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Abstract of the Dissertation

Part I: A Virtual Node Method for Elliptic

Interface Problems

Part II: Local and Global Theory of

Aggregation Equations with Nonlinear Diffusion

by

Jacob Bedrossian

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2011

Professor Andrea Bertozzi, Co-chair

Professor Joseph Teran, Co-chair

In Part I, the author presents an accurate and efficient method for solving elliptic

interface problems or elliptic problems in irregular domains. Such problems occur

in a wide variety of applications in physics and engineering and are regarded as

computationally difficult, particularly when the interface or boundaries are mov-

ing. The work is in collaboration with James H. von Brecht, Siwei Zhu, Eftychios

Sifakis and Joseph Teran and appears also in the publication [19]. We introduce

a second order virtual node method for approximating elliptic interface problems

on a uniform Cartesian grid. The use of a regular Cartesian grid simplifies the

implementation and permits straightforward Lagrange multiplier spaces while re-

taining second order accuracy in L∞ in numerical experiments. Our approach

uses duplicated Cartesian bilinear elements along the interface to introduce ad-

ditional “virtual” nodes that accurately account for the lack of regularity across

the surface.

xii



Part II discusses the work undertaken by the author and his collaborators

Nancy Rodŕıguez and Andrea Bertozzi on the class of aggregation equations with

nonlinear diffusion, which represent a generalization of the classical parabolic-

elliptic Patlak-Keller-Segel system for chemotaxis. These models represent the

competition between nonlocal self-attraction and diffusion. Local theory, such

as existence, uniqueness and continuation is first discussed. A suitable notion

of L1-criticality is introduced for inhomogeneous problems and the sharp critical

mass is identified: uniform bounds L∞ are derived for solutions to subcritical

problems and critical problems with less than critical mass and finite time blow-

up is derived for a class of supercritical problems and critical problems with larger

than critical mass. Global, dissipating solutions are constructed under certain,

reasonably general hypotheses and the asymptotic profiles are shown to agree with

the self-similar Barenblatt solutions to the homogeneous diffusion equations.
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Part I

A Virtual Node Method for

Elliptic Interface Problems
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CHAPTER 1

Introduction

1.1 Introduction

Interface problems have a wide variety of applications in physics and engineering,

and naturally arise when two dissimilar materials interact across a thin interface.

Common examples include immiscible, incompressible fluids in contact and phase

change problems. Despite being common, they remain notoriously difficult to

tackle, as the geometry of the domain and regularity of coefficients affect even

linear PDE in a subtle and highly nonlinear fashion. Real world applications are

generally far beyond the reach of most analytic tools, and numerical simulation

is the only way to approach such problems in practice. However, these problems

pose serious difficulties for traditional numerical methods, which generally do

not cope well with irregular geometries and coefficients with low regularity. In

this part of the dissertation we detail the work undertaken by the author and his

collaborators James H. von Brecht, Siwei Zhu, Eftychios Sifakis and Joseph Teran

on the design of a higher order accurate numerical method for elliptic problems in

the presence of interfaces and irregular boundaries in two dimensions, published

here [19].
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The elliptic interface problem

−∇ · (β(x)∇u(x)) = f(x), x ∈ D \ Γ (1.1)

[u] = a(x) x ∈ Γ (1.2)

[β(x)∇u · n] = b(x) x ∈ Γ (1.3)

u = p(x) x ∈ ∂Dd (1.4)

β(x)∇u · n = q(x) x ∈ ∂Dn (1.5)

could arise either in quasistatic problems or in the discretization of time-dependent

problems. The interface Γ is generally a co-dimension one closed curve that

divides the domain into an interior D− and an exterior region D+ such that

D = D+ ∪D− ∪ Γ ⊂ R2 (see Figure 1.1). The scalar coefficient β and the source

term f can exhibit discontinuities across Γ, but have smooth restrictions β+, f+

to D+ and β−, f− to D−. We let n(x) denote the outward unit normal to D−

at a point x ∈ Γ, and define [v](x) := v+(x) − v−(x) := limε→0+ v(x + εn(x)) −

limε→0+ v(x− εn(x)) as the “jump” of the quantity v across the interface Γ. The

relevant physics generally determine the jumps in the solution (1.2) and in the

flux (1.3), as well as the boundary conditions on ∂D. Unless stated otherwise,

we assume the curves Γ, ∂D are smooth.

Due to irregular geometry of the interface in many physical phenomena, a

natural approach to the numerical approximation is the finite element method

(FEM) with unstructured meshes that conform to the geometry of Γ [8, 43,

130, 105, 79, 63]. However, meshing complex interface geometries can prove

difficult and time-consuming when the interface frequently changes shape (espe-

cially in 3D). Also, many numerical methods, such as standard finite difference

schemes and geometric multigrid methods, do not naturally apply to unstruc-

tured meshes. These concerns motivated the development of “embedded” (or,

“immersed”) methods that approximate solutions to (1.1,1.2,1.3) on Cartesian

3
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(a) (b)

Figure 1.1: Graphical depiction of the problems (1-5). The image on the left

depicts the relevant domains for interface problems, and the image on the right

depicts the domain for embedded boundary problems.

grids or structured meshes that do not conform to the interface. Despite ad-

vances in this direction, embedded methods that retain higher order accuracy in

L∞ typically introduce relatively difficult linear algebra problems and complex

implementations that sometimes require significant effort to adapt to general

applications.

We introduce a second order virtual node method for approximating the ellip-

tic interface problem (1.1,1.2,1.3) with irregular embedded Neumann and Dirich-

let boundaries on a uniform Cartesian grid. We use a regular Cartesian grid

because it simplifies the implementation, permits straightforward Lagrange mul-

tiplier spaces and achieves higher order accuracy in L∞. Our approach uses du-

plicated Cartesian bilinear elements along the interface to introduce additional

“virtual” nodes that accurately account for the lack of regularity. From a theory

perspective, the method a mixed FEM, as it uses Lagrange multipliers to enforce

embedded Dirichlet conditions and the jump conditions (1.2) weakly. However,

4



as we shall see, we have mitigated most of the associated negative stereotypes, in

particular, our choice of Lagrange multiplier space will admit a symmetric posi-

tive definite discretization and the use of regular Cartesian elements capable of

treating irregular geometry eliminates meshing and deformed elements. For this

reason, in the exposition we will not overly emphasize the FEM viewpoint. For

the special case of smooth coefficients β, we present a novel ‘discontinuity removal’

technique to allow the use of the standard 5-point difference stencil everywhere in

the domain. This is unlike the numerous FEM approaches that use similar virtual

node representations on unstructured meshes [96, 97, 188, 78, 186, 164, 14, 180],

as although some finite difference methods possess the notable advantage of dis-

continuity removal [144], to our knowledge a technique that retains the original

system matrix has previously been largely unexplored in the FEM frameworks.

It will be apparent that our discontinuity removal technique is not limited to

our choice of Cartesian elements, and should be applicable in other contexts and

unstructured meshes. In all cases, our method yields the standard 5-point dif-

ference stencil away from the boundaries and interfaces. Numerical experiments

indicate second order accuracy in L∞. A notable quality of this method is that

the higher-order accuracy is essentially attained simply by a geometric refinement

of the standard Cartesian bilinear element discretization, making the method in-

tuitive to implement and understand conceptually, which may not be true of

other higher order elliptic interface methods.

1.2 Existing Numerical Methods

The Immersed Interfaced Method (IIM) is perhaps the most popular finite differ-

ence method for approximating (1.1,1.2,1.3) to second order accuracy. LeVeque

and Li first proposed the IIM for approximating elliptic interface problems in

5



[136] and the term now applies to a widely researched and extensively applied

class of finite difference methods [137, 196, 133, 211, 210, 145, 134]. See [144]

and the references therein for a complete exposition of the method and its nu-

merous applications, and [16] for justification of the general IIM approach. Using

generalized Taylor expansions, the original IIM adaptively modifies the stencil

to obtain O(h) truncation error along the interface. For smooth β, this re-

duces to the standard 5-point finite difference stencil, but otherwise results in

a non-symmetric discretization that follows from locally solving constrained op-

timization problems that enforce a discrete maximum principle [143]. The IIM

also generally requires the evaluation of higher-order jump conditions and surface

derivatives along the interface. This can lead to difficulty in implementation, es-

pecially in 3D [70, 211, 144, 210]. The piecewise-polynomial interface method of

[62] is a notable new approach to the IIM that does not require the derivation of

additional jump conditions and accurately treats complex interfaces. The works

of [206, 24, 141, 1, 144] describe other various attempts to improve the efficiency

and reduce the complexity of the IIM.

Extrapolation based finite difference schemes such as [151, 64, 216, 89, 88, 110]

introduce fictitious points along coordinate axes and use the known jump con-

ditions to determine their values. The Ghost Fluid Method (GFM) of [151]

exemplifies such methods. For two and three dimensional problems, the GFM

neglects the tangential flux terms [β∇u · τ ] in determining the fictitious values,

resulting in a symmetric positive definite but first order [152] method. Various

approaches attain higher order accuracy by accounting for the tangential flux

in the finite difference framework, often sacrificing simplicity and symmetry of

discretization in the process. For instance, the Coupling Interface Method (CIM)

proposed in [64] extends the GFM to higher dimensions by using a second order

extension at most grid points, but reverting to a first order method at grid points

6



where the second order extension cannot apply. The method couples jump con-

ditions in different directions to express the tangential derivatives, and the use

of one-sided differences results in a non-symmetric discretization. Similarly, the

Matched Interface and Boundary (MIB) method [216] uses higher order extrapo-

lations of the solution matched with higher order one-sided discretizations of the

jump conditions to determine the values at fictitious points. The MIB method

accounts for non-zero [β∇u · τ ] by differentiating the given jump conditions using

one-sided interpolations. This widens the stencil in several directions that depend

on the local geometry, and results in a non-symmetric discretization. The work

of [215] extended the MIB to handle high curvature geometry, and [213] provides

a 3D version. In [104] Hou and Liu also use techniques seemingly inspired by

the analysis of the original GFM approach done in [152]. They develop a second

order variational GFM by altering finite element interpolating functions to cap-

ture the jump conditions in the solution. Their approach is remarkably robust to

non-smooth interface geometry, but results in a non-symmetric discretization in

the general case. The recent works of [167, 172] treated the cases of Robin and

Neumann boundary conditions by altering the 5-point stencil along the boundary

using a finite volume like approach. This results in an symmetric positive definite

discretization.

Ideas similar to the extrapolation based finite difference schemes have also

seen extensive use in FEM, for instance in the fictitious domain methods for em-

bedded boundary problems [90, 173, 165, 78, 4, 212, 138, 77, 129] or the ‘extended

finite element methods’ (XFEM) [21, 163, 68, 162, 108, 92, 161] [200]1. Fictitious

domain methods handle embedded boundaries by including every element that

intersects the interface into the discretization. This naturally introduces “virtual

nodes” (or “ghost nodes”) into the resulting discretization. The XFEM “enriches”

1See [15] for corrections to IIM convergence estimates
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the standard finite element basis with additional discontinuous basis functions,

thereby introducing new degrees of freedom. These basis functions exist only at

the nodes of elements that intersect the interface, and usually are the standard

basis elements multiplied by a generalized Heaviside function. The methods of

[96, 97, 188, 78, 98, 14, 180] introduce a related virtual node concept to provide

the additional degrees of freedom required to represent the discontinuities. The

most straightforward implementation of this virtual node concept [97, 188, 78]

yields a representation equivalent to the standard Heaviside enrichment of the

XFEM. However, this approach generalizes to the slightly richer representations

of [186, 164, 180] that attain more geometric detail, particularly when dealing

with coarse grids and non-smooth interfaces. Moreover, virtual node representa-

tions are considered more geometrically intuitive and easier to incorporate into

existing FEM code [78, 188, 180] than traditional Heaviside enrichment.

The solution spaces of these FEM approaches generally do not satisfy the

embedded boundary or interface conditions. Thus, these methods impose lin-

ear constraints with either penalty methods or Lagrange multipliers to enforce

the conditions in some weak sense. For example, see [90, 173, 165, 78] and

the references therein. When using Lagrange multipliers, the Ladyzhenskaya-

Babus̆ka-Brezzi inf-sup conditions place stringent limitations on the types of con-

straints that will retain optimal convergence rates of the approximation spaces

[9, 178, 138, 61, 161, 165]. Such inf-sup restrictions generally limit the strength

of the Lagrange multiplier space relative to the solution approximation space.

For certain elements, designing the proper approximation spaces is a non-trivial

task [161, 108]. Moreover, the use of Lagrange multipliers requires the solution of

an indefinite saddle point system that can potentially introduce significant cost.

Applying stabilization through a consistent penalty method, such as Nitsche’s

method, presents an alternative approach [98, 78, 77, 165, 97]. However, these

8



can have adverse effects on conditioning and require the determination of the sta-

bilization parameters. Instead of using Lagrange multipliers or stabilization, the

methods of [128, 83, 142, 146, 104] alter the basis functions to either satisfy the

constraints directly, or simplify the process of doing so. In this regard, such meth-

ods represent the finite element analogues of the IIM, especially [104, 142, 146].

The discontinuous Galerkin method of [138] and the broken nonconforming ele-

ment method of [129] are also interesting alternatives that may be rather closely

related to virtual node methods on further investigation, as the increase in de-

grees of freedom capable of capturing the geometric irregularities is the principle

aim here as well.

The method of [109] offers a finite volume approach to embedded bound-

ary problems. Like some fictitious domain methods, XFEM and our virtual node

method, this method uses partially empty cells along the boundary. However, the

one-sided quadratic interpolations used to compute the fluxes along the boundary

yield a non-symmetric system. See [183] for a more recent 3D version applied

to Poisson’s equation and the heat equation. In [168], Oevermann and Klein

proposed a second order finite volume method for interface problems, and sim-

plified and extended their method to 3D in [169]. In an approach similar to ours,

any Cartesian cell that intersects the interface yields a distinct bilinear (or tri-

linear) representation of the solution. The jump conditions are then built into

the difference stencil by locally solving constrained overdetermined systems. An

asymptotic technique resolves the problem of vanishing cell volumes, though it

requires specific treatment for each possible cell geometry. The resulting system

is non-symmetric for the general case of [β] 6= 0.

When [β] 6= 0 the majority of these second-order methods do not retain a

symmetric positive definite stencil. While the FEM approaches that use stabi-

9



lization do retain a symmetric positive definite discretization [78], generally the

FEM that use Lagrange multipliers, such as [68], result in a symmetric indefi-

nite discretization. Although we use Lagrange multipliers, we present a simple

method of reducing the indefinite system to a symmetric positive definite system

using a null-space method (described below in §2.0.2). On the other hand, when

the coefficient β is smooth across the interface, methods such as the original IIM

achieve second order accuracy by only altering the right hand side of the system.

For this case, we present a method that uses the virtual node framework that

also retains the original left hand side (described below in §2.0.3.1).
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CHAPTER 2

Description of the Method

Our method naturally handles both interfacial discontinuities and irregular do-

mains embedded in a Cartesian grid. In fact, a slight modification of our approach

to embedded boundary conditions yields our method for interfacial discontinu-

ities. Furthermore, our treatment of embedded Dirichlet boundary conditions is

just a slight modification of our treatment of embedded Neumann boundary con-

ditions. Therefore, we first present our method for embedded Neumann boundary

conditions followed by our method for Dirichlet boundary conditions and then

finally present our approach to interfacial discontinuities.

2.0.1 Embedded Neumann

Our approach to solving embedded Neumann problems is very similar to that

proposed by Almgren et. al. in [4], as well as some XFEM approaches, e.g. [68].

The recent methods proposed in [167] and [172] are comparable in accuracy to

our method and are straightforward to implement.

Similar to [4], we discretize the embedded Neumann problem,

−∇ · (β(x)∇u(x)) = f(x), x ∈ D (2.1)

β(x)∇u · n = q(x) x ∈ ∂D, (2.2)

over a regular Cartesian grid (one that does not have to conform to ∂D) using

the energy minimization form of (2.1,2.2):

11



over all u ∈ H1(D), minimize

E(u) = e(u)− (f, u)D − (q, u)∂D =

∫
D

1

2
∇u · β∇udx−

∫
D

fudx−
∫
∂D

qudS.

(2.3)

We begin by embedding the domain D in a regular Cartesian grid Gh with grid-

spacing ∆y = ∆x = h. We include all Cartesian cells (or elements) ck that

intersect D in the discretization, and refer to this set Ch = {ck ∩D 6= ∅} ⊂ Gh

as the “computational domain” (see Figure 2.1). Also, we define the set of all

cells that intersect the boundary as Ch∂D = {ck ∩ ∂D 6= ∅} ⊂ Ch. We define

the solution space Vh ⊂ H1(D) as the space of continuous functions that are

bilinear over each cell ck ∈ Ch. This approximation includes some partially

empty cells that intersect the boundary and introduces “virtual” grid nodes (and

virtual degrees of freedom) that lie outside of the domain. See Figure 2.2 for a

diagram labeling the degrees of freedom along a typical boundary. We refer to

the portion of the cell that lies in the domain D as the “material” region, and use

the term “material” nodes to describe grid nodes lying inside D. For uh ∈ Vh,

we write uh(x) =
∑n

i=1 uiNi(x) for ~u = (u1, ..., un) ∈ Rn where Ni(x) are the

standard piecewise bilinear interpolation basis functions associated with the grid

nodes. Here, n denotes the number of degrees of freedom in the discretization

and corresponds to the number of grid nodes that compose the cells of Ch.

Using the virtual node representation, we define a discrete energy Eh(uh) over

uh ∈ Vh. Although we could discretize the energy directly with the piecewise

bilinear representation, this would result in a second-order 9-point stencil away

from the interface (as in [4]). To retain the standard 5-point difference stencil

away from the boundary we use different definitions of the energy over Ch \ Ch∂D

12



Figure 2.1: Embedding D in a Cartesian grid. The computational domain con-

sists of all cells ck ∈ Gh that intersect D. Such cells are outlined in bold. This

procedure introduces virtual degrees of freedom into the discretization, namely

those nodes in the bold grid that do not lie in the shaded domain D itself.

and Ch∂D,

Eh(uh) =
∑

ck∈Ch\Ch∂D

eck(uh)−(f, uh)ckD +
∑

ck∈Ch∂D

ẽck(uh)−(f, uh)ckD−(q, uh)ck∂D, (2.4)

where the superscripts denote restriction to cell ck. Over cells ck ∈ Ch \ Ch∂D that

do not intersect the boundary, we define eck(uh) as

eck(uh) =
βh2

4

{(
ui+1,j − ui,j

h

)2

+

(
ui,j+1 − ui,j

h

)2
}

+
βh2

4

{(
ui+1,j+1 − ui+1,j

h

)2

+

(
ui+1,j+1 − ui,j+1

h

)2
}
. (2.5)

Here β denotes the cell average, and {up,q} denote the degrees of freedom at the

four corners of the cell. If a cell ck ∈ Ch∂D, i.e. the cell intersects the boundary,

then we use the Cartesian bilinear representation to define ẽck(uh). If we let

{Np,q} denote the bilinear basis functions associated with the four corners of the

13
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Figure 2.2: Illustration of the interior and boundary stencils. The black degrees

of freedom have a modified stencil; the stencil is unaltered at the white degrees of

freedom. On the left, the nodes marked with an X contribute a non-zero entry to

the stencil for the center node via the cell-wise energies. The right figure depicts

the 5-point stencil for the center node that results from the definition of ecki .
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cell, this yields the discretization

ẽck(uh) =
1

2

∑
r,s,r′,s′∈{0,1}

ui+r,j+sui+r′,j+s′

∫
ck∩D

β∇Ni+r,j+s · ∇Ni+r′,j+s′dx. (2.6)

We evaluate the integrals analytically using the divergence theorem based on

a polygonal representation of ∂D as in Almgren et. al. [4]. See Figure 2.3

and §3.1 where the procedure is described in more detail. The tilde denotes

the different discretizations of the energy over cells that intersect the boundary.

Notice we evaluate each integral only over the portion of the cell that lies within

the domain. Similarly, as in [168, 169] we define the cell average β as the average

only over ck ∩D. We discretize the other forms cell-wise as

(f, uh)ckD =
∑

r,s∈{0,1}

ui+r,j+s

∫
ck∩D

fNi+r,j+sdx (2.7)

(q, uh)ck∂D =
∑

r,s∈{0,1}

ui+r,j+s

∫
ck∩∂D

qNi+r,j+sdS. (2.8)

Here f is the average source over ck ∩ D and q is the average normal flux over

ck ∩ ∂D. Again, we evaluate the integrals analytically, applying the divergence

theorem where necessary. We minimize the discrete energy (2.4) by solving the

linear system

A~u = ~f, (2.9)

Aij =
∂2

∂ui∂uj
Eh(uh), (2.10)

fi =
∂

∂ui
((f, uh)D + (q, uh)∂D) (2.11)

for the vector ~u. We use the standard FEM term “stiffness matrix” to refer to

the matrix A, and it is clear from the derivation that A is symmetric and positive

semi-definite. With this approach, our definition of the energy (2.6) results in

a slightly denser stencil near the boundary, as all four degrees of freedom in a

15



xk1 xk2

xk3xk4

xc

xc

Figure 2.3: Polygonal representation of ∂D. We compute the modified stencil

analytically by using the divergence theorem on the material region D ∩ ck in

each cell. Here, pn(x) and qn(y) denote appropriate polynomials of order n in a

single variable. Notice the relatively small area of the material region in the top,

right cell. As this area approaches zero, the virtual node at the top, right of this

cell introduces ill-conditioning into the stiffness matrix.
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cell couple together if ∂D passes through that cell. See Figure 2.2 for a graphical

depiction of the stencil definitions and the sparsity pattern of the stiffness matrix.

In §3.1, the practical construction of A and ~f is given in more detail.

We should note that the conditioning of the stiffness matrix may deteriorate

when cells have very small material regions. This arises from the increasing

irrelevance of virtual degrees of freedom (see the upper right node in Figure

2.3). The respective row and column in A and the corresponding entry in ~f all

approach zero simultaneously, however simple Jacobi preconditioning eliminated

serious conditioning issues in our numerical experiments.

2.0.2 Embedded Dirichlet

In this section, we detail how a slight modification of our embedded Neumann

approach allows us to solve embedded Dirichlet problems

−∇ · (β(x)∇u(x)) = f(x), x ∈ D (2.12)

u = p(x) x ∈ ∂D, (2.13)

within our virtual node framework. Although alternatives that are easier to im-

plement exist for this particular problem, for instance [89], a straightforward com-

bination of our embedded Neumann and embedded Dirichlet approaches yields

our method for embedded interface problems. This results in a method that en-

capsulates all types of boundary conditions in a unified framework.

For the embedded Dirichlet case, we use the constrained minimization prob-

lem:

over all u ∈ H1(D), minimize

17



E(u) =e(u)− (f, u)D such that (2.14)

(u, µ)∂D =(p, µ)∂D ∀µ ∈ H−1/2(∂D). (2.15)

We discretize the energy (2.14) exactly as in the Neumann case, so the only

difference comes in discretizing the constraints (2.15). We proceed by selecting a

finite dimensional subspace Λh ⊂ H−1/2(∂D), and enforce (2.15) for all µh ∈ Λh.

Not all plausible choices will yield an acceptably accurate approximation, as in

general (Λh,Vh) must satisfy an inf-sup stability criterion to retain the optimal

convergence rates of the approximation spaces [178]. One suitable choice for Λh,

used for instance by the XFEM [200], defines µh as piecewise-constant over the

intersection of ∂Ω with each Cartesian cell (see Figure 2.4). In other words, we

define µh ∈ Λh as

µh(x) =
∑
ci∈Ch∂D

µi χci∩∂D(x),

where the sum ranges over all Cartesian cells ci that intersect the boundary

(ci ∈ Ch∂D) and the characteristic functions χci∩∂D are given by

χci∩∂D(x) =

 1 x ∈ ci ∩ ∂D

0 x /∈ ci ∩ ∂D.

With this choice of Λh, satisfying (2.15) for all µh yields a set of sparse linear

constraints B~u = ~p on the coefficient vector of the approximate solution uh. Each

row of the matrix B corresponds to a Cartesian cell ci ∈ Ch∂D (see Figure 2.4),

and enforces the condition∫
ci∩∂D

uh(x) dS =

∫
ci∩∂D

p(x) dS.

Therefore, if Ch∂D = {c1, . . . , cm} and ~u ∈ Rn, then B ∈ Rm×n and

Bij =

∫
ci∩∂D

Nj(x) dS

18



(a) (b)

Figure 2.4: Lagrange Multiplier spaces. On the left: functions in Λh are piecewise

constant over the intersection of the boldly outlined cells ci ∈ Ch∂D with the

boundary ∂D. On the right: functions in Λ2h are piecewise constant over the

intersection of the coarser bold cells ĉi ∈ C2h
∂D with the boundary ∂D. In the

image on the right, the bold black lines mark the cells ĉi ∈ G2h.
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for each Cartesian bilinear basis function Nj(x). The corresponding entry in ~p is

pi =

∫
ci∩∂D

p(x) dS.

Again, we compute these integrals analytically. Discretizing (2.14,2.15) thus gives

rise to the quadratic program:

minimize over ~u ∈ Rn

Eh(uh) = e(uh)− (f, uh)D =
1

2
~utA~u− ~f t~u (2.16)

subject to B~u = ~p.

The matrix A and the vector ~f carry over exactly from the embedded Neumann

case described in §2.0.1.

Unfortunately, solving this problem efficiently can require some care. While

many approaches exist for solving minimization problems of the form (2.16) or

the equivalent saddle-point systemA Bt

B 0

~u
~λ

 =

~f

~p

 ,

we use a null-space method to retain a symmetric positive definite discretization.

See [23] for a survey of alternative approaches. For any matrix Z whose columns

span the null-space of B, and any vector ~c satisfying B~c = ~p,

~u = ~c+ Z(ZtAZ)−1Zt(~f − A~c) (2.17)

uniquely solves (2.16). Therefore, given a null-basis Z and a particular solution

~c ∈ Rn satisfying B~c = ~p, we solve the quadratic program (2.16) by solving the

symmetric positive definite system ZtAZ~v = Zt(~f − A~c). The null-space of A is

spanned by the vector (1, 1, ..., 1)t ∈ Rn and the entries of B are all non-negative
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so ker(A) ∩ ker(B) =
{
~0
}

. Therefore, ZtAZ > 0 so we can use straightforward

methods such as Conjugate Gradient to solve the symmetric positive definite

linear algebra problem. However, obtaining Z through computational methods

such as QR factorization or the SVD can prove costly, and moreover produce

dense representations of Z.

A fundamental basis presents an alternative to numerical factorization [23].

The matrix B is full rank if and only if an ordering of the degrees of freedom

exists so that B = (Bm|Bn−m) for some m × m non-singular matrix Bm. Any

such ordering gives the corresponding fundamental basis

Z =

−B−1
m Bn−m

In−m

 . (2.18)

Clearly, BZ = 0 and ~c =

B−1
m ~p

0

 satisfiesB~c = ~p. Note this approach is nothing

more than the straightforward elimination of degrees of freedom by writing them

in terms of the constraints and other degrees of freedom. If we can solve systems

of the form

Bm~x = ~d, (2.19)

efficiently, we can store the factors Bm, Bn−m, A sparsely and compute the action

of ZtAZ readily (e.g. for use in Conjugate Gradient). Regardless of the choice

of Bm, the symmetric positive definite stencil defined by ZtAZ coincides with

the standard 5-point stencil for all degrees of freedom sufficiently far from the

interface.

We now show that the rows and columns of the matrix B can be re-ordered

to produce a non-singular, upper triangular matrix Bm. Specifically, ordering the

cut-cells {c1, . . . , cm} = Ch∂D lexicographically, and then selecting the lower-left

node of the ith cut-cell as the ith degree of freedom (thus reordering the rows in

21



1

2

3

4

5

7

8

9

10

11

12

13

14

15

16 19 25

17

24

23

22 28 32

31

30

29

2621

206 18

27

(a)

1

2

3

4

5

6

7

8

9

(b)

Figure 2.5: Upper triangular ordering. The cell-centered numbers in figure (a)

indicate the ordering of the cells ck ∈ Ch∂D. The nodal numbers in figure (b)

indicate the corresponding ordering for the first 9 degrees of freedom.

A, B and ~u), gives B = (Bm|Bn−m) with Bm upper triangular and non-singular

(see Figure 2.5). Unfortunately, despite the convenient triangular structure of

Bm, prohibitively large numerical error persists when solving (2.19), even on

relatively coarse grids. As the interface in a given cell recedes from the lower-

left node of that cell (for instance, cells and nodes 1,4,5,9,11,14,17,18,19,21,22,23,

or 29 in Figure 2.5), the corresponding row in Bm has off-diagonal entries with

substantially larger magnitude than the diagonal entry of that row. Generally,
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enough rows of this type exist so that Bm behaves much like the matrix

C =



1 2 0 0 · · · 0

0 1 2 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 1 2 0

0 · · · · · · 0 1 2

0 0 · · · · · · 0 1


.

Considering the linear system Cx = ~em with ~em = (0, . . . , 0, 1)t illuminates the

source of this error. Indeed, in this case ‖C−1 ~em‖∞ grows like 2m. The forward

substitutions with Bt
m, needed for Zt multiplies, also exhibit this behavior. As m

increases under grid refinement, these behaviors quickly (in some cases, anything

finer than a 64x64 grid) dominate machine precision. In practice, scalar multiples

of ~em always appear in Bn−m, making such a Bm practically unusable in a null-

space method. Moreover, this problem persists in all similar constructions of Bm

(different orderings, node choices, etc).

For this reason, we use an alternative approximation to H−1/2 (∂D) that pro-

duces a different set of linear constraints. Our choice permits an ordering of B

with a non-singular, diagonal sub-matrix Bm. If we enforce one constraint per

cell as above, then in general there do not exist m degrees of freedom that each

only participate in one constraint, so that no ordering could produce a diagonal

matrix Bm. Motivated by this observation, we approximate H−1/2(∂D) using

Λ2h, the space of Lagrange multipliers corresponding to the grid G2h. That is,

for every µh ∈ Λ2h,

µh(x) =
∑

ĉk∈C2h∂D

µkχĉk∩∂D(x).
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Figure 2.6: Diagonal ordering scheme. We enforce one constraint per coarse

cell, enumerated in the image on the left. In the image on the right, we index

the degrees of freedom at the centers of the coarse cells by the corresponding

constraint indices. This gives a constraint matrix B with a diagonal sub-matrix

Bm. Note that this gives a slightly denser Bn−m, since now as many as 9 degrees

of freedom may contribute to a given row for embedded Dirichlet problems.
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Thus, each row of B now enforces the condition∫
ĉk∩∂D

uh(x) dS =

∫
ĉk∩∂D

p(x) dS,

for each of the cells ĉk ∈ C2h
∂D = {ĉ1, ĉ2, ..., ĉm} (see Figure 2.4) that intersect the

boundary. In the figure, each of the cells in the grid G2h is the union of 4 cells in

the grid Gh, so that at the center of each cell ĉk ∈ G2h lies a degree of freedom uk

whose associated nodal basis function Nk vanishes outside the cell ĉk. Therefore

for each cell ĉk ∈ C2h
∂D we choose this central degree of freedom as the kth in our

reordering. As such, ∫
ĉi∩∂D

NkdS = 0, ∀i 6= k, 1 ≤ i ≤ m. (2.20)

See Figure 2.6 for a pictorial description of this ordering. Clearly, this gives

B = (Bm|Bn−m) with Bm diagonal and non-singular. We then use the corre-

sponding fundamental basis (2.18) to trivially reduce the saddle-point problem

to the symmetric positive definite system ZtAZ~v = Zt(~f − A~c) by applying the

null-space method (2.17).

2.0.3 Embedded Interface

To handle the full elliptic interface problem (1.1,1.2,1.3), we combine our embed-

ded Neumann and embedded Dirichlet approaches in a straightforward way. We

consider the equivalent minimization form of the problem (1.1,1.2,1.3):

over all u ∈ V = {u : u± ∈ H1(D±)}, minimize

E(u) = e(u)− (f, u)D − (b, u)Γ =

∫
D+∪D−

1

2
∇u · β∇udx−

∫
D

fudx−
∫

Γ

budS

(2.21)

such that ([u], µ)Γ =(a, µ)Γ ∀µ ∈ H−1/2(Γ). (2.22)
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Here u(x)|Γ = (u++u−)/2. As before, we define discretizations of V and H−1/2(Γ)

and then solve the resulting discrete saddle-point problem. To define Vh ⊂

V, we separately discretize H1(D+) and H1(D−) using the same virtual node

representation used to discretize the embedded Neumann problem. This will

naturally introduce duplicate Cartesian cells that intersect the boundary, with

independent copies associated with the interior and exterior discretizations (see

Figure 2.7). This discretization results in the block diagonal stiffness matrix for

the interface problem,

A =

A+ 0

0 A−

 ,

where A+ is the stiffness matrix associated with the embedded Neumann problem

on D+ and A− is the stiffness matrix associated with the embedded Neumann

problem on D−, as described in §2.0.1.

Similarly, along the interface we make the same choice of discrete Lagrange

multiplier space as before, so that over every cell ĉk ∈ C2h
Γ ,∫

ĉk∩Γ

[uh]dS =

∫
ĉk∩Γ

adS.

This results in the block interface constraint matrix B = (B+| − B−), where

B± is respectively the constraint matrix associated with the embedded Dirich-

let problem on the exterior or interior of the interface. In other words, Bij =∫
ĉi∩Γ

sign(j)Nj(x)dS, where sign(j) = 1 if degree of freedom j is associated with

u+,h and sign(j) = −1 if degree of freedom j is associated with u−,h. These

discretization choices give the saddle-point problem
A+ 0 B+t

0 A− −B−t

B+ −B− 0



~u+

~u−

~λ

 =


~f+

~f−

~a

 , (2.23)
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where ~u+ contains the degrees of freedom associated with the nodal values of

the exterior discretization and ~u− contains the degrees of freedom associated

with the nodal values of the interior discretization. We once again solve the

saddle-point system using the null-space method described above in §2.0.2 by

defining an ordering B = (Bm|Bn−m) with Bm diagonal. Given any ordering for

the constraints, we choose the virtual degree of freedom at the center of the ith

cell ĉi ∈ C2h
Γ as the ith degree of freedom in our ordering. See Figures 2.6,2.7

and section §2.0.2 for more information. There are always at least two degrees

of freedom associated with the center node. We choose the virtual degree of

freedom as this results in a system ZtAZ with significantly better conditioning

in practice.

2.0.3.1 Virtual node discontinuity removal

In general, our proposed method requires the solution of the symmetric positive

definite system ZtAZ. However, if the coefficient β is smooth, the IIM and similar

methods achieve uniform second order accuracy without altering the original 5-

point difference stencil. In this section, we demonstrate how the virtual node

framework similarly allows the use of the 5-point difference stencil for continuous

coefficients. For simplicity of exposition, we assume β(x) ≡ 1 for the rest of this

section.

Suppose c(x) ∈ V is constructed to satisfy the jump conditions (1.2,1.3) and

u(x) is the exact solution. Then as [β] = 0, the difference w(x) := u(x) − c(x)

satisfies [β∇w · n] = β[∇w · n] = 0 and [w] = 0. Since w satisfies homogeneous

jump conditions [∇w · n] = 0 and [w] = 0, we do not require virtual nodes to

capture any discontinuities across Γ. In this manner, solving for w presents an

appealing alternative as the presence of virtual nodes no longer adversely affects
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Figure 2.7: In (a), the degrees of freedom lying on shaded cells define u−,h,

and in (b), the degrees of freedom lying on dashed cells define u+,h. Applying

our embedded Neumann approach on the shaded and dashed grids defines the

matrices A− and A+, respectively. Degrees of freedom associated with u−,h and

u+,h are collocated along the interface. These representations couple together in

the coarse cells outlined in Figure (c). Figure (d) depicts the overlapping domains

of definition of u−,h and u+,h in the coarse cells.
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the subsequent linear algebra problem. Therefore, when [β] = 0 we recover

an approximation to (1.2,1.3) by separately discretizing w and c, then setting

u = w + c.

We discretize w over the unduplicated grid Gh using H1(D) Cartesian piece-

wise bilinear elements. Consequently, if the grid Gh contains r material degrees

of freedom, then ~w ∈ Rr contains the coefficients in terms of the bilinear basis.

We discretize u and c using the full virtual node basis Vh as they possesses lower

regularity across Γ. With these choices, we can represent the coefficient vector

~u ∈ Rn (n > r) of the approximate solution uh in the basis of Vh as ~u = ~c+ T ~w,

where the matrix T ∈ Rn×r maps from the bilinear basis to the virtual node

basis. We determine this change of basis by a simple identification of virtual and

material nodes, as a function vh ∈ Vh satisfies homogeneous jump conditions if

and only if the value of the function vh at a virtual node always equals its value

at the associated material node. Therefore, T maps the value at a given node

in the original grid to every node, virtual or material, associated with the same

location in the virtual node basis.

Although any ordering of degrees of freedom will suffice to construct T , for

simplicity assume that

~u = (u1, u2, . . . , unv , unv+1, unv+2, . . . , u2nv , u2nv+1, . . . , un)t .

Here, {uk}nvk=1 represent the nv := n− r total coefficients of the virtual degrees of

freedom; unv+k, 1 ≤ k ≤ nv, represents the coefficient of the real degree of freedom

corresponding to the same physical node as uk; the remaining {uk}nk=2nv+1 degrees

of freedom do not lie on any cut-cells. Then

T =


Inv 0

Inv 0

0 In−2nv

 . (2.24)
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More generally, each column of T corresponds to a material node in the grid, and

each row of T corresponds to either a material node or a virtual node. Then the

column of T corresponding to a material node xl simply has a one in the column

corresponding to xl, a one in the column corresponding to any virtual node in

the same physical location (i.e. coordinates) as xl, and zeros otherwise.

Determining wh now proceeds in a manner analogous to the null-space method

used to solve (2.16): we wish to minimize the energy over all vectors of the form

~u = ~c + T ~w. For the following discussion, suppose we define the discrete en-

ergy (2.21) using the Cartesian bilinear representation everywhere in the domain.

Then substituting the expression for ~u into the energy (2.21) gives

Eh(~u) =
1

2
~wtT tAT ~w − ~f tT ~w + ~wtT tA~c+

1

2
~ctA~c− ~f t~c, (2.25)

which defines an energy only over the original, material degrees of freedom ~w ∈

Rr. Differentiation with respect to wi then leads to the linear system

T tAT ~w =T t(~f − A~c) (2.26)

~u =~c+ T ~w. (2.27)

Remarkably, the matrix T tAT is the straightforward discretization over the ma-

terial degrees of freedom, i.e. a 9-point, second order approximation to the Lapla-

cian. Moreover, as ~w corresponds to the material nodal values on a regular grid,

we may operate on it instead with the standard 5-point difference stencil ∆h and

solve the system

∆h ~w = T t(~f − A~c) (2.28)

to provide an approximate solution at all of the relevant real degrees of freedom.

This approach allows the application of efficient, black-box solvers for ∆h and only

requires constructing the right hand side of (2.28). Thus, the lack of regularity

in the problem no longer adversely affects the linear algebra.
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In principle, many different constructions could result in a satisfactory partic-

ular solution c. To minimize the computational effort, we construct a c supported

only along the interface. The time required to generate such a particular solution

contributes negligibly to the overall computational cost. We assume that D−

does not intersect the computational boundary and construct a particular solu-

tion c that vanishes on the exterior region. That is, c|D+ = 0 so that c|∂D = 0,

[c] = −c− = a, β[∇c · n] = −β∇c− · n = b. Therefore, we need only to de-

fine c− over those interior material and interior virtual nodes along the interface.

We performed this construction via bilinear least-squares extrapolation from the

known behavior along the interface.
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CHAPTER 3

Numerical Results

3.1 Implementation

In this section we detail a sample implementation of our method with the in-

terface represented as a level set φ, where D = {φ < 0} for irregular domain

problems and D− = {φ < 0} for embedded interface problems. We describe the

implementation for the embedded Dirichlet case D = {φ < 0}, since the interface

case is analogous.

First, we define the computational domain as those cells ck = {xk1 ,xk2 ,xk3 ,xk4}

where φ(xki) < 0 for at least one node xki . If φ(xki) < 0 for all 1 ≤ i ≤ 4 then ck

lies in Ch \ Ch∂D. Otherwise, the cell ck lies in Ch∂D. That is,

Ch = {ck = {xk1 ,xk2 ,xk3 ,xk4} : φ(xki) < 0 for at least one i} , (3.1)

Ch∂D =
{
ck ∈ Ch : φ(xki) > 0 for at least one i

}
, (3.2)

Ch \ Ch∂D =
{
ck ∈ Ch : φ(xki) < 0,∀i

}
. (3.3)

Next, we assemble the stiffness matrix A, the constraint matrix B, and the vectors

~f and ~a by looping over the cells ck ∈ Ch. The boundary contribution is described

in Step 1 and the interior contribution is described in Step 2. Notice that if a

node is not adjacent to any cell which is intersected by the boundary then the

5-point stencil is used.
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Step 1 Adding boundary contribution to A, ~f and B

for ck ∈ Ch∂D do

for 1 ≤ i, j ≤ 4 do

Akikj+ = β
∫
D∩ck
∇Nki · ∇Nkjdx {See Figure 2.3 for integration details}

end for

for 1 ≤ i ≤ 4 do

fki+ = f
∫
D∩ck

Nkidx {See Figure 2.3 for integration details}

l← index of the coarse cell containing ck {See Figure 2.6}

Blki+ =
∫
ck∩∂D

NkidS

al+ = a
∫
ck∩∂D

NkidS

end for

end for

Step 2 Adding interior contribution to A and ~f

for ck ∈ Ch \ Ch∂D do

for 1 ≤ i ≤ 4 do

Akiki+ = β

fki+ = .25h2f

for 1 ≤ j ≤ 4 do

if xki 6= xkj and are edge connected then

Akikj− = .5β

end if

end for

end for

end for
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We compute the area integrals using a polygonal representation of D∩ ck and

the divergence theorem. The set of vertices of the polygon consists of all nodes

with φ < 0, as well as the two crossings xc on the edges of the cell (see Figure

2.3). Given a pair of nodes xki and xkj with φ(xki)φ(xkj) < 0, we compute the

edge crossing as

θ =
φ(xki)

φ(xki)− φ(xkj)
,

xc = xkjθ + xki(1− θ).

The divergence theorem converts the area integral of the second order polyno-

mials ∇Nki · ∇Nkj over the irregular polygon into a line integral of third order

polynomials over the polygonal boundary (see Figure 2.3). The integrals of the

bilinear functions Nki over ∂D∩ ck are line integrals over the segment joining the

two edge crossings. The simple low-order polynomials are integrated over each

segment analytically.

The averages f, β and a are also required. When f is known at nodes, we use

bilinear interpolation to represent it over a cell ck, f |ck =
∑4

i=1 fkiNki(x). Then

f may be computed by integrating this bilinear function over the material region

and dividing by the area. These integrals are computed as an area integral using

the divergence theorem as above. Thus the average f is,

f =

∑4
i=1 fki

∫
D∩ck

Nkidx

Area(D ∩ ck)
=

∑4
i=1 fki

∫
D∩ck

Nkidx∑4
i=1

∫
D∩ck

Nkidx
. (3.4)

With A and B in hand, we re-order the degrees of freedom so that B =

(Bm|Bn−m) with Bm diagonal and non-singular. This amounts to finding the

index ki of the degree of freedom at the center of the lth coarse cell, then permuting

the degrees of freedom with indices l and ki (see Figure 2.6). Once we have re-

ordered the degrees of freedom, the fundamental basis Z and reduced constraints

~c can be easily computed (2.18). We then solve the system ZtAZ~v = Zt(~f −A~c)
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iteratively, performing multiplications with Z,Zt implicitly using the factors Bm

and Bn−m, and lastly recover the solution ~u = ~c+ Z~v.

3.2 Numerical Examples

This section presents a convergence test for each of the components of our method.

We first demonstrate the expected second order accuracy for embedded Neumann

and embedded Dirichlet problems in §3.2.1 and §3.2.2, respectively, and for in-

terface problems in §3.2.3. In §3.2.3.2 and §3.2.3.3 we examine the performance

of our method for the important special case when β exhibits a large jump across

the interface. Lastly, in §3.2.4 we demonstrate the effectiveness of this disconti-

nuity removal technique on a C0 Lipschitz segmented curve. The richer virtual

node representation, as in Figure 4.1, allows us to achieve second order results for

a non-smooth interface while still retaining the standard 5-point finite difference

stencil.

We ran all of the examples on a sequence of N ×N grids, for 80 ≤ N ≤ 800.

Each grid ranges from −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. The error plots depict

log10 ‖e‖L∞ versus log10N . The examples include both level set representations

and Lagrangian representations of the interface. For interfaces that have more

detail than the background grid can resolve, using a level set introduces non-

negligible geometric regularization. See §4 for a discussion of the geometric pre-

cision of our method.

We used the SuiteSparse [69] numerics library with the Goto BLAS in the

course of our research and to perform the extrapolations required for the discon-

tinuity removal example 3.2.4.
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3.2.1 Embedded Neumann

We demonstrate the method applied to the embedded Neumann problem

−∇ · β(x)∇u = f, ∀x ∈ D,

β(x)∇u · n = q(x), ∀x ∈ ∂Dn.

Here β(x) = 4 +x+y. We chose the parameters q and f using the exact solution

u = (x3 − y3) cos(x+ y).

The embedded Neumann boundary, ∂Dn, is given by the 5-pointed star with

vertices

t0 = .1243

ri = .35 + .3(i mod 2)

Xi = ri cos(
πi

5
+ t0)

Yi = ri sin(
πi

5
+ t0),

for 1 ≤ i ≤ 10, represented as a Lagrangian curve. See Figure 3.1 for the error

plot. A least squares regression estimates the order of accuracy as 1.95.

3.2.2 Embedded Dirichlet

We demonstrate the method applied to the embedded Dirichlet problem

∆u = 0, ∀x ∈ D,

u = p(x), ∀x ∈ ∂Dd = ∂D.

We chose the Dirichlet condition p using the chosen exact solution

u = x2 − y2.
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Figure 3.1: Numerical results for Example 3.2.1
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The embedded boundary ∂D is given by the curve

t0 = .00132

r0 = .02
√

5

r(t) = .5 + .2 sin(5t)

X(θ) = r0 + r(θ + t0) cos(θ + t0)

Y (θ) = r0 + r(θ + t0) sin(θ + t0),

represented as a Lagrangian curve. See Figure 3.2 for the error plot. A least

squares regression estimates the order of accuracy as 1.86.

3.2.3 Embedded Interface

3.2.3.1 Embedded Interface Example 1

We demonstrate the method applied to the embedded interface problem

−∇ · (β(x)∇u) = f(x), ∀x ∈ D \ Γ,

[u] = a(x),

[β(x)∇u · n] = b(x), ∀x ∈ Γ.

Here β(x) = 4 + sin(x+ y) in the interior and β(x) = 2 + x2 + y2 in the exterior.

We chose the parameters a, b and f using the exact solution

u− = cos(y) sin(x)

u+ = 1− x2 − y2.

The interface is given by the curve parametrized by

t0 = .45234
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Figure 3.2: Numerical results for Example 3.2.2
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θ(t) = t+ sin(4t)

r(t) = .60125 + .24012 cos(4t+ π/2)

X(t) = r(t+ t0) cos(θ(t+ t0))

Y (t) = r(t+ t0) sin(θ(t+ t0))

for 0 ≤ t ≤ 2π represented with a level set. See Figure 3.3 for a plot of the error

in the solution and in the gradient evaluated on the interface. A least squares

regression estimates the order of accuracy of the solution as 1.92 and the order

of accuracy of the gradient as .96. The gradient was evaluated point-wise at the

mid-point xM of the interface segment in each cell by differentiating the bilinear

basis elements, that is, ∇u(xM) =
∑4

i=1 ui∇Ni(xM).

3.2.3.2 Embedded Interface Example 2

In this example we examine the performance of the method in the case of when

the coefficient β has a large jump across the interface. The following example

was taken from [151]. We solve the interface problem

∇ · β(x)∇u = f, ∀x ∈ D \ Γ,

[u] = a(x),

[∇u · n] = b(x), ∀x ∈ Γ.

Here we take the coefficient to be piecewise constant, β(x) = β+ in the exterior

and β(x) = β− on the interior. We chose the parameters a, b and f using the

exact solution

u− = x2 + y2

u+ = .1(x2 + y2)2 − .01 ln(2
√
x2 + y2).
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Figure 3.3: Numerical results for Example 3.2.3
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The interface Γ is given by the curve used in example §3.2.2,

t0 = .00132

r0 = .02
√

5

r(t) = .5 + .2 sin(5t)

X(t) = r0 + r(t+ t0) cos(t+ t0)

Y (t) = r0 + r(t+ t0) sin(t+ t0),

for 0 ≤ t ≤ 2π. See Figures 3.4 and 3.5 for a plot of the error for three values

of the ratio β− : β + −, 1 : 10, 1 : 1000 and 1000 : 1. A least squares regression

estimated the order of accuracies as 1.94 for 1 : 10, 1.86 for 1 : 1000 and 1.77 for

1000 : 1.

See Figure 3.6 for the number of Conjugate Gradient iterations, computer

time in seconds and condition numbers of the linear systems before and after

incomplete Cholesky preconditioning. Figure 3.6 compares the performance to

the standard 5-point Laplacian on a square with no interface as a reference. All

tests were run with grid resolution 800 × 800 and to residual norm tolerance of

10−12. The linear system was solved using the PETSc Conjugate Gradient with

the PETSc incomplete Cholesky preconditioner [12, 11, 13]. The code was run in

serial on a 2.8 GHz laptop computer. All linear systems were normalized to have

a constant diagonal before the preconditioner was applied. The high coefficient

ratios incur a moderate cost but are still comparable to the standard 5-point

discretization.

3.2.3.3 Embedded Interface Example 3

In this example we again examine the performance of the method in the case

of when the coefficient β has a large jump across the interface. We solve the
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Figure 3.4: Numerical results for Example 3.2.3.2
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Figure 3.5: Numerical results for Example 3.2.3.2
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Case σmax

σmin
(before IC) σmax

σmin
(after IC) PCG iter Time(s)

1:1 7.60x105 3.42x104 1106 95.19

1000:1 4.43x108 2.13x107 1803 157.45

1:1000 6.45x105 4.59x104 1751 150.27

5-point stencil 2.58x105 2.28x104 723 60.23

Figure 3.6: Condition numbers of linear system and clock time of PCG at reso-

lution 800× 800 for Example §3.2.3.2

interface problem

∇ · β(x)∇u = f, ∀x ∈ D \ Γ,

[u] = a(x),

[∇u · n] = b(x), ∀x ∈ Γ.

Here we take the coefficient to be piecewise constant, β(x) = β+ in the exterior

and β(x) = β− on the interior. We chose the parameters a, b and f using the

exact solution

u− = x2 + y2 + 1

u+ = cos(x+ y)

The interface Γ is given by the curve,

θ0 = .00132

X(θ) = .6 cos(θ + θ0)− .3 cos(θ + θ0)

Y (θ) = .47 sin(θ + θ0)− .0047 sin(3θ − 3θ0) + .13 sin(7θ − 7θ0),

for 0 ≤ θ ≤ 2π. See Figures 3.7 and 3.8 for a plot of the error for three values

of the ratio β− : β+, 1 : 10, 1 : 1000 and 1000 : 1. A least squares regression
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Figure 3.7: Numerical results for Example 3.2.3.3

46



1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
log10(N)

�3.0
�2.5
�2.0
�1.5
�1.0
�0.5
0.0

lo
g
1
0
(|
e
|)

(a) Estimated order: 1.64, β− : β+ = 1 : 1000

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
log10(N)

�3.0
�2.5
�2.0
�1.5
�1.0
�0.5
0.0

lo
g
1
0
(|
e
|)

(b) Estimated order: 1.77, β− : β+ = 1000 : 1

Figure 3.8: Numerical results for Example 3.2.3.2
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estimated the order of accuracies as 1.90 for 1 : 10, 1.64 for 1 : 1000 and 1.77 for

1000 : 1.

See Figure 3.9 for the number of Conjugate Gradient iterations, computer

time in seconds and condition numbers of the linear systems before and after

incomplete Cholesky preconditioning. Figure 3.9 compares the performance to

the standard 5-point Laplacian on a square with no interface as a reference. All

tests were run with grid resolution 800 × 800 and to residual norm tolerance of

10−12. The linear system was solved using the PETSc Conjugate Gradient with

the PETSc incomplete Cholesky preconditioner [12, 11, 13]. The code was run in

serial on a 2.8 GHz laptop computer. All linear systems were normalized to have

a constant diagonal before the preconditioner was applied. The high coefficient

ratios incur a moderate cost but are still comparable to the standard 5-point

discretization.

Case σmax

σmin
(before IC) σmax

σmin
(after IC) PCG iter Time(s)

1:1 5.99x105 3.57x104 1082 82.97

1000:1 3.85x108 2.13x107 1802 138.04

1:1000 7.25x105 7.25x104 1915 145.78

5-point stencil 2.58x105 2.28x104 723 60.23

Figure 3.9: Condition numbers of linear system and clock time of PCG at reso-

lution 800× 800 for Example §3.2.3.3

3.2.4 Discontinuity Removal

We solve the interface problem

−∆u = f, ∀x ∈ D \ Γ,
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[u] = a(x),

[∇u · n] = b(x), ∀x ∈ Γ.

We chose the parameters a, b and f using the exact solution

u− = cos(y) sin(x)

u+ = 1− x2 − y2.

The interface is the segmented 5-pointed star with vertices

t0 = .1243

ri = .35 + .3(i mod 2)

Xi = ri cos(
πi

5
+ t0)

Yi = ri sin(
πi

5
+ t0),

for 1 ≤ i ≤ 10, represented with a Lagrangian curve. See Figure 3.10 for the

error plot. A least squares regression estimates the order of accuracy as 1.96.
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Figure 3.10: Numerical results for Example 3.2.4
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CHAPTER 4

Summary and Discussion

The proposed method uses a virtual node concept coupled with a Lagrange mul-

tiplier formulation to approximate the solution of the elliptic interface problem

(1.1,1.2,1.3) and the related embedded Neumann and Dirichlet problems. No-

tably, the symmetric positive definite discretization and intuitive, geometric na-

ture of the method make it relatively easy to implement. Numerical examples

suggest second order convergence in L∞.

Certain other FEM approaches that also use virtual nodes [96, 97, 188, 78,

14, 180] parallel our work in spirit and implementation. Moreover, for typical

geometric cases, virtual node representations yield the same space as those given

by Heaviside enrichment XFEM approaches [188]. Such methods generally use

lower-order triangular elements that do not permit the obvious choice of Lagrange

multiplier space Λh of one constraint per element [178]. Although the geometric

processing required to apply our method is relatively non-trivial, we contend

it is easier and more efficient than meshing with higher order finite elements,

particularly for the 3D extension recently developed by J. Hellrung, L. Wang, E.

Sifakis and J. Teran [99].

By design, our choice of Lagrange multiplier space eases the computational

effort and memory limitations imposed by the saddle-point problem at the cost

of accuracy, as the pairing (Vh,Λ2h) results in higher L∞ error than the choice

(Vh,Λh). Our numerical experiments indicate that our choice does not sacri-
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fice second order convergence. Generally the approximations of H−1/2 (∂D) and

H1(D) must satisfy an inf-sup condition uniformly in h for the solution to ex-

hibit optimal convergence rates. See [178] for several characterizations of the

relevant inf-sup conditions. However, as our numerical experiments indicate and

the following argument demonstrates, our choice does not sacrifice such inf-sup

stability. Assume the pairing (Vh,Λh) satisfies an inf-sup condition uniformly in

h, that is, if there exist γ0, h0 > 0 such that, for all h0 ≥ h > 0,

inf
µh∈Λh

sup
vh∈Vh

∫
∂D
µhTvhdS

‖µh‖H−1/2‖v‖H1

:= inf
µh∈Λh

sup
vh∈Vh

α(µh, vh) ≥ γ0,

where T : H1(D) → L2(∂D) is the trace operator. Then whenever 2h ≤ h0, as

V2h ⊂ Vh

γ0 ≤ inf
µh∈Λ2h

sup
vh∈V2h

α(µh, vh) ≤ inf
µh∈Λ2h

sup
vh∈Vh

α(µh, vh), (4.1)

so that our pairing (Vh,Λ2h) satisfies the same inf-sup condition uniformly in

h as well. Moreover, the above argument holds if we begin with satisfactory

constraints on any grid coarser than Gh and then refine the corresponding space

to obtain Vh. In practice, we begin with the matrix B that results from using

(Vh,Λh). We then add together any constraints that lie in the same cell ĉk ∈ G2h

to arrive at the constraints for the pairing (Vh,Λ2h). The grid G2h merely serves

as an easy means of determining which rows to sum to obtain a diagonal sub-

matrix Bm. In theory, we could sum rows in some other fashion, so long as the

resulting constraint corresponds to an inf-sup stable constraint from a coarser

grid. Although it is not known if (Vh,Λh) satisfies an inf-sup condition, this

analysis is an easy confirmation of the intuitive fact that coarsening constraints

cannot adversely affect the stability of a discretization. Naturally, such coarsen-

ings will adversely affect the accuracy, although our numerical tests indicate that

higher order accuracy can be retained.
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Figure 4.1: Virtual node representation. On the left, a portion of an interface

passes through the unduplicated grid. The images in the center column show

the result of applying the duplications schemes of [97, 188, 78]. This gives at

most two degrees of freedom per original node. The right column shows the

richer representation given by the virtual node algorithm. The cell in the center

contains two disconnected interface segments. In this case, these segments lie in

distinct cells after duplication. Including both cells in the same constraint in B

degrades accuracy.
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In our numerical examples we give results using both a level set representa-

tion of the interface and a segmented Lagrangian representation of the interface.

In principle, our method does not rely upon a particular representation of Γ.

However, for high curvature interfaces such as the examples of Chen and Strain

[62], using a Lagrangian representation results in an interface with significantly

more detail than the background grid can resolve. This can result in a grid cell

ck ∈ Gh that contains two or more disconnected segments of the interface (see

Figure 4.1). We found that, in this case, enforcing one constraint per cell results

in unsatisfactory accuracy, and we have yet to attempt to resolve this issue. For

smooth interfaces, this will always vanish under refinement, and using a level set

representation generally prevents this phenomenon. However, for complex inter-

faces, the transfer to an under-resolved level set clearly involves non-negligible

regularization. Moreover, our numerical experiments suggest we actually must

guarantee none of the cells ĉk ∈ C2h
Γ contain disconnected interface segments in

order to retain optimal accuracy in the pre-asymptotic regime. As they do not

rely on Lagrange multipliers, this does not present a challenge to either embedded

Neumann or our discontinuity removal technique. For instance, in example 3.2.4

we used the richer virtual node representation, illustrated in the right column of

Figure 4.1, to appropriately handle the disconnected interface segments.

In our numerical examples, we solve the reduced saddle-point problem with

a straightforward application of Conjugate Gradient with Jacobi preconditioning

on examples §3.2.1,§3.2.2 and §3.2.4, and used PETSc Conjugate Gradient with

incomplete Cholesky preconditioning [12, 11, 13] for examples §3.2.3,§3.2.3.2 and

§3.2.3.3. Naturally, the use of our method in practical applications will require

more efficient linear algebra solutions. Of course, in the discontinuity removal

method of §2.0.3.1, optimal fast Poisson solvers may be applied. We also point out

that we have not proposed a method for efficiently dealing with large jumps in β
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at the interface (see §3.2.3.2 and §3.2.3.3 for the performance of the method in this

case). Such problems frequently arise in physics and engineering, for example, in

computing the interaction between water and air. J. Hellrung, L. Wang, E. Sifakis

and J. Teran [99] have recently developed a relatively straightforward geometric

multigrid method to general interface and embedded Dirichlet problems, which

provides an efficient 3D method and linear algebra solution, however further

research will be required to handle large jumps in β.

As remarked above, the proposed method is, strictly speaking, a mixed FEM.

Being a FEM, ideas from our method will mix with other FEM approaches and

vice versa. As such, these ideas should be applicable to many kinds of elliptic

problems with different kinds of discretizations. Moreover, the rigorous anal-

ysis of mixed FEM provides precedent and intuition for the success or failure

of future directions, despite the fact that due to geometric irregularities, to our

knowledge, little rigorous analysis has been done on similar methods, with the

exception of the recent works [98, 129]. For example, the existing analysis sug-

gests care must be taken when attempting to use virtual node methods based

on Lagrange multipliers in conjunction with other mixed FEM. First, the use of

partially-filled elements may change the stability properties of otherwise stable

mixed elements. Second, the Lagrange multipliers on the boundaries and inter-

faces may interact negatively with the other existing constraints. For example,

in computational incompressible fluid dynamics,the incompressibility constraints

manifest as a large set of linear constraints on the discrete velocity, and these

additional constraints may not interact well with virtual node methods. Prelim-

inary investigations suggested that the virtual node method does not trivially

extend to handle Cartesian, bilinear Stokes mixed finite elements, well-known

to be second order accurate and inf-sup stable in the absence of partially filled

elements [80]. Recent results from XFEM suggest that quadratic elements would
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be sufficient [87], however these are significantly more expensive than bilinear

elements. Perhaps one can hope to stabilize cheaper discretizations using projec-

tion methods [65, 4, 5, 20, 95, 124, 45, 93], which can be viewed as approximate

LU/Schur factorizations of the of indefinite saddle-point systems [175, 194]. Al-

though it seems that this discussion is negative, we stress that the theory of mixed

FEM provides direction and intuition for how to move forward, whereas other

embedded discretizations may not have such an established theory to provide

guidance.
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Part II

Local and Global Theory of

Aggregation Equations with

Nonlinear Diffusion
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CHAPTER 5

Introduction

Nonlocal aggregation phenomena have been studied in a wide variety of biological

applications such as migration patterns in ecological systems [40, 198, 160, 94, 46]

and Patlak-Keller-Segel (PKS) models of chemotaxis [82, 174, 100, 114, 131].

Diffusion is generally included in these models to account for the dispersal of

organisms. Classically, linear diffusion is used, however recently, there has been

a widening interest in models with degenerate diffusion to include over-crowding

effects [198, 46]. The parabolic-elliptic PKS is the most widely studied model

for aggregation, where the nonlocal effects are modeled by convolution with the

Newtonian or Bessel potential. On the other hand, in population dynamics,

the nonlocal effects are generally modeled with smooth, fast-decaying kernels.

However, all of these models are describing the same mathematical phenomenon:

the competition between nonlocal self-attraction and diffusion. For this reason,

we are interested in unifying and extending the local and global well-posedness

theory of general aggregation models with nonlinear diffusion of the form, ut +∇ · (u∇K ∗ u) = ∆A(u) in [0, T )×D,

u(0, x) = u0(x) ∈ L1
+(D) ∩ L∞(D),

(5.1)

where L1
+(Rd;µ) :=

{
f ∈ L1(Rd;µ) : f ≥ 0

}
. Always D ⊂ Rd for d ≥ 2 which

is either the entire space, D = Rd, or a bounded, convex domain with a smooth

boundary.

In this part of the dissertation we detail the work undertaken by the author on
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this class of models. In collaboration with Rodŕıguez and Bertozzi, the local and

global existence and uniqueness of solutions to (5.1) with degenerate diffusion

is undertaken in [18] under the assumption of D being a bounded domain or

d ≥ 3. More recent work by Rodŕıguez and the author have since relaxed these

assumptions in include R2 and also provide simplified, alternative proof to local

existence when D = Rd. The primary purpose of these works is to unify the

local and global existence and uniqueness theory of a large class of ‘reasonable’

models of the type (5.1). In [17], the author examined the topic of intermediate

asymptotics, proving strong decay estimates for certain kinds of small data and

showing that under some circumstances, dissipating solutions decay to the self-

similar solutions of the homogeneous diffusion equations.

There is a natural notion of criticality associated with this problem, which

corresponds to the balance between the aggregation and diffusion at the scaling

limit of mass concentration. For problems with homogeneous kernels and power-

law diffusion, K = c |x|2−d and A(u) = um, a simple scaling heuristic suggests that

these forces are in balance if m = 2−2/d [36]. If m > 2−2/d then the problem is

subcritical and the diffusion is dominant. On the other hand, if m < 2−2/d then

the problem is supercritical and the aggregation is dominant. For the PKS with

power-law diffusion, Sugiyama showed global existence for subcritical problems

and that finite time blow up is possible for supercritical problems [193, 192, 191].

We extend this notion of criticality to general problems by observing that only

the behavior of the solution at high concentrations will divide finite time blow

up from global existence (see Definition 6). We show global well-posedness for

subcritical problems and finite time blow up for certain supercritical problems.

If the problem is critical, it is well-known that in PKS there exists a critical

mass, and solutions with larger mass can blow up in finite time [39, 107, 32, 76,
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37, 49, 36, 191, 192, 47]. For linear diffusion, the same critical mass has been

identified for the Bessel and Newtonian potentials [39, 49]; however for nonlinear

diffusion, the critical mass has only been identified for the Newtonian potential

[36]. In Chapter 7, we extend the free energy methods of [36, 76, 47, 37] to

estimate the critical mass for a wide range of kernels and nonlinear diffusion,

which include these known results. For a smaller class of problems, including

standard PKS models, we show this estimate is sharp.

The problem (5.1) is formally a gradient flow with respect to the Euclidean

Wasserstein distance for the free energy

F(u(t)) = S(u(t))−W(u(t)), (5.2)

where the entropy S(u(t)) and the interaction energy W(u(t)) are given by

S(u(t)) =

∫
Φ(u(x, t))dx,

W(u(t)) =
1

2

∫ ∫
u(x, t)K(x− y)u(y, t)dxdy.

For the degenerate parabolic problems we consider, the entropy density Φ(z) is

a strictly convex function satisfying

Φ′′(z) =
A′(z)

z
, Φ′(1) = 0, Φ(0) = 0. (5.3)

See [54] for more information on these kinds of entropies. Although there is a rich

theory for gradient flows of this general type when the kernel is regular and λ-

convex [159, 7, 52] the kernels we consider here are more singular and the notion

of displacement convexity introduced in [159] no longer holds. For this reason, the

rigorous results of the gradient flow theory are not generally applicable, however,

certain aspects may be recovered, such as the use of steepest descent schemes

[34, 35]. Moreover, the free energy (5.2) is still the important dissipated quantity

in the global existence and finite time blow up arguments.
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There is a vast literature of related works on models similar to (5.1). For

literature on PKS we refer the reader to the review articles [103, 102]; see also [101,

72, 49] for parabolic-parabolic Keller-Segel systems. For the inviscid problem,

see the recent works of [132, 26, 25, 27, 52]. For a study of these equations with

fractional linear diffusion see [139, 140, 31]. When the diffusion is sufficiently

nonlinear and the kernel is in L1, (5.1) may be written as a regularized interface

problem, a notion studied in [187]. Critical mass behavior is also a property

of other related critical PDE, such as the marginal unstable thin film equation

[209, 28] and critical semilinear dispersive equations [207, 121, 117, 119, 106].

In Chapter 6 the local theory is covered. The global existence and finite

time blow up theory is discussed in Chapter 7, in particular, there the sharp

critical mass is estimated for a range of problems. In Chapter 8, the intermediate

asymptotics results are discussed. Finally, we discuss open problems and possible

directions of future research in Chapter 9.

5.1 Notation

In what follows, We denote DT := (0, T )×D. We also denote ‖u‖p := ‖u‖Lp(D)

where Lp is the standard Lebesgue space. We use the shorthand,

{u > k} := {x ∈ D : u(x) > k} .

If S ⊂ Rd then |S| denotes the Lebesgue measure and 1S denotes the standard

characteristic function. In addition, we use
∫
fdx :=

∫
D
fdx, and only indicate

the domain of integration where it differs from D. We also denote the weak-Lp

space by Lp,∞ and the associated quasi-norm

‖f‖Lp,∞ =

(
sup
α>0

αpλf (α)

)1/p

,
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where λf (α) = |{f > α}| is the distribution function of f . Given an initial

condition u(x, 0) we denote its mass by
∫
u(x, 0)dx = M . In formulas we use

the notation C(p, k,M, ..) to denote a generic constant, which may be different

from line to line or even term to term in the same computation. In general, these

constants will depend on more parameters than those listed, for instance those

associated with the problem such as K and the dimension but these dependencies

are suppressed. We use the notation f .p,k,... g to denote f ≤ C(p, k, ..)g where

again, dependencies that are not relevant are suppressed. We will also use the

notation f ≈p,k,... g to denote g .p,k,... f .p,k,... g. We denote the N -th moments

via

MN(u) =

∫
|x|N u(x)dx.

The Fourier transform is defined as

F [f ](ξ) = f̂(ξ) =

∫
e−ix·ξf(x)dx

with also,

F−1[f ](x) = f̌(x) =
1

2π

∫
eix·ξf(ξ)dξ.

On Rd we define the homogeneous Sobolev spaces Ḣs, s ∈ R in the usual way,

as the closure of the Schwartz space under the norm

‖f‖2
Ḣs :=

∫
|ξ|2s

∣∣∣f̂(ξ)
∣∣∣2 dξ.

5.2 Definitions and Assumptions

We consider either D = Rd or D ⊂ Rd smooth, bounded and convex with d ≥ 2,

in which case we impose no-flux conditions

(−∇A(u) + u∇K ∗ u) · ν = 0 on ∂D × [0, T ), (5.4)
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where ν is the outward unit normal to D.

We now make reasonable assumptions on the kernel which include important

cases of interest, such as when K is the fundamental solution of an elliptic PDE

on Rd. To this end we state the following definition.

Definition 1 (Admissible Kernel). We say a kernel K is admissible if K ∈ W 1,1
loc

and the following holds:

(R) K ∈ C3 \ {0}.

(KN) K is radially symmetric, K(x) = k(|x|) and k(|x|) is non-increasing.

(MN) k′′(r) and k′(r)/r are monotone on r ∈ (0, δ) for some δ > 0.

(BD) |D3K(x)| . |x|−d−1.

This definition ensures that the kernels we consider are radially symmetric, non-

repulsive, reasonably well-behaved at the origin, and have second derivatives

which define bounded distributions on Lp for 1 < p <∞ (Lemma 2, Section §5.3).

These conditions also imply that ifK is singular, the singularity is restricted to the

origin. Note also, that the Newtonian and Bessel potentials are both admissible

for all dimensions d ≥ 2; hence, the PKS and related models are included in our

analysis. It will turn out that the Newtonian potential represents in some sense

the most singular kernel treated by our analysis (Lemma 1, Section §5.3).

We now make precise what kind of nonlinear diffusion we are considering.

Definition 2 (Admissible Diffusion Functions). We say that the function A(u)

is an admissible diffusion function if:

(D1) A ∈ C1([0,∞)) with A′(z) > 0 for z ∈ (0,∞).

(D2) A′(z) > c for z > zc for some c, zc > 0.
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(D3) A′(z) ≤ CA for z < zA for some CA > 0 and zA.

In certain cases we will further restrict (D3) to the strictly stronger condition

(D4)
∫ 1

0
A′(z)z−1dz <∞.

This latter condition requires the diffusion be nonlinear and degenerate, and

the former allows the diffusion to behave linearly at small densities. In particular,

the speed of propagation is infinite for (D3) but not for (D4). The condition

(D1) implies the diffusion can at most degenerate at zero and the condition (D2)

implies that the diffusion does not disappear at high concentrations (sometimes

referred to as non-saturating).

Following [29], the notions of weak solution are defined separately for bounded

and unbounded domains.

Definition 3 (Weak Solutions on Bounded Domains). Let A(u) and K be admis-

sible, and u0(x) ∈ L∞(D) be non-negative. A non-negative function u : [0, T ] ×

D → [0,∞) is a weak solution to (5.1) if u ∈ L∞(DT ), A(u) ∈ L2(0, T,H1(D)),

ut ∈ L2(0, T,H−1(D)) and∫ T

0

∫
uφt dxdt =

∫
u0(x)φ(0, x)dx+

∫ T

0

∫
(∇A(u)− u∇K ∗ u) · ∇φ dxdt,

(5.5)

for all φ ∈ C∞(DT ) such that φ(T ) = 0.

It follows that u∇K ∗ u ∈ L∞(0, T ;L2(D)); therefore, definition 3 is equivalent

to the following,

〈ut(t), φ〉 =

∫
(−∇A(u) + u∇K ∗ u) · ∇φ dx, (5.6)

for all test functions φ ∈ H1 for almost all t ∈ [0, T ]. Above 〈·, ·〉 denotes the

standard dual pairing between H−1 and H1. Similarly for Rd we define the

following notion of weak solution as in [29].
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Definition 4 (Weak Solution in Rd, d ≥ 2). Let A and K be admissible, and

u0 ∈ L∞(Rd)∩L1
+(Rd; (1 + |x|2)dx). If d ≥ 3, a function u : [0, T ]×Rd → [0,∞)

is a weak solution of (5.1) if u ∈ L∞((0, T )×Rd)∩L∞(0, T, L1(Rd; (1 + |x|2)dx)),

A(u) ∈ L2(0, T, Ḣ1(Rd)), u∇K ∗ u ∈ L2(0, T ;L2(R2)), ut ∈ L2(0, T, Ḣ−1(Rd)),

and for all test functions φ ∈ Ḣ1(Rd) for a.e t ∈ [0, T ] (5.6) holds.

If d = 2, a function u : [0, T ] × R2 → [0,∞) is a weak solution of (5.1) if

u ∈ L∞((0, T )× R2) ∩ L∞(0, T, L1(R2; (1 + |x|2)dx)), ∇A(u) ∈ L2(0, T, L2(R2)),

u∇K ∗ u ∈ L2(0, T ;L2(R2)), ut ∈ L2(0, T,V?(R2)), and for all test functions

φ(t) ∈ L∞(0, T ;V) we have,∫ T

0

< ut, φ(t) >V?×V dt = −
∫ T

0

∫
(∇A(u)− u∇K ∗ u) · ∇φ(t)dt,

where V = {f ∈ L∞(R2) : ∇f ∈ L2(R2)}.

Remark 1. The additional complication in R2 in the above definition is due to

the fact that the norm ‖∇f‖2 is not well-behaved in R2. Indeed, note that there

exists sequence of Schwartz functions with ‖∇fn‖2 = 1 and fn → ∞ pointwise

a.e. (consider renormalizing f(x) = log log(1 + |x|−1)1|x|<1 and scaling). The

solution we use for this problem can be found in [25].

We show below (Theorem 4) that weak solutions satisfying Definition 3 or

4 are in fact unique. Moreover, we show the unique weak solution satisfies the

energy dissipation inequality (Proposition 1),

F(u(t)) +

∫ t

0

∫
1

u
|A′(u)∇u− u∇K ∗ u|2 dxdt ≤ F(u0(x)). (5.7)

As (5.7) is important for the global theory, one could also refer to these solutions

as free energy solutions, as is done in [36]. Uniqueness implies that there is

essentially no distinction between free energy solutions in [36] and these weak

solutions.
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Since (5.1) conserves mass, the natural notion of criticality is with respect

to the usual mass invariant scaling uλ(x) = λdu(λx). A simple heuristic for

understanding how this scaling plays a role in the global existence is seen by

examining the case of power-law diffusion and homogeneous kernel, A(u) = um

and K(x) = |x|−d/p. Under this mass invariant scaling, the free energy (5.2)

becomes,

F(uλ) = λdm−dS(u)− λd/pW(u)

= λdm−d
∫

um

m− 1
dx− λd/p1

2

∫ ∫
u(x)u(y) |x− y|−d/p dx.

As λ → ∞, the entropy and the interaction energy are comparable if m =

(p + 1)/p. We should expect global existence if m > (p + 1)/p, as the diffusion

will dominate as u grows, and possibly finite time blow up if m < (p+1)/p as the

aggregation will instead be increasingly dominant. We consider inhomogeneous

kernels and general diffusion, however for the problem of global existence, only

the behavior as u → ∞ will be important, in contrast to the problem of local

existence. Noting that |x|−d/p is, in some sense, the representative singular kernel

in Lp,∞ leads to the following definition. Thus, a sort of limiting scale-invariance

has been recovered in the limit which governs the criticality of the problem.

This critical exponent also appears indirectly in [150].

Definition 5 (Critical Exponent). Let d ≥ 3 and K be admissible such that

K ∈ Lp,∞loc for some d/(d− 2) ≤ p <∞. Then the critical exponent associated to

K is given by

1 < m? =
p+ 1

p
≤ 2− 2/d.

If D2K(x) = O(|x|−2) as x→ 0, then we take m? = 1.

Remark 2. The case m? = 1 implies at worst a logarithmic singularity as x→ 0

and if d = 2 then all admissible kernels have m? = 1 by condition (BD).
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Now we define the notion of criticality. It is easier to define this notion in

terms of the quantity A′(z), as opposed to using Φ(z) directly.

Definition 6 (Criticality). We say that the problem is subcritical if

lim inf
z→∞

A′(z)

zm?−1
=∞,

critical if

0 < lim inf
z→∞

A′(z)

zm?−1
<∞,

and supercritical if

lim inf
z→∞

A′(z)

zm?−1
= 0.

Notice that in the case of power-law diffusion, A(u) = um, subcritical, critical

and supercritical respectively correspond to m > m?,m = m? and m < m?.

Moreover, in the case of the Newtonian or Bessel potential, m? = 2 − 2/d and

the critical diffusion exponent of the PKS models discussed in [192, 191, 36] is

recovered.

5.3 Properties of Admissible Kernels

Definition 1 implies a number of useful characteristics which we state here and

reserve the proofs for the Appendix 10.3. First, we have that every admissible

kernel is at least as integrable as the Newtonian potential.

Lemma 1. Let K be admissible. Then ∇K ∈ Ld/(d−1),∞. If d ≥ 3, then K ∈

Ld/(d−2),∞.

In general, the second derivatives of admissible kernels are not locally in-

tegrable, but we may still properly define D2K ∗ u as a linear operator which

involves a Cauchy principal value integral. By Calderón-Zygmund theory (see
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e.g. [Theorem 2.2 [189]]) we can conclude that this distribution is bounded on Lp

for 1 < p <∞. The inequality also provides an estimate of the operator norms,

which is of crucial importance to the proof of uniqueness.

Lemma 2. Let K be admissible and ~v = ∇K ∗ u. Then ∀p, 1 < p < ∞, ∃C(p)

such that ‖∇~v‖p ≤ C(p)‖u‖p and C(p) . p for 2 ≤ p <∞.

One can further connect the integrability of the kernel with the integrability

of the derivatives at the origin, which provides a natural extension of Lemma 2

through the Young’s inequality for Lp,∞.

Lemma 3. Let d ≥ 3 and K be admissible. Suppose γ is such that 1 < γ < d/2.

Then K ∈ L
d/(d/γ−2),∞
loc if and only if D2K ∈ Lγ,∞loc . The same holds for ∇K ∈

L
d/(d/γ−1),∞
loc . In particular, m? = 1 + 1/γ− 2/d for some 1 < γ < d/2 if and only

if D2K ∈ Lγ,∞loc . Moreover, m? = 1 if and only if D2K ∈ Ld/2,∞loc .

The following lemma clarifies the connection between the critical exponent

and the interaction energy.

Lemma 4 (Hardy-Littlewood-Sobolev inequality). Consider the Hardy-Littlewood-

Sobolev type inequality, for all f ∈ Lp, g ∈ Lq and K ∈ Lt,∞ for 1 < p, q, t < ∞

satisfying 1/p+ 1/q + 1/t = 2,∣∣∣∣∫ ∫ f(x)g(y)K(x− y)dxdy

∣∣∣∣ . ‖f‖p‖g‖q‖K‖Lt,∞ . (5.8)

See [147]. In particular, if (p+ 1)/p = m? > 1, then for all u ∈ L1 ∩ Lm?,∫
u(x)u(y) |x− y|−d/p dxdy ≤ Cm?‖u‖2−m?

1 ‖u‖m?m? . (5.9)

Here Cm?, depending only on p and d, is taken to be the best constant for which

(5.9) holds for all such u.
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Remark 3. It is not necessarily the case that Cm? is easily related to the optimal

constant in (5.8). It is shown in [36] that C2−2/d is achieved for a fairly explicit

family of extremals, but to our knowledge, extremals of (5.9) have not been

constructed for other values of m?.

If m? = 1 then we will need the logarithmic Hardy-Littlewood-Sobolev in-

equality, as in for instance [76, 37].

Lemma 5 (Logarithmic Hardy-Littlewood-Sobolev inequality [50]). Let d ≥ 2

and 0 ≤ f ∈ L1 be such that
∣∣∫ f ln fdx

∣∣ <∞. Then,

−
∫ ∫

Rd×Rd
f(x)f(y) ln |x− y| dxdy ≤ ‖f‖1

d

∫
Rd
f ln fdx+ C(‖f‖1). (5.10)

The case R2 creates an additional difficulty due to the fact that by the defi-

nition of admissible, definition 1, K ∈ BMO, but not in any Lp,∞ space. In par-

ticular, K is permitted to grow logarithmically at infinity; indeed K = − log |x|

is admissible in R2. This introduces a number of complications with the local

well-posedness, since K ∗ f will be unbounded for general f ∈ L1 ∩ L∞, so more

care must be taken than in d ≥ 3. The most difficult steps to extend is the

uniqueness of weak solutions and the energy dissipation inequality. We will need

to recall that the dual of BMO is known to be the Hardy space H1 [190]. For

convenience, we define the Hardy space via this duality,

‖f‖H1 := sup
K∈BMO,‖K‖BMO=1

∣∣∣∣∫ K(x)f(x)dx

∣∣∣∣ , (5.11)

with,

H1 :=
{
f ∈ L1 : ‖f‖H1 <∞

}
.

We also have the analogue of Hölder’s inequality [190]∣∣∣∣∫ Kfdx∣∣∣∣ ≤ ‖K‖BMO‖f‖H1 , (5.12)
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which in particular implies ‖K ∗ f‖∞ . ‖K‖BMO‖f‖H1 , which is the purpose

of introducing the space H1. The following lemma provides useful, sufficient

conditions on f ∈ L1 such that f ∈ H1 and will be used to prove below to treat

R2. The author acknowledges Jonas Azzam for his assistance in the proof, which

is reserved for the Appendix 10.4.

Lemma 6. Let f ∈ L1 ∩ Lp for some p > 1 and satisfy
∫
fdx = 0, M1(|f |) =∫

|x| |f(x)| dx <∞. Then f ∈ H1 and

‖f‖H1 .d,p ‖f‖p +M1(|f |).
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CHAPTER 6

Local Theory

Existence theory is complicated by the presence of degenerate diffusion and sin-

gular kernels such as the Newtonian potential. Bertozzi and Slepčev in [29] prove

existence and uniqueness of models with general diffusion but restrict to non-

singular kernels. Sugiyama [193] proved local existence for models with power-law

diffusion and the Bessel potential for the kernel, but uniqueness of solutions was

left open. We will provide two separate proofs of local existence. The first one

applies on bounded domains and Rd, d ≥ 3 which is an extension of the work of

[29]. The other is a more straightforward variant based on a fixed point argument

which applies on Rd, d ≥ 2 for solutions with a bounded second moment. A sim-

ilar argument was employed in [39] for the 2D critical PKS, but the presence of

nonlinear diffusion and the interest in general kernels complicates several steps.

Aside from simplicity, an advantage of this latter proof is that it supplies an ob-

vious method for justifying formal computations involving homogeneous Sobolev

inequalities, whereas the former proof constructs solutions on Rd with sequences

of solutions on bounded domains. Ultimately, both approaches are based on reg-

ularization: the degenerate diffusion is regularized to be uniformly parabolic and

the kernel is regularized to be smooth. The a priori bounds are made independent

of the regularization parameter, done here using an Alikakos iteration [3] devel-

oped in [125, 47], which eventually provide the requisite compactness necessary

to extract convergent subsequences.
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Theorem 1 (Local Existence on Bounded Domains, d ≥ 2). Let A(u) and K(x)

be admissible. Let u0(x) ∈ L∞(D) be a non-negative initial condition, then (5.1)

has a weak solution u(t) on [0, T ] × D, for some T > 0. Additionally, u ∈

C([0, T ];Lp(D)) for p ∈ [1,∞).

In dimensions d ≥ 3 we also construct local solutions on Rd by taking the

limit of solutions on bounded domains.

Theorem 2 (Local Existence in Rd, d ≥ 3). Let A(u) and K(x) be admissible.

Let u0(x) ∈ L∞(Rd) ∩ L1(Rd) be a non-negative initial condition, then (5.1) has

a weak solution u on Rd
T , for some T > 0. Additionally, u ∈ C([0, T ];Lp(Rd))

for all 1 ≤ p <∞, the mass is conserved and |F(u0)| <∞.

Restricting to initial data with finite second moment not only simplifies the

proof of local existence as it may now be done in a direct manner, but also allows

treatment of R2. Although we show uniqueness below, the stability theory of

these PDE seems to be not quite fully understood, so a proof which allows one to

easily justify formal computations involving homogeneous Sobolev inequalities is

desirable.

Theorem 3 (Local Existence in Rd, d ≥ 2). Let A(u) and K(x) be admissible.

Let u0(x) ∈ ∩L1
+(Rd; (1 + |x|2)dx)∩L∞(Rd), then (5.1) has a weak solution u on

(0, T )×Rd, for some T > 0 which satisfies u(t) ∈ C([0, T ];L1(Rd; (1+ |x|2)dx))∩

L∞((0, T )× Rd). Additionally the mass is conserved and |F(u0)| <∞.

As previously mentioned, the free energy is a dissipated quantity for weak

solutions and is a key tool for the global theory.

Proposition 1 (Energy Dissipation). Under the assumptions of Theorems 1, 2

and 3, weak solutions to (5.1) satisfy the energy dissipation inequality (5.7) for

almost all t ≥ 0.
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The existing work on uniqueness of these problems included a priori regularity

assumptions [126] or the use of entropy solutions [46] (see also [51]). The “La-

grangian” method introduced by Loeper in [154] estimates the difference of weak

solutions in the Wasserstein distance and is very useful for inviscid problems and

potentially solutions with linear diffusion [153, 27, 57]. This method relies very

directly on the non-local velocity field satisfying the Osgood regularity condition

and a certain L2 stability condition, the latter arising from the dependence of

the velocity field on the transported quantity. In the presence of nonlinear diffu-

sion, it seems more natural to approach uniqueness in Ḣ−1, where the diffusion is

monotone (see [202]). This is the approach taken in [25, 29], which we extend to

handle singular kernels such as the Newtonian potential, proving uniqueness of

weak solutions with no additional assumptions, provided the domain is bounded

or d ≥ 3 and with the assumption of bounded first moment if the domain is R2.

The main difference is the use of more refined estimates to handle the lower regu-

larity of ∇K ∗u, similar to the traditional proof of uniqueness of solutions to the

2D Euler equations with bounded and integrable vorticity [214, 157] and a simi-

lar proof of the uniqueness of L1 ∩ L∞ solutions to the Vlasov-Poisson equation

[181]. Each of these proofs rely on the regularity provided by Calderón-Zygmund

inequality [190], which takes the form

‖D2K ∗ u‖p . p‖u‖p, p→∞.

The “Eulerian” Ḣ−1 method does not appear to be any more general than the

Lagrangian method, as indeed, Calderón-Zygmund theory also implies ‖D2K ∗

u‖BMO . ‖u‖∞, which in turn implies the ∇K ∗ u is log-Lipschitz (we could not

locate a proof of this in the literature, however it is relatively straightforward,

see Appendix 10.5).

Neither the Lagrangian or the Eulerian methods use the gradient flow struc-
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ture and apply to time-reversible active scalars, for instance, Vlasov-Poisson

equations [154, 181], incompressible Euler equations [154, 214] and the semi-

geostrophic equations [153] to name a few. This is both an advantage in being

more general, but also limits applicability to less regular problems; in fact, they

appear pushed close to their limit already. The nonlinearity, and the associ-

ated stability criteria, seems to introduce a fundamental difficulty that is not

there in the linear case. The DiPerna-Lions theory of renormalized solutions

provides uniqueness for linear transport equations under very weak hypotheses,

however, perhaps not coincidentally, these solutions do not have well understood

regularity and stability properties [75, 6]. That said, Vishik [205] has shown

uniqueness for the incompressible Euler equations with vorticity in certain Besov

spaces which, for example, at least contain BMO. The methods employed therein

are significantly more advanced than what is used to prove Theorem 4, relying

on Littlewood-Paley and wavelet decompositions. However, the Eulerian veloc-

ity field in his work is still shown to satisfy the Osgood regularity condition,

and therefore his method still cannot treat problems even nearly as singular

to that approachable in linear theory. Given existing negative results (see e.g.

[135, 182, 184]), it may not be possible to strengthen these results much further

for time-reversible active scalars. On the other hand, taking advantage of the dif-

fusion to prove stronger results should be possible in treating active scalars, for

example uniqueness is known for the 2D Navier-Stokes equations with measure-

valued initial vorticity [85]. The recent results of [52] on measure-valued solutions

to the inviscid problem take advantage of the gradient flow structure and also

successfully prove uniqueness to time-irreversible problems with velocity fields

which do not satisfy the Osgood uniqueness criterion.

Theorem 4 (Uniqueness). Let D ⊂ Rd for d ≥ 2 be bounded and convex, then

weak solutions to (5.1) are unique. The conclusion also holds on Rd for d ≥ 3.
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Weak solutions with the additional property that |x|u(t) ∈ L∞(0, T ;L1
+(R2)) are

unique in R2.

Remark 4. The uniqueness result holds for any A which is non-decreasing. In

particular, Theorem 4 covers cases including fast or strongly degenerate diffusion,

or even no diffusion at all.

The final result on the local theory is the following continuation theorem

which shows that concentration in the critical norm is necessary for finite time

blow up. The proof is a key refinement of Alikakos iteration methods used to

obtain a priori bounds in the local existence theory, and the proof is based on

the work of [47, 36].

Theorem 5 (Continuation). Suppose u(t) is a weak solution to (5.1) with max-

imal time interval of existence [0, T?) which satisfies

lim
k→∞

sup
t∈[0,T?)

‖(u− k)+‖ 2−m
2−m?

= 0. (6.1)

Here m is such that 1 ≤ m ≤ m? and lim infz→∞A
′(z)z1−m > 0. Then, T? =∞

and u(t) ∈ L∞(0,∞;L∞(D)).

Remark 5. Condition 6.1 is usually referred to as uniform equi-integrability.

Remark 6. Note that therefore, if T? <∞ then for all p > (2−m)/(2−m?),

lim
t↗T?
‖u‖p =∞.

A crucial lemma in our results is the following Alikakos iteration lemma, due

originally to Kowalczyk [125] and extended to d > 2 and Rd by Calvez and

Carrillo in [47].

Lemma 7 (Iteration Lemma [125, 47]). Let 0 < T ≤ ∞ and assume that

there exists a c > 0 and uc > 0 such that A′(u) > c for all u > uc. Then if
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‖∇K ∗ u‖∞ ≤ C1 on [0, T ] then ‖u‖∞ ≤ C2(C1) max{1,M, ‖u0‖∞} on the same

time interval.

6.1 Local Existence on Bounded Domains and Rd, d ≥ 3

6.1.1 Local Existence in Bounded Domains

Let Ã(z) be a smooth function on R+ such that Ã′(z) > η for some η > 0. In

addition, let ~v be a given smooth velocity field with bounded divergence. Classical

theory gives a global smooth solution to the uniformly parabolic equation

ut = ∆Ã(u)−∇ · (u~v) (6.2)

(see [148]). The solutions obey the global L∞ bound

‖u‖L∞(D) ≤ ‖u0‖L∞(D) e
‖(∇·~v)−‖L∞(DT )

t
. (6.3)

We take advantage of this theory to prove existence of weak solutions to (5.1)

by regularizing the degenerate diffusion and the kernel. Consider the modified

aggregation equation

uεt = ∆Aε(uε)−∇ · (uε (∇JεK ∗ uε)) , (6.4)

with corresponding no-flux boundary conditions (5.4). We define

Aε(z) =

∫ z

0

a′ε(z)dz, (6.5)

where a′ε(z) is a smooth function, such that A′(z) + ε ≤ a′ε(z) ≤ A′(z) + 2ε, and

the standard mollifier is denoted Jεv. We first prove existence of solutions to the

regularized equation (6.4), this is stated formally in the following proposition.

Proposition 2 (Local Existence for the Regularized Aggregation Diffusion Equa-

tion). Let ε > 0 be fixed and u0(x) ∈ C∞(D), then (6.4) has a classical solution

u on DT for all T > 0.
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We obtain the proof of Proposition 2 directly from Theorem 12 in [29]. The

proof requires a bound on ‖∇Aε‖L2(DT ), for some T > 0. We state this lemma

for completeness but reference the reader to [29] for a proof.

Lemma 8 (Uniform Bound on Gradient of A(u)). Let ε > 0 be fixed and uε ∈

L∞(DT ) be a solution to (6.4). There exists a constant

C = C(T, ‖∇JεK ∗ uε‖L∞(D) , ‖u
ε‖∞)

such that:

‖∇Aε(uε)‖L2(DT ) ≤ C. (6.6)

Remark 7. The estimate given by (6.6) is independent of ε.

Proposition 2 gives a family of solutions {uε}ε>0. To prove local existence

to the original problem (5.1) we first need some a priori estimates which are

independent of ε. Mainly, we obtain an independent-in-ε bound on the L∞ norm

of the solution and the velocity field. This is the main difference in the local

existence theory from [29]. Due to the singularity of the kernels significantly

more is required to obtain these a priori bounds, relying on the iteration Lemma

7.

Lemma 9 (L∞ Bound of Solution). Let {uε}ε>0 be the classical solutions to

(6.4) on DT , with smooth, non-negative, and bounded initial data Jεu0. Then

there exists C = C(‖u0‖1, ‖u0‖∞) and T = T (‖u0‖1, ‖u0‖p) for any p > d such

that for all ε > 0,

‖uε(t)‖L∞(D) ≤ C (6.7)

for all t ∈ [0, T ].
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Proof. For simplicity we drop the ε. The first step is to obtain an interval for

which the Lp norm of u is bounded. Following the work of [107] we define the

function uεk = (uε − k)+, for k > 0. Due to conservation of mass the following

inequality provides a bound for the Lp norm of u given a bound on the Lp norm

of uk,

‖u‖pp ≤ C(p)(kp−1‖u‖1 + ‖uk‖pp). (6.8)

We look at the time evolution of ‖uk‖p and make use of the parabolic regulariza-

tion (6.24).

Step 1:

d

dt
‖uk‖pp = p

∫
up−1
k ∇ · (∇A

ε(u)− u∇JεK ∗ u) dx

= −p(p− 1)

∫
Aε
′∇uk · ∇udx− p(p− 1)

∫
uup−2

k ∇JεK ∗ u dx.

≤ −4(p− 1)

p

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ p(p− 1)

∫
up−1
k ∇uk · ∇JεK ∗ u dx

+ kp(p− 1)

∫
up−2
k ∇uk · ∇JεK ∗ u dx,

where we used the fact that for l > 0

u(uk)
l = (uk)

l+1 + kulk. (6.9)
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Hence, integrating by parts once more gives

d

dt
‖uk‖pp ≤

4(p− 1)

p

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx
− (p− 1)

∫
upk∆JεK ∗ udx− kp

∫
up−1
k ∆JεK ∗ udx

≤ −C(p)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ C(p) ‖uk‖pp+1 ‖∆JεK ∗ u‖p+1

+ C(p)k ‖uk‖p−1
p ‖∆JεK ∗ u‖p

≤ −C(p)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ C(p)
(
‖uk‖p+1

p+1 + ‖u‖p+1
p+1

)
+ C(p)k

(
‖uk‖pp + ‖u‖pp

)
.

In the last inequality we use Lemma 2. Now, using (6.8) we obtain that

d

dt
‖uk‖pp dx ≤ −C(p)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx+ C(p) ‖uk‖p+1
p+1

+ C(p, k) ‖uk‖pp + C(p, k,M).

An application of the Gagliardo-Nirenberg-Sobolev inequality gives that for any

p such that d < 2(p+ 1) (see Lemma 25 in the Appendix):

‖u‖p+1
p+1 . ‖u‖α2

p

∥∥up/2∥∥α1

W 1,2 ,

where α1 = d/p, α2 = 2(p+ 1)− d. From the inequality arb(1−r) ≤ ra+ (1− r)b

(using that a = δ
∥∥up/2∥∥2

W 1,2 and r = α1/2) we obtain

‖u‖p+1
p+1 .

1

δβ1
‖u‖β2

p + rδ2
∥∥∇up/2∥∥2

2
+ rδ2‖u‖pp.

Above β1, β2 > 1. For k large enough we have that A′(u) > c > 0 over {u > k};

hence, if we choose δ small enough we obtain the final differential inequality:

d

dt
‖u‖pp . C(p) ‖uk‖β2

p + C(p, k, rδ) ‖uk‖pp + C(p, k, ‖u0‖1). (6.10)

The inequality (6.10) in turns gives a Tp = T (p) > 0 such that ‖uk‖p is bounded

on [0, Tp]. Inequality (6.8) gives that ‖u‖p remains bounded on the same time
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interval. Next we prove that the velocity field is bounded in L∞(D) on some time

interval [0, T ]. This then allows us invoke Lemma 7 and obtain the desired bound.

Step 2:

Since ∇K ∈ L1
loc and ∇K1Rd\B1(0) ∈ Lq for all q > d/(d − 1) (by Lemma 1),

we have for all p > d/(d− 1),

‖~v‖p = ‖∇K ∗ u‖p ≤ ‖∇K1B1(0)‖1‖u‖p + ‖∇K1Rd\B1(0)‖pM.

By Lemma 2 we also have, for all p, 1 < p <∞,

‖∇~v‖p = ‖D2K ∗ u‖p . ‖u‖p.

By Morrey’s inequality we have ~v ∈ L∞(DT ) by choosing some p > d and invok-

ing step one, and Lemma 7 concludes the proof. Note that the bound depends on

the geometry of the domain through the constant on the Gagliardo-Nirenberg-

Sobolev inequality (Lemma 25). However, this constant is related to the regular-

ity of the domain, and not directly to the diameter of the domain.

In addition to the a priori estimates the proof of Theorem 1 requires precom-

pactness of {uε}ε>0 in L1(DT ).

Lemma 10 (Precompactness in L1(ΩT )). The sequence of solutions obtained via

Proposition 2, {uε}ε>0, which exist on [0, T ], is precompact in L1(DT ).

The proof of Lemma 10 follows exactly the work in [29]. We will show the

sequence is precompact via the Riesz compactness criterion. This relies on the

fact that ‖A(uε)‖L2(0,T ;H1(D)) ≤ C uniformly.
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Proof. (Theorem 1) For a given ε > 0, if we regularize the initial condi-

tion uε0(x) = Jεu0(x), Proposition 2 gives a solution uε to (6.4). Further-

more, the proof of Proposition 2 and Lemma 9 gave uniform-in-ε bounds on

‖Aε(u)‖L2(0,T,H1(D)), ‖uε‖L∞(DT ), and ‖uεt‖L2(0,T,H−1(D)). By Lemma 9, all solu-

tions exist on [0, T ], with T independent of ε. Also, recalling that Aε(z) ≥ A(z)

and a′ε(z) ≥ A′(z) gives that

‖A(uε)‖L2(0,T,H1(D)) ≤ C,

where C is independent of ε. Since L2(0, T,H1(D)) is weakly compact there exists

a ρ such that some subsequence of {uε}ε>0 converges weakly, i.e A(uεj) ⇀ ρ in

L2(0, T,H1(D)). Precompactness in L1 implies strong convergence of uεj to some

u ∈ L1(DT ); therefore, A(u) = ρ. In fact, the L∞(DT ) bound on uεj gives

strong convergence in Lp(DT ), for 1 ≤ p < ∞, via interpolation. Also, Young’s

inequality gives

∥∥uεj∇JεjK ∗ uεj − u∇K ∗ u∥∥L1(DT )
≤ ‖u‖L∞(DT )

∥∥∇JεjK ∗ uεj −∇K ∗ u∥∥L1(DT )

.
∥∥∇JεjK ∗ uεj∥∥L∞(DT )

‖uεj − u‖L1(DT ) .

(6.11)

Therefore,

LHS(6.11) .
(
‖u‖L∞(DT ) ‖∇K‖L1

loc
+ ‖∇K ∗ uεj‖L∞(DT )

)
‖uεj − u‖L1(DT ) .

(6.12)

Therefore, by interpolation u satisfies (5.5). Furthermore, we obtain that u ∈

C([0, T ];H−1(D)). To prove that u(t) is continuous with respect to the weak

L2 topology one uses standard density arguments. Since D is a bounded, u is

therefore also continuous in the weak L1 topology. To prove continuity in the

strong L2 topology we define F (z) =
∫ z

0
A(s)ds and show that it is continuous in

the strong L1 topology. Indeed, Lemma 22 in the Appendix, see [29] for a proof,
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gives

lim
h→0

∣∣∣∣∫ (F (u(t))− F (u(t+ h))) dx

∣∣∣∣ = lim
h→0

∫ t+h

t

< uτ , A(τ) > dτ. (6.13)

Recall that ‖A(u)‖L∞(DT ) ≤ A(‖u‖L∞(DT )) and so A(u) ∈ L2(0, T,H−1(D)).

Therefore, the left hand side of (6.13) goes to 0 as h → 0. Now, we can invoke

Lemma 23 in Appendix, [29], to obtain that u ∈ C([0, T ];L2(D)). Using interpo-

lation the L∞ bound of u gives that u ∈ C([0, T ];Lp(D)), for 1 ≤ p <∞.

6.1.2 Local Existence in Rd, d ≥ 3

Now we consider solutions to (5.1) in Rd for d ≥ 3. We obtain such solution by

taking the limit of the solutions in balls centered on the origin with increasing

radius n, denoted by Bn.

Proof. (Theorem 2) Let Bn be defined as above and consider a smooth trunca-

tion of the initial condition on Bn, i.e. un0 = χ(R−1x)u0(x) where χ ∈ C∞c ∩ L1
+

with χ(x) = 1 for |x| < 1/2 and χ(x) = 0 for |x| ≥ 1. By Theorem 1, we have

a family of solutions {un}n>0 on Bn for all t ∈ [0, T ]. Define a new sequence,

{ũn}n>0, where ũn is the zero extension of un convolved with a smooth mollifier

(in order to smooth the potential jump discontinuity at the boundary of the ball).

The previous work for bounded domains gives the uniform bounds

‖ũn‖L∞(RdT ) ≤ C1, (6.14)

‖∇A(ũn)‖L2(RdT ) ≤ C2. (6.15)

The bounds may be taken independent of n since the constant in the Gagliardo-

Nirenberg-Sobolev inequality, Lemma 25, does not depend directly on the diam-

eter of the domain and may be taken uniform in n→∞.

Therefore, there exist u,w ∈ L2(Rd
T ) for which ũn ⇀ u and ∇A(ũn) ⇀ w in

L2(Rd
T ). Furthermore, (6.14) implies ‖u‖L∞(RdT ) ≤ C1. Precompactness of {ũεn}ε>0
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in L1(Bn) for fixed n > 0 and Theorem 2.33 in [2] gives that {ũn}n>0 is precom-

pact in L1
loc(Rd

T ). Therefore, up to a subsequence, not renamed, ũn → u in

L1
loc(Rd

T ); thus, w = ∇A(u). Also, the L∞ bound gives that ũn → u in Lploc(Rd)

for 1 ≤ p <∞.

In addition, we have the estimate

‖ũn∇K ∗ ũn‖L2(RdT ) ≤ ‖∇K ∗ ũn‖L∞(RdT ) ‖ũn‖L2(RdT ) . (6.16)

Therefore, we can extract a subsequence that converges weakly to some w1 ∈

L2(Rd
T ). Since u1Bn ∈ L∞(0, T, L1(Rd)) and u1Bn ↗ u by monotone conver-

gence u ∈ L∞(0, T, L1(Rd
T )). Once again, from the estimates performed in the

bounded domains ũn∇K∗ ũn → u∇K∗ u in L1
loc(Rd

T ). Therefore, we can identify

w1 = u∇K ∗ u.

We now show that u ∈ C([0, T ];L1
loc(Rd)), which we know to be true, implies

that u ∈ C([0, T ];L1(D)). Let tn → t ∈ [0, T ] then for all R > 0 we have,∫
|u(tn)− u(t)| dx =

∫
BR

|u(tn)− u(t)| dx+

∫
Rd\BR

|u(tn)− u(t)| dx. (6.17)

The first term on the right hand side of (6.17) can be bounded by ε/2, provided

n is chosen large enough, since u ∈ C([0, T ];L1
loc(Rd)). To bound the second

term we first show that A(u) ∈ L1(Rd
T ). By (D3), for k > 0 there exists some

0 < Ck <∞ such that if z < k then A(z) ≤ Cz. Hence,∫
A(u)dx =

∫
{u<k}

A(u)dx+

∫
{u≥k}

A(u)dx

≤ CM + A(‖u‖∞)λA(k) <∞.

Therefore, ‖A(u)‖L1(RdT ) ≤ C(M, ‖u‖∞)T . Now, let w(x) be a smooth radially-

symmetric cut-off function with w(x) = 0 for |x| < 1/2 and w(x) = 1 for |x| ≥ 1.
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Then consider the quantity, MR(t) =
∫
uw(x/R)dx. Then formally,

d

dt
MR(t) =

1

R

∫
uv · (∇w)(x/R)dx+

1

R2

∫
A(u)(∆w)(x/R)dx.

Estimating terms in L∞ gives,

d

dt
MR(t) .

‖v‖∞‖u‖1

R
+

1

R2

∫
A(u)dx.

Formally, then

MR(t) . MR(0) +M‖v‖L1((0,t);L∞)R
−1 + ‖A(u)‖L1((0,t)×Rd)R

−2. (6.18)

Since A ∈ L1((0, t) × Rd) and MR(0) → 0 as R → ∞, by choosing R suf-

ficiently large, the last term of (6.17) can be bounded by ε/2. Hence, im-

plies that u ∈ C([0, T ];L1(Rd)). Furthermore, via interpolation we obtain that

u ∈ C([0, T ];Lp(Rd)) for 1 ≤ p <∞.

Conservation of mass can be proved similarly using a cut-off function w(x) = 1

for |x| ≤ 1/2 and w(x) = 0 for |x| ≥ 1, see the proof of Theorem 15 in [29] for a

similar proof.

6.1.3 The Energy Dissipation Inequality

Proof. (Proposition 1) Define

h(u) =

∫ u

1

A′(s)

s
ds,

then Φ(u) =
∫ u

0
h(s)ds. The regularized entropy is defined similarly with a′ε(u),

as defined in (6.24), taking the place of A′(u). Given a smooth solution uε to

(6.4) one can verify,

Fε(uε(t)) +

∫ t

0

∫
1

uε
|a′ε(uε)∇uε − uε∇JεK ∗ uε|

2
dxdτ = Fε(uε(0)). (6.19)
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Here Fε(u(t)) denotes the free energy with the regularized entropy and kernel.

Once again we take the limit ε approaches zero to obtain (5.7). We first show

that the entropy converges.

Step 1 : The parabolic regularization gives

h(z) + ε ln z ≤ hε(z) ≤ h(z) + 2ε ln z for 1 ≤ z,

h(z) + 2ε ln z ≤ hε(z) ≤ h′(z) + ε ln z for z ≤ 1.

Therefore, writing Φ(u) =
∫ 1

0
h(s)ds+

∫ u
1
h(s)ds one observes that

Φ(u)− 2ε ≤ Φε(u) ≤ Φ(u) + 2ε(u lnu)+. (6.20)

This will allow us to show convergence of the entropy. In fact,∣∣∣∣∫ Φε(u
ε)− Φ(u)dx

∣∣∣∣ ≤ ∫ |Φε(u
ε)− Φ(uε)| dx+

∫
|Φ(uε)− Φ(u)| dx

(6.20) ≤ 2ε

∫
(1 + uε lnuε)+dx+ ‖Φ‖C1([0,‖uε‖∞])

∫
|uε − u| dx.

≤ 2ε (|D|+ ‖ lnuε‖∞‖uε0‖1) + C‖uε − u‖1.

Conservation of mass, boundedness of smooth solutions, and precompactness in

L1
loc imply there exists a subsequence, such that as εj → 0,∫

Φεj(u
ε
j)dx→

∫
Φ(u)dx.

Step 2: To show convergence of the interaction energy we need that for a.e t ∈

(0, T ) ∫
uε(t)JεK ∗ uε(t)dx→

∫
u(t)K ∗ u(t)dx. (6.21)

Since K ∈ L1
loc(D) we know that ‖K ∗ u‖L∞ is bounded; hence, replacing ∇K

with K in (6.12) gives the desired result. Finally, we are left to deal with the
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entropy production functional.

Step 3 : From Lemma 10 in [54],∫
1

u
|A′(u)∇u− u∇K ∗ u|2 dx ≤ lim inf

ε→0

∫
1

uε
|a′ε(uε)∇uε − uε∇JεK ∗ uε|

2
dx.

(6.22)

We also note that this was proved in [29]. The proof of (6.22) relies on a result due

to Otto in [170], refer to Lemma 24 in the Appendix. In our case, uε ∈ L1(DT )

and Jε = ∇Aε(uε) − uε∇K ∗ uε ∈ L1
loc(DT ). Furthermore, up to a sequence not

renamed, uε ⇀ u ∈ L2 and Jε ⇀ J in L2, therefore, we can apply Lemma 24.

For the energy dissipation estimate in Rd we again consider the family of so-

lutions {ur} to (5.1) on Br (for simplicity let ur denote the zero-extension of

the solutions). Since un(0)1Bn ↗ u(0) by monotone convergence we obtain that

F(un(0))→ F(u(0)). Noting that K ∈ Ld/(d−2) allows us to make a modification

to (6.16) and obtain that unK ∗ un ⇀ uK ∗ u in L2(Rd
T ). Furthermore, (6.21) im-

plies that unK∗un → uK∗u in L1
loc. We are left to verify the uniform integrability

over all space. First note that Morrey’s inequality implies

‖K ∗ ũn‖∞ . ‖∇K ∗ u‖∞ + ‖K ∗ un‖p

≤ ‖∇K ∗ u‖∞ + ‖K‖Ld/(d−2),∞ ‖un‖dp/(d+2p) .

Hence, taking p sufficiently large we obtain that K ∗ un is bounded in L∞(DT ).

Therefore, ∫
Rd\Bk

unK ∗ undx ≤ ‖K ∗ un‖∞
∫

Rd\Bk
undx.
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This fact along with (6.18) gives that for any ε > 0 there exists a kε sufficiently

large such that for all k > kε ∫
Rd\Bk

ũnK ∗ ũndx ≤ ε.

This gives convergence of the interaction energy. The result follows from the

weak lower semi-continuity of the entropy production functional and
∫

Φ(u)dx in

L2.

6.2 Local Existence on Rd, d ≥ 2

As in the previous section, we will proceed by passing to the limit from a regular-

ized, uniformly parabolic problem, (6.4). It is in the first step, the construction of

global solutions to the regularized problems, where the simplification takes place.

Indeed, consider the regularized aggregation-diffusion equation

uεt = ∆Aε(uε)−∇ · (uε∇Kε ∗ uε) . (6.23)

As above, we define,

Aε(z) =

∫ z

0

a′ε(z)dz, (6.24)

where a′ε(z) is a smooth function, such that A′(z) + ε ≤ a′ε(z) ≤ A′(z) + 2ε. Let

η(x) ∈ C∞c (Rd) with 0 < η(x) ≤ 1 for |x| < 1, η(x) = 0 for |x| ≥ 1, and η(x) ≡ 1

for |x| ≤ 1/2. We denote,

Kε(x) :=


∫

1
εdη(x)d

η
(
x−y
εη(x)

)
K(y)dy |x| < 1

K(x) |x| ≥ 1

Hence, Kε ∈ C∞ but, note that importantly, Kε(x) = K(x) for all |x| ≥ 1. Our

main goal for this section is to prove
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Proposition 3 (Local Existence for the Regularized Aggregation Diffusion Equa-

tion). Let ε > 0 be fixed and u0(x) ∈ L1
+(Rd; (1 + |x|2)dx)∩L∞(Rd). Then (6.23)

has a classical solution uε on Rd
T for all T > 0 with uε(0) = Jεu0.

We begin with some preliminaries. Define the Hilbert space

V =
{
v ∈ H1 : ‖v‖V <∞

}
, ‖v‖V =

√
< v, v >V ,

with the inner product defined via < u, v >V :=< u, v >H1 +
∫
|x|uvdx. Note

by the Rellich-Khondrashov compactness theorem, V is compactly embedded in

L2(Rd). We will construct a weak solution to (6.23) with the analogous definition

of weak solution as in Definition 4.

We prove Proposition 3 using the Schauder fixed point theorem, see e.g. [22].

The necessary compactness for the application is obtained via the Aubin-Lions

Lemma [185]. We first state and prove some a priori estimates that will be used

in the proof of Proposition 3, many of which are the same or closely related to

estimates proved elsewhere in this dissertation and so the proofs will simply be

sketched.

Lemma 11 (A priori bounds with linear advection). For fixed ε > 0 let ũ ∈

L2(0, T ;L2) ∩ L∞(0, T ;L1). Let uε be the unique strong solution to

∂tu
ε = ∆Aε(uε)−∇ · (uε∇Kε ∗ ũ) (6.25)

with initial data uε0 = Jεu0(x) with u0 ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd). Then,

(i) ‖uε‖L2(0,T ;L2) ≤ T 1/2‖uε‖L∞(0,T ;L2) ≤ T 1/2‖u0‖2 exp
(
‖∆Kε‖2‖ũ‖L2(0,T,L2)T

1/2
)

(ii) ‖uε(t)‖∞ ≤ ‖u0‖∞ exp
(
‖∆Kε‖2‖ũ‖L2(0,T,L2)T

1/2
)
.

(iii) ‖∇Aε(uε)‖2
L2(0,T ;L2) . Aε(‖uε‖∞)‖uε‖1+‖∇Kε‖2

L∞‖ũ‖2
L∞(0,T ;L1)‖uε‖2

L∞(0,T ;L2).
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(iv) ‖∇uε‖L2(0,T,L2(Rd)) . ε−1‖∇Aε(uε)‖L2(0,T ;L2).

(v) M2(uε(t)) ≤ C(M2(u0), ε, ‖u‖L∞(0,T ;L∞), ‖ũ‖L∞(0,T ;L1), ‖u0‖1, T ).

(vi) ‖∂tuε‖L2(0,T,H−1) ≤ C(ε, ‖u‖L∞(0,T ;L∞), ‖ũ‖L2(0,T ;L2), ‖u0‖1, T ).

Proof. In what follows denote M := ‖uε(t)‖1 = ‖u0‖1. By (6.25) we obtain

d

dt

∫
(uε)2dx ≤ −

∫
(uε)2∆Kε ∗ ũdx

≤ ‖∆Kε‖2‖ũ‖2

∫
(uε)2dx.

Integrating implies,

‖u(t)‖2 ≤ ‖u0‖2 exp
(
‖∆Kε‖2‖ũ‖L1(0,T,L2)

)
≤ ‖u0‖2 exp

(
‖∆Kε‖2‖ũ‖L2(0,T,L2)T

1/2
)
.

which gives (i). The bound (ii) follows similarly as above, by estimating the

growth of ‖u(t)‖p and passing to the limit p→∞.

To continue, we require a bound on the L1 norm of Aε(uε). Condition (D3)

implies that Aε(z) ≤ (CA + 2ε) z for some CA > 0. Hence by Chebyshev’s in-

equality,∫
Aε(u)dx =

∫
{u<1}

Aε(u)dx+

∫
{u≥1}

Aε(u)dx

≤ (CA + 2ε)M + Aε(‖u‖∞)λu(1) ≤ (CA + 2ε+ Aε(‖u‖∞))M.

We now turn to the less trivial (iii). Let ηR(x) := η(xR−1) for some R > 0,

where η is the smooth cut-off function defined above. Now take Ã = Aε(uε)ηR as

a test function in the definition of weak solution (Definition 4), which implies,∫ T

0

〈
ut(t), Ã

〉
ds =

∫ T

0

∫
(−∇Aε(u) + u∇Kε ∗ ũ) · ∇Ã dxds

≤ −
∫ T

0

∫
∇Aε(uε) · ∇Ã(uε)dx+

1

2

∫ T

0

∫ ∣∣∣∇Ã(uε)
∣∣∣2 dxdt

+
1

2
‖∇Kε‖2

L∞‖ũ‖2
L∞(0,T ;L1)

∫ T

0

∫
|uε|2 dx.
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Note also, we can apply the chain rule (Lemma 22 in Appendix 10.1) and get

−
∫ T

0

∫
〈uεt(t), Ã〉dxds ≤ lim inft→0

∫ ∫ uε
0
Ã(s)dsdx. Furthermore, since A is in-

creasing, we have
∫ u

0
Aε(s)ds ≤ Aε(u)u. Therefore,

1

2

∫ T

0

∫
|x|≤R/2

|∇Aε(u)|2 (x)dx ≤ A(‖uε‖L∞)‖uε‖L1

+
1

2
‖∇Kε‖2

L∞‖ũ‖2
L∞(0,T ;L1)‖uε‖2

L2(0,T ;L2)

+

∫ T

0

∫
R/2≤|x|≤R

−∇Aε · ∇(AεηR)dxdt

+

∫ T

0

∫
R/2≤|x|≤R

1

2
|∇(AεηR)|2 dxdt.

We concentrate on the latter error terms. By straightforward computation,∫
R/2≤|x|≤R

−∇Aε · ∇(AεηR) +
1

2
|∇(AεηR)|2 dx ≤ 1

2

∫
R/2≤|x|≤R

|Aε(uε)|2 |∇ηR|2 dx

. R−2Aε(‖uε‖∞)‖Aε(uε)‖1.

Therefore, since Aε(uε) ∈ L1 ∩ L∞, we have for all T <∞, by taking R→∞,

‖∇Aε(uε)‖2
L2(0,T,L2) . Ã(‖uε‖L∞)‖uε‖L1 + ‖∇Kε‖2

L∞‖ũ‖2
L∞(0,T ;L1)‖uε‖2

2.

This completes the proof of (iii). This bound, along with the fact that a′ε ≥ ε,

gives us the bound in (iv). Note that this bound depends only the bound given

by (iii) and ε.

The bound on the second moment of uε, (v), follows from the bound on the

L1 norm of Aε(u). Indeed,

d

dt

∫
|x|2 uε dx ≤ 2d

∫
A(uε)dx+ 2‖∇Kε ∗ ũ‖∞‖uε‖1/2

L1

(∫
|x|2 uε dx

)1/2

≤ 2d

∫
Aε(uε)dx+ 2M1/2‖∇Kε‖L∞‖ũ‖L1

(∫
|x|2 uε dx

)1/2

≤ 2d

∫
Aε(uε)dx+ 2M1/2‖∇Kε‖L∞‖ũ‖L1

(
1 +

∫
|x|2 uε dx

)
.
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An application of Grönwall’s inequality then provides the quantitative result.

Let φ ∈ C([0, T ];H1). Then by the definition of the weak solution and

Cauchy-Schwarz,∫ T

0

〈∂tuε(t), φ(t)〉2 dt ≤
∫ T

0

‖∇A(uε)− uεJε∇K ∗ ũ‖2
L2(Rd)‖∇φ(t)‖2

L2(Rd)dt.

The bounds previously obtained then imply that ‖∂tuε‖L2(0,T ;H−1) ≤ C(T, ũ, u0).

Now that we have all the required a priori estimates we are ready to prove

Proposition 3.

Proof. (Proposition 3) Define the compact and convex subset of L2(0, T ;L2)

ST =
{
v ∈ L2(0, T ;V ) : ‖vt‖L2(0,T ;H−1) + ‖v‖L2(0,T ;V ) ≤ C0, ‖v‖L∞(0,T ;L1) ≤ ‖u0‖1

}
,

for some C0 to be chosen below. Compactness in the L2(0, T ;L2) topology follows

from the Lions-Aubin lemma (since V ⊂⊂ L2) and the fact that ST is closed due

to the weak compactness of V and L2(0, T ;H−1) and the lower semi-continuity

of the L1 norm. Define M := ‖u0‖1.

Define the map J : ST → ST via the following procedure: given some ũ ∈ ST

we define Jũ = u, where u is the solution to (6.25). Our goal is to now apply the

Schauder fixed point theorem. First, we verify that J actually maps ST into itself.

Let ũ ∈ ST . Note that as in previous sections, u is a global strong solution from

standard regularity theory [148] which satisfies the easy a priori upper bound

(ii). Furthermore, the bounds provided by Lemma 11 and conservation of mass,

u ∈ ST for C0 chosen large enough and T chosen sufficiently small (depending on

the mass, the L∞ norm of the initial data and ε). Indeed, the bound (i) provides

a bound on ‖u‖L2(0,T ;L2), the bound (iv) provides a bound on ‖∇u‖L2(0,T ;L2), the
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bound (vi) provides a bound on ‖∂tu‖L2(0,T ;H−1). Moreover, the bound (ii) and

(v) along with, ∫
|x|u2(x)dx ≤ ‖u‖∞

(∫
|x|2 udx

)1/2

‖u‖1/2
1 ,

provides an estimate on the first moment of the L2 norm of u. Hence, J : ST →

ST . We are left to show that J is a continuous map. We show J is continuous as a

mapping from L2(0, T ;L2) to C([0, T ]; Ḣ−1), which by interpolation against uni-

form bounds in H1 provided by (iv), implies continuity in L2(0, T, L2(Rd)) (since

‖f‖2 ≤ ‖∇f‖1/2
2 ‖f‖

1/2

Ḣ−1 as can be easily seen from the Fourier transform). The

reason for this approach, as opposed to working in L2 directly, is due to the pres-

ence of the nonlinear diffusion, which as can be seen from the proof of uniqueness

below, interacts well with advection in Ḣ−1. Hence, let {vn}n≥0 ⊂ ST be such that

vn → v in L2(0, T ;L2(Rd)). We show that Jvn → Jv in C([0, T ]; Ḣ−1(Rd)). To

this end, let φn := −N ∗ (Jvn−Jv) and denote un := Jvn and u := Jv. It is very

important to note that while the vn’s may not have constant L1 norm, un and u

in fact do. This allows us to apply the arguments used in the proof of uniqueness,

Theorem 4 in §6.3.2, to deduce ‖φn(t)‖∞ + ‖∇φn(t)‖∞ + ‖∇φn(t)‖2 .C0,M,u0 1.

By the regularity of φn(t),

1

2

d

dt

∫
|∇φn(t)|2 dx =< ∇φn(t), ∂t∇φn(t) >= − < ∂tun(t)− ∂tu(t), φn(t) > .

Therefore, using φn(t) in the definition of weak solution,

1

2

d

dt

∫
|∇φn(t)|2 dx =

∫
(∇Aε(un)−∇Aε(u)) · ∇φndx

−
∫

(un − u)(∇Kε ∗ v) · ∇φndx−
∫
u(∇Kε ∗ (vn − v)) · ∇φndx.

:= I1 + I2 + I3.

We drop the time dependence for notational simplicity. Since Aε is increasing,
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we have the desired monotonicity of the diffusion,

I1 = −
∫

(Aε(un)− Aε(u)) (un − u)dx ≤ 0.

Using integration by parts as in the proof of Theorem 4 we have,

|I2| .
∫ ∣∣D2Kε ∗ v

∣∣ |∇φn|2 dx
≤ ‖D2Kε‖2‖v‖2‖∇φn‖2

2.

Moreover,

|I3| ≤ ‖u‖2‖∇Kε ∗ (vn − v)‖∞‖∇φn‖2

. ‖∇Kε‖3‖vn − v‖3/2‖∇φn‖2

.ε ‖vn − v‖2/3
2 ‖vn − v‖

1/3
1 (1 + ‖∇φn‖2

2).

By the uniform bound on ‖u‖∞ (by part (ii) above), the uniform bound on the

mass in ST and the regularization of K,

1

2

d

dt
‖∇φn‖2

2 .ε ‖vn − v‖2/3
2 +

(
1 + ‖v‖2

2 + ‖vn − v‖2
2

)
‖∇φn‖2

2.

Integrating this implies for some C > 0 depending on the uniform bounds and ε

(using φn(0) = 0),

‖∇φn(t)‖2
2 ≤

∫ t

0

exp

(
C

∫ t

s

1 + ‖v(t′)‖2
2 + ‖vn(t′)− v(t′)‖2

2dt
′
)
‖vn(s)−v(s)‖2/3

2 ds.

Since t ≤ T we have,

‖∇φn(t)‖2
2 . e

CT+CC0+C‖vn−v‖2
L2(0,T ;L2)

∫ t

0

‖vn(s)− v(s)‖2/3
2 ds.

By assumption, ‖vn(s) − v(s)‖2 → 0 pointwise a.e. on (0, T ) and ‖vn(s) −

v(s)‖2/3
2 ≤ 1+‖vn(s)−v(s)‖2

2, so by the dominated convergence theorem we have

‖∇φn‖2 → 0 uniformly on (0, T ). Therefore J is continuous on ST .
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Finally, the Schauder fixed point theorem implies there exists a solution

Ju = u with u ∈ ST for some T > 0. By the regularization of K and uni-

form parabolicty, it should be straightforward to extend this solution (to the

regularized system) indefinitely and to show that in fact u is a classical solution

to (6.23).

Proof. (Theorem 3) For all ε > 0, let uε be the solution to 6.23 provided by

Proposition 3. Notice that the bounds provided by Lemma 11 are mostly not

independent of ε, and so some must be re-proved for the classical solutions uε to

be independent in ε. For brevity, we simply sketch the proofs.

We may easily deduce the following a priori bound on the second moment:

d

dt
M2(uε(t)) = 2d

∫
Aε(uε)dx− 2

∫ ∫
uεx · ∇Kε ∗ uεdx

≤ 2d

∫
Aε(uε)dx+ 2‖∇Kε ∗ uε‖∞‖u‖1/2

1 M2(uε(t))1/2

.‖u‖1

∫
Aε(uε)dx+ (‖uε‖∞ + ‖u‖1) (1 +M2(uε(t))) .

The first term is bounded in terms of ‖u‖1 and ‖u‖∞ in the proof of Lemma 11.

By Grönwall’s inequality we therefore have a uniform in ε a priori upper bound on

the second moment, provided we have a uniform bound on the ‖uε‖∞. Similarly,

one may alter the proof of (iii) in 11 to bound ‖∇A‖L2(0,T ;L2) independent of

ε provided we have a uniform bound on ‖uε‖∞. This bound is provided by

the Alikakos iteration argument, Lemma 9 in the previous section. At this point,

using the precompactness provided by the uniform bound on the second moments

and the ‖∇Aε(uε)‖L2(0,T ;L2) norms of {uε}ε>0, we may follow the arguments of

the previous section to extract a strongly convergent subsequence in L1((0, T )×

Rd). Recall, tightness is supplied by the uniform bound on the second moments

and equi-continuity by the bounds on ∇A. Once the limit is extracted, similar

arguments as in the previous section may be employed to upgrade the convergence
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to C([0, T ];Lp) for all 1 ≤ p <∞. The last remaining technical point is ensuring

that the limit is indeed a weak solution of the unregularized system in the sense of

Definition 4. In d ≥ 3 we may use the essentially the same proof as the previous

section, however in d = 2 we must also verify that ut ∈ L2(0, T ;V?(R2)) and

justify the limiting procedure which allows us to conclude∫ T

0

< ut, φ(t) >V?×V dt =

∫ T

0

∫
(∇A(u)− u∇K ∗ u) · ∇φ(t)dt,

for all φ ∈ L∞(0, T ;V(R2)). This definition of weak solution is key to the

proof of uniqueness in R2. By a standard boot-strap argument in parabolic

regularity theory, uεt is smooth for all ε > 0 (clearly, not uniformly in ε). Let

φ ∈ C1([0, T ];V(R2)). Then, by uε(t)→ u(t) uniformly in L1,∫ T

0

< ut, φ(t) >V?×V :=

∫ T

0

∫
(u(t)− u0)φt(t)dxdt

= lim
ε→0

∫ T

0

∫
(uε(t)− uε0)φt(t)dxdt

= − lim
ε→0

∫ T

0

∫
(∇Aε(uε)− uε∇Kε ∗ uε) · ∇φ(t)dt

= −
∫ T

0

∫
(∇A(u)− u∇K ∗ u) · ∇φ(t)dt.

The latter convergence being already deduced via arguments similar to previous

sections. By density, we then have that u is a weak solution the sense of Definition

4.

Unfortunately, the energy dissipation inequality is not trivial to extend to the

case R2, as K is no longer bounded near infinity and we cannot follow the same

argument as used in §6.1.3 above.

Proof. (Proposition 1 for R2) Let u(t) be the weak solution deduced in The-

orem 3 above and {uε}ε>0 be the solutions to the regularized system 6.23. We
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may follow the steps of Proposition 1 in §6.1.3 above except for proving the

convergence of the interaction energy. That is, we need to show∫
uε(t)Kε ∗ uε(t)dx−

∫
u(t)K ∗ u(t)dx→ 0.

To this end, write,∫
uε(t)Kε ∗ uε(t)dx−

∫
u(t)K ∗ u(t)dx =

∫
u(Kε −K) ∗ u+

∫
uKε ∗ (uε − u)dx

+

∫
(uε − u)Kε ∗ uεdx

:= T1 + T2 + T3.

Since the regularization Kε(x) = K(x) for all |x| > 1 we have,

|T1| ≤ ‖u(t)‖1‖(Kε −K) ∗ u‖∞

≤ ‖u(t)‖1‖u(t)‖∞‖Kε −K‖L1(B1(0)) → 0.

Now consider T2. By the duality of BMO and H1 and Lemma 6 in Appendix

10.4 we have,

|T2| ≤ ‖u(t)‖1‖Kε ∗ (uε − u)‖∞

. ‖Kε‖BMO‖uε(t)− u(t)‖H1

. ‖uε(t)− u(t)‖p +

∫
|x| |uε(t)− u(t)| dx,

for any 1 < p < ∞. However, uε → u in C([0, T ];Lp) for all such p, so the first

term is not an issue. To deal with the second term,∫
|x| (uε − u)dx ≤

(∫
|x|2 |uε − u| dx

)1/2(∫
|uε − u| dx

)1/2

.

However, since uε → u in C([0, T ];L1) and both uε and u have uniformly bounded

second moments on [0, T ] we have that T2 → 0. The final term, T3, follows

similarly. Hence the energy dissipation inequality holds in R2.
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6.3 Uniqueness

We now prove the uniqueness of weak solutions stated in Theorem 4.

Proof. (Theorem 4) The proof follows [25, 29] and estimates the difference of

weak solutions in Ḣ−1, motivated by the fact that the nonlinear diffusion is

monotone in this norm [202].

6.3.1 Bounded Domains and Rd for d ≥ 3

If D is bounded (with smooth boundary and convex) then we define φ(t) as the

zero mean strong solution of

∆φ(t) = u(t)− v(t) in D (6.26)

∇φ(t) · ν = 0, on ∂D, (6.27)

where ν is the outward unit normal of D. If the domain is Rd for d ≥ 3, we let

φ(t) = −N ∗ (u− v) where N is the Newtonian potential. In either case, by the

integrability and boundedness of weak solutions u(t) and v(t) we can conclude

φ(t) ∈ L∞((0, T ) × D) ∩ C([0, T ]; Ḣ1(D)), ∇φ(t) ∈ L∞(DT ) ∩ L2(DT ) and φt

solves,

∆φt = ∂tu− ∂tv.

As can be seen easily from the Fourier transform we have ‖u(t) − v(t)‖H−1 ≈

‖∇φ(t)‖2, and hence it suffices to show that ‖∇φ(t)‖2 = 0. During the course

of the proof, we integrate by parts on a variety of quantities. If the domain is

bounded, then the boundary terms will vanish due to the no-flux conditions

(5.4),(6.27). In Rd, the computations are justified as ∇K ∗ u,∇A(u),∇K ∗

v,∇A(v),∇φ ∈ L2(DT ). We also remark that, strictly speaking, as pointed out
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in [25], the strong Ḣ1-measurability of t→ φ(t) should also be established. How-

ever, this follows from the formal computations below and an easy approximation

argument (see [25]).

By the regularity of φ(t) and the no-flux boundary conditions (6.27), (5.4) we

have possibly up to a set of measure zero,

1

2

d

dt

∫
|∇φ(t)|2 dx =< ∇φ(t), ∂t∇φ(t) >

= − < ∂tu(t)− ∂tv(t), φ(t) > .

Therefore, using φ(t) in the definition of weak solution and (6.27) we have,

1

2

d

dt

∫
|∇φ(t)|2 dx =

∫
(∇A(u(t))−∇A(v(t))) · ∇φ(t)dx

−
∫

(u− v)(∇K ∗ u) · ∇φdx

−
∫
v(∇K ∗ (u− v)) · ∇φdx.

:= I1 + I2 + I3.

We drop the time dependence for notational simplicity. Since A is increasing, we

have the desired monotonicity of the diffusion,

I1 = −
∫

(A(u)− A(v)) (u− v)dx ≤ 0.

We now concentrate on bounding the advection terms.

We follow [29]. By integration by parts we have,

I2 =
∑
i,j

∫
∂iφ(∂ijK ∗ u)∂jφdx

+
∑
i,j

∫
∂iφ(∂jK ∗ u)∂ijφdx. (6.28)
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If the domain is bounded, we may apply integration by parts,

∑
i,j

∫
∂iφ(∂jK ∗ u)∂ijφdx = −

∑
i,j

∫
∂ijφ∂jK ∗ u∂iφdx−

∑
i,j

∫
∂iφ(∂jjK ∗ u)∂iφdx

+
∑
i,j

∫
∂D

|∂iφ|2 ∂jK ∗ uνjdS,

where ν is the unit outward normal to D. As in [29], we have ~v · ν ≤ 0 on ∂D

since D is convex and K is radially decreasing, so that term is non-positive. If the

domain were Rd, such boundary terms would vanish. Therefore by integration

by parts again we have,

∑
i,j

∫
∂iφ(∂jK ∗ u)∂ijφdx ≤ −

1

2

∫
(∆K ∗ u) |∇φ|2 dx,

which together with (6.28) implies,

I2 .
∫ ∣∣D2K ∗ u

∣∣ |∇φ|2 dx.
By Hölder’s inequality, Lemma 2 and ∇φ ∈ L∞(DT ) for p ≥ 2,∫ ∣∣D2K ∗ u

∣∣ |∇φ|2 dx ≤ ‖D2K ∗ u‖p
(∫
|∇φ|2p/(p−1) dx

)(p−1)/p

. p‖u‖p‖∇φ‖2/p
∞

(∫
|∇φ|2 dx

)(p−1)/p

. p

(∫
|∇φ|2 dx

)(p−1)/p

,

where the implicit constant depends only on the uniformly controlled Lp norms

of u and v.

As for I3, we compute as in [29]. By the computations in the proof of Lemma

2 we may justify integration by parts on the inside of the convolution, that is,

‖
∑
j

∫
∂iK(x− y)∂jjφdx‖2 . ‖∇φ‖2.
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which by Cauchy-Schwarz implies,

I3 . ‖v‖∞‖∇φ‖2
2.

Letting η(t) =
∫
|∇φ(t)|2 dx, we get the differential inequality,

d

dt
η(t) ≤ Ĉpmax(η(t)1−1/p, η(t)),

where Ĉ again depends only on the uniformly controlled Lp norms of u, v. The

differential equality does not have a unique solution, but all of the solutions are

absolutely continuous integral solutions bounded above by the maximal solution

η(t). By continuity, for t < 1/Ĉ the maximal solution is given by η(t) = (Ĉt)p,

hence,

η(t) ≤ η(t) = (Ĉt)p.

For t < 1/(2Ĉ) we then have

η(t) ≤ η(t) ≤ 2−p,

and we take p → ∞ to deduce that for ∀ t ∈ [0, 1/(2Ĉ)), η(t) = 0, therefore

the solution is unique. This procedure may be iterated to prove uniqueness over

the entire interval of existence since the time interval only depends on uniformly

controlled norms.

6.3.2 Uniqueness in two dimensions

We continue as above, and but now use the bound on the first moment to elimi-

nate the complications. As above, let N be the fundamental solution to Laplace’s

equation and let φ(t) = −N ∗ (u − v). As above, by the uniform bounds on

u − v and Young’s inequality, ∇φ ∈ L∞((0, T ) × Rd). Moreover, by Lemma 6,

φ ∈ L∞((0, T ) × Rd), which additionally shows that ∆φ is a bounded distribu-

tion and satisfies ∆φ(t) = u(t) − v(t) as well as ∆φt(t) = ut(t) − vt(t) in the
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sense of distributions. The theorem now follows as above for d ≥ 3, provided

that ∇φ ∈ L∞(0, T ;L2(Rd)). We will prove this latter point using the Fourier

transform. First note,

∇̂φ(t, ξ) ∼ ξ

|ξ|2
(û(t, ξ)− v̂(t, ξ)) .

By Plancherel’s identity, it suffices to show ∇̂φ(t) is uniformly bounded in L2
ξ(R2).

Therefore, consider∫ ∣∣∣∇̂φ(t, ξ)
∣∣∣2 dξ ∼ ∫ 1

|ξ|2
|û(t, ξ)− v̂(t, ξ)|2 dξ.

Again by Plancherel’s identity, û(t, ξ) − v̂(t, ξ) ∈ C([0, T ];L2
ξ(Rd)), therefore we

need only restrict attention to |ξ| ≤ 1. Since
∫
u − vdx = 0 and u − v ∈ L1,

therefore û− v̂ is continuous (uniformly in time) and û(0)− v̂(0) = 0. Now, the

required integrability will follow from some additional regularity of the Fourier

transform. In fact, the uniform bound of the first moment implies the Fourier

transform is uniformly Lipschitz continuous: let ξ1, ξ2 ∈ R2, then by the mean

value theorem,

|û(ξ1)− û(ξ2)| .
∣∣∣∣∫ u(x)

(
e−ix·ξ1 − e−ix·ξ2

)
dx

∣∣∣∣
≤
∫
u(x)

∣∣1− eix·(ξ1−ξ2)
∣∣ dx

≤ |ξ1 − ξ2|
∫
u(x) |x| dx.

Similarly for v. Therefore, we have supt∈(0,T ) ‖∇φ‖2 < ∞. Strictly speaking, as

pointed out in [25], the strong V-measurability of t→ φ(t) should also be estab-

lished. This follows from an easy approximation argument using step functions

and arguments very similar to those just employed.

Now that φ(t) may be used in the definition of weak solution, the rest of the

proof of Theorem 4 follows as above.
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6.4 Continuation Theorem

Continuation of weak solutions, Theorem 5, is a straightforward consequence of

the local existence theory and the following lemma, which follows substantially

the recent work in [36, 125, 39]. This lemma provides a more precise version of

Lemma 9 and has a similar proof.

Lemma 12. Let {uε}ε>0 be the classical solutions to (6.4) on DT , with non-

negative initial data Jεu0. Suppose there exists T0, 0 < T0 ≤ ∞, such that

sup
ε>0

lim
k→∞

sup
t∈(0,T0)

‖(uε − k)+‖ 2−m
2−m?

= 0, (6.29)

where m is such that 1 ≤ m ≤ m? and lim infz→∞A
′(z)z1−m > 0. Then there

exists C = C(M, ‖u0‖∞) such that for all ε > 0,

sup
t∈(0,T0)

‖uε(t)‖∞ ≤ C.

In particular, if T0 = ∞, then {uε}ε>0 are uniformly bounded for all time, and

therefore the weak solution u(t), is uniformly bounded for all time.

Proof. (Lemma 12) Let q = (2 − m)/(2 − m?) ≥ 1. It will be convenient to

define γ, 1 ≤ γ ≤ d/2 such that m? = 1+1/γ−2/d. We first bound intermediate

Lp norms over the same interval, (0, T0). Then we use Morrey’s inequality and

Lemma 7 to finish the proof.

Step 1:

We have two cases to consider, m? = 2 − 2/d and m? < 2 − 2/d, which oc-

curs if D2K ∈ Lγ,∞loc for γ > 1 (Lemma 3). In the former we show that for any

p ∈ (q,∞) we have uε(t) uniformly bounded in L∞ (0, T0;Lp). In the latter case

102



we only show that for q < p ≤ γ/(γ − 1) we have uε(t) uniformly bounded in

L∞ (0, T0;Lp). In either case, this is sufficient to apply Lemma 7 and conclude

the proof.

Let k > 0 be some constant to be determined later and let uk = (u − k)+.

We have dropped the ε and time dependence for notational convenience. By

conservation of mass and (6.8), it suffices to control ‖uk‖p for any k > 0. Thus,

using the parabolic regularization, (6.24), and (6.8) we obtain

d

dt
‖uk‖pp ≤ −p(p−1)

∫
up−2
k A′(u) |∇u|2 dx+p(p−1)

∫
(up−1

k +kup−2
k )∇u·Jε∇K∗udx.

Then,

d

dt
‖uk‖pp ≤ −4(p− 1)

∫
A′(u)

∣∣∣∇up/2k

∣∣∣2 dx− ∫ ((p− 1)upk + kpup−1
k )Jε∆K ∗ udx.

(6.30)

Since the constants are not relevant, we treat the cases together only noting

minor differences when they appear. If m = 2−2/d we may use Hölder’s inequal-

ity and then Lemma 2 to obtain a bound on the first term from the advection:∣∣∣∣∫ upkJε∆K ∗ udx
∣∣∣∣ .p,K ‖uk‖pp+1‖u‖p+1.

On the other hand, if γ > 1 we have from the generalized Hardy-Littlewood-

Sobolev inequality (5.8) (Lemma (4)),∣∣∣∣∫ upkJε∆K ∗ udx
∣∣∣∣ .p,K ‖uk‖pαp‖u‖t + C(M)‖uk‖pp,

with the scaling condition 1/α + 1/t+ 1/γ = 2. Choosing t = αp implies that

1

α
=

2− 1/γ

1 + 1/p
. (6.31)

Notice that from our choice of p then 1 ≤ 1/p+ 1/γ; thus, 1/α ≤ 1. Note that in

the case when m = 2− 2/d then t = αp = p+ 1. Thus we estimate the advection
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terms, ∣∣∣∣∫ upkJε∆K ∗ udx
∣∣∣∣ .p,K ‖uk‖pαp‖u‖αp + C(M)‖uk‖pp

. ‖uk‖p+1
αp + ‖u‖p+1

αp + C(M)‖uk‖pp
(6.8) . ‖uk‖p+1

αp + C(M)‖uk‖pp + C(k,M). (6.32)

The lower order terms in the advection can be controlled using Hölder’s inequality

and Lemma 2, ∣∣∣∣∫ up−1
k Jε∆K ∗ udx

∣∣∣∣ .p ‖uk‖p−1
p ‖u‖p

≤ ‖uk‖pp + ‖u‖pp
(6.8) . ‖uk‖pp + C(k,M). (6.33)

We now aim to compare the dissipation term in (6.30) with the estimates (6.32)

and (6.33). We use the Gagliardo-Nirenberg-Sobolev inequality (Lemma 25),

‖uk‖αp . ‖uk‖α2
q ‖u

(p+m−1)/2
k ‖α1

W 1,2 (6.34)

with

α1 =
2d

p

(
(p− q/α)

q(2− d) + dp+ d(m− 1)

)
,

and

α2 = 1− α1(p+m− 1)/2 > 0.

By the definition of q and (6.31) we have that,

α1(p+ 1)/2 = 1, (6.35)

which implies,

‖uk‖p+1
αp . ‖uk‖α2(p+1)

q

(∫
um−1
k

∣∣∣∇up/2k

∣∣∣2 dx+

∫
up+m−1
k dx

)
. (6.36)
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If d = 2 then necessarily m = m? = 1 and this inequality will be sufficient.

However, for d ≥ 3, more work must be done. Define,

I =

∫
um−1
k

∣∣∣∇up/2k

∣∣∣2 dx.
Then, for β1 ≤ α1 and (p+m− 1)β1/2 < 1,

β1 =
2d(1− q/(p+m− 1))

q(2− d) + dp+ d(m− 1)
,

and β2 = 1− β1(p+m− 1)/2 > 0, we have the following by Lemma 25,∫
up+m−1
k dx . ‖uk‖(p+m−1)β2

q

(
I +

∫
up+m−1
k dx

)(p+m−1)β1/2

. ‖uk‖(p+m−1)β2

q

(
I(p+m−1)β1/2 +

(∫
up+m−1
k dx

)(p+m−1)β1/2
)
.

Therefore, by weighted Young’s inequality for products,∫
up+m−1
k dx . ‖uk‖(p+m−1)β2

q (1 + I) + ‖uk‖γ0q , (6.37)

for some γ0 > 0, the exact value of which is not relevant. Putting (6.36) and

(6.37) together implies,

‖uk‖p+1
αp . P(‖uk‖q)I + C(‖uk‖q), (6.38)

where P(z) denotes a polynomial such that P(z) → 0 as z → 0. By definition

of m, ∃ δ > 0 such that for k sufficiently large then u > k implies A′(u) >

δum−1.Therefore, combining (6.30) with (6.38),(6.32) and (6.33) implies,

d

dt
‖uk‖pp ≤ −C(p)δ

∫
um−1
k

∣∣∣∇up/2k

∣∣∣2 dx+ C(p)‖uk‖p+1
αp

+ C(M, p)‖uk‖pp + C(k,M, p)

≤ − C(p)δ

P(‖uk‖q)
‖uk‖p+1

αp + C(p)‖uk‖p+1
αp

+ C(M, p)‖uk‖pp + C(k,M, p, ‖uk‖q).
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By interpolation against L1, conservation of mass and α ≥ 1 we have

‖uk‖pp .M 1 + ‖uk‖p+1
pα .

Therefore, by assumption (6.29) we may choose k sufficiently large such that

there exists some η > 0 which satisfies the following for all t ∈ (0, T0),

d

dt
‖uk‖pp ≤ −η‖uk‖pp + C(k,M, p, ‖uk‖q).

It follows that ‖uk‖p is bounded uniformly on (0, T0).

Step 2:

The control of these Lp norms will enable us to invoke Lemma 7 and conclude

uε(t) is bounded uniformly in L∞(DT0). Since ∇K ∈ L1
loc and ∇K1Rd\B1(0) ∈ Lq

for all q > d/(d− 1) (by Lemma 1), we have for any q > d/(d− 1)

‖~v‖q = ‖∇K ∗ u‖q ≤ ‖∇K1B1(0)‖1‖u‖q + ‖∇K1Rd\B1(0)‖qM.

If γ > 1, then we may choose q ∈ (d/(d − 1), γ/(γ − 1)], since in this case

necessarily d ≥ 3. Otherwise we may choose q > d/(d−1) arbitrarily. Then, step

one implies ~v ∈ L∞((0, T0);Lq). If γ > 1 then, noting that Definition 1 implies

D2K1Rd\B1(0) ∈ Lq for all q > 1,

‖∇~v‖d+1 = ‖D2K ∗ u‖d+1 ≤ ‖D2K1B1(0)‖Lγ,∞‖u‖p + ‖∇K1Rd\B1(0)‖d+1M,

for p = γ(d+ 1)/(d(γ − 1) + 2γ − 1). Note that

1 < p =
γ(d+ 1)

d(γ − 1) + 2γ − 1
≤ γ

γ − 1
.

On the other hand, if m? = 2 − 2/d then the above proof shows that uε(t) is

bounded uniformly in L∞((0, T0);Lp) for all p <∞. Therefore, by Lemma 2 we
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have ‖∇~v‖p . ‖u‖p . 1, for all 1 < p < ∞. In either case, this is sufficient

to apply Morrey’s inequality and conclude that ‖~v‖∞ is uniformly bounded on

(0, T0). By Lemma 7 we then have that uε is uniformly bounded in L∞(DT0) and

we have proved the lemma. As in Lemma 9, the uniform bounds depend on the

domain but not it’s diameter.

Remark 8. The proof of this lemma directly implies global well-posedness in the

subcritical case since (6.29) is only necessary in the critical and supercritical cases.

Moreover, in the critical case, one may prove directly that there exists some M0

such that if M < M0 the solution is global. However, M0 will generally depend on

the constant of the Gagliardo-Nirenberg-Sobolev inequality, as in [192, 193, 107].

As discussed in the recent works of [36, 39], the use of a continuation theorem

will allow for a more accurate estimate of the critical mass through the use of the

free energy.
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CHAPTER 7

Global Existence and Finite Time Blow Up

For the case m? = 2 − 2/d, Blanchet et al. [36] identified the critical mass for

the problem with the Newtonian potential, K = cd |x|d−2, and A(u) = um. The

authors show that if M < Mc then the solution exists globally and if M > Mc

then the solution may blow up in finite time. There Mc is identified as

Mc =

(
2

(m? − 1)Cm?cd

)1/(2−m?)

,

where Cm? is the best constant in the Hardy-Littlewood-Sobolev inequality given

below in Lemma 4. It is natural to ask the same question for more general cases.

In this work we generalize these results to include inhomogeneous kernels and

general nonlinear diffusion. First, we state the generalization of the finite time

blow up results.

Theorem 6 (Finite Time Blow Up for Critical Problems: m? > 1). Let D either

be bounded and convex with a smooth boundary or D = Rd. Let K and A(u) be

admissible and satisfy

(B1) K(x) = c |x|−d/p + o(|x|−d/p) as x→ 0 for some c > 0 and d/(d− 2) ≤ p <

∞.

(B2) x · ∇K(x) ≤ −(d/p)K(x) + C1 for all x ∈ Rd, for some C1 ≥ 0.

(B3) A′(z) = mAzm−1 + o(zm−1) as z →∞ for some m > 1, A > 0.
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(B4) A(z) ≤ (m− 1)Φ(z) for all z > R, for some R > 0 .

Assume further that (D4) holds. Suppose the problem is critical, that is m = m?.

Then the critical mass Mc satisfies

Mc =

(
2A

(m? − 1)Cm?c

)1/(2−m?)

,

and for all M > Mc there exists a solution to (5.1) which blows up in finite time

with ‖u0‖1 = M .

Theorem 7 (Finite Time Blow Up for Supercritical Problems). Let D be as in

Theorem 6. Let K satisfy (B1) and (B2) in Theorem 6 and A(u) satisfy (B3)

and (B4) in Theorem 6 with 1 < m < m? as well as (D4). Then for all M > 0

there exists a solution which blows up in finite time with ‖u0‖1 = M .

The Newtonian and Bessel potentials both satisfy these conditions with C1 =

0 (Lemma 2.2, [191]), and so the results apply to PKS with degenerate diffusion.

Due to the decay of admissible kernels (Definition 1) condition (B2) should only

impose a significant restriction on the behavior of K at the origin. Power-law

diffusion satisfies conditions (B3) and (B4); however, (B4) is also restrictive,

for example, A(u) = um−u for u large does not satisfy the condition.The accom-

panying global existence theorem is significantly more inclusive than the blow up

theorems, both in the kinds of kernels and nonlinear diffusion considered. As in

Theorem 6, the estimate of the critical mass only depends on the leading order

term of an asymptotic expansion of the kernel at the origin and the growth of

the entropy at infinity. The approach used here and in [36, 39] relies on using the

energy dissipation inequality (5.7) and the continuation theorem (Theorem 5).

The third key component is an inequality which relates the interaction energy

W(u) to the entropy S(u). For m? > 1 this is the Hardy-Littlewood-Sobolev
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inequality given in Lemma 4. In this case, the estimate of the critical mass is

given by (7.1).

Theorem 8 (Global Well-Posedness for m? > 1). Suppose m? > 1. Then we

have the following:

(i) If the problem is subcritical, then the solution exists globally (i.e. T? =∞)

and is uniformly bounded in the sense u ∈ L∞((0,∞)×D).

(ii) If the problem is critical then there exists a critical mass Mc > 0 such

that if ‖u0‖1 = M < Mc, then the solution exists globally. If additionally

(D4) holds or D is bounded, then u(t) is uniformly bounded in the sense

u ∈ L∞((0,∞)×D). The critical mass is estimated below in (7.1).

Proposition 4 (Critical Mass For m? > 1). If K = c |x|−d/p+o(|x|−d/p) as x→ 0

for some c ≥ 0 and p, d/(d− 2) ≤ p <∞, then Mc satisfies,

lim
z→∞

Φ(z)

zm?
− Cm?

2
cM2−m?

c = 0. (7.1)

If c = 0 or limz→∞Φ(z)z−m
?

=∞ then we define Mc =∞.

Remark 9. By Lemma 27, if K ∈ Lp,∞loc then ∃ δ, C > 0 such that ∀x, |x| < δ,

K(x) ≤ C |x|−d/p. Then, if the kernel does not admit an asymptotic expansion

as in Proposition 4, the critical mass Mc can be estimated by,

lim
z→∞

Φ(z)

zm?
− Cm?

2
CM2−m?

c = 0.

Remark 10. Note, limz→∞Φ(z)z−m
?

is always well-defined but is not necessarily

finite unless

lim sup
z→∞

A′(z)z1−m? <∞.

If the problem is critical then necessarily limz→∞Φ(z)z−m
?
> 0 so there always

exists a positive mass which satisfies (7.1). Moreover, if the problem is subcritical

then necessarily limz→∞Φ(z)z−m
?

=∞.
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The case m? = 1 is analogous to the classical PKS problem in 2D, where

linear diffusion is critical. For the 2D PKS, the critical mass is given by Mc = 8π

for both the Newtonian and Bessel potentials [39, 49]. In this work we treat the

m? = 1 case for d ≥ 2, recovering the critical mass of the classical PKS. The case

d ≥ 3 and m? = 1 is approached in [113], but the optimal critical mass is not

identified. Our estimate is given below in (7.2). As above, the critical mass only

depends on the asymptotic expansion of the kernel at the origin and the growth

of the entropy at infinity. We first state the analogue of Theorem 6.

Theorem 9 (Finite Time Blow Up for Critical Problems m? = 1). Let D be a

smooth, bounded and convex domain or Rd with d ≥ 2. Suppose K satisfies

(C1) K(x) = −c ln |x|+ o(ln |x|) as x→ 0 for some c > 0 .

(C2) x · ∇K(x) ≤ −c+ C |x| for all x ∈ Rd, for some C ≥ 0 .

(C3) A(z) ≤ Az for some A > 0.

Then the critical mass Mc satisfies

Mc =
2dA

c
,

and for all M > Mc there exists a solution which blows up in finite time with

‖u0‖1 = M .

The corresponding global existence theorem includes more general kernels

and nonlinear diffusion. The proof is similar to Theorem 8, except that the

logarithmic Hardy-Littlewood-Sobolev inequality (Lemma 5) is used in place of

the Hardy-Littlewood-Sobolev inequality.

Theorem 10 (Global Well-Posedness for m? = 1). Suppose m? = 1 and d ≥ 2,

let D be bounded, smooth and convex or D = Rd and |x|2 u0 ∈ L1(Rd). Then we

have the following:
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(i) If the problem is subcritical, then the solution exists globally and u(t) is

uniformly bounded in the sense u ∈ L∞((0,∞)×D).

(ii) If the problem is critical then there exists a critical mass, Mc > 0, such that

if ‖u0‖1 = M < Mc, then the solution exists globally. If D is bounded, then

u(t) is uniformly bounded in the sense u ∈ L∞((0,∞) × D). The critical

mass is estimated below in (7.2).

Proposition 5 (Critical Mass for m? = 1). If K(x) = −c ln |x| + o(ln |x|) as

x→ 0 for some c ≥ 0, then Mc satisfies,

lim
z→∞

Φ(z)

z ln z
− c

2d
Mc = 0. (7.2)

If c = 0 or limz→∞Φ(z)(z ln z)−1 =∞ then we define Mc =∞.

Remark 11. By (BD) and (MN), ∃ δ, C > 0 such that ∀x, |x| < δ, K(x) ≤

−C lnx. Therefore, if the kernel does not have the asymptotic expansion required

in Proposition 5 then the critical mass Mc may be estimated as,

lim
z→∞

Φ(z)

z ln z
− C

2d
Mc = 0.

Remark 12. These theorems include many known global existence and finite time

blow up results in the literature including [192, 191, 192, 29, 36, 125, 47]. Our

main contributions to the existing theory is the unification of these results and

the estimate of the critical mass for inhomogeneous kernels and general nonlinear

diffusion. In the case of the Newtonian potential Blanchet et al. showed in [36]

that solutions at the critical mass also exist globally. See [76, 32, 37] for the

corresponding result for classical 2D PKS.
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7.1 Control on the Entropy from Below

In the case of degenerate diffusion, (D4), we may uniformly bound the entropy

from below.

Lemma 13. Let u(x, t) be a weak solution to (5.1). Then,∫
Φ(u(t))dx & −M.

Proof. Let h(z) =
∫ z

1
A′(s)s−1ds. By Definition 2, (D4), for z ≤ 1,

h(z) ≥ −C > −∞.

Therefore,∫
Φ(u)dx =

∫ ∫ u

0

h(z)dzdx ≥
∫

1{u≤1}

∫ u

0

h(z)dz + 1{u≥1}

∫ 1

0

h(z)dzdx.

≥ −
∫

1{u≤1}Cu− 1{u≥1}Cdx

≥ −2C‖u‖1.

where the last line followed from Chebyshev’s inequality.

If only (D3) holds, only weaker control is available since the nonlinear entropy∫
Φ(u)dx and the linear entropy

∫
u log udx are no longer uniformly bounded from

below. However, the following standard lemma ensures that the decay is bounded

from below by controllable quantities.

Lemma 14 (Entropy Lower Bound). Let A be admissible, u ∈ L1
+(Rd; (1 +

|x|2)dx) ∩ L∞(Rd) and M2 =
∫
|x|2 u(x)dx. Then,∫

u log udx ≥ −C(M)−M2, (7.3)

and ∫
Φ(u)dx ≥ −C(M)− CAM2. (7.4)
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Proof. Following [39], by Jensen’s inequality for probability measures,∫
u(x) log u(x)dx+

∫
|x|2 udx =

∫
u log

(
u(x)

e−|x|
2

)
dx

=

∫ √
π√
π

u(x)

e−|x|
2 log

(
u(x)

e−|x|
2

)
e−|x|

2

dx.

≥
√
πX logX = −C(M)

with

X =

∫
ue|x|

2 e−|x|
2

√
π
dx =

M√
π
.

Therefore, ∫
u log udx ≥ −C(M)−M2.

By (D3), for some δ > 0, A′(z) ≤ CAz for z < δ. Let h(z) =
∫ z

1
A′(s)s−1ds and

note that
∫

Φ(u)dx =
∫

Rd
∫ u

0
h(z)dzdx. For z < 1 we have,

h(z) = −
∫ 1

z

A′(s)

s
ds

≥ −
∫ 1

δ

A′(s)

s
ds− CA

∫ δ

min(z,δ)

1

s
ds

≥ −C + CA log z.

Therefore, since log z is integrable at zero, we have the following by Chebyshev’s

inequality, ∫
Φ(u)dx =

∫ ∫ u

0

h(z)dzdx

≥
∫

1{u<1}

∫ u

0

h(z)dz + 1{u>1}

∫ 1

0

h(z)dzdx

≥
∫

1{u<1} (CA(u log u− u)− Cu)− C1{u>1}dx

≥ CA

∫
{u<1}

u log udx− C(M).

Therefore by (7.3), ∫
Φ(u)dx ≥ −C(M)− CAM∈.
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7.2 Global Existence for m? > 1

Proof. (Theorem 8) We only prove the second the assertion under the hypothe-

ses of Proposition 4, as the subcritical case follows similarly. By the energy

dissipation inequality (5.7) we have for all time 0 ≤ t < T?,

S(u(t))−W(u(t)) ≤ F(u0) := F0. (7.5)

We drop the time dependence of u(t) for notational simplicity. By the assumption

on K, ∀ ε > 0, ∃ δ > 0 such that |K(x)| ≤ (c+ ε) |x|−d/p for |x| < δ. By Lemma 4

we have,∫
Φ(u)dx− 1

2
Cm?M

2−m?(c+ ε)‖u‖m?m? ≤ F0 +
1

2
‖K|Bδ(0)‖∞M2,

By (7.1) and M < Mc, there exists ε > 0 small enough and α, k > 0 such that

Φ(z)z−m
? − 1

2
Cm?M

2−m? (c+ ε) ≥ α > 0, for all z > k. (7.6)

By Lemma 13 we have,∫
{u>k}
um

?

(
Φ(u)um

? − 1

2
Cm?M

2−m? (c+ ε)

)
dx

−1

2

∫
{u<k}
Cm?M

2−m? (c+ ε)um
?

dx ≤ F0 + C(δ,M),

and by (7.6),

α

∫
{u>k}
um

?

dx− 1

2
Cm?M

2−m? (c+ ε)

∫
{u<k}
um

?

dx ≤ F0 + C(M, δ).

By mass conservation we have that ‖u‖m? is a priori bounded independent of time

and Theorem 5 and Lemma 12 implies global existence and uniform boundedness.
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7.3 Global Existence for m? = 1

The proof of Theorem 10 follows similarly, but requires the logarithmic Hardy-

Littlewood-Sobolev inequality (Lemma 5) as opposed to Lemma 4. We will first

prove the result on bounded domains.

Proof. ( Theorem 10) We will again use Theorem 5 and prove

sup
t∈(0,∞)

∫
(u lnu)+dx <∞.

7.3.1 Bounded Domains

By the energy dissipation inequality (5.7) we again have (7.5). By the assump-

tions of Proposition 5, for all ε > 0 there exists δ > 0 such that,∫
Φ(u)dx+ (c+ ε)

1

2

∫ ∫
|x−y|<δ

u(x)u(y) ln |x− y| dxdy ≤ C(F0, δ,M).

By D bounded, the logarithmic Hardy-Littlewood-Sobolev inequality (5.10) im-

plies, ∫
Φ(u)dx− (c+ ε)

M

2d

∫
u lnudx ≤ C(F0, δ,M, diamD).

Choosing k > 0 large and recalling Lemma 13 implies∫
{u>k}
u lnu

(
Φ(u)

u lnu
− (c+ ε)

M

2d

)
dx− (c+ ε)

∫
{u<k}

u lnudx ≤ C(F0, δ,M, diamD).

As in the proof of Theorem 8, by conservation of mass, (7.2) and M < Mc, we

may choose ε > 0 small enough and k large enough such that∫
{u>k}
u lnudx ≤ C(F0,M, diamD).
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7.3.2 Unbounded Domains

On Rd,
∫ ∫

u(x)u(y) log |x− y| dxdy is no longer uniformly controlled for large

values of x−y, which causes a problem when using the logarithmic HLS. We deal

with this issue by producing a bound on the second moment.

The following lemma establishes a uniform bound on the second moments for

critical problems with m? = 1.

Lemma 15 (Second Moment Estimate for m? = 1). Let A(z) ≤ Cz for some

C > 0 and K be admissible with m? = 1. Then,

M2(t) ≤M2(0) +M (C1 + C2M) t

for some constants Ci > 0.

Proof. We argue formally, noting that the computations can easily be made rig-

orous with standard arguments. Computing the time evolution of the second

moment,

d

dt
M2(t) = 2d

∫
A(u)dx+

∫ ∫
u(x)u(y)(x− y) · ∇K(x− y)dxdy.

By assumption
∫
A(u)dx . M . By admissibility and m? = 1 we have,

|(x− y) · ∇K(x− y)| ≤ C.

Therefore by integration, the lemma follows.

Remark 13. By Definition 6, (D3) and A(z) ∈ C1(R+), any critical problem with

m? = 1 will satisfy

A′(z) ≤ C,

for some C > 0 and therefore A(z) . z.
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We may now resume the proof of global existence for unbounded domains.

The subcritical case is settled easily using a variant of the argument used in

the proof of the continuation theorem (see Kowalczyk [125]) so we restrict our

attention to assertion (ii).

Again by energy dissipation (Proposition 1),∫
Φ(u)dx− 1

2

∫
uK ∗ udx ≤ F(u0) := F0.

By the asymptotic expansion of the kernel assumed in Proposition 4 and (BD),

we have that for all ε > 0, ∃δ, R > 0 such that,∫
Φ(u)dx+

c+ ε

2

∫ ∫
|x−y|<δ

u(x)u(y) log |x− y| dxdy

≤ F0 +
1

2

∫ ∫
δ<|x−y|<R

u(x)u(y)K(|x− y|)dxdy

−C
∫ ∫

|x−y|>R
u(x)u(y) log |x− y| dxdy.

Note that for R > 0 sufficiently large,∫ ∫
|x−y|>R

u(x)u(y) |log |x− y|| dxdy ≤ logR

R

∫ ∫
|x−y|>R

u(x)u(y) |x− y| dxdy

. M3/2M2(t)1/2,

where I(t) :=
∫
|x|2 u(t, x)dx is the second moment. Therefore,∫

Φ(u)dx+ (c+ ε)
1

2

∫ ∫
|x−y|<δ

u(x)u(y) log |x− y| dxdy

≤ F0 + C(M, δ,R) + C(M)M2(t)1/2.

By the logarithmic HLS inequality (Lemma 5),∫
Φ(u)dx− (c+ ε)

M

2d

∫
u log udx− (c+ ε)

1

2

∫ ∫
|x−y|>δ

u(x)u(y) log |x− y| dxdy

≤ F0 + C(M, δ,R) + C(M)M2(t)1/2.
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Thus, choosing k ≥ 1 and arguing as above,∫
{u>k}

u log u

(
Φ(u)

u log u
− (c+ ε)

M

2d

)
dx+

∫
u<k

Φ(u)dx

≤ F0 + C(M, δ,R) + C(M)M2(t)1/2.

By Lemma 14,∫
{u>k}

u log u

(
Φ(u)

u log u
− (c+ ε)

M

2d

)
dx ≤ F0 + C(M, δ,R) + C(M)M2(t).

By Lemma 15 (see Remark 13), I(t) . 1 + t for all t < ∞. Since M < Mc

as defined in Proposition (5), it is possible to choose k large enough and ε small

enough such that
∫
{u>k} u log udx is uniformly bounded on any finite time interval.

Arguing as above, this implies the solution exists globally.

7.4 Finite Time Blow Up

In this section we prove Theorem 7 and Theorem 6. We prove Theorem 7 as

it is somewhat easier, though the technique is the same as that used to prove

Theorem 6.

7.4.1 Supercritical Case: Theorem 7

For Theorem 7 we state the following lemma, which provides insight into the

nature of the supercritical cases. The proof and motivation follows [36].

Lemma 16. Define YM =
{
u ∈ L1 ∩ Lm? : u ≥ 0, ‖u‖1 = M

}
. Suppose K sat-

isfies (B1) and A(u) satisfies (B3) for some m > 1, A > 0. Suppose further

that the problem is supercritical, that is, m < m?. Then infYM F = −∞. More-

over, there exists an infimizing sequence with vanishing second moments which

converges to the Dirac delta mass in the sense of measures.
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Proof. Let 0 < θ < 1, α = d/p. Then by Lemma 4 there exists h? such that,

θCm? ≤
∣∣∫ ∫ h?(x)h?(y) |x− y|−α dxdy

∣∣
‖h?‖2−m?

1 ‖h?‖m?m?
≤ Cm? . (7.7)

We may assume without loss of generality that h? ≥ 0, since replacing h? by |h?|

will only increase the value of the convolution. By density, we may take h? ∈ C∞c
and therefore with a finite second moment.

Let µ = ‖h?‖1/d
1 M−1/d, λ > 0 and hλ(x) = λdh?(λµx). First note, by (B3),

∀ε > 0, ∃R > 0 such that,∫
Φ(hλ)dx =

∫ ∫ hλ

0

∫ s

1

A′(z)

z
dzdsdx

≤
∫ ∫ hλ

0

∫ max(s,R)

R

(mA+ ε)zm−2dz +

∫ R

1

A′(z)

z
dzdsdx

≤ A+ ε

m− 1
‖hλ‖mm + C(R)‖hλ‖1. (7.8)

By (B1) and h? ∈ C∞c , ∀ ε > 0, ∃λ > 0 sufficiently large such that,

−W(t) ≤ −(c− ε)µ
−2d+αλα

2

∫ ∫
h?(x)h?(y) |x− y|−α dxdy. (7.9)

Combining (7.9),(7.8) with (7.7) and Lemma 4, we have for λ,R sufficiently large,

F(hλ) ≤
λdm−dM

(m− 1)‖h?‖1

(A+ ε)‖h?‖mm

− λα(θ − ε)Cm
?

2

(
‖h?‖1

M

)−2+α/d

‖h?‖2−m?
1 ‖h?‖m?m? + C(R)µ−d‖h?‖1.

By supercriticality, we have α = dm? − d > dm − d, and so for ε < θ, we take

λ→∞ to conclude that for all values of the mass M > 0 we have infYM F = −∞.

Moreover, since h? ∈ C∞c , the second moment of hλ goes to zero and hλ converges

to the Dirac delta mass in the sense of measures.

Proof. (Theorem 7) We may justify the formal computations for weak solutions

using the regularized problems and taking the limit but we do not include such
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details. We treat both bounded and unbounded domains together pointing out

the differences when they appear. Let

M2(t) =

∫
|x|2 u(x, t)dx.

If the domain is bounded then by (5.4),

d

dt
M2(t) = 2d

∫
A(u)dx

+ 2

∫ ∫
u(x)u(y)x · ∇K(x− y)dxdy −

∫
∂D

A(u)x · νdS

= 2d

∫
A(u)dx+

∫ ∫
(x− y) · ∇K(x− y)u(x)u(y)dxdy

−
∫
∂D

A(u)x · ν(x)dS, (7.10)

where the second integral was obtained by symmetrizing in x and y, the time

dependence was dropped for notational simplicity and ν(x) denotes the outward

unit normal of D at x ∈ ∂D. By translation invariance and convexity of D, we

may assume that x · ν(x) ≥ 0. For the rest of the proof we may treat bounded

domains and D = Rd together, since for each,

d

dt
M2(t) ≤ 2d

∫
A(u)dx+ 2

∫ ∫
u(x)u(y)x · ∇K(x− y)dxdy.

We use (B2) on K, to obtain

d

dt
M2(t) ≤ 2d

∫
A(u)dx− 2d/pW(u) + C1M

2.

By (D4), (B4) and Lemma 13,∫
A(u)dx =

∫
{u<R}

A(u)dx+

∫
{u>R}

A(u)dx

≤ C(M) + (m− 1)

∫
{u>R}

Φ(u)dx

≤ C(M) + (m− 1)

∫
Φ(u)dx.
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Using that 2d(m− 1) < 2d(m? − 1) = 2d/p we have,

d

dt
M2(t) ≤ 2d(m− 1)F(u) + C(M,C1).

We use the energy dissipation inequality (5.7) to bound the first term,

d

dt
M2(t) ≤ 2d(m− 1)F(u0) + C(M,C1).

From this differential inequality, the second moment will be zero in finite time

and the the solution blows up in finite time if

F(u0) < − C(M,C1)

2d(m− 1)
.

By Lemma 16, we may always find initial data with any given mass M > 0 such

that this is true, since there exists infimizing sequences with vanishing second

moments. The final assertion follows from Theorem 5. Indeed, we have

T? ≤ −
I(0)

2d(m− 1)F(u0) + C(M,C1)
.

7.4.2 Critical Case: Theorems 6 and 9

The proof of Theorem 6 follows the proof of Theorem 7.

Lemma 17. Define YM = {u ∈ L1 ∩ L∞ : u ≥ 0, ‖u‖1 = M}. Suppose K satis-

fies (B1) and A(u) satisfies (B3) for m > 1 and A > 0. Suppose further that

the problem is critical, that is, m = m? and let Mc satisfy (7.1). If M satisfies

M > Mc, then infYM F = −∞. Moreover, there exists an infimizing sequence

with vanishing second moments which converges to the Dirac delta mass in the

sense of measures.
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Proof. We may proceed as in the proof of Lemma 16, but instead choose θ ∈(
(Mc/M)2−m? , 1

)
. Let α = d/p. By optimality of Cm? , as before there exists h?

such that,

θCm? ≤
∣∣∫ ∫ h?(x)h?(y) |x− y|−α dxdy

∣∣
‖h?‖2−m?

1 ‖h?‖m?m?
≤ Cm? . (7.11)

As above, we assume h? ≥ 0 and h? ∈ C∞c .

Let µ = ‖h?‖1/d
1 M−1/d, λ > 0 and hλ(x) = λdh?(λµx). By (B1) and (B3),

∀ ε > 0 there exists a λ and R sufficiently large such that by h? ∈ C∞c ,

F(hλ) ≤
λdm−dM

(m? − 1)‖h?‖1

(A+ ε)‖h?‖m?m? + C(R)µ−d‖h?‖1

− (θ − ε)Cm?
2

(
‖h?‖1

M

)−2+α/d

λα‖h?‖2−m?
1 ‖h?‖m?m?

However in this case α = dm− d and m = m?, therefore by (7.11) and Lemma 4,

F(hλ) ≤ λdm
?−d‖h?‖m?m?

[
M(A+ ε)

(m? − 1)‖h?‖1

− (θ − ε)Cm?
2

(
‖h?‖1

M

)−2+α/d

‖h?‖2−m?
1

]
.

Then,

F(hλ) ≤ λdm
?−d‖h?‖m

?

m?

‖h?‖1

[
M(A+ ε)

(m? − 1)
− (θ − ε)

2
Cm?M

2−α/d
]
.

Then since A/(m? − 1) = Cm?M
2−m?
c /2 and α/d− 1 = 2−m? we have,

F(hλ) ≤ λdm
?−d ‖h?‖mm

2‖h?‖1

Cm?M
2−α/d

[(
1 +

ε

A

)(
Mc

M

)2−m?

− (θ − ε)

]
.

Since θ > (Mc/M)2−m? we may take ε sufficiently small and λ→∞ to conclude

that infYM F = −∞. As before, hλ converges to the Dirac delta mass in the

sense of measures.

Proof. (Theorem 6) The theorem follows from a Virial identity as in Theorem

7.
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Proof. (Theorem 9) As in Theorem 7 we have by (C2), (C3) and if D is bounded,

the convexity of the domain,

d

dt
M2(t) ≤ 2dA

∫
A(u)dx+

∫ ∫
u(x)u(y)(x− y) · ∇K(x− y)dxdy

≤ 2dM

(
A− cM

2d

)
+ C1M

3/2M2(t)1/2.

Clearly, if M > Mc thenM2 → 0 in finite time ifM2(0) is sufficiently small.
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CHAPTER 8

Intermediate Asymptotics

In the previous chapter, the regime of most interest was the highly concentrated

regime near blow up, and the goal was to determine whether or not the diffusion

can overpower and halt finite time aggregation. In this chapter, our goal is to

consider a different regime, namely the regime in which the solution is dissipating.

We mostly follow the results of the preprint [17] by the author.

We will restrict to the special case ut +∇ · (u∇K ∗ u) = ∆um, m ≥ 1,

u(0, x) = u0(x) ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd),

(8.1)

In particular, we are interested in determining when solutions to (8.1) converge in

L1(Rd) as t→∞ to the self-similar spreading solutions of the diffusion equation

ut = ∆um. (8.2)

All dissipating solutions are weak? converging to zero as t→∞, but this kind of

result implies that for 1 << t <∞, the dissipating solutions all look more or less

like self-similar solutions of (8.2). For this reason, these results are often referred

to as intermediate asymptotics.

We point out here that in this chapter, the case m = 2− 2/d is referred to as

critical and the case m < 2− 2/d is referred to as supercritical. This is because

the focus of this chapter is the long-term spreading behavior of solutions, and
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achieving such a precise balance based on the singularity of the kernel (which is

relatively unimportant for this analysis) is not necessary.

As strong nonlinearities vanish quickly near zero, scaling heuristics suggest

that the nonlocal aggregation term should become irrelevant for small data in

the critical and supercritical regime. This might seem slightly counter-intuitive

at first, however the classical example from ODE, ∂tu = −u+u2, can immediately

clarify what is going on. In fact, it will turn out that in many cases the aggregation

wins at large length scales in subcritical cases, producing a confining effect which

leads to the existence of stationary solutions (for example [149, 150]). We remark

that analogous behavior is seen in the study of semilinear dispersive PDE with

focusing nonlinearities [197], which in fact share many common features with

(5.1) despite the many obvious differences. We will discuss the similarities and

differences in more detail below in Chapter 9.

In this chapter, we use entropy dissipation methods [58, 199, 59, 54, 53, 30]

to obtain several intermediate asymptotics results determining when solutions of

(5.1) converge to self-similar solutions of (8.2). Entropy dissipation methods are

well-suited for proving the convergence to equilibrium states of nonlinear Fokker-

Plank-type equations for arbitrary data [58, 54]. Through a change of variables

employed below, this also provides convergence to self-similarity of nonlinear

homogeneous diffusion equations [59]. In contrast to these works, we employ

such methods to prove a small data result, treating the nonlocal aggregation

term as a perturbation. For this to work, sufficiently strong decay estimates

on the solution must be obtained. Indeed, strong decay estimates imply the

intermediate asymptotics results, and so we have chosen to state them separately

in Theorem 11 below. Here, we obtain these estimates using iteration methods

such those employed in Chapter 6. While nonlinear, these iteration methods are
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essentially perturbative in nature and thus somewhat limited against arbitrary

data. Analogous to related models, such as the nonlinear Schrödinger equations,

it is likely a fully non-perturbative theory will need to be applied in order to

treat large data, which is sometimes significantly more difficult (for example, see

discussions in [197, 121]).

The first result, Theorem 12, covers the caseK ∈ W 1,1(Rd). Here, the nonlocal

term can be considered to have a finite characteristic length-scale which becomes

vanishingly small relative to the length-scale of the solution as it dissipates. A

result similar to Theorem 12 for Lp, 1 < p < ∞, was proved for the special

case of the Bessel potential in [155, 156] with the (soft) compactness method

of [112] (see also [202]). In contrast to methods based on compactness, the

entropy dissipation methods obtain quantitative convergence rates in L1, which

by interpolation against the decay estimates, provides quantitative estimates in

all Lp, 1 ≤ p <∞. For supercritical problems, the convergence rate is shown to

be the same as the optimal rates for (8.2) [58, 199, 59, 54, 202].

In general, if the kernel does not have critical scaling at large length-scales,

the long-range effects should still become irrelevant as the solution dissipates.

That is, we should expect results similar to the K ∈ W 1,1(Rd) case to hold,

except when m = 2− 2/d and ∇K ∼ |x|1−d as |x| → ∞. Indeed, when K is the

Newtonian potential, there exists at least one self-similar spreading solution to

(5.1) when m = 2− 2/d [39, 36, 38, 48]. In the presence of linear diffusion, these

are additionally known to be the global attractors [39, 38]. Theorem 13 below

extends Theorem 12 to the general case of K 6∈ W 1,1(Rd), where the decay of

K is characterized by γ ∈ [d − 1, d] such that |∇K(x)| = O(|x|−γ) as |x| → ∞.

We show that if γ > d− 1, then dissipating solutions converge to the self-similar

spreading solutions of (8.2). However, in contrast to Theorem 12, the long-
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range effects appear to degrade the convergence rate and Theorem 13 provides a

quantitative estimate of this effect in terms of m and γ. It is not known whether

the rates obtained in Theorem 13 are sharp. When γ = d− 1, the kernel behaves

like the Newtonian potential on large length-scales, and the result is no longer

expected to hold if m = 2 − 2/d. Indeed, we expect solutions to converge to

the self-similar solutions of (5.1) constructed in [39, 36]. However, Theorem 13

asserts that in supercritical cases, self-similar solutions to (8.2) again govern the

intermediate asymptotics. Thus, Theorem 13 provides intermediate asymptotics

for Patlak-Keller-Segel models with linear diffusion in dimensions d ≥ 3.

8.1 Main Results

The self-similar solutions to the diffusion equation (8.2) are well-known, see for

instance [202] and [59]. In the linear case m = 1, the self-similar solution is

simply the heat kernel,

U(t, x;M) =
M

(4πt)d/2
e
−|x|2

4t . (8.3)

In the case of degenerate diffusion m > 1, the self-similar solution is given by the

Barenblatt solution,

U(t, x;M) = t−βd
(
C1 −

(m− 1)β

2m
|x|2 t−2β

) 1
m−1

+

, (8.4)

where C1 is determined from the conservation of mass and

β =
1

d(m− 1) + 2
. (8.5)

It should be well noted that

‖U(t;M)‖p . t−dβ(1− 1
p),
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and so to provide a real characterization of the convergence to self-similarity,

quantitative estimates will be stated in terms of relative scale, as the reader shall

see below.

The entropy dissipation methods of [58, 199, 59, 54] were used to determine

the optimal rate of convergence in L1(Rd) to self-similarity for the homogeneous

diffusion equations. That is, any solution u(t) of (8.2) satisfies

tdβ(1− 1
p)‖u(t)− U(t;M)‖p . (1 + t)−

2β
p

min( 1
2
, 1
m), ∀p, 1 ≤ p <∞.

This rate should be contrasted with the rates obtained in Theorems 12 and 13,

where it is shown that kernels with finite length-scales do not have much effect

on the rate, but strong nonlocal effects might.

In order to emphasize the relationship between decay estimates and interme-

diate asymptotics, we state them separately. Results similar to (i) of Theorem

11 have been obtained in a variety of places, for example [176, 192, 38]. Our

estimates are obtained in a closely related but different way than existing work.

We first rescale into the self-similar variables of the diffusion equation as in [38],

and then adapt the Alikakos [3] iteration techniques which were important for the

local theory discussed above in Chapter 6. This approach to decay estimates has

the advantage of naturally extending the existing methods used to obtain uniform

bounds, and for a relatively mild increase in complexity, much stronger results

are obtained. Here we use this advantage to also deduce a sufficient condition for

decay estimates to hold in the critical case 2−2/d, (ii) of Theorem 11 below. For

critical problems, uniform equi-integrability in time is equivalent global uniform

boundedness for solutions to (5.1) (Theorem 5 above, see also [47, 36]), and due

to the similarities in the proof, we may state something analogous for decay es-

timates. Indeed, (8.7) is simply the requirement that the solution of the rescaled

system remain uniformly equi-integrable. The proofs of Theorems 11,12 and 13
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are outlined in more detail in §8.2.1. Remarks on the limitations and possible

extensions are made after the statements.

Theorem 11 (Decay Estimates). Let d ≥ 2, m ∈ [1, 2− 2/d] and K admissible.

Let u0 ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd).

(i) There exists an ε0 > 0 (independent of u0) such that if ‖u0‖1+‖u0‖(2−m)d/2 <

ε0, then the weak solution u(t) to (5.1) which satisfies u(0) = u0 is global

and satisfies the decay estimate

‖u(t)‖∞ . (1 + t)−dβ. (8.6)

(ii) If m = 2− 2/d and u(t) is a global weak solution to (5.1) which satisfies

lim
k→∞

sup
t∈[0,∞)

∫ (
u(t, x)− k

(
t

β
+ 1

)dβ)
+

dx = 0, (8.7)

then u(t) satisfies the decay estimate (8.8).

Remark 14. The decay estimate ‖u(t)‖∞ . (1 + t)−dβ implies (8.7) but they

are not a priori equivalent. Indeed, condition 8.7 is the requirement that θ(τ)

(defined below in (8.22)) satisfy the equi-integrability condition (6.1) as τ →∞

however the decay estimate requires θ(τ) to be uniformly bounded in L∞.

Once the decay estimate (8.8) has been established, entropy-entropy dissipa-

tion methods can be adapted to deduce the following intermediate asymptotics

theorems, as the decay estimate provides sufficient control of the nonlocal terms.

Theorem 12 (Intermediate Asymptotics I: Finite Length-Scale). Let d ≥ 2, m ∈

[1, 2− 2/d] and K ∈ W 1,1 be admissible. Let f ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd).

Then there exists an ε0(‖f‖1, ‖f‖(2−m)d/2) > 0 such that for all ε < ε0, if u0 = εf

then the weak solution u(t) to (8.1) is global and satisfies

‖u(t)‖∞ . (1 + t)−dβ. (8.8)
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Moreover, if m < 2− 2/d, then u(t) satisfies

tdβ(1− 1
p)‖u(t)− U(t;M)‖p . (1 + t)−

β
p , ∀p, 1 ≤ p <∞, (8.9)

and if m = 2− 2/d, then for all δ > 0, u(t) satisfies

tdβ(1− 1
p)‖u(t)− U(t;M)‖p .δ (1 + t)−

β
p

(1−δ), ∀p, 1 ≤ p <∞. (8.10)

Here β is defined in (8.5) and U(x, t;M) is the self-similar solution to (8.2) with

mass M = ε‖f‖1 given in (8.3) or (8.4).

Theorem 13 (Intermediate Asymptotics II: Infinite Length-Scales). Let d ≥ 2

and K be admissible with ∇K(x) = O(|x|−γ) as |x| → ∞ for some γ ∈ [d −

1, d]. If γ = d − 1 then suppose m ∈ [1, 2 − 2/d) and otherwise we may take

m ∈ [1, 2 − 2/d]. Let f ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd). Then there exists

an ε0(‖f‖1, ‖f‖(2−m)d/2) > 0 such that for all ε < ε0, if u0 = εf then the weak

solution u(t) to (8.1) is global and satisfies

‖u(t)‖∞ . (1 + t)−dβ. (8.11)

Moreover, for all δ > 0, u(t) satisfies

tdβ(1− 1
p)‖u(t)− U(t;M)‖p .δ (1 + t)−

β
p

min(1,1+γ−β−1−δ), ∀p, 1 ≤ p <∞. (8.12)

Here β and U(t, x;M) are as above.

Remark 15. Note that f ∈ L1
+(Rd; (1+|x|2)dx)∩L∞(Rd) implies f log f ∈ L1(Rd)

by Jensen’s inequality.

Remark 16. The convergence rate in (8.9) is optimal, as it matches that of the

corresponding diffusion equation. Optimality is not known for (8.10) or (8.12),

however we suspect that these rates are nearly optimal. Note that the convergence

rate obtained in (8.12) reduces to (8.9) and (8.10) when γ = d. Moreover, if

γ = d− 1, then the convergence rate goes to zero as m↗ 2− 2/d.
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Remark 17. The results of the previous chapters suggest that if the kernel K

is less singular than the Newtonian potential at the origin, the L(2−m)d/2 norm

could, in some cases, possibly be replaced by a weaker one.

Remark 18. We consider only the case of power-law diffusion, however, the esti-

mates (8.8),(8.11) hold for (5.1) provided A′(z) ≥ czm−1 for some c > 0. There-

fore, it is likely possible to apply the methods of [30, 53] to this more general case

under some additional structural assumptions.

8.1.1 Entropy-Entropy Dissipation Methods

Entropy-entropy dissipation methods have recently become a very powerful frame-

work for examining the global asymptotic behavior of certain dissipative systems.

See [54] for a review of these methods in the context of Fokker-Plank equations

and degenerate diffusion equations and [170, 55, 56] for the deep relationship with

optimal transport. The methods also played a key role in the study of decay to

equilibrium of the Boltzmann equations [204, 71].

In our context, we will use the entropy-entropy dissipation framework for the

Fokker-Plank equation

∂τθ = ∇η · (ηθ) + ∆ηθ
m, m ≥ 1. (8.13)

In the case m = 1, the associated entropy is given by,

H(θ) =

∫
θ log θdη +

1

2

∫
|η|2 θdη, (8.14)

and the entropy production functional or Fisher information by

I(θ) =

∫
θ |∇ log θ + η|2 dη. (8.15)

In the nonlinear case m > 1, the corresponding quantities are,

H(θ) =
1

m− 1

∫
θmdη +

1

2

∫
|η|2 θdη, (8.16)
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and the entropy production functional,

I(θ) =

∫
θ

∣∣∣∣ m

m− 1
∇θm−1 + η

∣∣∣∣2 dη. (8.17)

In the nonlinear case, these entropies were originally introduced for studying

(8.13) in [166, 179]. For a given mass M , (8.16) has a unique non-trivial mini-

mizer, which we refer to as the ground state Barenblatt solution θM , since both

(8.14) and (8.16) are displacement convex [159]. If we define the relative entropy

H(θ|θM) = H(θ)−H(θM), (8.18)

then H(θ|θM) ≥ 0 with equality if and only if θ = θM . One can easily verify

formally that if f(τ, η) solves (8.13), then

d

dτ
H(f(τ)) = −I(f(τ)). (8.19)

Since I(f) ≥ 0, this implies H is a Lyapunov functional for (8.13) and that∫∞
0
I(f(τ))dτ <∞ for all solutions f . Moreover, one can also verify that I(f) = 0

if and only if f = θM from the Euler-Lagrange equation (see [54]), suggesting that

at least along subsequences, all solutions converge to θM . Combined with a priori

bounds implying pre-compactness, this ‘soft’ argument works but cannot provide

any information about the convergence rate. The classical work of Bakry and

Émery [10] proceeds in the case m = 1 by carrying out a computation to deduce

d

dt
I(f(τ)) & I(f(τ)).

Integrating this inequality and (8.19) implies I(f(0)) &
∫∞

0
I(f(s))ds = H(f(0)|θM).

In fact, this is the Gross logarithmic inequality [91] (see also [177]) and plays the

role of an entropy-entropy dissipation inequality, as it relates the entropy dissi-

pation to the relative entropy itself. The case m > 1 has since been treated,

providing the following Theorem. The explicit constant is important as it de-

termines the rate of convergence; it is related to the convexity properties of the

confining potential, in this case |x|2 /2.
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Theorem 14 (Generalized Gross Logarithmic Sobolev Inequality [59, 54, 177,

91]). Let f ∈ L1
+(Rd) with ‖f‖1 = M and let θM be the ground state Barenblatt

solution with mass M . Then,

H(f |θM) ≤ 1

2
I(f). (8.20)

We see that for the Fokker-Plank equation (8.13), Theorem 14 implies

H(θ(τ)|θM) . e−2τ .

A (generalized) Csiszar-Kullback inequality (for the case m = 1, this is actually

an inequality of information theory [67, 127]) relates the relative entropy to the

L1 norm.

Theorem 15 (Generalized Csiszar-Kullback Inequality [54]). Let f ∈ L1
+(Rd)

with ‖f‖1 = M and let θM be the ground state Barenblatt solution with mass M .

Then,

‖f − θM‖1 . H(f |θM)min( 1
2
, 1
m). (8.21)

Note that since we are interested in 1 ≤ m ≤ 2− 2/d, we will only apply the

inequality with exponent 1/2.

Another viewpoint on entropy-entropy dissipation methods and the classi-

cal Bakry-Émery analysis is that of optimal transport, as detailed in [55, 56].

Geodesic convexity of a function E : M → R, where M is a Riemannian mani-

fold, is the property that for any geodesic on M , parametrized by φ : [0, 1]→M ,

we have

E(φ(t)) ≤ (1− t)E(φ(0)) + tE(φ(1)).

The notion of displacement convexity introduced by McCann [159] is precisely

this notion, applied to the formal Riemannian manifold formed by the space of
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absolutely continuous probability measures with finite second moment endowed

with the optimal transport geodesics provided by Brenier’s theorem [44, 158]. The

fact that PDE such as (8.13) could be interpreted, at least formally, as gradient

flows with respect to this Riemannian structure first took form in [170] after

the seminal work of Jordan, Kinderlehrer and Otto [111]. Rigorous meaning to

this gradient flow concept has been examined in a number of works, for example

[7, 56].

The intuition that (8.13) is a gradient flow for H suggests therefore that

the entropy production functional is thus the derivative for H(θ|θM) along the

geodesic connecting θ and θM . From this observation and some basic formal

computations using convexity, one can construct an abstract framework for de-

ducing quantitative estimates of the rate of convergence θ → θM , developed in

[171, 55, 56], referred to as the ‘HWI method’ as it is based on inequalities of the

form

I(θ) & H(θ|θM)

W2(θ, θM) . H(θ|θM)1/2,

where W2 denotes the Euclidean Wasserstein distance. More precise interpolation

inequalities also arise [171, 55, 56]. The first inequality we saw above, as the

Gross logarithmic Sobolev inequality. The latter inequality is a generalization of

Talagrand’s inequality [195], examined in detail in [171, 55], and in the context

of the HWI framework, is similar to the Csiszar-Kullback inequality.
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8.2 Proof of Results

8.2.1 Outline

The proof of Theorems 12 and 13 involves several steps. As mentioned above,

we use the entropy dissipation methods of [58, 59, 54] and in particular, the

time-dependent rescaling used in [59]. All of the computations will be formal,

they can be made rigorous for weak solutions either with a suitable parabolic

regularization and passing to the limit, as in Chapter 6 or presumably also lifting

to strictly positive solutions, as is common in the study of the porous media

equation [202].

Following [59], we define θ(τ, η) such that

e−dτθ(τ, η) = u(t, x), (8.22)

with coordinates eτη = x and βeβ
−1τ − β = t, where β is given by (8.5). In what

follows we denote α := dβ. In these coordinates, if u(t, x) solves (5.1) then θ(τ, η)

solves,

∂τθ = ∇ · (ηθ) + ∆θm − e(1−α−β)β−1τ∇ · (θ(edτ∇K(eτ ·) ∗ θ)). (8.23)

Moreover, U(t, x;M) is stationary in these coordinates, and is in fact the ground

state Barenblatt profile θM(η) discussed above in §8.1.1. That is (see [59]),

U(t, x;M) =

(
1 +

t

β

)−dβ
θM

((
1 +

t

β

)−β
x

)
= e−dτθM(η). (8.24)

Therefore, the asymptotic convergence to self-similar profiles of solutions to (8.2)

is equivalent to the convergence to the stationary profiles of (8.13). We will

prove this convergence by combining strong decay estimates on (5.1) with the

entropy-entropy dissipation methods for (8.13) detailed in §8.1.1.
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A primary step to proving Theorems 12 and 13 is establishing that θ(τ, η) ∈

L∞τ,η(R+ × Rd). Note that by the change of variables, this estimate is the decay

estimates (8.8) and (8.11). This estimate is what allows us to treat the inho-

mogeneous non-local term in (8.23) as a vanishing perturbation of (8.13). The

decay estimate ‖u(t)‖∞ . t−dβ, or equivalently, ‖θ(τ)‖∞ . 1, is easily obtained

for (8.2) in the linear case and the classical Aronson-Bénilan estimate proves it in

the case m > 1 [202]. Clearly, no such analogues are available for (8.23). To prove

Theorem 11, we adapt the Alikakos iterations of Chapter 6 (see also [125, 47, 36])

to (8.23) to prove a uniform bound in the rescaled variables. Dealing with time-

dependent rescalings in (8.23) introduces several complications. Obtaining Lp

estimates for the critical case m = 2 − 2/d is relatively straightforward due to

the inherent scale-invariance of the relevant inequalities. In the supercritical case

m < 2 − 2/d, the effect of the time-dependent rescaling in (8.23) is crucial for

closing a key bootstrap/continuity argument necessary to control the solution

uniformly in time. It is at this step that the method below diverges significantly

from existing methods and is a key step to obtaining Theorem 11. The additional

issue when ∇K 6∈ L1 is in obtaining L∞ estimates, which requires measuring the

rate at which edτ∇K(eτη) blows up in L1
loc as τ →∞. This also arises later when

we estimate how much the nonlocal term affects the entropy dissipation and is

the source of the degraded convergence rates found in Theorem 13.

Once we have established θ(τ, η) ∈ L∞τ,η(R+ ×Rd), we prove that solutions to

(8.23) converge to θM and estimate the convergence rate in L1. In fact, these are

done together, as the quantitative estimate is direct and removes the need for

compactness arguments.

To prove Theorems 12 and 13, the purpose of proving θ(τ, η) ∈ L∞τ,η(R+×Rd)

is to control the growth of ‖edτ∇K(eτ ·) ∗ θ‖∞. Ultimately, this provides a bound
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essentially of the form,

d

dτ
H(θ(τ)) ≤ −I(θ(τ)) + C(M, ‖θ‖L∞τ,η(R+×Rd))e

−γτ ,

for some γ > 0 (in reality, it is not quite as clean). Theorem (14) then implies,

d

dτ
H(θ(τ)|θM) ≤ −2H(θ(τ)|θM) + C(M, ‖θ‖L∞τ,η(R+×Rd))e

−γτ .

Integrating this and applying Theorem 15 implies,

‖θ − θM‖1 . e−
τ
2

min(2,γ),

which after rescaling and interpolation against the decay estimates (8.8),(8.11),

will prove Theorems 12 and 13.

8.3 Preliminary Decay Estimates

Let q = (2 −m)d/2 and let η, τ and θ(τ, η) be as defined in §8.2.1. As detailed

above, we establish that θ(τ, η) ∈ L∞τ,η(R+ × Rd) using Alikakos iteration [3]

(see Chapter 6 and [107, 125, 36, 192, 193, 191]). The first step is to prove the

following lemma which allows control over Lp norms with p <∞. In what follows

we denote θ0(η) := θ(η, 0) = u(x, 0).

Lemma 18 (Control for Lp, p < ∞ for small data). For all q ≤ p < ∞,

there exists Cq = Cq(p,M) and CM = CM(p, ‖θ0‖q) such that if ‖θ0‖q < Cq and

M < CM , then ‖θ(τ)‖p ∈ L∞τ (R+).

Proof. Define

I =

∫
θm−1

∣∣∇θp/2∣∣2 dx.
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We estimate the time evolution of ‖θ‖p using integration by parts, Hölder’s in-

equality and Lemma 28 in the appendix,

d

dτ
‖θ‖pp = − 4mp

(p+ 1)2
I + (p− 1)e(1−α−β)β−1τ

∫
θp∇ · (edτ∇K(eτ ·) ∗ θ)dη

+ d(p− 1)‖θ‖pp

≤ −C(p)I + C(p)e(1−α−β)β−1τ‖θ‖pp+1‖∇(edτ∇K(eτ ·) ∗ θ)‖p+1 + C(p)‖θ‖pp

≤ −C(p)I + C(p)e(1−α)β−1τ‖θ‖p+1
p+1 + C(p)‖θ‖pp. (8.25)

We bound the second term using the using the homogeneous Gagliardo-Nirenberg-

Sobolev inequality (Lemma 25 in appendix),

‖θ‖p+1
p+1 . ‖θ‖α2(p+1)

q Iα1(p+1)/2, (8.26)

where α2 = 1− α1(p+m− 1)/2 and

α1 =
2d(q − p− 1)

(p+ 1) (q(d− 2)− d(p+m− 1))
.

By the definition of q we have that,

α1(p+ 1)

2
=

d(q − p− 1)

q(d− 2)− d(p+m− 1)
= 1.

We also estimate the second term in (8.25) using Lemma 25,

‖θ‖pp . Mβ2pIβ1p/2, (8.27)

where β2 = 1− β1p/2 and,

β1p

2
=

d(p− 1)

2− d+ d(p+m− 1)
< 1,

by 1−2/d < m. Then applying weighted Young’s inequality we have from (8.26),

(8.27) and (8.25),

d

dτ
‖θ‖pp ≤

(
C1(p)e(1−α)β−1τ‖θ‖α2(p+1)

q − C2(p)
)
I + C3(p)Mγ(p), (8.28)
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for γ(p) = 2β2p/(2−β1p) > 0. If m = 2−2/d, then q = 1 and 1−α = 0, therefore

by conservation of mass it is possible to choose M sufficiently small such that the

first term in (8.28) is less than −δI for some δ > 0. If m < 2− 2/d, then q > 1

and ‖θ‖q is no longer conserved. Here we must take advantage of 1 − α < 0.

Note that (8.28) holds for p = q; therefore since 1−α < 0, a continuity argument

establishes that for ‖θ0‖q and M sufficiently small,

‖θ(τ)‖qq ≤ ‖θ0‖qq + C3(q)Mγ(q)τ.

Indeed, for ‖θ0‖q small, this holds for at least some time, and for M sufficiently

small, this linear growth is such that the first term in (8.28) remains non-positive

forever. Then by (8.28) for p > q, if M and ‖θ0‖q additionally satisfy

C1(p)e(1−α)β−1τ (C3(q)Mγ(q)τ + ‖θ0‖qq)α2(p+1)/q − C2(p) < −δ,

for all τ > 0, then the first term is less than −δI. By 1− α < 0 we may always

choose M and ‖θ0‖q such that this is possible. Therefore, whether q > 1 or q = 1,

for small initial data in the suitable sense, we have

d

dτ
‖θ‖pp ≤ −δI + C(M, p).

Using (8.27) and Young’s inequality for products, we have a lower bound on I,

‖θ‖pp − C(M) ≤ I.

This proves,
d

dτ
‖θ‖pp ≤ −δ‖θ‖pp + C(M, p),

which immediately concludes the lemma with ‖θ‖pp ≤ max(‖θ0‖pp, C(M, p)δ−1).

We now turn to proving that (8.7) implies something analogous to Lemma

18. Let u(t) be as in (ii) of Theorem 11. One can verify that (8.7) is equivalent
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to

lim
k→∞

sup
τ∈[0,∞)

‖ (θ(τ)− k)+ ‖1 = 0, (8.29)

which is precisely the condition of uniform equi-integrability which appears in the

continuation theorem (Theorem 5 in Chapter 6 above (see also [47, 36]). We may

refine Lemma 18 in the following fashion, adapting the techniques in Chapter 6,

Theorem 5, and [47, 36] to this setting.

Lemma 19 (Control for Lp, p <∞ for equi-integrable solutions). If θ(τ) satisfies

(8.29) then we have ‖θ(τ)‖p ∈ L∞τ (R+) for all p <∞.

Proof. We proceed similar to the proof of Lemma 18, but now slightly refined

to take advantage of (8.29). Since similar arguments appeared in Chapter 6,

we sketch a proof and highlight mainly the differences that appear due to the

rescaling in (8.23). Define θk(τ, η) := (θ(τ, η)− k)+ and

I =

∫
θm−1
k

∣∣∣∇θp/2k

∣∣∣2 dx.
The Lp norms of θ and θk are related through the following inequality for 1 ≤

p <∞,

‖θ‖pp .p ‖θk‖pp + kp−1‖θ‖1. (8.30)

It is important to note that the implicit constant in (8.30) does not depend on k.

Estimating the time evolution of θk as in Lemma 18, using Lemma 28 and (8.30)

implies,

d

dτ
‖θk‖pp = −C(p)I −

∫ (
(p− 1)θpk + kpθp−1

k

)
∇ ·
(
edτ∇K(eτ ·) ∗ θk

)
dη

≤ −C(p)I + C(p)‖θk‖p+1
p+1 + C(p, k)‖θk‖pp + C(k, p,M).

Using the Gagliardo-Nirenberg-Sobolev inequality (Lemma 25) implies,

d

dτ
‖θk‖pp ≤ −

C(p)

‖θk‖α2
1

‖θk‖p+1
p+1 + C(p)‖θk‖p+1

p+1 + C(p, k)‖θk‖pp + C(k, p,M),
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where α2 = 1− α1(p+m− 1)/2 > 0 and

α1 =
2d(1− 1/(p+ 1))

2− d+ dp+ d(m− 1)
.

Note ‖θk‖p ≤M1/p2‖θk‖(p2−1)/p2

p+1 , which by weighted Young’s inequality implies,

d

dτ
‖θk‖pp ≤ −

C(p)

‖θk‖α2
1

‖θk‖p+1
p+1 + C(p)‖θk‖p+1

p+1 + C(k, p,M).

Using (8.29) we may make the leading order terms as negative as we want and

interpolating Lp against L1 and Lp+1 again implies there is a δ > 0 such that if

k is sufficiently large we have,

d

dτ
‖θk‖pp ≤ −δ‖θk‖pp + C(k, p,M).

By (8.30) and conservation of mass, this concludes the proof of Lemma 19.

8.4 Finite Length-Scales

We begin by proving Theorem 11 for the case ∇K ∈ L1. Alikakos iteration [3] is

a standard method for using a result such as Lemma 18 to imply a result of the

following form.

Lemma 20 (Control of L∞ for small data). Let ∇K ∈ L1. Then there exists

Cq = Cq(M) and CM = CM(‖θ0‖q) such that if ‖θ0‖q < Cq and M < CM , then

‖θ(τ)‖∞ ∈ L∞τ (R+).

Proof. Standard iteration implies ‖θ(τ)‖∞ ∈ L∞τ (R+), provided

~v := e(1−α−β)β−1τedτ∇K(eτ ·) ∗ θ ∈ L∞τ,η(R+ × Rd).

This follows by Kowalczyk’s iteration lemma, Lemma 7 in Chapter 6.
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Fix p > d. Then by Lemma 18, for sufficiently small M and ‖θ0‖q, ‖θ(τ)‖p ∈

L∞τ (R+). Therefore by Lemma 28 in the appendix,

‖∇~v‖p = ‖e(1−α−β)β−1τ∇
(
edτ∇K(eτ ·) ∗ θ

)
‖p . e(1−α)β−1τ‖θ‖p . e(1−α)β−1τ .

Moreover, by ∇K ∈ L1(Rd),

‖~v‖p ≤ e(1−α−β)β−1τ‖θ‖p . e(1−α−β)β−1τ .

Since 1 − α ≤ 0, Morrey’s inequality implies ~v ∈ L∞τ,η(R+ × Rd) and the lemma

follows.

By Lemma 20 and the definition of τ ,

‖u(t)‖L∞x (Rd) = e−dτ‖θ‖L∞η (Rd) . (1 + t)−dβ,

establishing (8.8). A similar argument using Lemma 19 in place of Lemma 18

implies

Lemma 21. Theorem 11 holds if ∇K ∈ L1.

Now we turn to Theorem 12.

Proof. (Theorem 12: Intermediate Asymptotics I) Now that the requisite

decay estimate has been established, we proceed by estimating the decay of the

relative entropy (8.18). By Young’s inequality, ∇K ∈ L1(Rd) and 8.8,

‖edτ∇K(eτ ·) ∗ θ‖∞ ≤ ‖∇K‖1‖θ‖∞ . 1. (8.31)

We first settle the case m > 1. By a standard computation, (8.31) and

Cauchy-Schwarz, for all δ > 0,

d

dτ
H(θ|θM) = −I(θ) + e(1−α−β)β−1τ

∫
∇
(

1

m− 1
θm +

1

2
|η|2
)
· θedτ∇K(eτ ·) ∗ θdη

≤ −I(θ) + e(1−α−β)β−1τI(θ)1/2

(∫
θ
∣∣edτ∇K(eτ ·) ∗ θ

∣∣2 dη)1/2

≤ −(1− e−2δτ )I(θ) + Ce(2−2α−2β)β−1τ+2δτ .
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Let γ(δ) := (2α + 2β − 2)β−1 − 2δ > 0. By the generalized Gross Logarithmic

Sobolev inequality, Theorem 14, we therefore have,

d

dτ
H(θ(τ)|θM) ≤ −2(1− e−2δτ )H(θ|θM) + Ce−γτ . (8.32)

Solving the differential inequality (8.32) implies,

H(θ(τ)|θM) . e−τ min(2,γ(δ)).

Now by the generalized Csiszar-Kullback inequality, Theorem 15,

‖θ(τ)− θM‖1 . e−
τ
2

min(2,γ(δ)).

Re-writing in terms of x and t and using (8.24),

‖u(t)− U(t;M)‖1 . (1 + t)−
β
2
τ min(2,γ(δ)).

If m < 2− 2/d, it can be verified that δ > 0 may always be chosen small enough

such that 2 < γ(δ). If instead m = 2 − 2/d, then 2d + 2 − 2β−1 = 2. This

establishes (8.10) in the case p = 1. Interpolation against (8.8) completes the

proof.

We now settle the case m = 1. The time evolution of the relative entropy is

similar to above. By (8.31) and Cauchy-Schwarz, for all δ > 0,

d

dτ
H(θ(τ)|θM) = −I(θ) + e(1−α−β)β−1τ

∫
∇
(

log θ +
1

2
|η|2
)
· θedτ∇K(eτ ·) ∗ θdη

≤ −I(θ) + e(1−α−β)β−1τI(θ)1/2

(∫
θ
∣∣edτ∇K(eτ ·) ∗ θ

∣∣2 dη)1/2

≤ (1− e−δτ )I(θ) + Ce(2−2α−2β)β−1τ+δτ .

The rest of the proof follows similarly to the case m > 1 using Theorems 14 and

15. This concludes the proof of Theorem 12.

Remark 19. A generalization of Talagrand’s inequality [55] shows that θ → θM

also in the Euclidean Wasserstein distance.
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8.5 Infinite Length-Scales

We now turn to the proofs of Theorem 11 and Theorem 13 in the case ∇K 6∈ L1.

In order to properly extend the work of the previous section, we must estimate

the quantities ‖edτ∇K(eτ ·) ∗ θ‖p appearing in (8.31) and the proof of Lemma 20.

However, ∇K 6∈ L1(Rd) and Young’s inequality is not sufficient; in fact we will not

bound ‖edτ∇K(eτ ·) ∗ θ‖p uniformly in time but instead bound the rate at which

it grows. We separately estimate the growth of the quantities ‖λd∇K(λ·)1B1(0)‖1

and ‖λd∇K(λ·)1Rd\B1(0)‖p as λ → ∞. Using |∇K(x)| . |x|−γ for sufficiently

large |x|, if γ < d, then for large λ,∫
λd |∇K(λy)|1B1(0)(|y|)dy =

∫
|y|≤λ
|∇K(y)| dy

=

∫
Sd−1

∫ λ

0

|∇K(ρω)| rρd−1dρdω

. 1 + λd−γ. (8.33)

Similarly, if γ = d, then for large λ,∫
λd |∇K(λy)|1B1(0)(|y|)dy . 1 + log λ. (8.34)

If d/(d− 1) < q <∞, since γ ≥ d− 1, for λ sufficiently large we have,∫
λqd |∇K(λy)|q 1Rd\B1(0)(|y|)dy =

∫
|y|≥λ

λqd−d |∇K(y)|q dy

= λqd−d
∫
Sd−1

∫ ∞
λ

|∇K(ρω)|q ρd−1dρdω

. λq(d−γ). (8.35)

Similarly,

sup
|x|≥1

∣∣λd∇K(λx)
∣∣ . 1 + λd−γ. (8.36)

We may now complete the general proof of Theorem 11.
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Proof. (Theorem 11) We first complete the proof of (i). Lemma 20 extends to

the case ∇K 6∈ L1 provided we can bound ~v := e(1−α−β)β−1τedτ∇K(eτ ·) ∗ θ in

L∞η (Rd) uniformly in time. Indeed, fix p > d. Then for M and ‖θ0‖q sufficiently

small, we have by Lemma 18, ‖θ(τ)‖p ∈ L∞τ (R+). By Lemma 28,

‖∇~v‖p . e(1−α)β−1τ‖θ‖p . e(1−α)β−1τ .

Let q be such that d/(d − 1) < q ≤ p, which implies ‖θ(τ)‖q . 1. If γ < d then

by Young’s inequality,

‖~v‖q ≤ e(1−α−β)β−1τ
(
‖edτ∇K(eτ ·)1B1(0) ∗ θ‖q + ‖edτ∇K(eτ ·)1Rd\B1(0) ∗ θ‖q

)
≤ e(1−α−β)β−1τ

(
‖edτ∇K(eτ ·)1B1(0)‖1‖θ‖q + ‖edτ∇K(eτ ·)1Rd\B1(0)‖qM

)
.

Since ‖θ(τ)‖q . 1, by (8.33) and (8.35) we have,

‖~v‖q . e(1−α−β)β−1τ
(
1 + e(d−γ)τ

)
. e(1−α−β)β−1τ + e(1−β−γβ)β−1τ .

Since 1 − β − γβ ≤ 0 and 1 − α ≤ 0, by Morrey’s inequality we may conclude

~v ∈ L∞τ,η(R+ × Rd). Similarly if γ = d, then by the same reasoning as above,

(8.34) and (8.35) imply,

‖~v‖q . e(1−α−β)β−1τ
(
1 + τ + e(d−γ)τ

)
. e(1−α−β)β−1τ (1 + τ) + e(1−β−γβ)β−1τ .

Since 1− α − β < 0, we may conclude also in this case that ~v ∈ L∞τ,η(R+ × Rd).

Therefore Lemma 20 applies with the hypotheses of Theorem 13. Re-writing in

terms of x and t, this implies (8.8). A similar proof with Lemma 19 in place of

Lemma 18 also proves (ii)

We now prove Theorem 13.
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Proof. (Theorem 13: Intermediate Asymptotics II) To complete the proof of

Theorem 13, we estimate the decay of the relative entropy (8.18). The proof of

Theorem 12 used the estimate (8.31). Here we use the bound ‖θ(τ)‖∞ . 1 (8.36)

and (8.33) to imply, if γ < d,

‖edτ∇K(eτ ·) ∗ θ‖∞ ≤
(
‖edτ∇K(eτ ·)1B1(0) ∗ θ‖∞ + ‖edτ∇K(eτ ·)1Rd\B1(0) ∗ θ‖∞

)
.
(
1 + e(d−γ)τ

)
(‖θ‖∞ +M) (8.37)

. 1 + e(d−γ)τ . e(d−γ)τ . (8.38)

Similarly, if γ = d then, for all δ > 0,

‖edτ∇K(eτ ·) ∗ θ‖∞ . 1 + τ .δ e
δτ .

The growth of (8.38) in time is the source of the degraded convergence rate

observed in (8.12). As noted above, this is a manifestation of slow decay in the

kernel, which causes growth of edτ∇K(eτ ·) in L1
loc. Indeed, computing the decay

of the relative entropy (with linear or nonlinear diffusion) as above with (8.38),

d

dτ
H(θ(τ)|θM) =≤ −I(θ) + e(1−α−β)β−1τI(θ)1/2

(∫
θ
∣∣edτ∇K(eτ ·) ∗ θ

∣∣2 dη)1/2

≤ (1− e−2δτ )I(θ) + Ce(2(1−α−β)β−1+2(d−γ)+2δ)τ .

As before, Theorems 14 and 15 imply,

‖θ(τ)− θM‖1 . e−τ min(1,1+γ−β−1−δ).

Re-writing in terms of x and t and interpolating against (8.8) completes the proof.

The corresponding argument follows also for γ = d, absorbing the mild growth

of ‖edτK(eτ ·) ∗ θ‖∞ into the δ already introduced.
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CHAPTER 9

Discussion and Open Problems

9.1 What Remains

In Part II of this dissertation, the author has described recent advancements

made by himself and his collaborators in the study of a general class of PDE

(5.1) which model the competition between non-local self-attraction and possibly

nonlinear diffusion. Despite the progress, many key questions of course remain.

Dissipation results do not yet hold up to the critical mass in critical scaling

problems, except in scale-invariant cases with degenerate diffusion. In these cases,

the self-similar change of variables preserves the energy dissipation inequality ca-

pable of deducing global bounds using the continuation theorem 5 and methods

from Chapter 7. The difficulty in other cases is that the Alikakos iteration tech-

niques (or related De Giorgi methods [176] and semilinear methods [38]) do not

really provide a non-perturbative treatment of (5.1), but the energy dissipation

inequality is not strong enough to directly deduce the decay estimates. Aside

from critical problems, there are gaps which are not covered by the existing re-

sults or the results of Chapter 8 and the global minimizers of the free energy

constructed in [149, 150]. That is, dissipation for small data is not known to

hold but either global minimizers to the free energy truly do not exist or are not

known to exist. In subcritical problems, a natural question to ask is whether

or not solutions converge to these “ground-state” minimizers. Results in certain
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special cases based on comparison principles have recently been obtained by Kim

and Yao [123].

Another problem remaining is the behavior of solutions with precisely critical

mass. In scale-invariant problems, these threshold solutions are known to exist

globally [37, 36, 35] and in the case of linear diffusion the global qualitative be-

havior is becoming well understood. The key difficulty here is that the free energy

is no longer coercive and does not provide a priori boundedness of the entropy

at the critical mass. One can easily see this directly from the HLS inequalities.

Hence more advanced techniques must be used, such as the Weinstein-type [208]

concentration compactness arguments utilized in [36] and the surprising applica-

tion of entropy-entropy dissipation methods for fast diffusion equations used in

[35].

9.2 Other Critical PDE

The phenomenon of criticality, and the associated behavior such as critical thresh-

olds, is pervasive in the study of PDE. For example, similar behavior is well-

known in many models: reaction-diffusion equations, semilinear dispersive PDE

with focusing nonlinearities, unstable thin film equations and many others. The

prototypical example of a dispersive PDE with a focusing nonlinearity are the

well-known focusing nonlinear Schrödinger equations (NLS)

iφt + ∆φ = − |φ|p φ, (9.1)

which is formally a Hamiltonian for the mixed-sign energy

E(φ) =
1

2

∫
|∇φ|2 dx− 1

p+ 2

∫
|φ|p+2 dx.

While diffusion is very different from dispersion and the nonlinearity in (5.1) is of a

very different form, these models do share some similarities. Being semilinear, the
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NLS has local theory based on Strichartz estimates and the contraction mapping

theorem [60, 197] which treats the NLS as a perturbation of the linear PDE.

The theory of (5.1) has the Alikakos iteration techniques1 which treats (5.1)

as a perturbation of the nonlinear diffusion equation, and these two methods

share essentially the same strengths and weaknesses. Where (5.1) has the Hardy-

Littlewood-Sobolev inequalities to identify the critical mass, the NLS has the

sharp Gagliardo-Nirenberg inequalities [207, 121]. In the context of the NLS,

the analogue of the intermediate asymptotics results of Chapter 8 is the concept

of scattering [197]. The regimes in which (9.1) is known to scatter (see e.g.

[197, 121]) is similar to the dichotomy between dissipation and the existence

of stationary solutions detailed in Chapter 8 and those constructed by Lions

[149, 150]. Aside from directly providing mathematical methods, such as the

arguments of [36] (the arguments in [37] are also a related form of concentration

compactness), the comparatively more advanced NLS literature provides valuable

intuition and suggestions for possible research directions.

9.3 Looking Forward

Despite a great deal of advances, there are many aspects of the theory of PDE

such as (5.1) which are still being developed. In particular, we feel that in order

to advance the theory of (5.1) significantly from the current point will require

the development of new techniques (5.1). I briefly discuss three such directions.

Roughly speaking, the theory of the aggregation-diffusion equations is in ap-

proximately the same state as the study of the NLS (9.1) before the introduction

of Bourgain’s induction on energy methodology [42, 41]. This idea led to a num-

1in the case of linear diffusion, one can re-write the local theory of (5.1) to look very much
like that of the NLS, see for instance [38].
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ber of results and refinements (see for instance [118, 116, 117, 203, 66, 120, 122]

and the review of minimal counterexample arguments by Killip and Vişan [121]),

ultimately producing many strong decay estimates and solutions to problems

regarding global asymptotic behavior for critical NLS and other semilinear dis-

persive PDE. To briefly summarize, the methods systematically rule out minimal,

or nearly minimal, counter-examples to these global bounds, which are better be-

haved than general solutions and can be characterized using concentration com-

pactness [121]. This methodology is not tied to dispersive PDE, and has been

recently used to obtain alternative proofs of the global regularity of solutions to

the 3D Navier-Stokes equations which are bounded in Ḣ1/2 or L3 [84, 115, 86].

These tools have proved extremely powerful for dealing with critical problems,

and could potentially be applied to critical aggregation-diffusion equations, for

instance to deduce global decay estimates for those critical PKS models which

currently lack such bounds. As remarked above, simpler concentration compact-

ness arguments from the NLS have already been applied to the study of PKS

[37, 36].

Induction on energy/minimal counter-example methods have proved useful

for conservative problems such as the NLS. However, the aggregation-diffusion

equations are formally gradient flows, which formally at least, is a significantly

stronger property. Not only does this introduce an additional controlled quan-

tity (the free energy dissipation, see Proposition (1)), but this means there is a

potential to apply the entropy-entropy dissipation methods discussed in Chapter

8 in §8.1.1. This has been slow in progress due to the fact that the free energy F

is not displacement convex, a key property for known methods to apply, however

there have been developments in this direction nonetheless [34, 48, 35].

Due to the parabolic nature, aggregation-diffusion equations have the poten-
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tial to be studied from the viewpoint of comparison principles. Although (5.1)

does not satisfy any useful maximum principles, comparison arguments can be

made on the level of the mass concentration function

M(t, r) =

∫
|x|≤r

u(t, x)dx.

For certain kernels, mass comparison principles may hold between weak solutions

[123], however, even when no mass comparison principles hold, there is still a pos-

sibility of using comparison principle arguments. Combined with symmetrization

techniques, these principles are of independent interest and may be used to de-

duce qualitative, long term properties of solutions [73, 74] (see [201, 202] for such

methods applied to other linear and nonlinear elliptic and parabolic PDE). The

mass concentration also played a key role in [33] which examined radially sym-

metric threshold solutions. The recent work of Kim and Yao [123] uses mass

comparison principles to prove convergence to stationary solutions, intermedi-

ate asymptotics results, and symmetrization inequalities comparing the relative

concentration of radially symmetric solutions to that of non-radially symmetric

solutions.
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CHAPTER 10

Appendix

10.1 Technical Lemmas

Lemma 22. Let F be a convex C1 function and f = F ′. Assume that f(u) ∈

L2(0, T,H1(D)), u ∈ H1(0, T,H−1(D)) and F (u) ∈ L∞(0, T, L1(D)). Then for

almost all 0 ≤ s, τ,≤ T the following holds:∫
(F (u(x, τ))− F (u(x, s))) dx =

∫ τ

s

〈ut, f(u(t))〉 dt.

Lemma 23. Let F (u, t) ∈ C2([0,∞), [0,∞)) be a convex function such that

F (0) = 0 and F ′′ > 0 on (0,∞). Let fn, for n = 1, 2, ..., and f be a non-

negative function on D bounded from above by M > 0. Furthermore, assume

that fn ⇀ f in L1(D) and F (fn) → F (f) in L1(D), then ‖fn − f‖L2(D) → 0 as

n→ 0.

Lemma 24 (Weak Lower-semicontinuity). Let ρε be non-negative L1
loc(DT ) and fε

a vector valued function in L1
loc(DT ) such that ∀φ ∈ C∞c (DT )andξ ∈ C∞c (DT ,Rd)∫

DT

ρεφdxdt→
∫
DT

ρφdxdt∫
DT

fε · ξdxdt→
∫
DT

f · ξdxdt.

Then ∫
DT

1

ρ
|f |2 dxdt ≤ lim inf

ε→0

∫
DT

1

ρε
|fε|2 dxdt
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10.2 Gagliardo-Nirenberg-Sobolev Inequalities

Gagliardo-Nirenberg-Sobolev inequalities are the main tool for obtaining Lp esti-

mates of PKS models and are used in many works, for instance [125, 36, 192, 107].

The following inequality follows by interpolation and the classical Gagliardo-

Nirenberg-Sobolev inequality.

Lemma 25 (Gagliardo-Nirenberg-Sobolev). Let d ≥ 2 and D ⊂ Rd satisfy the

cone condition (see e.g. [2]). Let f : D → R satisfy f ∈ Lp ∩ Lq and ∇fk ∈ Lr.

Moreover let 1 ≤ p ≤ rk ≤ dk, k < q < rkd/(d− r) and

1

r
− k

q
− s

d
< 0. (10.1)

Then there exists a constant CGNS which depends on s, p, q, r, d and the dimen-

sions of the cone for which D satisfies the cone condition such that

‖f‖Lq ≤ CGNS‖f‖α2
Lp‖f

k‖α1
W s,r , (10.2)

where 0 < αi satisfy

1 = α1k + α2, (10.3)

and
1

q
− 1

p
= α1(

−s
d

+
1

r
− k

p
). (10.4)

Remark 20. If D = Rd, then the homogeneous version of this inequality also

holds, with the W s,r norm replaced by Ẇ s,r.

Proof. We may assume that f is Schwartz then argue by density. Let β satisfy

max(q, rk) < β < rkd/(d − r). First note by the Gagliardo-Nirenberg-Sobolev

inequality, [Theorem 5.8, [2]], we have

‖fk‖β/k .β,k,r,s ‖fk‖1−θ
r ‖fk‖θW s,r

≤ ‖fk‖(1−θ)(1−µ)
p/k ‖fk‖(1−θ)µ

β/k ‖fk‖θW s,r ,

154



for µ ∈ (0, 1) determined by interpolation and θ = s−1(d/r − dk/β) ∈ (0, 1).

Moreover, the implicit constant does not depend directly on the size of the do-

main. Therefore,

‖fk‖β/k . ‖f‖(1−θ)(1−µ)/(1−µ(1−θ))
p ‖fk‖θ/(1−µ(1−θ))

W s,r .

Now, where λ ∈ (0, 1) determined by interpolation,

‖f‖q ≤ ‖f‖(1−λ)
p ‖fk‖λ/kβ/k

. ‖f‖(1−λ)+(1−θ)(1−µ)/(1−µ(1−θ))
p ‖fk‖λθ/(k−kµ(1−θ))

W s,r .

10.3 Properties of Admissible Kernels

We now prove Lemmas 1,2 and 3. We begin with the following characterizations

of Lp,∞.

Lemma 26. Let F (x) = f(|x|) ∈ L1
loc ∩C0 \ {0} be monotone in a neighborhood

of the origin. If r−d/p = o(f(r)) as r → 0, then F /∈ Lp,∞loc .

Proof. Since we have assumed f to be monotone in a neighborhood of the origin,

without loss of generality we prove the assertions assuming f ≥ 0 on that neigh-

borhood, since corresponding work may be done if f is negative. For any α > 0,

by monotonicity, we have a unique r(α) such that f(r) > α,∀r < r(α). We thus

have that λf (α) = ωdr(α)d, where ωd is the volume of the unit sphere in Rd.

By the growth condition on f and continuity we also have that for α sufficiently

large,
1

ε
r(α)−d/p ≤ f(r(α)) = α.

155



Now,

αpλf (α) = ωdα
pr(α)d.

Hence, by (10.3) we have ∀ ε > 0 there is a neighborhood of infinity such that,

ωdα
pr(α)d & ε−p.

We take ε→ 0 to deduce that F /∈ Lp,∞.

Lemma 27. Let F (x) = f(|x|) ∈ L1
loc ∩C0 \ {0} be monotone in a neighborhood

of the origin. Then f ∈ Lp,∞loc if and only if f = O(r−d/p) as r → 0.

Proof. Since we have assumed f to be monotone in a neighborhood of the origin,

without loss of generality we prove the assertions assuming f ≥ 0 on that neigh-

borhood.

First assume that f 6= O(r−d/p) as r → 0, which implies that for all δ0 > 0 and

every C > 0 there exists an rC < δ0 such that

f(rC) > Cr
−d/p
C .

We now show that in a neighborhood of the origin, the function f(r) − Cr−d/p

is strictly positive for r < rC . Suppose not. Since both f, r−d/p are monotone,

there exists r0 such that f(r) < Cr−d/p for r < r0. However, this contradicts

f 6= O(r−d/γ) as r → 0. Thus, we have that

f(r) > Cr−d/p

in a neighborhood of the origin (r < rC). Since for all C > 0 we can find a

corresponding rC , this is equivalent to r−d/p = o(f(r)), and by Lemma 26 we
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have that f /∈ Lp,∞.

On the other hand, if f = O(r−d/p) as r → 0 there exists δ > 0 and C > 0 such

that for all r < δ,

f(r) ≤ Cr−d/p. (10.5)

By monotonicity, for all α > 0 there is a unique r(α) ∈ [0, δ] such that

f(r) > α, for r < r(α), (10.6)

where we take r(α) = 0 if f(r) < α over the entire neighborhood. By (10.5) and

(10.6), we have, necessarily that r(α) . α−p/d. Therefore,

αpλf (α) = αpωdr(α)d . 1,

which implies f1B1(0) ∈ Lp,∞.

Remark 21. Similar statements may be made about the decay of F (x) at infinity.

Proof. (Lemma 1) By the fundamental theorem of calculus and condition (BD),

∣∣∂xi∂xjK(x)
∣∣ ≤ ∫ ∞

1

∣∣∂r∂xi∂xjK(rx)
∣∣ dr

. |x|−d .

Similarly, this argument also implies |∇K| . |x|1−d, which in turn implies ∇K ∈

Ld/(d−1),∞. If d > 2 then we can carry out this argument another time and show

that |K| . |x|2−d. Moreover, in d = 2 we see that K could have, at worst,

logarithmic singularities at zero and infinity.
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Proof. (Lemma 2) We compute second derivatives of the kernel K in the sense

of distributions. Let φ ∈ C∞c , then by the dominated convergence theorem,∫
∂xiK∂xjφdx = lim

ε→0

∫
|x|≥ε

∂xiK∂xjφdx

= − lim
ε→0

∫
|x|=ε

∂xjK(x)
xj
|x|
φ(x)dS − PV

∫
∂xixjKφdx.

By ∇K ∈ Ld/(d−1),∞ and Lemma 27, we have ∇K = O(|x|1−d) as x→ 0. There-

fore for ε sufficiently small, there exists C > 0 such that,∣∣∣∣∫
|x|=ε

∂xjK(x)
xj
|x|
φ(x)dS

∣∣∣∣ ≤ C

∫
|x|=ε
|x|1−d |φ(x)| dS

= C

∫
|x|=1

|εx|1−d |φ(εx)| εd−1dS = C |φ(0)| .

Similarly, we may define D2K ∗ φ and we have,

‖D2K ∗ φ‖p ≤ C‖φ‖p + ‖PV

∫
∂xixjK(y)φ(x− y)dy‖p.

Therefore, the first term can be extended to a bounded operator on Lp for 1 ≤ p ≤

∞ by density. The admissibility conditions (R),(BD) and (KN) are sufficient to

apply the Calderón-Zygmund inequality [Theorem 2.2 [189]], which implies that

the principal value integral in the second term is a bounded linear operator on

Lp for all 1 < p < ∞. Moreover the proof provides an estimate of the operator

norms,

‖PV

∫
∂xi,xjK(y)u(x− y)dy‖p .

 1
p−1
‖u‖p 1 < p < 2

p‖u‖p 2 ≤ p <∞.

Proof. (Lemma 3) The assertion that D2K ∈ Lγ,∞loc implies K ∈ L
d/(d/γ−2),∞
loc

follows similarly as in Lemma 1.

158



Now we prove the reverse implication. Let K ∈ L
d/(d/γ−2),∞
loc . We show that

D2K = O(r−d/γ) as r → 0. Assume for contradiction that D2K 6= O(r−d/γ)

as r → 0. This implies that k′′ 6= O(r−d/γ) or that k′(r)r−1 6= O(r−d/γ) as

r → 0. These two possibilities are essentially the same, so just assume that

k′′ 6= O(r−d/γ). By monotonicity arguments used in the proof of Lemma 27, this

in turn implies r−d/γ = o(k′′). However, this means that for all ε, there exists a

δ(ε) > 0 such that for r ∈ (0, δ(ε)) we have,

k(r)− k(δ(ε)) =−
∫ r

δ(ε)

k′(s)ds =

∫ r

δ(ε)

∫ s

δ(ε)

k′′(t)dtds+ (r − δ(ε))k′(δ(ε))

& ε−1r2−d/γ + 1,

which contradicts the fact that k(r) = O(r2−d/γ) as r → 0 by Lemma 27.

The assertion regarding ∇K is proved in the same fashion.

The following lemma verifies that the distributions defined by the second

derivatives of admissible kernels behave as expected under mass-invariant scal-

ings.

Lemma 28. Let K be admissible. Then ∀ p, 1 < p < ∞, u ∈ Lp and t > 0, we

have

‖∇
(
td∇K(t·) ∗ u

)
‖p .p t‖u‖p. (10.7)

Proof. We take the second derivative in the sense of distributions. Let φ ∈ C∞c ,
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then by the dominated convergence theorem,∫
td∂xiK(tx)∂xjφ(x)dx = lim

ε→0

∫
|x|≥ε

td∂xiK(tx)∂xjφ(x)dx

= −t lim
ε→0

∫
|x|=ε

td−1∂xyK(tx)
xj
|x|
φ(x)dS

− tPV

∫
td∂xi,xjK(tx)φ(x)dx.

By ∇K ∈ Ld/(d−1),∞, we have ∇K = O(|x|1−d) as x → 0. Therefore for ε

sufficiently small, there exists C > 0 such that,∣∣∣∣t∫
|x|=ε

td−1∂xiK(tx)
xj
|x|
φ(x)dS

∣∣∣∣ ≤ Ct

∫
|x|=ε
|x|1−d |φ(x)| dS

= Ct

∫
|x|=1

|εx|1−d |φ(εx)| εd−1dS = Ct |φ(0)| .

The admissibility conditions (R),(BD) and (KN) are sufficient to apply the

Calderón-Zygmund inequality [Theorem 2.2 [189]], which implies that the prin-

cipal value integral in the second term is a bounded linear operator on Lp for all

1 < p <∞. The operator norms, which are the implicit constants in (10.7), only

depend on the bound in (BD) and on the cancellation-type condition∫
|x|>2|y|

|K(x− y)−K(x)| dx ≤ B.

Both of these conditions are clearly left invariant under the rescaling in (10.7)

and this concludes the proof.

10.4 Hardy Space Lemma

In this Appendix we prove Lemma 6, which again, we acknowledge Jonas Azzam

for his assistance in the proof. To restate:

Let f ∈ L1∩Lp for some p > 1 and satisfy
∫
fdx = 0,M1 =

∫
|x| |f(x)| dx <∞.

Then f ∈ H1 and

‖f‖H1 .d,p ‖f‖p +M1.
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Proof. We will use duality to characterizeH1 via (5.11). Therefore, let ‖K‖BMO =

1. In what follows, we denote KR := 1
|BR(0)|

∫
|x|≤RK(x)dx. By the mean-zero con-

dition on f ,∣∣∣∣∫ Kfdx∣∣∣∣ ≤ ∫
|x|≤1

|K − K1| |f | dx+

∫
|x|>1

|K − K1| |f | dx.

:= T1 + T2.

By Hölder and p > 1 with ‖K‖BMO = 1, we have

T1 ≤ ‖f‖p
(∫
|x|≤1

|K − K1|p
′
dx

)1/p′

.p′ ‖f‖p.

The second inequality can be found in the proof of the John-Nirenberg inequality

in [190]. We now deal with the second term. Define the dyadic annuli An :={
x ∈ Rd : 2n < |x| < 2n+1

}
for n ≥ 0. Let En := {x ∈ An : |K − K1| > 2n}. By

definition we have,

T2 =
∑
n≥0

∫
En

|K − K1| |f | dx+

∫
An\En

|K − K1| |f | dx.

The second term can be estimated via,∫
An\En

|K − K1| |f | dx ≤ 2n
∫
An

|f | dx

≤
∫
An

|x| |f(x)| dx. (10.8)

Since K ∈ BMO, we have |K2n+1 −K2n| . 1, and therefore |K2n −K1| . n.
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Applying this to the first term implies,∫
En

|K − K1| |f | dx ≤
(∫

En

|K − K1|p
′
dx

)1/p′

‖f‖p

=

(
p′
∫ ∞

2n
|{|K − K1| > λ} ∩ An|λp

′−1dλ

)1/p′

‖f‖p

≤
(
p′
∫ ∞

2n
|{|K − K2n | > λ− Cn} ∩ An|λp

′−1dλ

)1/p′

‖f‖p,

for some C > 0. Using the John-Nirenberg inequality [190]∫
En

|K − K1| |f | dx .

(
|An|

∫ ∞
2n

e−λ+cnλp
′−1dλ

)1/p′

‖f‖p

.

(
2ndecn

∫ ∞
2n

e−λλp
′−1dλ

)1/p′

‖f‖p.

Therefore, for large n we have,∫
En

|K − K1| |f | dx . 2(d+p′−1)n/p′ecn/p
′
e−2n/p′‖f‖p. (10.9)

Summing (10.8) and (10.9) over n then implies

T2 .p ‖f‖p +M1.

10.5 End-Point Morrey’s Inequality

We acknowledge Jonas Azzam for assistance in proving this inequality.

Proposition 6. Let v ∈ L1
loc(Rd) such that ∇v ∈ BMO(Rd). Then for all

x, y ∈ Rd with |x− y| << 1 we have,

|v(x)− v(y)| .d |x− y| |log |x− y|| ‖∇v‖BMO.
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Proof. We first follow the proof of Morrey’s inequality in Evans [81]. Let x, y ∈ Rd

and let r = |x− y|. Define W := B(x, r) ∩B(y, r). By the triangle inequality,

|v(x)− v(y)| ≤
∫

W

|v(x)− v(z)| dz +

∫
W

|v(y)− v(z)| dz.

Moreover, ∫
W

|v(x)− v(z)| dz ≤ C

|B(x, r)|

∫
|v(x)− v(z)| dz,

where C depends on the ratio between |B(x, r)| and |W |, which is fixed in r. The

averaging argument in Evans’ proof of Morrey’s inequality implies,∫
B(x,r)

|v(x)− v(z)| dz ≤ C

∫
B(x,r)

|∇v(z)|
|z − x|d−1

dz.

We are concerned with controlling this integral for r << 1. Without loss of

generality we may assume x = 0. For notational simplicity, define ∇v(y) = f(y),

fA :=
∫
A
fdx and Bk := B2−k . Without loss of generality we can replace f by

f − fB1 , as this changes the derivative of v by an constant of O(1) and would

result in in a negligible O(r) error term in the final estimate. By f ∈ BMO, for

all k ∈ N we have, ∫
Bk

|f − fBk | dx ≤ c2−dk‖f‖BMO.

Now let us estimate the oscillation in the means between different length scales,

∣∣fBk − fBk−1

∣∣ =

∣∣∣∣∫
Bk

f − fBk−1
dx

∣∣∣∣
≤
∫

Bk

∣∣f − fBk−1

∣∣ dx
≤ c

∫
Bk−1

∣∣f − fBk−1

∣∣ dx
≤ c‖f‖BMO,

which implies |fBk − fB1| ≤ ck‖f‖BMO. We come to the main estimate, which
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breaks the integral into successive length-scales,∫
|z|<r

|f − fB1|
|z|n−1 dz ∼

∞∑
k≥log2 r

∫
|z|∼2−k

|f − fB1 |
2−k(n−1)

dz

≤
∞∑

k≥log2 r

∫
|z|≤2−k

|f − fB1 |
2−k(n−1)

dz

≤ c‖f‖BMO

∞∑
k≥log2 r

k2−kn

2−k(n−1)
= c‖f‖BMO

∑
k≥log2 r

k2−k.

It remains to sum the series. The elementary computation is as follows,

∑
k≥log2 r

kxk−1 d

dx

∑
k≥log2 r

xk =
d

dx

xlog2 r

1− x
.

This finally implies,∫
B(x,r)

∇v(z)

|z − x|n−1dz . ‖∇v‖BMO(r |log r| − r),

the latter term being negligible for r << 1.

Remark 22. Following the proof of Morrey’s inequality in [81], this also implies

that if v ∈ Lp for any 1 ≤ p <∞, then v ∈ L∞.
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ics, Birkhäuser, 2005.

[8] I. Babus̆ka. The finite element method for elliptic equations with discon-
tinuous coefficients. Computing, 5:207–213, 1970.

[9] I. Babus̆ka. The finite element method with lagrangian multipliers. Numer.
Math., 20:179–192, 1973.
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