
ON THE CONTINUITY OF IMAGES BY TRANSMISSION IMAGING

CHUNLIN WU∗

Abstract. Transmission imaging is an important imaging technique which is widely used in
astronomy, medical diagnosis, and biology science, whose imaging principle is quite different from
that of reflection imaging used in our everyday life. As well known, images by reflection imaging
are usually modeled as discontinuous functions and even piecewise constant functions in most cases.
Because of this, many successful image processing techniques are based on the discontinuities (edges)
of the image, such as the popular total variation (TV) regularization. Very recently, many scholars
studied the application of TV regularization to processing images generated by transmission imaging
and piecewise constant images were widely used to test their algorithms. In this paper we show
that almost all images by transmission imaging are actually continuous functions and consequently
TV regularization for this kind of images can be greatly improved. For the convenience of descrip-
tion, we will consider transmission imaging with parallel line geometry of wave beam, which is a
fundamental geometry of wave beam in transmission imaging and has been extensively applied in
microscopes. In this kind of imaging, people take images of the physical scene from many different
projection directions. We will prove that for almost every projection direction, the image gener-
ated by transmission imaging is a continuous function, even if the density function of the physical
scene is discontinuous. The set of projection directions generating discontinuous images has measure
zero. Hence, almost every image taken in practice is continuous (regardless of noise). If the density
functions of the objects to be imaged are radial regardless of some coordinate shifts, then all the
projection directions generate continuous images. As far as we know, this continuity property has not
been published yet in the literature. As a straightforward application, we finally present a simple yet
effective improvement of TV regularization approach for Poisson noise (which is the most significant
noise in transmission imaging) removal. Numerical examples and comparisons verify our analysis
and demonstrate the effectiveness of the improved model.
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1. Introduction. Imaging is an important technique which translates a physical
scene to lower dimensional (typically 2D) data for convenient observation and record.
It has been applied to many fields, including our everyday life, medical diagnosis,
exploring the universe, and biological structure analysis. Many imaging systems and
instruments, such as various digital cameras, X-ray CT, telescopes, and microscopes,
have been developed. Different imaging systems are based on different physical prin-
ciples. Digital cameras used in our everyday life record the reflection part of the
incoming light [18], whereas transmission electron microscopes generate images by
counting the electrons having transmitted the scene [15, 10, 19]. We refer to these
two kinds of imaging techniques by reflection imaging and transmission imaging in
this paper for clearness.

As well known, images by reflection imaging are usually modeled as discontinuous
functions and even piecewise constant functions in most cases. Consequently most
of them have sparse gradients. Due to this property, many image processing tech-
niques, such as the popular total variation (TV) regularization [23], have achieved
great successes.

Although the central topic in transmission imaging is the reconstruction of the
3D objects from their 2D projection data (which are our so-called images), restora-
tion of these data (before 3D reconstruction) is sometimes also important due to the
involvement of noise and other degradations during the imaging procedure. A typical
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problem is how to remove the Poisson noise (which is the dominant noise) in images
by transmission imaging. Very recently, many scholars studied the application of TV
regularization to this ill-posed problem [2, 8, 16, 11, 21, 25, 29, 32] and piecewise
constant images were widely used in their numerical tests.

In this paper we show that almost all images by transmission imaging are actu-
ally continuous and consequently TV regularization for this kind of images can be
greatly improved. For convenience of description and consistency of notation, we
consider transmission imaging with parallel line geometry of wave beam, which is a
fundamental beam geometry [15, 19] and has been extensively used in microscopes
[10]. In transmission imaging (with parallel line geometry), people take images (also
called projections in the literature) from many different projection directions in order
to reconstruct the density functions of the imaged objects. Each projection direction
corresponds to one image. We will prove that for almost every projection direc-
tion, the generated image is a continuous function, even if the density functions of
the imaged objects are discontinuous (discontinuous density functions are very com-
mon). The set of projection directions generating discontinuous images has measure
zero. If the density functions of the objects to be imaged are radial regardless of
some coordinate shifts, then all the projection directions will generate continuous
images. As well known, Radon Transform [22] is the essential mathematical tool to
describe the imaging procedure. As far as we know, theoretical results on Radon
Transform in the literature focus on the analysis of the imaging procedure as a map-
ping operator [14, 15, 19], e.g., the invertability of the operator. In addition, most
analysis assume that the density function of the object to be imaged is a continu-
ous or even Schwartz function all over the Euclidean space [14, 19, 22]. So far our
analysis has not been appeared yet in the literature, although discontinuous density
functions of objects are very common and thus important in applications. As a con-
sequence of our results, most current digital image processing techniques which are
based on the discontinuities (edges) of the image, may not be best for images gen-
erated via transmission imaging. The popular TV regularization for Poisson noise
removal [2, 8, 16, 11, 21, 25, 29, 32] can be greatly improved. We will finally present
a simple variational approach for Poisson noise removal by appropriately combining
some existing regularization and fidelity terms, which improves the TV regularization
based methods [2, 8, 16, 11, 21, 25, 29, 32] dramatically.

The paper is organized as follows. To better understand the background of our
analysis, we will present in section 2, the principles of reflection imaging and transmis-
sion imaging and brief comparisons between the features of images generated by them.
In section 3, we will focus on the continuity problem of images taken via transmis-
sion imaging. As a straightforward application of our analysis, a simple yet effective
improvement of the most popular TV regularization for Poisson noise removal will be
presented in section 4. The paper is concluded in section 5.

2. Principles of reflection imaging and transmission imaging. As indi-
cated by the terms, reflection imaging relies on the reflection of the light wave on
the surface of the objects [18], whereas transmission imaging is based on some radial
wave (such as electron wave or X-ray) arriving at the image plane by transmitting
the physical scene [15, 10, 19]. See Fig. 2.1. For simplicity, we here focus on the
essentially different parts of these two imaging procedures and omit other common
parts (such as focus and magnification subsystems). In the following we will explain
the principles of these two imaging procedures in both physical and mathematical
points of view with brief comparisons.
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Fig. 2.1. A simple illustration of reflection and transmission imaging

The principle and implementation of an imaging system depends on the physical
properties of both the objects to be imaged and the source (e.g., visible light, X-ray,
and electron beam) used for imaging. Usually the source produces a composition
of waves with frequencies in a certain range (including the case of just one single
frequency). Waves with different frequencies have different reflection and transmission
abilities. The visible light in our everyday life has lower frequencies and thus is difficult
to transmit most objects. When it hits most objects, a portion of it reflects while
the remainder is absorbed by the objects. Different objects can absorb waves with
different frequencies. Consequently waves with different frequencies are reflected. We
do recognize different objects by these reflected waves, which exhibit different colors.
Digital cameras rely on this reflection phenomenon of the visible light. See Fig. 2.1
(a), where o1, o2, o3 are three objects and the image plane records the reflection light
from o1, o2, o3. Note that not all the reflection light of an object can be observed by
the image plane, since some portions of the reflection light may be blocked by other
objects.

The situation is totally different in transmission imaging case. Transmission imag-
ing adopts the strong transmission ability of the source, e.g., γ radial, X-ray and high
speed electron beams, whose frequencies are much higher. This kind of imaging
techniques are mostly applied to medical diagnosis and biological structure analysis
[15, 10]. Ideally, the source produces a wave with a single frequency during one single
measurement. When hitting a medical or biological scene (e.g., some biological tissue
or specimen), the wave transmits the objects and then arrives at the image plane.
During the transmission, the wave interacts with the objects. Usually this interaction
is very complicated and very hard to precisely describe, especially in micro structure
analysis at molecular or atomic level. Fig. 2.1 (b) is an illustration, where o1, o2, o3

are three (biological) objects and the image plane records the electrons successfully
transmitting the objects. As mentioned before, here we consider transmission imag-
ing with parallel line geometry of the wave beam [15, 10, 19]. Some other types of
geometry such as fan beam are introduced in [15, 19].

In the following, we explain these two imaging procedures in mathematical point
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of view. As shown in Fig. 2.1, we assume three objects o1, o2, o3 to be imaged.
We represent them via their density functions ρ1(r), ρ2(r), ρ3(r) (r ∈ R3). These
functions can be mass density, electron density, or others of the objects, depending
on by which density the objects will interact with the source wave.

In the reflection imaging case, the light wave hits the objects and reflects. The
reflection depends on the material and the position of the outer boundary of the
object. (Note that we can always assume that the material of a single object is nearly
homogeneous; otherwise we can further decompose it.) Each object will reflect waves
with some particular small range of frequencies (even particular single frequency in
many cases), which indicate the colors of the object. The direction of the reflected
wave and within which domain of the image plane the wave will arrive at depend on
the position of the outer boundary of the object. The inner boundary of an object (see
o1), and actually its whole interior body, have no effect on the reflection. Therefore,
if we consider only o1 and remove o2, o3 from the scene, an intensity function, which
is nearly constant within its domain and usually discontinuous at the boundary, will
be recorded on the image plane. Suppose that the intensity function generated by
o1 is Ir(o1; r). Similarly, we have Ir(o2; r) and Ir(o3; r). Here the super script r

means “reflection imaging” and the argument r is the coordinate in the image plane.
Now, we consider the whole scene. If no object is warded off by others, then the total
intensity in the image plane is simply a linear combination:

Ir(o1; r) + Ir(o2; r) + Ir(o3; r).

However, in most scenes some objects are warded off by others. A portion of the
reflection light of the warded object is blocked. The image plane records the sum of
the blocked reflection light, which reads

Ir(o1 + o2 + o3; r) = b1(r)I
r(o1; r) + b2(r)I

r(o2; r) + b3(r)I
r(o3; r), (2.1)

where bi(r), i = 1, 2, 3 are some truncation functions indicating the block effect. bi, i =
1, 2, 3 depend on the positions of the outer boundaries of the objects and are actually
indicator functions. Therefore, we have the following conclusion:

• As an operator, reflection imaging is in general nonlinear with respect to the
objects in the scene.

Since the functions Ir(oi; r), ∀ i are piecewise smooth and usually discontinuous at the
boundaries of their supports, and the functions bi(r), ∀ i are piecewise constant (thus
discontinuous), Ir(o1+o2+o3; r) is piecewise smooth and discontinuous at the common
boundaries between objects. In most cases, the image is piecewise constant. This is
exactly the classic mathematical modeling of reflection images in [18]. Nevertheless,
we conclude that:

• In reflection imaging, the images are discontinuous functions. In most cases,
they are piecewise constant.

This is a very important property, based on which many image processing and seg-
mentation techniques, models, and algorithms have been proposed in the literature.

Now let us turn to the transmission imaging. See Fig. 2.1 (b). In transmission
imaging, the source wave transmits the scene (such as some biological specimen) and
a portion of the wave arrives at the image plane. The information recorded in the
image plane is then used to infer the structure of the scene. The interaction between
the wave and the objects in the scene depends on some certain density functions of
the objects. Mathematically this procedure can be modeled by the Radon transform
[22]. For convenience of description, we assume the direction of the wave beam in
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Fig. 2.1 (b) is z. Let us first consider o1 and remove o2, o3 from the scene. The image
generated by o1 is as follows

It(o1; r) =

∫

ρ1(r)dz, (2.2)

where we use the super script t to denote “transmission imaging”. (Physically speak-
ing, the intensity sensed in the image plane is actually C−It(o1; r) with a constant C

indicating the strongness of the source wave. In mathematical modeling and analysis,
there is no difference between them.) Putting o1, o2, o3 all together in the scene, the
total density function is ρ1(r) + ρ2(r) + ρ3(r), since in many cases we can omit the
interaction between these objects. Therefore, the total intensity sensed in the image
plane is

It(o1 +o2 +o3; r) =

∫

ρ1(r)+ρ2(r)+ρ3(r)dz = It(o1; r)+ It(o2; r)+ It(o3; r). (2.3)

Hence we conclude:
• As an operator, transmission imaging is linear with respect to the objects in

the scene for given projection direction.
In the following section we focus on analyze the features of 2D images (projections)
recorded by the image plane. As mentioned previously, in transmission imaging with
parallel line geometry, people take images from many projection directions. Each
projection direction corresponds to an image. We will show that most images gen-
erated in transmission imaging can be modeled as continuous functions, even if the
density functions of objects are discontinuous. This is totally different from reflection
imaging.

3. The continuity property of images generated by transmission imag-

ing. In this section, we study the continuity property of images taken by transmission
imaging with parallel line geometry of wave beam. We will discuss the topic in two
cases, which are very common in real applications. In the first case compactly sup-
ported density functions are considered. Real applications with density functions
such as mass density fall into this case. We will prove that for almost every projec-
tion direction, the image taken in this direction is a continuous function. The set of
discontinuous images corresponds to a set of projection directions which has measure
zero. In the second case we consider radial density functions (not restricted to be
compactly supported). We will show that in this case, all images from all the pro-
jection directions are continuous functions. All of these results will be presented in
general Euclidean space Rn (typically n = 2, 3).

We first give some notation. We use Br,δ to denote the open ball centered at r

with radii δ. Sn−1 is denoted for the n− 1 dimensional unit sphere. Its upper part is
denoted by

Sn−1
+ = {r = (r1, r2, · · · , rn) ∈ Rn : |r| = 1, rn > 0} . (3.1)

A straight line l ⊂ Rn is expressed as

r = r0 + vt, −∞ < t < +∞, (3.2)

where r0 ∈ Rn; and v ∈ Rn is a unit direction vector, i.e., |v| = 1. For simplicity, we
denote a straight line determined by r0 and v as lr0,v in the following.
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In transmission imaging, people take images of objects from different projection
directions by computing the integrals of the density of the objects along straight
lines with those directions. Regardless of the symmetry of direction, we need only to
consider those images generated in the projection directions, which are elements of
one half of the n − 1 dimensional sphere denoted by

Sn−1
1
2

= {v ∈ Rn : |v| = 1, (θ1, θ2, · · · , θn−1) ∈ [0, π]n−2 × [0, π),

(θ1, θ2, · · · , θn−1) are the Euler angles of v}
. (3.3)

For each v in Sn−1
1
2

, people take one image from that projection direction. We denote

the image generated by v ∈ Sn−1
1
2

as It
v

(we remind that the super script t means

“transmission imaging”). If there are no repeated images, the images are as many as
the points in Sn−1

1
2

.

3.1. Compactly supported density functions. Before presenting our results,
we give an example in R2. See Fig. 3.1. Here the object to be imaged is a rectangle
o, whose density function is supported in the rectangle and is constant ρ(r) ≡ 0.5. In
transmission imaging, the object is projected from different directions to the corre-
sponding image planes. The projection from each direction generates one image. In
R2, the projection direction is v ∈ S1

1
2

, or, equivalently, can be described by an az-

imuthal θ ∈ [0, π). That is, the unit vectors indicating the projection directions are on
a half circle. In Fig. 3.1, we only show two projection directions and the correspond-
ing images of the object. As one can see, the image in Fig. 3.1 (a) is continuous over
the whole image plane (R1 here), whereas the image in Fig. 3.1 (b) is discontinuous.
This example shows that different projection directions may generate images with
different smoothness, even for the object of constant density. In this example, there
are in total 2 projection directions (parallel to the edges of the rectangle respectively)
which generate discontinuous images. In the following, we will prove that the set of
projection directions generating discontinuous images has measure zero within the set
of all the projection directions. We will present our results in general Euclidean space
Rn.

o : ρ(r) ≡ 0.5

Image plane

b b b b b b b b b

Electron beam

(a) a continuous projection of a rectangle

o : ρ(r) ≡ 0.5

Im
age
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b
b
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b
b
b

b
b

b

Elec
tro
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(b) a discontinuous projection of a rectangle

Fig. 3.1. An example of transmission imaging in R2.
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By the linearity of the transmission imaging operator, we only need to consider
just one single object. We denote it by o, whose density function is ρ(r). The support
of ρ(r) is D with boundary B. In almost all real applications, we can assume:

Assump. 1 ρ(r) is compactly supported, i.e., D is bounded;
Assump. 2 ρ(r) is continuous over D;
Assump. 3 B is a continuous and piecewise C1 hypersurface;
Assump. 4 For any straight line l in Rn, l intersects B at either empty set, or finite

number of points, or finite number of line segments, or the union of finite
number of points and finite number of line segments.

A common example is that D is a polyhedron and ρ(r) is constant over D.
Lemma 3.1. Assume that g is the metric tensor of the mapping ϕ from the n− 1

dimensional open ball B0n−1,1 (0n−1 is the origin of Rn−1) to Sn−1
+ defined by

(v1, v2, · · · , vn−1) → (v1, v2, · · · , vn−1, vn) = (v1, v2, · · · , vn−1,

√

1 −
∑

1≤i≤n−1

v2
i ).

Then det g = 1
1−

∑

1≤i≤n−1

v2
i

= 1
v2

n
.

Proof By basic calculation we have

g = I + V,

where I is the identity matrix and V = (vij) with elements vij =
vivj

v2
n

. From linear

algebra, we know

det g = 1 +
∑

1≤k≤n−1

∑

i1<i2<···<ik

V (
i1 i2 · · · ik
i1 i2 · · · ik

),

where V (
i1 i2 · · · ik
i1 i2 · · · ik

) is a principle minor of V . It is easy to see that all the

principle minors with orders greater than 1 have zero determinant. Therefore,

det g = 1 +
∑

i1

V (
i1
i1

) =
1

v2
n

,

which completes the proof. �

Based on Lemma 3.1, we can prove the following result.
Theorem 3.2. Assume Z = {v ∈ Sn−1

1
2

: ∃ r0, s.t. m(lr0,v ∩ B) > 0} where

m(lr0,v∩B) is the Lebesgue measure in R1 (along the straight line). Then Z has zero
spherical measure.
Proof We have

Z = Z+ ∪ Z0,

where

Z+ ={v = (v1, v2, · · · , vn) ∈ Sn−1
1
2

: vn > 0, ∃ r0, s.t. m(lr0,v ∩ B) > 0}

={v = (v1, v2, · · · , vn) ∈ Sn−1
+ : ∃ r0, s.t. m(lr0,v ∩ B) > 0},

and

Z0 = {v = (v1, v2, · · · , vn) ∈ Sn−1
1
2

: vn = 0, ∃ r0, s.t. m(lr0,v ∩ B) > 0}.
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As a subset of {v = (v1, v2, · · · , vn) ∈ Sn−1 : vn = 0}, Z0 has zero spherical measure.
To prove that Z+ also has zero spherical measure, we introduce the following set

Pr0,v = {rn ∈ R1 : rn = r · (0, 0, · · · , 0, 1), ∀ r ∈ (lr0,v ∩ B)},

which is actually the projection of lr0,v ∩ B to the (0, 0, · · · , 0, 1) direction. We then
have

Z+ = {v = (v1, v2, · · · , vn) ∈ Sn−1
+ : ∃ r0, s.t. m(Pr0,v) > 0},

which can be written as

Z+ =

∞
⋃

k=1

{v = (v1, v2, · · · , vn) ∈ Sn−1
+ : ∃ r0, s.t. m(Pr0,v) >

1

k
}

=
∞
⋃

k=1

Zk
+.

Now let us consider the set

A+ = {vn−1 = (v1, v2, · · · , vn−1) ∈ Rn−1 : |vn−1| < 1,

v = (v1, v2, · · · , vn−1,

√

1 −
∑

1≤i≤n−1

v2
i ) ∈ Sn−1

+ , ∃ r0, s.t. m(Pr0,v) > 0},

which can be further written as

A+ =
∞
⋃

k=1

{vn−1 = (v1, v2, · · · , vn−1) ∈ Rn−1 : |vn−1| < 1,

v = (v1, v2, · · · , vn−1,

√

1 −
∑

1≤i≤n−1

v2
i ) ∈ Sn−1

+ , ∃ r0, s.t. m(Pr0,v) >
1

k
}

=
∞
⋃

k=1

Ak
+.

As one can see, A+ and Ak
+ are the restrictions of Z+ and Zk

+ in the Rn−1.
We claim that, for any k, Ak

+ has zero outer Lebesgue measure in Rn−1, i.e.,
m∗(Ak

+) = 0. Otherwise, let us suppose m∗(Ak
+) > 0. Then the following set

Er0,v = {r = (v1, v2, · · · , vn−1, rn) ∈ Rn : (v1, v2, · · · , vn−1) ∈ Ak
+, rn ∈ Pr0,v,

v = (v1, v2, · · · , vn−1,

√

1 −
∑

1≤i≤n−1

v2
i )}

has positive outer Lebesgue measure in Rn. Since any open cover of lr0,v ∩ B can
induce an open cover of Er0,v by some translations, we conclude that the following
set

⋃

v∈Zk
+

(lr0,v ∩ B),

as a subset of B, has positive outer Lebesgue measure in Rn. This contradicts that
B has zero Lebesgue measure in Rn.
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Therefore, we obtain m(A+) = 0 in Rn−1. On the other hand, A+ can be
reformulated as

A+ =

∞
⋃

k=1

{vn−1 ∈ A+ : vn =

√

1 −
∑

1≤i≤n−1

v2
i >

1

k
}.

By Lemma 3.1, one can show that Z+ has zero spherical measure. The theorem is
proven. �

Theorem 3.3. In transmission imaging with parallel line geometry, for almost
every projection direction v ∈ Sn−1

1
2

, the image taken in direction v is a continuous

function. The subset of projection directions generating discontinuous images has zero
measure on Sn−1

1
2

.

Proof We will prove that ∀ v ∈ Sn−1
1
2

\Z, It
v

is a continuous function. Here Z is as

in Theorem 3.2.
According to our assumptions, ∀ v ∈ Sn−1

1
2

\Z, any straight line with direction v

intersects with B at empty set, or finite number of points.
Without loss of generality, we can assume v = (0, 0, · · · , 0, 1) (if (0, 0, · · · , 0, 1) ∈

Z, we can rotate the coordinate system to make sure in the new system the n′th
axis is not in Z). In this case, we will generate an image whose pixels are in the
Rn−1 space with coordinates rn−1 = (r1, r2, · · · , rn−1). We denote this image as
It
v
(o; r1, r2, · · · , rn−1). We now show that it is a continuous function with respect to

the image coordinates (r1, r2, · · · , rn−1). At any r∗n−1 = (r∗1 , r∗2 , · · · , r∗n−1) ∈ Rn−1,
the straight line for integration can be written as

r = (r∗n−1, 0) + vt, −∞ < t < +∞,

which is, in short, l(r∗
n−1,0),v. We discuss the continuity in three cases, respectively.

a. l(r∗
n−1,0),v ∩B = ∅. In this case, there exists a neighborhood Br∗

n−1,δ ⊂ Rn−1,

such that ∀ rn−1 ∈ Br
∗
n−1,δ, l(rn−1,0),v∩B = ∅. Therefore, the image intensity

It
v
(o; rn−1) = 0 for ∀ rn−1 ∈ Br∗

n−1,δ. It is thus continuous at r∗n−1.

b. l(r∗n−1,0),v ∩ B = {(r∗n−1, r
∗,i
n ) : i = 1, · · · , 2M, r∗,1

n < r∗,2
n < · · · < r∗,2M

n } and
all the intersecting points are secant points. By the continuity of the boundary
B and that any intersecting point is a secant point, ∀ 1 ≤ i ≤ 2M , there exists
a local continuous mapping ϕi from a small neighborhood Br

∗
n−1,δi ⊂ Rn−1

to a small neighborhood of (r∗n−1, r
∗,i
n ) on B, which is

ϕi(rn−1) = (rn−1, h
i(rn−1)), ∀ rn−1 ∈ Br

∗
n−1,δi ,

for some continuous function hi(rn−1) (otherwise there will be more than one
intersections between l(r∗

n−1,0),v and B around this secant point). This also

means that, ∀ 1 ≤ i ≤ 2M , the secant point (r∗n−1, r
∗,i
n ) is in the interior of the

set ϕi(Br
∗
n−1,δi). It follows that, ∀ rn−1 ∈ Br

∗
n−1,δi , l(rn−1,0),v intersects with

ϕi(Br
∗
n−1,δi) at a secant point. Note that we can choose δi small enough so

that ϕi(Br
∗
n−1,δi)∩ϕj(Br

∗
n−1,δj ) = ∅, ∀ i 6= j, since r∗,1

n < r∗,2
n < · · · < r∗,2M

n .

Let δ = min(δ1, δ2, · · · , δ2M ). We conclude that, ∀ rn−1 ∈ Br∗
n−1,δ, l(rn−1,0),v

intersects with B at a series of secant points {(rn−1, r
i
n) : 1 ≤ i ≤ 2M, r1

n <

r2
n < · · · < r2M

n }. Again by the continuity, ∀ i = 1, 2, · · · , 2M , |ri
n − r∗,i

n | < δ̂;
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and δ̂ → 0 as δ → 0. This, together with the continuity of the density function
ρ(r), indicates that

It
v
(o; rn−1) − It

v
(o; r∗n−1)

=

∫

l(rn−1,0),v

ρ(r)dl −

∫

l(r∗
n−1

,0),v

ρ(r)dl

=
∑

1≤i≤M

∫ r2i
n

r
2i−1
n

ρ((rn−1, t))dt −
∑

1≤i≤M

∫ r∗,2i
n

r
∗,2i−1
n

ρ((r∗n−1, t))dt

=
∑

1≤i≤M

(

∫ r2i
n

r
2i−1
n

ρ((rn−1, t))dt −

∫ r∗,2i
n

r
∗,2i−1
n

ρ((r∗n−1, t))dt)

→ 0,

as δ → 0. Hence the image is continuous at r∗n−1.

c. l(r∗
n−1,0),v ∩ B = {(r∗n−1, r

∗,i
n ) : i = 1, · · · , 2M + K, r∗,1

n < r∗,2
n < · · · <

r∗,2M+K
n } within which 2M points are secant points and the remainder are

touching points. Assume that the index set of the secant points is A1 whereas
the index set of the touching points is A2. First, let us consider the secant
points. By the argument in the above case, there always exists a neighborhood
Br

∗
n−1,δ1 (with δ1 small enough) such that ∀ rn−1 ∈ Br

∗
n−1,δ1 and ∀ i ∈ A1,

l(rn−1,0),v intersects with B around the secant point (r∗n−1, r
∗,i
n ) at another

secant point (rn−1, r
i
n). We have ri1

n < ri2
n , ∀ i1, i2 ∈ A1, i1 < i2. In addition,

by the continuity, ∀ i ∈ A1, |ri
n − r∗,i

n | < δ̂1; and δ̂1 → 0 as δ1 → 0.
Now let us consider the touching points. ∀ i ∈ A2, we decompose a small
enough neighborhood of (r∗n−1, r

∗,i
n ) on B to the union of the upper half

U with the n′th coordinate rn ≥ r∗,i
n and the lower half L with the n′th

coordinate rn ≤ r∗,i
n . There exist a continuous mapping from a subset of a

neighborhood B
r
∗
n−1,δ

i,+
2

to U , and a continuous mapping from a subset of a

neighborhood B
r
∗
n−1,δ

i,−
2

to L, respectively. Let δi
2 = min(δi,+

2 , δ
i,−
2 ). Then,

∀ rn−1 ∈ Br
∗
n−1,δi

2
, the straight line l(rn−1,0),v intersects U∪L at an empty set,

or a single touching point ri
n, or two secant points ri,+

n , ri,−
n . Again, by the

continuity of the mappings, |ri,+
n − r∗,i

n | < δ̂i
2, |r

i,−
n − r∗,i

n | < δ̂i
2; and δ̂i

2 → 0 as
δi
2 → 0. Now we let δ2 = min{δi

2 : i ∈ A2}. Therefore, ∀ rn−1 ∈ Br∗
n−1,δ2 and

∀ i ∈ A2, the straight line l(rn−1,0),v intersects B around the touching point
(r∗n−1, r

∗,i
n ) at an empty set, or a single point, or two secant points ri,+

n , ri,−
n .

In addition, |ri,+
n − r∗,i

n | < δ̂2, |ri,−
n − r∗,i

n | < δ̂2; and δ̂2 → 0 as δ2 → 0.
Let δ = min(δ1, δ2). We conclude that, ∀ rn−1 ∈ Br∗

n−1,δ,

It
v
(o; rn−1) − It

v
(o; r∗n−1) → 0, as δ → 0,

by a similar argument as in the previous case, with a trick to delete some
of the touching points {(r∗n−1, r

∗,i
n ) : i ∈ A2} and make the remainder of

multiplicity 2 according to how many intersections there are between the line
and B around the touching points. The image is also continuous at r∗n−1 in
this case. �

Theorem 3.2 and 3.3 show that in transmission imaging with parallel line geom-
etry, images taken in almost all the projection directions are continuous functions.
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The discontinuous images are so sparse that in real applications they seldom appear.
This will provide some information for processing images generated by transmission
imaging, which is totally different from reflection imaging.

The following corollary is on our results applied to a combination of finite objects.

Corollary 3.4. Suppose that a physical scene consists of finite objects {oi : 1 ≤
i ≤ M} with compactly supported density functions {ρi(r) : 1 ≤ i ≤ M} which are
continuous over their supports {Di : 1 ≤ i ≤ M}, respectively. The set of projection
directions generating discontinuous images has measure zero on Sn−1

1
2

. In particular,

even if {ρi(r) ≡ ci, r ∈ Di : ci ∈ R is a constant , 1 ≤ i ≤ M}, i.e., the whole density
is piecewise constant, the result still holds.

Since in real applications the case of R3 is very important, we give the following
corollary.

Corollary 3.5. Assume that a physical scene in R3 consists of finite objects
with compactly supported density functions which are continuous over their domains.
The set of projection directions generating discontinuous images has measure zero on
S2

1
2

.

3.2. Radial density functions. In some applications, the density functions are
not compactly supported. However, they are radial functions or combinations of some
translations of radial functions. This subsection contributes to this case.

Again we need only consider one single object. We denote it by o and assume
the density function is ρ(|r|), r ∈ Rn. Since ρ depends only on |r|, the images are
independent of projection directions. All the projection directions will generate the
same image. Therefore, without loss of generality, we can assume the projection
direction is v = (0, 0, · · · , 0, 1), for convenience of description. The coordinates in the
image plane is thus rn−1. We then have

It
v
(o; rn−1) =

∫

l(rn−1,0),v

ρ(|r|)dl =

∫ +∞

−∞

ρ(
√

|rn−1|2 + r2
n)drn. (3.4)

It is straightforward to verify that the image It
v
(o; rn−1) is a radial function of

rn−1. Under some mild assumptions, it is continuous.

Theorem 3.6. The image It
v
(o; rn−1) is also radial, when the density of the ob-

ject is a radial function.

Theorem 3.7. Assume that ∀ rn−1 ∈ Rn−1,
∫ +∞

−∞
ρ2(

√

|rn−1|2 + r2
n)drn < +∞.

Then the image It
v
(o; rn−1) is continuous with respect to rn−1.

Proof Assume that r∗n−1 ∈ Rn−1, rn−1 ∈ Rn−1 and rn−1 → r∗n−1. Without loss of
generality, we consider the case of |rn−1| > |r∗n−1| (the case of |rn−1| < |r∗n−1| can be

treated similarly). Let z =
√

|rn−1|2 − |r∗n−1|
2. We have

It
v
(o; rn−1) − It

v
(o; r∗n−1) =

∫ +∞

−∞

ρ(
√

|rn−1|2 + r2
n)drn −

∫ +∞

−∞

ρ(
√

|r∗n−1|
2 + r2

n)drn

=

∫ +∞

−∞

ρ(
√

|rn−1|2 + r2
n)drn

− (

∫ −z

−∞

+

∫ z

−z

+

∫ +∞

z

)ρ(
√

|r∗n−1|
2 + r2

n)drn
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=2

∫ +∞

0

ρ(
√

|rn−1|2 + r2
n)drn − 2

∫ +∞

z

ρ(
√

|r∗n−1|
2 + r2

n)drn

−

∫ z

−z

ρ(
√

|r∗n−1|
2 + r2

n)drn

=2

∫ +∞

0

ρ(
√

|rn−1|2 + r2
n)(1 −

rn
√

r2
n + z2

)drn

−

∫ z

−z

ρ(
√

|r∗n−1|
2 + r2

n)drn

=I1 + I2.

We now estimate the integral I1.

|I1|
2 ≤4

∫ +∞

0

ρ2(
√

|rn−1|2 + r2
n)drn

∫ +∞

0

(1 −
rn

√

r2
n + z2

)2drn

=4

∫ +∞

0

ρ2(
√

|rn−1|2 + r2
n)drn

∫ +∞

0

(

√

r2
n + z2 − rn

√

r2
n + z2

)2drn

<4

∫ +∞

0

ρ2(
√

|rn−1|2 + r2
n)drn

∫ +∞

0

z2

r2
n + z2

drn

=πz

∫ +∞

−∞

ρ2(
√

|rn−1|2 + r2
n)drn.

As for the integral I2, the absolute continuity of integral gives that |I2| → 0, as z → 0.
Therefore, as rn−1 → r∗n−1 and thus z → 0, we have |I1|+ |I2| → 0, which implies

It
v
(o; rn−1) is continuous at r∗n−1. �

Corollary 3.8. Suppose that a physical scene consisting of finite objects {oi :
1 ≤ i ≤ M} with translations of radial density functions {ρi(|r−ri|), ri ∈ Rn : 1 ≤ i ≤
M} satisfying the condition in Theorem 3.7. Then ∀ v ∈ Sn−1

1
2

, It
v
(o1+o2+· · ·+oM ; ·)

is continuous.

4. Improving TV regularization for Poisson noise removal. In this section
we present a straightforward application of our analysis, i.e., a simple yet effective
improvement of the popular TV regularization for Poisson noise reduction of images
generated by transmission imaging. We should mention that there are also many other
very successful image denoising methods which are not based on energy minimization
and variational principle.

TV regularization was first introduced in [23] and has been extensively applied in
various digital image processing problems; see [7] and references therein. Very recently,
many scholars studied the combination of TV and the Kullback-Leibler (KL) fidelity
[21, 16] for Poisson noise removal [2, 8, 16, 11, 21, 25, 29, 32] and many numerical
tests therein used piecewise constant images. The minimization model reads:

min
u

∫

Ω

|∇u|dΩ + α

∫

Ω

(u − f log u)dΩ, (4.1)

where f is an observed image defined on Ω ⊂ R2; α is a model parameter. As in [29],
we call this model as TV-KL model.

However, according to our results in the previous section, images generated by
transmission imaging are usually continuous. Since TV often suffers from staircase
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effect and generates piecewise constant solutions, it destroys the continuity structure
of the true images by transmission imaging. Hence TV-KL model need to be improved.

In this section, we propose to solve the following one:

min
u

∫

Ω

√

u2
x + u2

y + u2
xx + u2

xy + u2
yx + u2

yydΩ + α

∫

Ω

(u − f log u)dΩ, (4.2)

which combines the first order and the second order derivatives ∇u and Hessian(u).
We call (4.2) as MoTV(Multi-order TV)-KL model, since it uses a combination of ∇u

and Hessian(u). Here we give the following remarks to this model.
• Remark 1. The regularizer in (4.2) is an extension of TV and not new. Here

we just combine it with KL fidelity to remove Poisson noise.
• Remark 2. Since the underlying density functions of imaged objects are di-

verse, the corresponding most suitable regularizers should be also diverse. To
the best of our understanding, the proposed MoTV-KL model (4.2) may be
the simplest improvement of TV-KL model. Although it seems to favor piece-
wise linear images, which are the simplest non-constant continuous images,
it also at least improves the effectiveness of TV-KL model for more compli-
cated continuous images (our test images are not restricted to be piecewise
linear images). The aim of this section is not a perfect denoising model for all
continuous images, but a simple yet effective improvement of TV-KL model,
showing a straightforward application of our theoretical analysis.

• Remark 3. According to our test, the model involving only the second order
derivatives Hessian(u) does not work well. Therefore, the ∇u in (4.2) cannot
be deleted. This indicates that, in denoising problems, ∇u in regularization
is even quite important for images with no discontinuity. This also verifies
Remark 2 in some sense that the involvement of Hessian(u) in MoTV-KL
model is helpful for continuous images with continuity orders higher than
piecewise linearity.

The problem (4.2) is an L1 minimization problem. Recently many efficient meth-
ods have been developed to solve this kind of problems; see, e.g., [5, 6, 4, 3, 9, 13,
17, 20, 26, 24, 27, 28, 29, 30, 31, 33] and references therein. In our implementation
we applied operator splitting and augmented Lagrangian method with single inner
iteration [12] to solve it based on the code of our previous work [26, 28, 29].

Two numerical examples are shown in Fig. 4.1 and 4.2. In Fig. 4.1, the im-
age is synthesized by projecting 4 objects (1 sphere + 2 polyhedrons + 1 ellipse, with
constant density functions within their domains, respectively) to an image plane. The
molecular image in Fig. 4.2 was downloaded from http://people.csail.mit.edu/gdp/cryoem.html.
The experiments were performed under Windows Vista and Matlab R14 (Version
7.0.4) on a laptop with Intel CPU (Core 2) at 2.53GHz and 4GB memory. We used
‖uk−uk−1‖F

‖uk−1‖F
≤ 10−2 as the stopping condition of the iteration for all the examples,

where ‖ · ‖F denotes the Frobenius norm of the data expressed as a matrix. From
Fig. 4.1 and 4.2, one can clearly see the continuity of the clean images. The MoTV-
KL model (4.2) generates much smoother results with much higher SNRs than the
TV-KL model (4.1). In the tests, we adjusted the model parameter α to figure out
how high SNRs the two models can achieve respectively. For the parameter value
with which the TV-KL model generates nearly highest SNR, we computed the result
by MoTV-KL model, and vice versa. We found that MoTV-KL model gives results
with much higher SNRs, even with the parameter value which is best for TV-KL
model. Besides, TV-KL model suffers from staircase effect, whereas MoTV-KL model
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does not. The fact that the smoother solutions have higher SNRs also demonstrates
our analysis on the continuity of the images generated by transmission imaging with
parallel line geometry.

5. Conclusions and future work. In this paper, we analyzed the continuity
property of images generated by transmission imaging with parallel line geometry of
wave beam (which is a fundamental and widely used geometry) and showed a simple
yet natural application of our theoretical analysis. Transmission imaging is widely ap-
plied in astronomy and biomedical sciences for macro and micro scale objects, which
is quite different from reflection imaging frequently used in our everyday life for com-
mon scale objects. The physical mechanisms and thus mathematical models of these
two imaging principles are totally different. In contrast to the well known modeling
images by reflection imaging as discontinuous functions, we showed that almost all
images generated by transmission imaging are continuous functions, even if the den-
sity functions of the imaged objects are discontinuous. Discontinuous images scarcely
appear in real applications. This analysis has not appeared yet in the literature.
Although the central topic in transmission imaging is the reconstruction of density
functions of objects, processing of the image (projection) data before reconstruction
is also sometimes important due to the fact that these data usually involve degrada-
tions such as Poisson noise. Our theoretical analysis may help us to understand the
structures of images generated by transmission imaging and provide some informa-
tion for designing and testing image processing techniques for transmission imaging.
As a straightforward application, we proposed a simple yet effective improvement of
the most popular TV regularization applied to Poisson noise removal. In addition,
more reasonable test images for models and algorithms should be continuous, instead
of the currently widely used piecewise constant phantom image and other discontin-
uous images. Numerical tests and comparisons demonstrated our analysis and the
effectiveness of the improved variational model.

There are some future works. In this paper we only considered the transmission
imaging with parallel line geometry. The corresponding results for fan beam geometry
will be reported in our near future. In addition, the variational model presented here
is just our first try to handle this kind of images after our realizing the continuity of
the images. We believe that better restoration models exist and need to be found.

Acknowledgement. We thank Prof. Weixiao Shen and Prof. Zuowei Shen for
their helpful discussions and suggestions.
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Original.
 SNR:Inf

TV−KL Recovered.
α: 10, t: 0.7s, SNR:27.41

MoTV−KL Recovered.
α: 10, t: 1.2s, SNR:28.87

Noisy.
 SNR:21.68

TV−KL Recovered.
α: 20, t: 0.6s, SNR:26.81

MoTV−KL Recovered.
α: 20, t: 1.0s, SNR:29.72

Fig. 4.1. Comparisons between TV-KL and MoTV-KL models for a 256×256 synthetic image.
The second and fourth rows are zoom-in images of the first and third rows, respectively. The first
column: original and noisy (with Poisson noise) images. The second column: TV-KL recovered
images. The third column: MoTV-KL recovered images. According to our test, TV-KL model
gives a result with nearly highest SNR with the model parameter α = 10, whereas MoTV-KL model
generates a result with nearly highest SNR with α = 20. For both parameter values, MoTV-KL
model gives much higher SNR than TV-KL model. In addition, TV-KL model suffers from staircase
effect, whereas MoTV-KL model does not.
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Original.
 SNR:Inf

TV−KL Recovered.
α: 15, t: 0.2s, SNR:22.36

MoTV−KL Recovered.
α: 15, t: 0.3s, SNR:23.43

Noisy.
 SNR:13.19

TV−KL Recovered.
α: 25, t: 0.2s, SNR:20.84

MoTV−KL Recovered.
α: 25, t: 0.3s, SNR:24.22

Fig. 4.2. Comparisons between TV-KL and MoTV-KL models for a 115×115 molecular image.
The second and fourth rows are zoom-in images of the first and third rows, respectively. The first
column: original and noisy (with Poisson noise) images. The second column: TV-KL recovered
images. The third column: MoTV-KL recovered images. According to our test, TV-KL model gives
a result with nearly highest SNR with the parameter α = 15, whereas MoTV-KL model gives a
result with nearly highest SNR with α = 25. For both parameters, MoTV-KL model gives much
higher SNR than TV-KL model. In addition, TV-KL model suffers from staircase effect, whereas
MoTV-KL model does not.


