,∫
|u(tn)− u(t)| dx =

∫
BR

|u(tn)− u(t)| dx+

∫
Rd\BR

|u(tn)− u(t)| dx. (4.33)

The first term on the right hand side of (4.33) can be bounded by ε/2, provided

n is chosen large enough, since u ∈ C([0, T ];L1
loc(Rd)). To bound the second term

we first show that A(u) ∈ L1(Rd
T ). By (D3) we can deduce limz→0A(z)z−1 = 0.

Then, for k > 0 there exists some 0 < Ck <∞ such that if z < k then A(z) ≤ Cz.

82



Hence, ∫
A(u)dx =

∫
{u<k}

A(u)dx+

∫
{u≥k}

A(u)dx

≤ CM + A(‖u‖∞)λu(k) <∞.

Therefore, ‖A(u)‖L1(RdT ) ≤ C(M, ‖u‖∞)T . Now, let w(x) be a smooth radially-

symmetric cut-off function with w(x) = 0 for |x| < 1/2 and w(x) = 1 for |x| ≥ 1.

Then consider the quantity, MR(t) =
∫
uw(x/R)dx. Then formally,

d

dt
MR(t) =

1

R

∫
uv · (∇w)(x/R)dx+

1

R2

∫
A(u)(∆w)(x/R)dx.

Estimating terms in L∞ gives,

d

dt
MR(t) .

‖v‖∞ ‖u‖1

R
+

1

R2

∫
A(u)dx.

Formally, then

MR(t) .MR(0) +M ‖v‖L1((0,t);L∞) R
−1 + ‖A(u)‖L1((0,t)×Rd) R

−2. (4.34)

Since A ∈ L1((0, t) × Rd) and MR(0) → 0 as R → ∞, by choosing R suf-

ficiently large, the last term of (4.33) can be bounded by ε/2. Hence, im-

plies that u ∈ C([0, T ];L1(Rd)). Furthermore, via interpolation we obtain that

u ∈ C([0, T ];Lp(Rd)) for 1 ≤ p <∞.

Conservation of mass can be proved similarly using a cut-off function w(x) = 1

for |x| ≤ 1/2 and w(x) = 0 for |x| ≥ 1, see the proof of Theorem 15 in [10] for a

similar proof.

We are left to prove the energy dissipation inequality (4.7). As expected, the

approach is to regularize the energy and take the limit in the regularizing param-

eters.
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Proof. (Proposition 4) Define

h(u) =

∫ u

1

A′(s)

s
ds,

then Φ(u) =
∫ u

0
h(s)ds. The regularized entropy is defined similarly with a′ε(u),

as defined in (4.22), taking the place of A′(u). Given a smooth solution uε to

(4.21) one can verify,

Fε(uε(t)) +

∫ t

0

∫
1

uε
|a′ε(uε)∇uε − uε∇JεK ∗ uε|

2
dxdτ = Fε(uε(0)). (4.35)

Here Fε(u(t)) denotes the free energy with the regularized entropy and kernel.

Once again we take the limit ε approaches zero to obtain (4.7). We first show

that the entropy converges.

Step 1 : The parabolic regularization gives

h(z) + ε ln z ≤ hε(z) ≤ h(z) + 2ε ln z for 1 ≤ z,

h(z) + 2ε ln z ≤ hε(z) ≤ h′(z) + ε ln z for z ≤ 1.

Therefore, writing Φ(u) =
∫ 1

0
h(s)ds+

∫ u
1
h(s)ds one observes that

Φ(u)− 2ε ≤ Φε(u) ≤ Φ(u) + 2ε(u lnu)+. (4.36)

This will allow us to show convergence of the entropy. In fact,∣∣∣∣∫ Φε(u
ε)− Φ(u)dx

∣∣∣∣ ≤ ∫ |Φε(u
ε)− Φ(uε)| dx+

∫
|Φ(uε)− Φ(u)| dx

(4.36) ≤ 2ε

∫
(1 + uε lnuε)+dx+ ‖Φ‖C1([0,‖uε‖∞])

∫
|uε − u| dx.

≤ 2ε (|D|+ ‖lnuε‖∞ ‖u
ε
0‖1) + C ‖uε − u‖1 .

Conservation of mass, boundedness of smooth solutions, and precompactness in

L1
loc imply there exists a subsequence, such that as εj → 0,∫

Φεj(u
ε
j)dx→

∫
Φ(u)dx.
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Step 2: To show convergence of the interaction energy we need that for a.e t ∈

(0, T ) ∫
uε(t)JεK ∗ uε(t)dx→

∫
u(t)K ∗ u(t)dx. (4.37)

Since K ∈ L1
loc(D) we know that ‖K ∗ u‖L∞ is bounded; hence, replacing ∇K

with K in (4.28) gives the desired result. Finally, we are left to deal with the

entropy production functional.

Step 3 : From Lemma 10 in [32],∫
1

u
|A′(u)∇u− u∇K ∗ u|2 dx ≤ lim inf

ε→0

∫
1

uε
|a′ε(uε)∇uε − uε∇JεK ∗ uε|

2
dx.

(4.38)

We also note that this was proved in [10]. The proof of (4.38) relies on a result

due to Otto in [86], refer to Lemma 32 in the Appendix. In our case, uε ∈ L1(DT )

and Jε = ∇Aε(uε) − uε∇K ∗ uε ∈ L1
loc(DT ). Furthermore, up to a sequence not

renamed, uε ⇀ u ∈ L2 and Jε ⇀ J in L2, therefore, we can apply Lemma 32.

For the energy dissipation estimate in Rd we again consider the family of so-

lutions {ur} to (4.1) on Br (for simplicity let ur denote the zero-extension of

the solutions). Since un(0)1Bn ↗ u(0) by monotone convergence we obtain that

F(un(0))→ F(u(0)). Noting that K ∈ Ld/(d−2) allows us to make a modification

to (4.32) and obtain that unK ∗ un ⇀ uK ∗ u in L2(Rd
T ). Furthermore, (4.37) im-

plies that unK∗un → uK∗u in L1
loc. We are left to verify the uniform integrability

over all space. First note that Morrey’s inequality implies

‖K ∗ ũn‖∞ . ‖∇K ∗ u‖∞ + ‖K ∗ un‖p

≤ ‖∇K ∗ u‖∞ + ‖K‖Ld/(d−2),∞ ‖un‖dp/(d+2p) .
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Hence, taking p sufficiently large we obtain that K ∗ un is bounded in L∞(DT ).

Therefore, ∫
Rd\Bk

unK ∗ undx ≤ ‖K ∗ un‖∞
∫
Rd\Bk

undx.

This fact along with (4.34) gives that for any ε > 0 there exists a kε sufficiently

large such that for all k > kε ∫
Rd\Bk

ũnK ∗ ũndx ≤ ε.

This gives convergence of the interaction energy. The result follows from the

weak lower semi-continuity of the entropy production functional and
∫

Φ(u)dx in

L2.

4.5 Continuation Theorem

Continuation of weak solutions, Theorem 11, is a straightforward consequence of

the local existence theory and the following lemma, which follows substantially

the recent work in [20, 69, 22]. This lemma provides a more precise version of

Lemma 23 and has a similar proof.

Lemma 25. Let {uε}ε>0 be the classical solutions to (4.21) on DT , with non-

negative initial data Jεu0. Suppose there exists T0, 0 < T0 ≤ ∞, such that

sup
ε>0

lim
k→∞

sup
t∈(0,T0)

‖(uε − k)+‖ 2−m
2−m?

= 0, (4.39)

where m is such that 1 ≤ m ≤ m? and lim infz→∞A
′(z)z1−m > 0. Then there

exists C = C(M, ‖u0‖∞) such that for all ε > 0,

sup
t∈(0,T0)

‖uε(t)‖∞ ≤ C.

In particular, if T0 = ∞, then {uε}ε>0 are uniformly bounded for all time, and

therefore the weak solution u(t), is uniformly bounded for all time.
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Proof. (Lemma 25) Let q = (2 − m)/(2 − m?) ≥ 1. It will be convenient to

define γ, 1 ≤ γ ≤ d/2 such that m? = 1+1/γ−2/d. We first bound intermediate

Lp norms over the same interval, (0, T0). Then we use Morrey’s inequality and

Lemma 22 to finish the proof.

Step 1:

We have two cases to consider, m? = 2 − 2/d and m? < 2 − 2/d, which oc-

curs if D2K ∈ Lγ,∞loc for γ > 1 (Lemma 18). In the former we show that for any

p ∈ (q,∞) we have uε(t) uniformly bounded in L∞ (0, T0;Lp). In the latter case

we only show that for q < p ≤ γ/(γ − 1) we have uε(t) uniformly bounded in

L∞ (0, T0;Lp). In either case, this is sufficient to apply Lemma 22 and conclude

the proof.

Let k > 0 be some constant to be determined later and let uk = (u−k)+. We have

dropped the ε and time dependence for notational convenience. By conservation

of mass and (4.25), it suffices to control ‖uk‖p for any k > 0. Thus, using (4.25)

we obtain

d

dt
‖uk‖pp ≤ −p(p−1)

∫
up−2
k A′(u) |∇u|2 dx+p(p−1)

∫
(up−1

k +kup−2
k )∇u·Jε∇K∗udx.

Then,

d

dt
‖uk‖pp ≤ −4(p− 1)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx− ∫ ((p− 1)upk + kpup−1
k )Jε∆K ∗ udx.

(4.40)

Since the constants are not relevant, we treat the cases together only noting minor

differences when they appear. If m = 2 − 2/d we may use Hölder’s inequality

87



and then Lemma 17 to obtain a bound on the first term from the advection:∣∣∣∣∫ upkJε∆K ∗ udx
∣∣∣∣ .p,K ‖uk‖pp+1 ‖u‖p+1 .

On the other hand, if γ > 1 we have from the generalized Hardy-Littlewood-

Sobolev inequality (4.11) (Lemma (19)),∣∣∣∣∫ upkJε∆K ∗ udx
∣∣∣∣ .p,K ‖uk‖pαp ‖u‖t + C(M) ‖uk‖pp ,

with the scaling condition 1/α + 1/t+ 1/γ = 2. Choosing t = αp implies that

1

α
=

2− 1/γ

1 + 1/p
. (4.41)

Notice that from our choice of p then 1 ≤ 1/p+ 1/γ; thus, 1/α ≤ 1. Note that in

the case when m = 2− 2/d then t = αp = p+ 1. Thus we estimate the advection

terms, ∣∣∣∣∫ upkJε∆K ∗ udx
∣∣∣∣ .p,K ‖uk‖pαp ‖u‖αp + C(M) ‖uk‖pp

. ‖uk‖p+1
αp + ‖u‖p+1

αp + C(M) ‖uk‖pp
(4.25) . ‖uk‖p+1

αp + C(M) ‖uk‖pp + C(k,M). (4.42)

The lower order terms in the advection can be controlled using Hölder’s inequality

and Lemma 17, ∣∣∣∣∫ up−1
k Jε∆K ∗ udx

∣∣∣∣ .p ‖uk‖p−1
p ‖u‖p

≤ ‖uk‖pp + ‖u‖pp
(4.25) . ‖uk‖pp + C(k,M). (4.43)

We now aim to compare the dissipation term in (4.40) with the estimates (4.42)

and (4.43). We use the Gagliardo-Nirenberg-Sobolev inequality (Lemma 33),

‖uk‖αp . ‖uk‖
α2

q

∥∥∥u(p+m−1)/2
k

∥∥∥α1

W 1,2
(4.44)
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with

α1 =
2d

p

(
(p− q/α)

q(2− d) + dp+ d(m− 1)

)
,

and

α2 = 1− α1(p+m− 1)/2 > 0.

By the definition of q and (4.41) we have that,

α1(p+ 1)/2 = 1, (4.45)

which implies,

‖uk‖p+1
αp . ‖uk‖α2(p+1)

q

(∫
um−1
k

∣∣∣∇up/2k

∣∣∣2 dx+

∫
up+m−1
k dx

)
. (4.46)

If d = 2 then necessarily m = m? = 1 and this inequality will be sufficient.

However, for d ≥ 3, more work must be done. Define,

I =

∫
um−1
k

∣∣∣∇up/2k

∣∣∣2 dx.
Then, for β1 ≤ α1 and (p+m− 1)β1/2 < 1,

β1 =
2d(1− q/(p+m− 1))

q(2− d) + dp+ d(m− 1)
,

and β2 = 1− β1(p+m− 1)/2 > 0, we have the following by Lemma 33,∫
up+m−1
k dx . ‖uk‖(p+m−1)β2

q

(
I +

∫
up+m−1
k dx

)(p+m−1)β1/2

. ‖uk‖(p+m−1)β2
q

(
I(p+m−1)β1/2 +

(∫
up+m−1
k dx

)(p+m−1)β1/2
)
.

Therefore, by weighted Young’s inequality for products,∫
up+m−1
k dx . ‖uk‖(p+m−1)β2

q (1 + I) + ‖uk‖γ0q , (4.47)

for some γ0 > 0, the exact value of which is not relevant. Putting (4.46) and

(4.47) together implies,

‖uk‖p+1
αp . P(‖uk‖q)I + C(‖uk‖q), (4.48)
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where P(z) denotes a polynomial such that P(z) → 0 as z → 0. By definition

of m, ∃ δ > 0 such that for k sufficiently large then u > k implies A′(u) >

δum−1.Therefore, combining (4.40) with (4.48),(4.42) and (4.43) implies,

d

dt
‖uk‖pp ≤ −C(p)δ

∫
um−1
k

∣∣∣∇up/2k

∣∣∣2 dx+ C(p) ‖uk‖p+1
αp

+ C(M, p) ‖uk‖pp + C(k,M, p)

≤ − C(p)δ

P(‖uk‖q)
‖uk‖p+1

αp + C(p) ‖uk‖p+1
αp

+ C(M, p) ‖uk‖pp + C(k,M, p, ‖uk‖q).

By interpolation against L1, conservation of mass and α ≥ 1 we have

‖uk‖pp .M 1 + ‖uk‖p+1
pα .

Therefore, by assumption (4.39) we may choose k sufficiently large such that

there exists some η > 0 which satisfies the following for all t ∈ (0, T0),

d

dt
‖uk‖pp ≤ −η ‖uk‖

p
p + C(k,M, p, ‖uk‖q).

It follows that ‖uk‖p is bounded uniformly on (0, T0).

Step 2:

The control of these Lp norms will enable us to invoke Lemma 22 and conclude

uε(t) is bounded uniformly in L∞(DT0). Since ∇K ∈ L1
loc and ∇K1Rd\B1(0) ∈ Lq

for all q > d/(d− 1) (by Lemma 16), we have for any q > d/(d− 1)

‖~v‖q = ‖∇K ∗ u‖q ≤
∥∥∇K1B1(0)

∥∥
1
‖u‖q +

∥∥∇K1Rd\B1(0)

∥∥
q
M.

If γ > 1, then we may choose q ∈ (d/(d − 1), γ/(γ − 1)], since in this case

necessarily d ≥ 3. Otherwise we may choose q > d/(d−1) arbitrarily. Then, step
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one implies ~v ∈ L∞((0, T0);Lq). If γ > 1 then, noting that Definition 2 implies

D2K1Rd\B1(0) ∈ Lq for all q > 1,

‖∇~v‖d+1 =
∥∥D2K ∗ u

∥∥
d+1
≤
∥∥D2K1B1(0)

∥∥
Lγ,∞
‖u‖p +

∥∥∇K1Rd\B1(0)

∥∥
d+1

M,

for p = γ(d+ 1)/(d(γ − 1) + 2γ − 1). Note that

1 < p =
γ(d+ 1)

d(γ − 1) + 2γ − 1
≤ γ

γ − 1
.

On the other hand, if m? = 2 − 2/d then the above proof shows that uε(t) is

bounded uniformly in L∞((0, T0);Lp) for all p < ∞. Therefore, by Lemma 17

we have ‖∇~v‖p . ‖u‖p . 1, for all 1 < p < ∞. In either case, this is sufficient

to apply Morrey’s inequality and conclude that ‖~v‖∞ is uniformly bounded on

(0, T0). By Lemma 22 we then have that uε is uniformly bounded in L∞(DT0)

and we have proved the lemma. As in Lemma 23, the uniform bounds depend

on the domain but not it’s diameter.

Remark 12. The proof of this lemma directly implies global well-posedness in

the subcritical case since (4.39) is only necessary in the critical and supercritical

cases. Moreover, in the critical case, one may prove directly that there exists some

M0 such that if M < M0 the solution is global. However, M0 will generally depend

on the constant of the Gagliardo-Nirenberg-Sobolev inequality, as in [99, 100, 59].

As discussed in the recent works of [20, 22], the use of a continuation theorem

will allow for a more accurate estimate of the critical mass through the use of the

free energy.

Proof. (Theorem 11) Suppose, for contradiction, that the weak solution cannot

be continued past T? < ∞ and (4.8) fails. As the regularized problems are

bounded, this implies the hypotheses of Lemma 25 are satisfied on (0, T?), and

therefore supε>0 supt∈(0,T?) ‖uε(t)‖p ≤ η as t ↗ T? for some p > q and η > 0.
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By the proof of Lemma 23, for any η > 0 there exists a τ = τ(η,M) > 0 such

that if ‖u0‖p < η then ‖uε‖p ≤ C for all ε > 0. Therefore, we may choose some

tn < T? such that τ satisfies tn + τ > T? and, by Theorems 8 and 9, we construct

a solution ũ(x, t) on the time interval [tn, tn+ τ). By uniqueness, ũ(x, t) = u(x, t)

a.e. for t ∈ [tn, T?); hence, it is a genuine extension of the original solution u(x, t).

However, it exists on a longer time interval which is a contradiction.

4.6 Global Existence

We now prove Theorem 14. We first note that the entropy is bounded below

uniformly in time, which is a consequence of assumption (D3) of Definition 3.

Lemma 26. Let u(x, t) be a weak solution to (4.1). Then,∫
Φ(u(t))dx ≥ −CM.

Proof. Let h(z) =
∫ z

1
A′(s)s−1ds. By Definition 3, (D3), for z ≤ 1,

h(z) ≥ −C > −∞.

Therefore,∫
Φ(u)dx =

∫ ∫ u

0

h(z)dzdx ≥
∫

1{u≤1}

∫ u

0

h(z)dz + 1{u≥1}

∫ 1

0

h(z)dzdx.

≥ −
∫

1{u≤1}Cu− 1{u≥1}Cdx

≥ −2C ‖u‖1 .

where the last line followed from Chebyshev’s inequality.
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4.7 Theorem 14: m? > 1

Proof. (Theorem 14) We only prove the second assertion under the hypotheses

of Proposition 5, as the subcritical case follows similarly. By the energy dissipa-

tion inequality (4.7) we have for all time 0 ≤ t < T?,

S(u(t))−W(u(t)) ≤ F(u0) := F0. (4.49)

We drop the time dependence of u(t) for notational simplicity. By the assumption

on K, ∀ ε > 0, ∃ δ > 0 such that |K(x)| ≤ (c + ε) |x|−d/p for |x| < δ. By Lemma

19 we have,∫
Φ(u)dx− 1

2
Cm?M

2−m?(c+ ε) ‖u‖m
?

m? ≤ F0 +
1

2

∥∥K|Bδ(0)

∥∥
∞M

2,

By (4.9) and M < Mc, there exists ε > 0 small enough and α, k > 0 such that

Φ(z)z−m
? − 1

2
Cm?M

2−m? (c+ ε) ≥ α > 0, for all z > k. (4.50)

By Lemma 26 we have,∫
{u>k}
um

?

(
Φ(u)um

? − 1

2
Cm?M

2−m? (c+ ε)

)
dx− 1

2

∫
{u<k}
Cm?M

2−m? (c+ ε)um
?

dx

≤ F0 + C(δ,M),

and by (4.50),

α

∫
{u>k}
um

?

dx− 1

2
Cm?M

2−m? (c+ ε)

∫
{u<k}
um

?

dx ≤ F0 + C(M, δ).

By mass conservation we have that ‖u‖m? is a priori bounded independent of time

and Theorem 11 and Lemma 25 implies global existence and uniform bounded-

ness.
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4.8 Theorem 16: m? = 1

The proof of Theorem 16 follows similarly, but requires the logarithmic Hardy-

Littlewood-Sobolev inequality (Lemma 20) as opposed to Lemma 19.

Proof. (Theorem 16)

We only prove the second assertion under the hypotheses of Proposition 6, as the

subcritical case follows similarly. We will again use Theorem 11 and prove

sup
t∈(0,∞)

∫
(u lnu)+dx <∞.

By the energy dissipation inequality (4.7) we again have (4.49). By the assump-

tions of Proposition 6, for all ε > 0 there exists δ > 0 such that,∫
Φ(u)dx+ (c+ ε)

1

2

∫ ∫
|x−y|<δ

u(x)u(y) ln |x− y| dxdy ≤ C(F0, δ,M).

By D bounded, the logarithmic Hardy-Littlewood-Sobolev inequality (4.13) im-

plies, ∫
Φ(u)dx− (c+ ε)

M

2d

∫
u lnudx ≤ C(F0, δ,M, diamD).

Choosing k > 0 large and recalling Lemma 26 implies∫
{u>k}
u lnu

(
Φ(u)

u lnu
− (c+ ε)

M

2d

)
dx− (c+ ε)

∫
{u<k}

u lnudx ≤ C(F0, δ,M, diamD).

As in the proof of Theorem 14, by conservation of mass, (4.10) and M < Mc, we

may choose ε > 0 small enough and k large enough such that∫
{u>k}
u lnudx ≤ C(F0,M, diamD).
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4.9 Finite Time blow-up

In this section we prove Theorem 13 and Theorem 12. We prove Theorem 13

as it is somewhat easier, though the technique is the same as that used to prove

Theorem 12.

4.10 Supercritical Case: Theorem 13

For Theorem 13 we state the following lemma, which provides insight into the

nature of the supercritical cases. The proof and motivation follows [20].

Lemma 27. Define YM =
{
u ∈ L1 ∩ Lm? : u ≥ 0, ‖u‖1 = M

}
. Suppose K sat-

isfies (B1) and A(u) satisfies (B3) for some m > 1, A > 0. Suppose further

that the problem is supercritical, that is, m < m?. Then infYM F = −∞. More-

over, there exists an infimizing sequence with vanishing second moments which

converges to the Dirac delta mass in the sense of measures.

Proof. Let 0 < θ < 1, α = d/p. Then by Lemma 19 there exists h? such that,

θCm? ≤
∣∣∫ ∫ h?(x)h?(y) |x− y|−α dxdy

∣∣
‖h?‖2−m?

1 ‖h?‖m?m?
≤ Cm? . (4.51)

We may assume without loss of generality that h? ≥ 0, since replacing h? by |h?|

will only increase the value of the convolution. By density, we may take h? ∈ C∞c
and therefore with a finite second moment.

Let µ = ‖h?‖1/d
1 M−1/d, λ > 0 and hλ(x) = λdh?(λµx). First note, by (B3),
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∀ε > 0, ∃R > 0 such that,∫
Φ(hλ)dx =

∫ ∫ hλ

0

∫ s

1

A′(z)

z
dzdsdx

≤
∫ ∫ hλ

0

∫ max(s,R)

R

(mA+ ε)zm−2dz +

∫ R

1

A′(z)

z
dzdsdx

≤ A+ ε

m− 1
‖hλ‖mm + C(R) ‖hλ‖1 . (4.52)

By (B1) and h? ∈ C∞c , ∀ ε > 0, ∃λ > 0 sufficiently large such that,

−W(t) ≤ −(c− ε)µ
−2d+αλα

2

∫ ∫
h?(x)h?(y) |x− y|−α dxdy. (4.53)

Combining (4.53),(4.52) with (4.51) and Lemma 19, we have for λ,R sufficiently

large,

F(hλ) ≤
λdm−dM

(m− 1) ‖h?‖1

(A+ ε) ‖h?‖mm − λ
α(θ − ε)Cm

?

2

(
‖h?‖1

M

)−2+α/d

‖h?‖2−m?
1 ‖h?‖m

?

m?

+ C(R)µ−d ‖h?‖1 .

By supercriticality, we have α = dm? − d > dm − d, and so for ε < θ, we take

λ→∞ to conclude that for all values of the mass M > 0 we have infYM F = −∞.

Moreover, since h? ∈ C∞c , the second moment of hλ goes to zero and hλ converges

to the Dirac delta mass in the sense of measures.

Proof. (Theorem 13) We may justify the formal computations for weak solu-

tions using the regularized problems and taking the limit but we do not include

such details. We treat both bounded and unbounded domains together pointing

out the differences when they appear. Let

I(t) =

∫
|x|2 u(x, t)dx.
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If the domain is bounded then by (4.4),

d

dt
I(t) = 2d

∫
A(u)dx+ 2

∫ ∫
u(x)u(y)x · ∇K(x− y)dxdy −

∫
∂D

A(u)x · νdS

= 2d

∫
A(u)dx+

∫ ∫
(x− y) · ∇K(x− y)u(x)u(y)dxdy −

∫
∂D

A(u)x · ν(x)dS,

(4.54)

where the second integral was obtained by symmetrizing in x and y, the time

dependence was dropped for notational simplicity and ν(x) denotes the outward

unit normal of D at x ∈ ∂D. By translation invariance and convexity of D, we

may assume without loss of generality that x · ν(x) ≥ 0. For the rest of the proof

we may treat bounded domains and D = Rd together, since for each,

d

dt
I(t) ≤ 2d

∫
A(u)dx+ 2

∫ ∫
u(x)u(y)x · ∇K(x− y)dxdy.

We use (B2) on K, to obtain

d

dt
I(t) ≤ 2d

∫
A(u)dx− 2d/pW(u) + C1M

2.

By (D3), (B4) and Lemma 26,∫
A(u)dx =

∫
{u<R}

A(u)dx+

∫
{u>R}

A(u)dx

≤ C(M) + (m− 1)

∫
{u>R}

Φ(u)dx

≤ C(M) + (m− 1)

∫
Φ(u)dx.

Using that 2d(m− 1) < 2d(m? − 1) = 2d/p we have,

d

dt
I(t) ≤ 2d(m− 1)F(u) + C(M,C1).

We use the energy dissipation inequality (4.7) to bound the first term,

d

dt
I(t) ≤ 2d(m− 1)F(u0) + C(M,C1).
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From this differential inequality, the second moment will be zero in finite time

and the the solution blows up in finite time if

F(u0) < − C(M,C1)

2d(m− 1)
.

By Lemma 27, we may always find initial data with any given mass M > 0 such

that this is true, since there exists infimizing sequences with vanishing second

moments. The final assertion follows from Theorem 11. Indeed, we have

T? ≤
I(0)

2d(m− 1)F(u0) + C(M,C1)
.

4.11 Critical Case: Theorems 12 and 15

The proof of Theorem 12 follows the proof of Theorem 13.

Lemma 28. Define YM = {u ∈ L1 ∩ L∞ : u ≥ 0, ‖u‖1 = M}. Suppose K satis-

fies (B1) and A(u) satisfies (B3) for m > 1 and A > 0. Suppose further that

the problem is critical, that is, m = m? and let Mc satisfy (4.9). If M satisfies

M > Mc, then infYM F = −∞. Moreover, there exists an infimizing sequence

with vanishing second moments which converges to the Dirac delta mass in the

sense of measures.

Proof. We may proceed as in the proof of Lemma 27, but instead choose θ ∈(
(Mc/M)2−m? , 1

)
. Let α = d/p. By optimality of Cm? , as before there exists h?

such that,

θCm? ≤
∣∣∫ ∫ h?(x)h?(y) |x− y|−α dxdy

∣∣
‖h?‖2−m?

1 ‖h?‖m?m?
≤ Cm? . (4.55)

As above, we assume h? ≥ 0 and h? ∈ C∞c .
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Let µ = ‖h?‖1/d
1 M−1/d, λ > 0 and hλ(x) = λdh?(λµx). By (B1) and (B3),

∀ ε > 0 there exists a λ and R sufficiently large such that by h? ∈ C∞c ,

F(hλ) ≤
λdm−dM

(m? − 1) ‖h?‖1

(A+ ε) ‖h?‖m
?

m? + C(R)µ−d ‖h?‖1

− (θ − ε)Cm?
2

(
‖h?‖1

M

)−2+α/d

λα ‖h?‖2−m?
1 ‖h?‖m

?

m?

However, in this case α = dm− d and m = m?, therefore by (4.55) and Lemma

19,

F(hλ) ≤ λdm
?−d ‖h?‖m

?

m?

[
M(A+ ε)

(m? − 1) ‖h?‖1

− (θ − ε)Cm?
2

(
‖h?‖1

M

)−2+α/d

‖h?‖2−m?
1

]
.

Then,

F(hλ) ≤ λdm
?−d‖h?‖

m?

m?

‖h?‖1

[
M(A+ ε)

(m? − 1)
− (θ − ε)

2
Cm?M

2−α/d
]
.

Then since A/(m? − 1) = Cm?M
2−m?
c /2 and α/d− 1 = 2−m? we have,

F(hλ) ≤ λdm
?−d ‖h?‖

m
m

2 ‖h?‖1

Cm?M
2−α/d

[(
1 +

ε

A

)(
Mc

M

)2−m?

− (θ − ε)

]
.

Since θ > (Mc/M)2−m? we may take ε sufficiently small and λ→∞ to conclude

that infYM F = −∞. As before, hλ converges to the Dirac delta mass in the

sense of measures.

Proof. (Theorem 12) The theorem follows from a Virial identity as in Theorem

13.

Proof. (Theorem 15) As in Theorem 13 we have by (C2), (C3) and if D is

bounded, the convexity of the domain,

d

dt
I(t) ≤ 2dA

∫
A(u)dx+

∫ ∫
u(x)u(y)(x− y) · ∇K(x− y)dxdy

≤ 2dM

(
A− cM

2d

)
+ C1M

3/2I1/2.

Clearly, if M > Mc then I → 0 in finite time if I(0) is sufficiently small.
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APPENDIX A

Appendix: Mathematical Theory

A.1 Newtonian Potential

One of the mathematical tools which will play a key role in much of this work is

the Newtonian potential, N (x), which is the fundamental solution to Laplace’s

equation ∆u = 0,

in Rd for d ≥ 2. Recognizing that Laplace’s equation is invariant under rotations

one can find that that

N (x) =

 − 1
2π

log |x| n = 2

1
n(n−1)αn

|x|2−n n ≥ 3,
(A.1)

where αn is the volume of the unit ball in Rn, see for example [46]. The singularity

of at the origin and the slow decay as |x| → ∞ is an issue which we have to deal

with through a lot of this work. By taking the derivatives directly to (A.1) we

obtain that

|∇N | ≤ C |x|−n

|∆N| ≤ C |x|−n−2 .

Because of the singularity mentionedN (x) /∈ Lp(Rn) for any p. However, N , ∇N

are locally integrable for n ≥ 3. This is not true for ∆N . Therefore, it will be

convenient to use weak Lp spaces (Lp,∞).
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A.2 Weak Lp Spaces

In the previous section we saw that the Newtonian potential does not have enough

decay as |x| → ∞ to be in any Lp spaces. This is just one example that might

motivate generalizing Lp spaces. One generalization, known as Lorentz Spaces

Lp,∞, was introduced by George Lorentz [80]. Given a measure space (S, µ) these

spaces are equipped with the semi-norm (triangle inequality fails)

‖f‖Lp,∞ = inf {C | λf (t) ≤ Cp/tp ∀ t > 0} , (A.2)

where λf (t) = µ {x ∈ S : f(x) > t}. For p > 1 these spaces are Banach spaces

and Lp ⊂ Lp,∞ [50]. The Newtonian potential characterizes these weak Lp spaces.

A.3 Sobolev Spaces

Sobolev spaces can be extended for s ∈ R by defining the norm

‖f‖Hs :=
1

(2π)d/2

∥∥∥(1 + |ξ|2)1/2f̂
∥∥∥
L2
ξ

,

this definition is inspired by the Fourier Transform (see for example [101]). For

s ∈ N this definition is equivalent to (2.3). Furthermore,

‖u‖2 ≤ ‖u‖Ḣ1 ‖u‖Ḣ−1 . (A.3)

A.3.1 Sobolev Embeddings

Theorem 17 (Extended Sobolev Inequalities in Bounded Domains). Let Ω be

a bounded domain with ∂Ω in Cm, and let u be any function in Wm,r(Ω) ∩

Lp(Ω), 1 ≤ r, q ≤ ∞. For any integer j, 0 ≤ j ≤ m, and for any number a

in the interval j/m ≤ a ≤ 1, set

101



1

p
=
j

n
+ a

(
1

r
− m

n

)
+ (1− a)

1

q
.

If m− j − n/r is a nonnegative integer, then

∥∥Dju
∥∥
Lp
≤ C ‖u‖aWm,r ‖u‖(1−a)

Lq . (A.4)

If m − j − n/r is a nonnegative integer, then (A.4) holds for a = j/m. The

constant C depends only on Ω, r, q, m, j, a.

Theorem 18 (Gagliardo-Nirenberg inequality in Rd). Let 1 < p < q ≤ ∞ and

s > 0 be such that

1

q
=

1

p
− θs

d

for some 0 < θ < 1. Then for any u ∈ W s,p we have

‖u‖q .d,p,q,s ‖u‖1−θ
p ‖u‖θẆ s,p .
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APPENDIX B

Appendix: Part I

B.1 Chapter 2 Additional Computations

B.1.1 Computations for Theorem 4

Computations for F2

‖F2(v1)− F2(v2)‖2 ≤
∥∥J2

ε ∆(ρ1 − ρ2)
∥∥

2
+ 2

∥∥∥∥Jε [∇ · ρ1

A1

Jε∇A1−∇ ·
ρ2

A2

Jε∇A2

]∥∥∥∥
2

+ ‖ρ1A1 − A2ρ2‖2 = S1 + S2 + S3.

The terms S1 and S3 appeared in the inequality for F1; therefore, we are only

concerned with S2:

1

2
S2 .

1

ε2

∥∥∥∥ρ1

A1

Jε∇A1−
ρ2

A2

Jε∇A2

∥∥∥∥
1

≤ 1

ε2

(∥∥∥∥ ρ1

A1

Jε∇ (A1 − A2)

∥∥∥∥
1

+

∥∥∥∥Jε∇A2

(
ρ1

A1

− ρ2

A2

)∥∥∥∥
1

)
.

1

ε2

(∣∣∣∣ ρ1

A1

∣∣∣∣
∞
‖D {Jε∇ (A1 − A2)}‖0 + |Jε∇ (A1 − A2)|∞

∥∥∥∥D( ρ1

A1

)∥∥∥∥
0

)
+

1

ε2

(
|Jε∇A2|∞

∥∥∥∥D( ρ1

A1

− ρ2

A2

)∥∥∥∥
0

+

∣∣∣∣ ρ1

A1

− ρ2

A2

∣∣∣∣
∞
‖DJε∇A1‖0

)
=

1

ε2
(R1 +R2 +R3 +R4) .

R1 can be easily bounded, without any additional factors of 1/ε, by∣∣A−1
1

∣∣
∞ |ρ1|∞ ‖A1 − A2‖2. On the other hand, for R2 we need to use (5) of Lemma
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2.1 and (1) of Lemma 2.2. More precisely, we have:

R2 .
1

ε
‖A1 − A2‖2

(∣∣∣∣ 1

A1

∣∣∣∣
∞
‖ρ1‖1 +

∣∣∣∣ 1

A1

∣∣∣∣2
∞
‖A‖1 |ρ1|∞

)
.

The next term requires more work, basically repeated applications of the Lemma

2.

R3 .
1

ε
‖A2‖2

∥∥∥∥A2ρ1 − A1ρ2

A1A2

∥∥∥∥
1

.
1

ε
‖A2‖2

{∣∣∣∣ 1

A1A2

∣∣∣∣
∞
‖ρ1A2 − ρ2A1‖1 + |ρ1A2 − ρ2A1|∞

∥∥∥∥D( 1

A1A2

)∥∥∥∥
0

}
.

1

ε
‖A2‖2

{∣∣∣∣ 1

A1A2

∣∣∣∣
∞
‖ρ1A2 − ρ2A1‖1 + |ρ1A2 − ρ2A1|∞

}
.

Since, |v|∞ . ‖v‖2 and

∥∥∥∥D( 1

A1A2

)∥∥∥∥
0

.

∣∣∣∣ 1

A1

∣∣∣∣
∞

∣∣∣∣ 1

A2

∣∣∣∣2
∞
‖∇A2‖0 +

∣∣∣∣ 1

A2

∣∣∣∣
∞

∣∣∣∣ 1

A1

∣∣∣∣2
∞
‖∇A1‖0 ,

we have:

R3 .
1

ε
‖A2‖2

(∣∣∣∣ 1

A1

∣∣∣∣
∞

∣∣∣∣ 1

A2

∣∣∣∣
∞

+

∣∣∣∣ 1

A1

∣∣∣∣
∞

∣∣∣∣ 1

A2

∣∣∣∣2
∞
‖A2‖1 +

∣∣∣∣ 1

A2

∣∣∣∣
∞

∣∣∣∣ 1

A1

∣∣∣∣2
∞
‖A1‖1

)
×

‖ρ1A2 − ρ2A1‖2 .

Finally,

R4 ≤
∣∣∣∣ 1

A1

∣∣∣∣
∞

∣∣∣∣ 1

A2

∣∣∣∣
∞
‖A1‖2 |A2ρ1 − ρ2A1|∞ .

B.1.2 Computations for Higher-Order Energy Estimate Estimates

Claim 1:∑
|α|≤m

‖Dαu‖0 ‖D
α(uv)‖0 . (|∇u|∞ + |u|∞ + |v|∞) ‖u‖2

m + (|∇u|∞ + |u|∞) ‖v‖2
m .
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Proof.∑
|α|≤m

‖Dαu‖0 ‖D
α(uv)‖0 ≤

∑
|α|≤m

‖Dαu‖0 {‖D
α(uv)− uDαv‖0 + |u|∞ ‖D

αv‖0}

≤ ‖u‖m

∑
|α|≤m

‖Dα(uv)− uDαv‖0 + |u|∞ ‖v‖m


≤ c ‖u‖m

{
|∇u|∞

∥∥Dm−1v
∥∥

0
+ ‖Dmu‖0 |v|∞+ |u|∞ ‖v‖m

}
This proves the claim.

Lemma 29. ∥∥∥∥Dm

(
1

Aε

)∥∥∥∥
0

≤
m−1∑
k=0

Ck

∣∣∣∣ 1

Aε

∣∣∣∣k+2

∞
|∇Aε|k∞

∥∥Dm−kAε
∥∥

0
, (B.1)

where the C ′ks are constants.

Proof. Using (1) of Lemma 2 and dropping the constants we get:

∥∥∥∥Dm

(
1

A

)∥∥∥∥
0

=

∥∥∥∥Dm−1

(
∇A
A2

)∥∥∥∥
0

. |∇A|∞

∥∥∥∥Dm−1

(
1

A2

)∥∥∥∥
0

+

∣∣∣∣ 1

A

∣∣∣∣2
∞

∥∥Dm−1∇A
∥∥

0

. |∇A|∞

(
|∇A|∞

∥∥∥∥Dm−2

(
1

A3

)∥∥∥∥
0

+

∣∣∣∣ 1

A

∣∣∣∣3
∞

∥∥Dm−2∇A
∥∥

0

)

+

∣∣∣∣ 1

A

∣∣∣∣2
∞
‖DmA‖0

...

. |∇A|m−1
∞

∥∥∥∥D1

(
1

Am

)∥∥∥∥
∞

+
m−2∑
k=0

∣∣∣∣ 1

A

∣∣∣∣k+2

∞
|∇A|k∞

∥∥Dm−kA
∥∥

0

.
m−1∑
k=0

∣∣∣∣ 1

A

∣∣∣∣k+2

∞
|∇A|k∞

∥∥Dm−kA
∥∥

0
.
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Proof. (Lemma 4)

Iα︷ ︸︸ ︷∫
Dα(Jε∇ρ) ·Dα

( ρ
A
J ε∇A

)
dx ≤ ‖Dα(Jε∇ρ)‖0

∥∥∥Dα
( ρ
A
J ε∇A

)∥∥∥
0

≤ ‖Dα(Jε∇ρ)‖0

∥∥∥Dα
( ρ
A
J ε∇A

)
− ρ

A
Dα(Jε∇A)

∥∥∥
0

+ ‖Dα(Jε∇ρ)‖0

∣∣∣ ρ
A

∣∣∣
∞
‖DαJε∇A‖0 .

Summing over |α| ≤ m gives:

∑
|α|≤m

Iα ≤‖Jε∇ρ‖m

∑
|α|≤m

∥∥∥Dα
( ρ
A
J ε∇A

)
− ρ

A
Dα(Jε∇A)

∥∥∥
0

+
∣∣∣ ρ
A

∣∣∣
∞
‖Jε∇A‖m


.‖Jε∇ρ‖m

(∣∣∣∇( ρ
A

)∣∣∣
∞

∥∥Dm−1Jε∇A
∥∥

0
+ |Jε∇A|∞

∥∥∥Dm ρ

A

∥∥∥
0
+
∣∣∣ ρ
A

∣∣∣
∞
‖Jε∇A‖m

)
.

We bound the first term
∣∣∇( ρ

A
)
∣∣
∞ ≤ (C1 |∇ρ|∞ + |ρ|∞ |∇A|∞C2

1). Therefore, the

above inequality can be bounded by:

∑
|α|≤m

Iα . ‖Jε∇ρ‖m
(
C1 |∇ρ|∞ + |ρ|∞ |∇A|∞C

2
1

)
‖A‖m

+ ‖Jε∇ρ‖m
(
|Jε∇A|∞

∥∥∥Dm ρ

A

∥∥∥
0

+
∣∣∣ ρ
A

∣∣∣
∞
‖J ε∇A‖m

)
. (B.2)

The term
∥∥Dm ρ

A

∥∥
0

can be bounded by simpler terms using part (1) of Lemma 2.

In particular, ∥∥∥Dm ρ

A

∥∥∥
0
≤ c

(
|ρ|∞

∥∥∥∥Dm 1

A

∥∥∥∥
0

+ C1 ‖Dmρ‖0

)
. (B.3)

Here we make use of Lemma 29 by substituting (B.1) into (B.3). From (B.2)

after applying a Cauchy inequality of the form 2ab ≤ δa2 + 1
δ
b2 we get the desired

result.
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B.1.3 Computations for L2-Cauchy Sequence

R1.

(∣∣∣∣ 1

Aε

∣∣∣∣
∞
‖D(∇ρ · Jε∇Aε)‖0 + |∇ρε|∞ |∇JεA

ε|∞

∥∥∥∥D( 1

Aε

)∥∥∥∥
0

)
.

∣∣∣∣ 1

Aε

∣∣∣∣
∞

{
|Jε∇Aε|∞‖∆ρ

ε‖0+
∥∥D2JεA

ε
∥∥

0
|∇ρε|∞

}
+

∣∣∣∣ 1

Aε

∣∣∣∣2
∞
|∇ρε|∞|∇JεA

ε|∞‖∇A
ε‖0

≤ c

(∣∣∣∣ 1

Aε

∣∣∣∣
∞

+

∣∣∣∣ 1

Aε

∣∣∣∣2
∞

)
‖Aε‖3 (‖ρε‖3 + ‖Aε‖3 ‖ρ

ε‖3)

similarly,

R2 ≤ c

(∣∣∣∣ 1

Aε

∣∣∣∣
∞
‖D(ρε∆JεA

ε)‖0 + |ρε∆JεAε|∞

∥∥∥∥D( 1

Aε

)∥∥∥∥
0

)
≤ c

∣∣∣∣ 1

Aε

∣∣∣∣
∞

(
‖ρε‖2

3 + ‖Aε‖2
4

)
Computations for Lemma 7

1

2

d

dt

∫
v2dx =

∫
v

[
∆v − 2∇ ·

(
ρ1

A1

∇A1 −
ρ2

A2

∇A2

)
− A1ρ1 + A2ρ2

]
dx

C.I ≤
∥∥∥∥ ρ1

A1

∇A1 −
ρ2

A2

∇A2

∥∥∥∥2

0

−
∫
A2v

2dx−
∫
ρ1uvdx

≤
∥∥∥∥ ρ1

A1

∇A1 −
ρ2

A2

∇A2

∥∥∥∥2

0

+
1

2
|ρ1|∞ ‖u‖

2
0 +

1

2
|ρ1|∞ ‖v‖

2
0

Unfortunately, the advection term leaves a term which still has to be dealt with:∥∥∥∥ ρ1

A1

∇A1 −
ρ2

A2

∇A2

∥∥∥∥2

0

≤
∣∣∣∣ ρ1

A1

∣∣∣∣2
∞
‖∇u‖2

0 + |∇A2|2∞

∥∥∥∥A2ρ1 − A1ρ2

A1A2

∥∥∥∥2

0

≤
∣∣∣∣ ρ1

A1

∣∣∣∣2
∞
‖∇u‖2

0 + |∇A2|2∞

∣∣∣∣ 1

A1A2

∣∣∣∣2
∞

(
|ρ1|2∞ ‖u‖

2
0 + |A1|2∞ ‖v‖

2
0

)
.

Making use of the fact that |1/A|∞ ≤ C1 gives the final result.
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B.1.4 Sobolev Inequalities

Deriving Inequality (2.33)

Applying (A.4) for p = 2 gives:

‖u‖2
L2 = C ‖u‖W 1,2 ‖u‖L1

≤ ε
(
‖u‖2

L2 + ‖∇u‖2
L2

)
+
C

ε
‖u‖2

L1
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APPENDIX C

Appendix: Part II

C.1 Auxiliary Lemmas

Lemma 30. Let F be a convex C1 function and f = F ′. Assume that f(u) ∈

L2(0, T,H1(D)), u ∈ H1(0, T,H−1(D)) and F (u) ∈ L∞(0, T, L1(D)). Then for

almost all 0 ≤ s, τ,≤ T the following holds:∫
(F (u(x, τ))− F (u(x, s))) dx =

∫ τ

s

〈ut, f(u(t))〉 dt.

Lemma 31. Let F (u, t) ∈ C2([0,∞), [0,∞)) be a convex function such that

F (0) = 0 and F ′′ > 0 on (0,∞). Let fn, for n = 1, 2, ..., and f be a non-

negative function on D bounded from above by M > 0. Furthermore, assume

that fn ⇀ f in L1(D) and F (fn) → F (f) in L1(D), then ‖fn − f‖L2(D) → 0 as

n→ 0.

Lemma 32 (Weak Lower-semicontinuity). Let ρε be non-negative L1
loc(DT ) and fε

a vector valued function in L1
loc(DT ) such that ∀φ ∈ C∞c (DT )andξ ∈ C∞c (DT ,Rd)∫

DT

ρεφdxdt→
∫
DT

ρφdxdt∫
DT

fε · ξdxdt→
∫
DT

f · ξdxdt.

Then ∫
DT

1

ρ
|f |2 dxdt ≤ lim inf

ε→0

∫
DT

1

ρε
|fε|2 dxdt
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C.2 Gagliardo-Nirenberg-Sobolev Inequality

Gagliardo-Nirenberg-Sobolev inequalities are the main tool for obtaining Lp es-

timates of PKS models and are used in many works, for instance [69, 20, 99, 59].

The following inequality follows by interpolation and the classical Gagliardo-

Nirenberg-Sobolev inequality.

Lemma 33 (Inhomogeneous Gagliardo-Nirenberg-Sobolev). Let d ≥ 2 and D ⊂

Rd satisfy the cone condition (see e.g. [1]). Let f : D → R satisfy f ∈ Lp ∩ Lq

and ∇fk ∈ Lr. Moreover let 1 ≤ p ≤ rk ≤ dk, k < q < rkd/(d− r) and

1

r
− k

q
− s

d
< 0. (C.1)

Then there exists a constant CGNS which depends on s, p, q, r, d and the dimen-

sions of the cone for which D satisfies the cone condition such that

‖f‖Lq ≤ CGNS ‖f‖α2

Lp

∥∥fk∥∥α1

W s,r , (C.2)

where 0 < αi satisfy

1 = α1k + α2, (C.3)

and
1

q
− 1

p
= α1(

−s
d

+
1

r
− k

p
). (C.4)

Proof. We may assume that f is Schwartz then argue by density. Let β satisfy

max(q, rk) < β < rkd/(d − r). First note by the Gagliardo-Nirenberg-Sobolev

inequality, [Theorem 5.8, [1]], we have

∥∥fk∥∥
β/k

.β,k,r,s

∥∥fk∥∥1−θ
r

∥∥fk∥∥θ
W s,r

≤
∥∥fk∥∥(1−θ)(1−µ)

p/k

∥∥fk∥∥(1−θ)µ
β/k

∥∥fk∥∥θ
W s,r ,
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for µ ∈ (0, 1) determined by interpolation and θ = s−1(d/r − dk/β) ∈ (0, 1).

Moreover, the implicit constant does not depend directly on the size of the do-

main. Therefore,

∥∥fk∥∥
β/k

. ‖f‖(1−θ)(1−µ)/(1−µ(1−θ))
p

∥∥fk∥∥θ/(1−µ(1−θ))
W s,r .

Now, where λ ∈ (0, 1) determined by interpolation,

‖f‖q ≤ ‖f‖
(1−λ)
p

∥∥fk∥∥λ/k
β/k

. ‖f‖(1−λ)+(1−θ)(1−µ)/(1−µ(1−θ))
p

∥∥fk∥∥λθ/(k−kµ(1−θ))
W s,r .

C.3 Admissible Kernels

We now prove Lemmas 16,17 and 18. We begin with the following characteriza-

tions of Lp,∞.

Lemma 34. Let F (x) = f(|x|) ∈ L1
loc ∩C0 \ {0} be monotone in a neighborhood

of the origin. If r−d/p = o(f(r)) as r → 0, then F /∈ Lp,∞loc .

Proof. Since we have assumed f to be monotone in a neighborhood of the origin,

without loss of generality we prove the assertions assuming f ≥ 0 on that neigh-

borhood, since corresponding work may be done if f is negative. For any α > 0,

by monotonicity, we have a unique r(α) such that f(r) > α,∀r < r(α). We thus

have that λf (α) = ωdr(α)d, where ωd is the volume of the unit sphere in Rd.

By the growth condition on f and continuity we also have that for α sufficiently

large,
1

ε
r(α)−d/p ≤ f(r(α)) = α.
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Now,

αpλf (α) = ωdα
pr(α)d.

Hence, by (C.3) we have ∀ ε > 0 there is a neighborhood of infinity such that,

ωdα
pr(α)d & ε−p.

We take ε→ 0 to deduce that F /∈ Lp,∞.

Lemma 35. Let F (x) = f(|x|) ∈ L1
loc ∩C0 \ {0} be monotone in a neighborhood

of the origin. Then f ∈ Lp,∞loc if and only if f = O(r−d/p) as r → 0.

Proof. Since we have assumed f to be monotone in a neighborhood of the origin,

without loss of generality we prove the assertions assuming f ≥ 0 on that neigh-

borhood.

First assume that f 6= O(r−d/p) as r → 0, which implies that for all δ0 > 0 and

every C > 0 there exists an rC < δ0 such that

f(rC) > Cr
−d/p
C .

We now show that in a neighborhood of the origin, the function f(r) − Cr−d/p

is strictly positive for r < rC . Suppose not. Since both f, r−d/p are monotone,

there exists r0 such that f(r) < Cr−d/p for r < r0. However, this contradicts

f 6= O(r−d/γ) as r → 0. Thus, we have that

f(r) > Cr−d/p

in a neighborhood of the origin (r < rC). Since for all C > 0 we can find a

corresponding rC , this is equivalent to r−d/p = o(f(r)), and by Lemma 34 we
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have that f /∈ Lp,∞.

On the other hand, if f = O(r−d/p) as r → 0 there exists δ > 0 and C > 0 such

that for all r < δ,

f(r) ≤ Cr−d/p. (C.5)

By monotonicity, for all α > 0 there is a unique r(α) ∈ [0, δ] such that

f(r) > α, for r < r(α), (C.6)

where we take r(α) = 0 if f(r) < α over the entire neighborhood. By (C.5) and

(C.6), we have, necessarily that r(α) . α−p/d. Therefore,

αpλf (α) = αpωdr(α)d . 1,

which implies f1B1(0) ∈ Lp,∞.

Remark 13. Similar statements may be made about the decay of F (x) at infinity.

Proof. (Lemma 16) By the fundamental theorem of calculus and condition

(BD),

∣∣∂xi∂xjK(x)
∣∣ ≤ ∫ ∞

1

∣∣∂r∂xi∂xjK(rx)
∣∣ dr

. |x|−d .

Similarly, this argument also implies |∇K| . |x|1−d, which in turn implies ∇K ∈

Ld/(d−1),∞. If d > 2 then we can carry out this argument another time and show

that |K| . |x|2−d. Moreover, in d = 2 we see that K could have, at worst,

logarithmic singularities at zero and infinity.
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Proof. (Lemma 17) We compute second derivatives of the kernel K in the sense

of distributions. Let φ ∈ C∞c , then by the dominated convergence theorem,∫
∂xiK∂xjφdx = lim

ε→0

∫
|x|≥ε

∂xiK∂xjφdx

= − lim
ε→0

∫
|x|=ε

∂xjK(x)
xj
|x|
φ(x)dS − PV

∫
∂xixjKφdx.

By ∇K ∈ Ld/(d−1),∞ and Lemma 35, we have ∇K = O(|x|1−d) as x→ 0. There-

fore for ε sufficiently small, there exists C > 0 such that,∣∣∣∣∫
|x|=ε

∂xjK(x)
xj
|x|
φ(x)dS

∣∣∣∣ ≤ C

∫
|x|=ε
|x|1−d |φ(x)| dS

= C

∫
|x|=1

|εx|1−d |φ(εx)| εd−1dS = C |φ(0)| .

Similarly, we may define D2K ∗ φ and we have,

∥∥D2K ∗ φ
∥∥
p
≤ C ‖φ‖p +

∥∥∥∥PV

∫
∂xixjK(y)φ(x− y)dy

∥∥∥∥
p

.

Therefore, the first term can be extended to a bounded operator on Lp for 1 ≤ p ≤

∞ by density. The admissibility conditions (R),(BD) and (KN) are sufficient

to apply the Calderón-Zygmund inequality [Theorem 2.2 [96]], which implies that

the principal value integral in the second term is a bounded linear operator on

Lp for all 1 < p < ∞. Moreover the proof provides an estimate of the operator

norms, ∥∥∥∥PV

∫
∂xi,xjK(y)u(x− y)dy

∥∥∥∥
p

.

 1
p−1
‖u‖p 1 < p < 2

p ‖u‖p 2 ≤ p <∞.

Proof. (Lemma 18) The assertion that D2K ∈ Lγ,∞loc implies K ∈ L
d/(d/γ−2),∞
loc

follows similarly as in Lemma 16.
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Now we prove the reverse implication. Let K ∈ L
d/(d/γ−2),∞
loc . We show that

D2K = O(r−d/γ) as r → 0. Assume for contradiction that D2K 6= O(r−d/γ)

as r → 0. This implies that k′′ 6= O(r−d/γ) or that k′(r)r−1 6= O(r−d/γ) as

r → 0. These two possibilities are essentially the same, so just assume that

k′′ 6= O(r−d/γ). By monotonicity arguments used in the proof of Lemma 35, this

in turn implies r−d/γ = o(k′′). However, this means that for all ε, there exists a

δ(ε) > 0 such that for r ∈ (0, δ(ε)) we have,t

k(r)− k(δ(ε)) =−
∫ r

δ(ε)

k′(s)ds =

∫ r

δ(ε)

∫ s

δ(ε)

k′′(t)dtds+ (r − δ(ε))k′(δ(ε))

& ε−1r2−d/γ + 1,

which contradicts the fact that k(r) = O(r2−d/γ) as r → 0 by Lemma 35.

The assertion regarding ∇K is proved in the same fashion.
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