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Abstract. In this paper we develop a novel technique for surface defor-
mation and mapping in the high-dimensional Laplace-Beltrami embed-
ding space. The key idea of our work is to realize surface deformation
in the embedding space via optimization of a conformal metric on the
surface. Numerical techniques are developed for computing derivatives of
the eigenvalues and eigenfunctions with respect to the conformal metric,
which is then applied to compute surface maps in the embedding space
by minimizing an energy function. In our experiments, we demonstrate
the robustness of our method by applying it to map hippocampal atro-
phy of multiple sclerosis patients with depression on a data set of 109
subjects. Statistically significant results have been obtained that show
excellent correlation with clinical variables. A comparison with the pop-
ular SPHARM tool has also been performed to demonstrate that our
method achieves more significant results.

1 Introduction

Surface mapping is an important technique in studying brain morphometry and
has the potential of pinpointing atrophy in various pathologies [1]. While many
methods were proposed for the modeling and mapping of anatomical surfaces
[2–6], there is still a lack of general, yet feature sensitive, methods for the charac-
terization and mapping of 3D anatomical surfaces. To overcome this challenge,
one promising technique that is receiving increased interests is to use Laplace-
Beltrami (LB) eigenfunctions as modeling tools of anatomical structures [7–10].
In this work, we propose a novel, and general approach for surface analysis with
LB eigenfunctions by optimizing conformal metrics on surfaces.

� This work was supported by NIH grants 5P41RR013642, R01-MH059708, and
5R01MH080892-03, and a DoD grant W81XWH-10-1-0882.
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The eigenfunctions of the LB operator can be considered as the extension of
the Fourier basis onto 3D surfaces. The critical difference is that the LB eigen-
functions depend on surface geometry, and are invariant up to isometry. This
robustness makes them ideal for intrinsic modeling of anatomical surfaces across
population. For general shape classification, the LB eigenvalues were proposed
as a DNA-like signature [7]. For detailed analysis of surface geometry, the eigen-
functions provide more information and have been applied to smoothing [8, 11],
feature extraction [9, 12], and surface mapping [10].

The metric optimization method proposed in this work is based the embed-
ding of surfaces into the Hilbert space l2 with their LB eigen-systems [13]. This
embedding is scale and pose invariant, and provides a general framework for
intrinsic surface analysis. A histogram feature was developed for shape classi-
fication with the LB embedding [13]. One important result is that the surface
is still a manifold in the embedding space and a rigorous distance measure be-
tween embedded manifolds was proposed [14]. The main contribution of this
work is that we develop a general approach for surface deformation in the high-
dimensional embedding space, which can be applied to various shape analysis
tasks such as surface mapping. By iteratively optimizing conformal metrics on
a surface, we can evolve its LB eigenvalues and eigenfunctions, and realize its
deformation in the embedding space. With this novel technique, we develop an
intrinsic approach for surface mapping and demonstrate its application in map-
ping hippocampal atrophy of multiple sclerosis (MS) patients with depression.
Statistically significant results are obtained that show excellent correlation with
clinical measures of depression. We also compare our method with the popular
SPHARM tool [5] and demonstrate our method is able to achieve more signifi-
cant mapping results.

2 Conformal Metric Optimization and LB Embedding

In this section, we introduce LB embedding with conformal metrics and develop
numerical schemes with finite element methods on triangular meshes. For metric
optimization, we derive the derivatives of eigenvalues and eigenfunctions with
respect to the weight function in the conformal metric.

2.1 LB Embedding with Conformal Metrics

Let (M, g) be a genus-zero Riemannian surface where the metric g is the stan-
dard metric induced from R3. For a function f : M → R, the LB operator on
M with the metric g is defined as:

Δg
Mf =

1√
G

2∑

i=1

∂

∂xi
(
√
G

2∑

j=1

gij
∂f

∂xj
) (1)

where (gij) is the inverse matrix of g = (gij) and G = det(gij). Because the
spectrum of Δg

M is discrete, its eigen-system is defined as

Δg
Mfn = −λnfn (n = 0, 1, 2, · · · ) (2)
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where λn and fn are the n-th eigenvalue and eigenfunction, respectively. Using
the LB eigen-system, an embedding IgM : M → l2 was proposed in [13]:

IgM(x) = (
f1(x)√

λ1

,
f2(x)√

λ2

· · · , fn(x)√
λn

, · · · ) ∀x ∈ M. (3)

Note that the embedding is not unique because of the sign ambiguities in the
eigenfunction, i.e., both fn and −fn are the n-th eigenfunction. For practical
applications, the sign ambiguities can be resolved by anatomical priors or simply
searching through all 2N possible sign combinations when up to N eigenfunctions
are used for numerical implementation.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Impact of non-isometric shape dif-

ferences. (a)(d) Two surfaces M1 and M2.

(b)(e) The 4,5,6,7-th eigenfunctions on the

two surfaces. (c) (f) Projection of M2 onto

M1, and M1 onto M2 with closest point

matching in the embedding space.

The embedding IgM(M) is scale
and pose invariant, and automatically
aligns surfaces in the l2 space for the
intrinsic analysis of anatomical sur-
faces [14]. On the other hand, non-
isometric shape differences remain in-
tact in the embedding space and af-
fect further analysis. As an exam-
ple, we show in Fig. 1(a) and (d)
two hippocampal surfaces M1 and
M2 with different degree of bend-
ing. Such non-isometric shape differ-
ences lead to different eigenfunctions
as shown in Fig. 1(b) and (d). Using
closest point matching in the embed-
ding space, which is approximated with the first 10 eigenfunctions in this ex-
ample, we can project the mesh structure of M1 onto M2, and vice versa. The
impact of non-isometric shape differences can be clearly seen in the large distor-
tions in the projected mesh structures that are plotted in Fig. 1(c) and (f).

A class of conformal metrics on M are denoted as ĝ = ωg, where ω : M →
R

+. To achieve better surface matching in the embedding space, we propose in
this work to optimize the Riemannian metric in the class of metrics conformally
equivalent to g. By iteratively perturbing the weight function, we can realize
surface deformation in the embedding space, and minimize non-isometric shape
differences. The existence of such weight functions are theoretically guaranteed
since all genus-zero surfaces are conformally equivalent. Following (1), the LB

operator with the conformal metric is Δĝ
M = 1

ωΔ
g
M, and the eigen-system of the

weighted operator is

Δĝ
Mf = −λf. (4)

Using the relation between ĝ and g, we have the weak form of (4):∫
M

∇g
Mf∇g

MηdM = λ

∫
M

ωfηdM ∀η : M → R (5)

where ∇g
M is the gradient operator on M with the standard metric g, and η is

a test function.
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For numerical computation, we represent M as a triangular mesh with L
vertices V = {vi|1 ≤ i ≤ L}. At each vertex vi, we denote its barycentric

coordinate function as φi and represent the weight function as ω =
∑L

j=1 ωjφj ,

and the eigenfunction as f =
∑L

k=1 βkφk. By choosing the test function η =
φi(1 ≤ i ≤ L), we convert the weak form into its matrix form:

Qβ = λU(ω)β. (6)

The elements of the matrix Q are defined as Qik =
∫
M < ∇φi,∇φk > dM.

The matrix U(ω) is a function of ω with its elements defined as U ik(ω) =∑L
j=1 ωjUijk, where Uijk =

∫
M φiφjφkdM. By solving (6), we can compute

the LB embedding Iwg
M under the new metric ĝ = wg.

2.2 Eigen-Derivatives

To realize surface deformation in the embedding space, we derive the derivatives
of the eigenvalues and eigenfunctions with respect to the weight function ω.

Let λn and fn denote the n-th eigenvalue and eigenfunction of the LB oper-
ator under the conformal metric ωg. We compute the derivative with respect to
ωj , the j-th component of ω, on both sides of (6) and have:

Q
∂fn
∂ωj

=
∂λn

∂ωj
Ufn + λn

∂U

∂ωj
fn + λnU

∂fn
∂ωj

(7)

where the elements of ∂U
∂ωj

are defined as [ ∂U∂ωj
]ik = Uijk. Pre-multiplying both

sides with fT
n , we obtain:

∂λn

∂ωj
= −λnf

T
n

∂U

∂ωj
fn (8)

because fT
n Ufn = 1 and fT

n (Q− λnU) = 0.
To compute the derivative of the eigenfunction, we need to solve

(Q− λnU)
∂fn
∂ωj

= Fn (9)

where Fn = −λnf
T
n

∂U
∂ωj

fnUfn+λn
∂U
∂ωj

fn. Because Q−λnU is singular, we follow

[15] and write ∂fn
∂ωj

= μnj + cnjfn with the constraint that the p-th component of

uij is zero, where p is the index of the component that has the largest magnitude
in fn. This is realized by setting the p-th component of Fn as zero and the p-th
row and column of (Q− λnU) as zero except the diagonal term, which is set to
one. Equation (9) then becomes⎡

⎣[Q− λnU ]11 0 [Q− λnU ]12
0 1 0

[Q− λnU ]21 0 [Q− λnU ]22

⎤
⎦μnj =

⎡
⎣[Fn]1

0
[Fn]2

⎤
⎦ (10)

where [Fn]1 is the 1 to (p − 1)-th components of Fn, and [Fn]2 is the p + 1
to the end of the vector Fn. Assuming there is no multiplicity at λn [15], this
problem is non-singular, and we can solve it to obtain μnj . To compute cnj , we
use the condition that fT

n Ufn = 1. By taking derivatives on both sides, we have
∂fn
∂ωj

Ufn = 0 and get cnj = −μT
njUfn. This completes the solution for ∂fn

∂ωj
.
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3 Surface Mapping via Deformation in Embedding Space

In this section, we demonstrate the application of metric optimization by ap-
plying it to compute surface maps in the embedding space. Let (M1, g1) and
(M2, g2) denote two surfaces, and ω1 and ω2 the weight functions on them, re-
spectively. The eigenvalues and eigen-functions of (Mm, ωmgm)(m = 1, 2) are
denoted as λm,n and fm,n. To match these two surfaces in the embedding space,
we minimize the following energy function with respect to the conformal metrics:

E(ω1, ω2) =
1

S1

∫
M1

d21(x)dM1 +
1

S2

∫
M2

d22(x)dM2 + ξ
2∑

i=1

∫
Mi

‖∇ωi‖2dMi. (11)

The distances are defined as d1(x) = miny∈M2‖Iω1g1
M1

(x)−Iω2g2
M2

(y)‖2 and d2(x) =

miny∈M1‖Iω2g2
M2

(x)− Iω1g1
M1

(y)‖2, where Iω1g1
M1

and Iω2g2
M2

are LB embeddings cho-

sen to minimize the distances among all possible sign combinations [14]. The
third term in the energy encourages smoothness in the weight functions and ξ
is a regularization parameter.

To find the optimal metrics that minimize the energy, we iteratively update
the weight functions in the gradient descent direction to deform the surfaces in
the embedding space. We represent each surface as a triangular mesh Mm =
(Tm,Vm) for m = 1, 2. For both surfaces, we use the first N eigenfunctions
to approximate the embedding. At each iteration, we denote u1(V1) = AV2,
and u2(V2) = BV1 as the closest point maps that minimizes d1 and d2 in the
embedding space, where A and B are interpolation matrices. Using these two
maps, we can write the energy at the current iteration in discrete form:

E(ω1, ω2) =
N∑

n=1

(
1

S1

(
f1,n√
λ1,n

− f2,n(u1)√
λ2,n

)T

U1

(
f1,n√
λ1,n

− f2,n(u1)√
λ2,n

)
(12)

+
1

S2

(
f2,n√
λ2,n

− f1,n(u2)√
λ1,n

)T

U2

(
f2,n√
λ2,n

− f1,n(u2)√
λ1,n

))
+ ξ(ωT

1 Q1ω1 + ωT
2 Q2ω2)

where Um and Qm are matrices defined in (6) with uniform weight, i.e., the
standard metric. Using the eigen-derivatives with respect to the weight functions,
we can derive the gradient flows for the weight functions as follows:

∂E

∂ω1
= 2

N∑
n=1

[
1

S1

(
1√
λ1,n

∂f1,n
∂ω1

− ∂λ1,n

∂ω1

(f1,n)
T

2 3/2
√

λ1,n

)
U1

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)
(13)

− 1

S2

(
∂f1,n
∂ω1

BT√
λ1,n

− ∂λ1,n

∂ω1

(Bf1,n)
T

2 3/2
√

λ1,n

)
U2

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

)]
+ 2ξQ1ω1

∂E

∂ω2
= 2

N∑
n=1

[
1

S2

(
1√
λ2,n

∂f2,n
∂ω2

− ∂λ2,n

∂ω2

(f2,n)
T

2 3/2
√

λ2,n

)
U2

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

)
(14)

− 1

S1

(
∂f2,n
∂ω2

AT√
λ2,n

− ∂λ2,n

∂ω2

(Af2,n)
T

2 3/2
√

λ2,n

)
U1

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)]
+ 2ξQ2ω2

Starting from a pair of embeddings Iω1g1
M1

and Iω2g2
M2

that achieve the minimum

energy among 2N possible sign combinations, we iteratively deform the embed-
dings by optimizing the metrics in the gradient descent direction following above
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equations. Note that the search through 2N combinations only needs be done
once in the first iteration to resolve sign ambiguities in eigenfunctions. After that,
we can resolve the sign ambiguities efficiently by comparing correlations between
corresponding eigenfunctions in consecutive iterations because only small per-
turbations are introduced in one iteration. Once the iterative process converges,
we obtain u1 and u2 as the maps between these two surfaces.

4 Experimental Results

Fig. 2. The optimized

weight function in the

conformal metric of the

two surfaces.

In this section, we present experimental results on hip-
pocampal surface mapping to demonstrate the appli-
cation of our method in brain imaging research. In
the first experiment, we present detailed results on
the mapping of two surfaces. The robustness and clin-
ical relevance of our method are demonstrated in the
second experiment on a clinical dataset of 109 sub-
jects. A comparison with the popular SPHARM tool
is presented in the third experiment.

4.1 Mapping Results of Two Surfaces

(a) (b)

(c) (d)

Fig. 3. Eigenfunctions and map results after met-

ric optimization. (a) Eigenfunctions of M1. (b)

u2(M2). (c) Eigenfunctions of M2. (d) u1(M1).

In this experiment, we ap-
ply our metric optimization
method to the two surfaces in
Fig. 1(a) and (d). The param-
eters are N = 20, ξ = 0.1 and
150 iterations of metric opti-
mization according to equa-
tions (13) and (14) are used to
obtain the final maps u1 and
u2. The computational time is
around 15 minutes on a PC.

The optimized weight func-
tions of these two surfaces are
shown in Fig. 2, where corresponding regions exhibit complimentary metric de-
formations to account for non-isometric differences of these parts. Under the con-
formal metrics, the corresponding eigenfunctions of the two surfaces are shown
in Fig. 3(a) and (c). We can see they are almost identical and agree much better
than the ones in Fig. 1. The quality of the maps can be visualized by the mesh
quality of u1(M1) and u2(M2) in Fig. 3(b) and (d). Compared with the meshes
in Fig. 1(c) and (f), we can see the mesh structures are much more uniform.

4.2 Hippocampal Mapping in MS Patients with Depression
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Fig. 4. Top (left) and

bottom (right) views of

the thickness p-value map

from our method.

In this experiment, we demonstrate the robustness of
our method by applying it to a clinical study of hip-
pocampal atrophy in MS patients with depression. Us-
ing the Center for Epidemiologic Studies-Depression
(CES-D) scale as the measure for depression, the 109
female subjects in this study are split into two groups:
low depression (CES-D≤ 20) and high depression
(CES-D> 20). To study group differences, the right
hippocampi are mapped with our metric optimiza-
tion method to an atlas surface, which is the right
hippocampus of one randomly selected subject. Using the computed maps, we
project the mesh structure of the atlas onto all hippocampal surfaces to estab-
lish one-to-one correspondences across subjects. At each corresponding triangle
of the 109 surfaces, a one-sided t-test is applied using a thickness measure [10]
to test the hypothesis that MS patients with high depression have more severe
hippocampal atrophy.

(a) Correlation. (b) P-value map.

Fig. 5. The correlation between CESD and thick-

ness, and its p-value map.

As shown in the signifi-
cance map of p-values in Fig.
4, the highlighted regions in-
dicate larger atrophy occurs
in the right hippocampus of
MS patients with high de-
pression. To correct for mul-
tiple comparisons, we applied
1000 permutation tests and
an overall p-value of 0.017 is
obtained, which means the overall significance of the thickness map. To further
validate the clinical relevance of the thickness map, we test the correlation of
the thickness measure and CES-D scores at each triangle. The correlation coeffi-
cients are plotted in Fig. 5(a) with the significance map of the correlation in Fig.
5(b), which indicates highlighted regions in Fig. 4 match excellently to regions
with significant negative correlations between thickness and CES-D scores. This
shows that patients with more severe depressive symptoms in deed have more
hippocampal atrophy in the highlighted regions detected by our method.

4.3 Comparison with SPHARM

Fig. 6. Top (left) and

bottom (right) views of

the thickness p-value map

from the SPHARM tool.

In this experiment, we apply the popular SPHARM
tool to map the same group of hippocampal sur-
faces in the second experiment. We adopt the sug-
gested parameters for hippocampus in the manual of
SPHARM [5]. Using the correspondences established
by the SPHARM maps, the same one-sided t-tests
are applied at each triangle to test for group differ-
ences among the 109 surfaces. The resulting signifi-
cance map of p-values is plotted in Fig. 6. To correct
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for multiple comparisons, we also apply 1000 permutation tests and the map-
ping results from SPHARM failed to reach significance with an overall p-value
of 0.07. By comparing the results in Fig. 4, 5 and 6, we can see that our method
achieves better performance by detecting more group differences that correlate
well with clinical variables.

5 Conclusions

In this work we proposed a general approach for surface deformation in LB em-
bedding space by optimizing conformal metrics on surfaces. We demonstrate this
method by applying it to map surfaces in the embedding space. In future work,
we will minimize bias in statistical analysis by developing group-based tech-
niques. We will also conduct more extensive comparisons with existing methods.
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