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Abstract

This thesis comments on the use of Bregman distances in the context of singular regularization
schemes for inverse problems. According to previous works the use of Bregman distances in com-
bination with variational frameworks, based on singular regularization energies, leads to improved
approximations of inverse problems solutions. The Bregman distance has become a powerful tool
for the analysis of these frameworks, and has brought iterative algorithms to life that enhance the
quality of solutions of existing frameworks significantly. However, most works have yet considered
Bregman distances in the context of variational frameworks with quadratic fidelity only.

One of the goals of this thesis is to extend analytical results to more general, nonlinear fidelity
terms arising from applications as e.g. medical imaging. Moreover, the concept of Eigenfunctions
of linear operators is transferred to nonlinear operators arising from the optimality conditions of
the variational frameworks.

From a computational perspective, a novel compressed sensing algorithm based on an inverse
scale space formulation is introduced. Furthermore, important concepts related to Bregman dis-
tances are carried over to non-quadratic frameworks arising from the applications of dynamic
Positron Emission Tomography and Bioluminescence Tomography.
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∂ICTV1(ũ) on the interval [−2, 2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 The function ũ(x) = sign(x), which is a TV-Eigenfunction, but not an ICTVβ-
Eigenfunction, and two exemplary ICTV 4

27
L reconstructions with f = ũ and α =
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Chapter 1

Introduction

The basic goal of this thesis is to explore further capabilities of Bregman distances in the context
of regularizing inverse problems with singular regularization energies.

In inverse problems one aims at solving an operator equation for the input argument. These
operator equations arise from the modeling of a specific process; e.g. a physical process that
can be described by partial differential equations (PDE). In many applications, as for instance
material inspection, ocean acoustic tomography, or seismic as well as medical imaging, data is
measured that can be interpreted as the output of such a model. The goal is to identify input
parameters of the particular model that produce the measured output data. Thus, the particular
model needs to be inverted.

However, these models are usually not invertible, and in addition very sensitive to measurement
errors in the data. Consequently, mathematical tools are needed to replace the non invertible
inverse problem by an invertible approximation of that problem. One major concept for finding
approximate solutions is the construction of functionals that ideally posses one existing, unique
stationary point, close to the unknown solution of the original non-invertible inverse problem in
some error measure. These functionals usually consist of two parts: a fidelity term that controls
the deviation between the measured output data and the model applied to input parameters, and
a regularization term that allows to force the input parameters to satisfy certain properties.

Standard choices for regularization energies are usually differentiable functionals; however,
depending on the type of application considered it can be of interest to investigate regularization
energies with singularities that are no longer differentiable in the common sense. In the course of
this work we mainly want to focus on applications that involve the use of singular regularization
energies.

As one may expect, from a mathematical point of view singular regularization energies are more
difficult to handle than regular regularization energies. For example, the question of estimating
the difference between the solution of the non-invertible and of the approximate inverse problem
with respect to the measurement error in the measured data has been a mathematical issue until
the beginning of the previous decade, due to the lack of an appropriate error measure when using
singular regularization energies.

In terms of error estimation the introduction of the Bregman distance as an error measure
has marked a turning point in the analysis of at least convex singular regularization energies and
moreover has laid the foundation for a unified error estimation framework for both convex regular
and singular regularization energies.

Bregman distances of convex, singular regularization energies have not only become a tool for
the mathematical analysis of error propagation but also a tool for the development of iterative
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schemes and efficient algorithms, yielding improved approximations. In case of singular, convex
and one-homogeneous regularization energies with large multivalued subdifferentials these schemes
have led to improved solutions while still suppressing the measurement noise.

However, though the introduction of the Bregman distance to various fields of inverse problems
is now more than a decade ago, still numerous related issues wait to be explored. As for instance,
Bregman distances in terms of error estimation are well established when dealing with quadratic
fidelities. Nevertheless, many important applications like Positron Emission Tomography (PET)
or Synthetic Aperture Radar (SAR) imply the use of different, nonlinear fidelities.

One major contribution of this thesis is the derivation of error estimates for convex singular
regularization energies in connection with various (possibly nonlinear or even non-differentiable)
fidelity terms other than the standard quadratic fidelities.

Another major contribution is the extension of the mathematical analysis of variational schemes
with singular regularization terms to a general Eigenfunction theory. The use of the Bregman dis-
tance allows the computation of analytical solutions for data given in terms of an Eigenfunction,
even in the presence of noise.

In addition we want to modify and apply existing concepts of algorithms based on Bregman
distances to solve the large-scale application of parameter identification for dynamic PET recon-
struction quantitatively. Moreover, we will present a novel algorithmic approach based on inverse
scale space theory for the efficient and stable solution of problems arising in compressed sensing,
as for instance the application of Bioluminescence Tomography (BLT).

In the following section we want to recall the basic motivations for this work, while afterwards
we are going to outline the contributions of this thesis. Finally, we will give a sketch of how this
work is organized.

1.1 Motivation

Mathematically, linear inverse problems can be modeled as computing a function ũ from the
operator equation

Kũ = g

for measured data g. However, usually K−1 does not exist, and in addition, the data g is corrupted
by measurement noise, i.e. there exists an operator N that transfers g to a function f = N (g)
corrupted by noise.

A common approach for finding approximate solutions close to ũ is to compute the minimizer
of a convex functional of the type

Hf (Ku)︸ ︷︷ ︸
Fidelity Term

+α J(u)︸︷︷︸
Regularization Term

,

with both Hf (Ku) and J being convex functionals, and for a regularization parameter α > 0. If,
for instance, the measured data f is given in terms of g = f + n for n being a Gaussian random
variable with mean zero and variance σ, the common approach is to consider the quadratic fidelity
term Hf (Ku) = 1/2‖Ku− f‖22. Thus, in case of this particular fidelity, the approximate solution
of ũ can be obtained via

û = arg min
u

{
1

2
‖Ku− f‖22 + αJ(u)

}
. (1.1)
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Typical convex regularization terms are quadratic energies of the form J(u) = ‖Bu‖22, for a linear
operator B, since they are easy to analyze and make the computation of (1.1) fairly easy. Nev-
ertheless, the choice of a particular regularization term is obviously dependent on the application
and the related a-priori information on the solution. If for instance a solution is assumed to be
smooth the use of J(u) = ‖Bu‖22 with B = ∇ (or even with higher order derivatives) appears to
be reasonable. If however a solution is assumed to have sharp edges (which is the case for many
applications in imaging or image processing) the choice of this regularization energy would repre-
sent a bad choice, since the functions with discontinuities are not smooth at these discontinuities.
A regularization energy that is suitable for the recovery of functions with discontinuities is the
total variation (TV) seminorm

J(u) = sup
ϕ∈C∞0 (Ω;Rn)
‖ϕ‖∞≤1

∫
Ω
u divϕ dx ≈ ‖∇u‖1 .

In contrast to J(u) = ‖∇u‖22 the above regularization is not differentiable in the common sense,
which is easily visible by considering the informal optimality condition of (1.1) with J being the
total variation seminorm regularization, i.e.

K∗ (f −Ku) = div

(
∇u
|∇u|

)
.

Obviously for homogeneous parts of a function u (which means ∇u = 0 at these parts) the above
equation is undefined.

Considering solutions û of (1.1) as approximations for ũ again, the basic question that arises
is: how close is û to ũ, with respect to the error in the data f? For convex and subdifferentiable
regularization energies the question has been answered in terms of the Bregman distance. The
Bregman distance is the difference between a functional evaluated at the point u and its lineariza-
tion at a point v, i.e. the Bregman distance between u and v for the corresponding functional J
is defined as

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉 ,

for p ∈ ∂J(v), with ∂J(v) denoting the subdifferential of J at v. For this particular measure it
has been shown that the difference between û and ũ is bounded by

Dp
J(û, ũ) ≤ σ2

2α
+ α
‖q‖22

2
,

for an element q satisfying K∗q = p ∈ ∂J(ũ).

The discovery of the Bregman distance as an adequate error measure brings up another ques-
tion: can the application of Bregman distances be useful in the context of variational frameworks
with singular regularization energies aside from error estimation? The answer that has been found
is yes. The replacement of the regularization term by its corresponding Bregman distance leads
to an iterative scheme

ûk = arg min
u

{
1

2
‖Ku− f‖22 + αD

pk−1

J (u, uk−1)

}
,

which has been named iterative refinement method or Bregman iteration. In connection with
singular regularization terms as e.g. the TV seminorm the Bregman iteration is a powerful tool
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that allows to compensate drawbacks of (1.1) (e.g. loss of contrast in case of TV regularization)
while effectively suppressing the noise up to large amount of iterations.

The successful use of the Bregman distance in the context of regularization of inverse problems
with singular energies is the overall motivation of this thesis. Based on this we want to summarize
the contributions of this thesis in the following section.

1.2 Contributions

The concept of error estimation with Bregman distances as an error measure is well understood
in case of quadratic fidelity only recently. Nevertheless, in many relevant applications the use of
a quadratic fidelity is insufficient, for instance to describe the behavior of the measurement noise,
and likely should be replaced by a different fidelity. For example, in PET the Kullback-Leibler
fidelity

KL(f,Ku) =

∫
Σ

[
f(y) ln

(
f(y)

(Ku)(y)

)
− f(y) + (Ku)(y)

]
dµ(y)

appears to be a much more suitable fidelity to incorporate the fact that the noise in the data
obeys a Poisson process. However, error estimates in the Bregman distance setting for a solution
û of

û = arg min
u

{KL(f,Ku) + αJ(u)}

have to our knowledge not yet been analyzed and established. One of the main contributions of
this thesis therefore is the derivation of error estimates in the Bregman distance setting for various
fidelities other than the quadratic fidelities.

Besides the question of how close to ũ a solution û of a variational framework can be in terms
of the Bregman distance we want to raise the issue of when and under which circumstances ũ can
exactly be recovered, even in the presence of noise. For that reason the notion of Eigenfunctions
is transferred to subdifferentiable functionals. For functions u 6= 0 that satisfy the property

λK∗Kũ ∈ ∂J(ũ)

for a constant λ ∈ R the contribution of this thesis is the analytical computation of solutions û of
(1.1) for f = Kũ. Moreover, for data f given in terms of an Eigenfunction we provide analytical so-
lutions of the Bregman iteration scheme and its time-continuous analogue, the inverse scale space.

Another contribution of this thesis is the development of a novel algorithm for compressed
sensing applications. In case of J(u) = ‖u‖`1 the inverse scale space formulation allows the de-
velopment of an algorithm that reduces the compressed sensing setting to an iterative sequence
of low dimensional least squares problems.

Finally, in applied mathematics theoretical results are only as good as they are capable to
applications. As a further contribution, in this thesis computational realizations of synthetic
examples to support the theoretical contributions are developed and analyzed. Moreover, tools
based on Bregman distances are used for the first time for the quantitative solution of the large-
scale application of dynamic PET, as well as for an efficient solution of a BLT example.
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1.3 Organization of this Work

In Chapter 2 we want to provide the mathematical tools needed in the course of this work. A short
review of the recent impact of Bregman distances in the context of inverse problems is given in
Chapter 3. To conclude the providing chapters, in Chapter 4 a collection of singular regularization
energies and typical fidelities arising from various applications is presented.

Introductory Part

Mathematical Theory

Computational Realization

Introduction

Mathematical 
Preliminaries

Bregman Distance

Singular 
Regularization 

Energies /
Typical Fidelities

Error Estimates

Eigenfunctions

Unbiased 
Recovery

Algorithms /
AISS Method

Computational 
Results

Figure 1.1: Organization of this work. The red coloured parts indicate the contributions.

In Chapter 5 the first major contribution of this thesis follows, which is the development of
error estimates in the Bregman distance setting for the fidelities presented in Chapter 4. Subse-
quently, in the Chapters 6 and 7 the mathematical theory passes over from the question of finding
reconstructions close to the unknown exact solution (with respect to an estimate depending on
the measurement noise) to the question of how to analytically compute the exact solution in the
absence and presence of noise. The Chapters 5, 6 and 7 represent the mathematical-theory-block
of this thesis.

The last two chapters of this thesis are concerned with computational issues. In Chapter 8 a
collection of algorithms needed for the applications considered in Chapter 9 is presented. As a
major contribution, Section 8.2 provides a novel algorithm for compressed sensing applications.
Finally, Chapter 9 is divided into three parts. In the first part, computational results on synthetic
data are generated to support theoretical results of the Chapters 5, 6 and 7. The second part deals
with the issue of the quantitative identification of physiological parameters in the dynamic PET
setup. Last but not least, in the third part results of this work are transferred to the application
of BLT.
An overview of how the work is organized is given in Figure 1.1.
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Chapter 2

Mathematical Preliminaries

This chapter provides the mathematical background needed in the course of this work. We want
to give a brief overview on Banach spaces and their dual spaces first. Afterwards we define linear
inverse problems, while subsequently motivating approximate solutions by considering a Bayesian
framework. This naturally leads to the questions of variational calculus and of appropriate func-
tion spaces. Finally, we are going to recall basic tools of convex analysis.

2.1 Banach and Dual Spaces

Throughout this work Banach spaces and duality between Banach spaces will play an important
role. Consequently, we briefly want to recall the definition of a Banach space and its dual in the
following (based on [67]).

Definition 2.1 (Banach Space). Let X be a real vector space.

• A mapping ‖ · ‖X : X → [0,∞[ is a norm on X if

1. ‖u‖X = 0⇔ u = 0 ∀u ∈ X ,

2. ‖λu‖X = |λ|‖u‖X ∀u ∈ X , λ ∈ R,

3. ‖u+ v‖X ≤ ‖u‖X + ‖v‖X ∀u, v ∈ X .

• A normed real vector space X is called (real) Banach space if it is complete, i.e. if any
Cauchy sequence (un)n∈N has a limit u ∈ X . More precisely, if limm,n→∞ ‖um − un‖X = 0
holds, then there exists a function u ∈ X with limn→∞ ‖un − u‖X = 0.

In order to define the dual space of a Banach space, we need to define the space of linear
mappings first.

Definition 2.2 (Space of Linear Mappings). Let L(X ,Y) denote the space of all linear operators
K : X → Y that are bounded in the sense that

‖K‖X ,Y := sup
‖u‖X=1

‖Ku‖Y <∞

holds. The space L(X ,Y) is a normed space with operator norm ‖·‖X ,Y .

In this context we want to recall the following important result.

Theorem 2.1. If Y is a Banach space then L(X ,Y) is a Banach space.
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Now we can continue defining the dual space of a Banach space.

Definition 2.3 (Dual Space). Let X be a Banach space. The space X ∗ := L(X ,R) of linear
functionals on X is called dual space of X . Due to Theorem 2.1 we know that X ∗ is a Banach
space equipped with the operator norm

‖p‖X ∗ := sup
‖u‖X=1

|p(u)| = sup
u∈X\{0}

|p(u)|
‖u‖X

= sup
‖u‖X≤1

|p(u)| , (2.1)

for p(u) defined as the functional

〈p, u〉X ∗×X := p(u) . (2.2)

The functional (2.2) is called dual product. For simplicity, we are going to write 〈p, u〉X respec-
tively 〈u, p〉X ∗ instead of 〈p, u〉X ∗×X throughout this work.

Remark 2.1. Note that the definition of the dual product implies the estimate

〈p, u〉X ≤ |〈p, u〉X | ≤ ‖p‖X ∗‖u‖X .

The definition of dual spaces also suggests the definition of dual operators.

Definition 2.4 (Dual Operator). Let X and Y be Banach spaces. For an operator K ∈ L(X ,Y)
the dual or adjoint operator K∗ ∈ L(X ∗,Y∗) is defined via the relation

〈K∗v, u〉X = 〈v,Ku〉Y ,

for all v ∈ Y∗ and u ∈ X . Furthermore, it is easy to see that ‖K∗‖Y∗,X ∗ = ‖K‖X ,Y is satisfied.

2.2 Inverse Problems

When dealing with applications that involve the reconstruction of parameters from certain mea-
surements, as it is the case e.g. in imaging science, the mathematical modeling of these applications
usually leads to inverse problems. In inverse problems the goal is to compute a function ũ ∈ U(Ω)
from the operator equation

Kũ = g , (2.3)

with given data g ∈ V(Σ). Here U(Ω) and V(Σ) are Banach spaces of functions on bounded sets
Ω respectively Σ, and K denotes an operator K : U(Ω)→ V(Σ) that maps from one Banach space
to the other one. In the course of this work we want to call g the exact data and ũ the exact
solution.

For simplicity, we are going to consider only linear operators throughout this work, since all
applications that are going to be considered involve only linear operators. Nevertheless, many of
the theoretical results that will be presented are adaptable to general operators.

Due to the situation of discrete measurements encountered in practice we shall also allow Σ
to be discrete with point measures.

The challenge of solving (2.3) lies in the ill-posedness of most inverse problems. The following
definition goes back to [63].
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Definition 2.5. A problem is called well-posed, if

• there exists a solution to the problem

• the solution is unique

• the solution depends continuously on the input data

If a problem is not well-posed, it is called ill-posed.

In most inverse problems the third condition is violated. Usually, the operator K cannot be
inverted continuously due to the compactness of K (cf. [51]). Even if the considered inverse
problem is not ill-posed (as e.g. if K is the identity operator) solving (2.3) can be impossible due
to measurement errors, i.e. the exact data g are usually not available. Hence, we face to solve the
inverse problem

Ku = f (2.4)

instead of (2.3), with u ∈ U(Ω) and f ∈ V(Σ), while g and f differ from each other in a certain
amount. This difference is referred to as being noise (or systematic and modeling errors, which
we shall not consider here). In applications for which the measurement error can be described as
a Gaussian random variable with mean zero and standard deviation σ the difference between g
and f is bounded in the L2-sense, i.e.

‖g − f‖L2(Σ) ≤ σ .

Since f in comparison to g is corrupted by measurement errors, we want to refer to f as being
the noisy data.

The question that arises for inverse problems is how to find a robust approximation û of ũ,
despite the ill-posedness of the inverse problem and its underlying measurements corrupted by
noise?

In the following we are going to give a short motivation based on Bayesian modeling in order
to suggest the use of variational regularization schemes to achieve this robust approximation.

2.3 Bayesian Modeling and Gibbs Priors

In order to find solutions of (2.4) close to the true solution ũ of (2.3) with additional knowledge
on how the noise of the data f is distributed, the approach of Bayesian modeling is very popular
for computing approximate solutions of ũ. The idea is to maximize the a-posteriori probability
(MAP) of a probability distribution obeying Bayes’ formula, i.e. we look for a function u that
fulfills

u ∈ arg max
u

P (u|f) = arg min
u

− log (P (u|f)) , (2.5)

with P denoting the a-posteriori probability density of u for given data f . In the following we
want to investigate a discrete analogue of (2.4), i.e.

Ku = f , (2.6)

for K : Up → Vq being a linear operator operating on finite dimensional Banach spaces Up and
Vq. K is usually the concatenation of K with a sampling or local averaging.
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In a discrete setup Bayes’ formula states that the discrete a-posteriori (or conditional) prob-
ability distribution P (u|f) of a function u for given data f can be expressed by the a-posteriori
probability distribution P (f |u) and the a-priori probability distributions P (u) and P (f), i.e.

P (u|f) =
P (f |u)P (u)

P (f)
.

The a-priori probability distribution is most frequently modeled via a Gibbs-prior, i.e.

P (u) = c exp (−αJ(u)) ,

for a positive constant α, a normalization constant c and a regularization energy J , which is often
supposed to be convex.

2.3.1 Gaussian Noise

If the discrete data f is perturbed by additive Gaussian noise n with mean zero, we can rewrite
(2.6) to

Kũ+ n = f ,

with ũ denoting the exact discrete solution of Kũ = g for exact, non-perturbed discrete data
g. The noise n is unknown, but the distribution of n is supposed to be normal with mean zero.
Hence, we have

P (n) = c(q) exp

(
−‖n‖

2
2

2σ2

)
= c(q) exp

(
−‖Kũ− f‖

2
2

2σ2

)
for given noise variance σ2 and a normalization constant c(q) depending on the dimension q. In
order to find u close to ũ, a reasonable choice as a model for P (u|f) and P (f |u) would therefore
be

P (u|f) = P (f |u) = c(q) exp

(
−‖Ku− f‖

2
2

2σ2

)
.

Inserting these probabilities into Bayes’ formula and subsequently computing the negative log-
likelihood, i.e. − log (P (u|f)), in order to maximize P (u|f) yields

û ∈ arg min
u∈dom(J)

{− log (P (u|f))}

= arg min
u∈dom(J)

{
1

2
‖Ku− f‖22 + αJ(u)

}
, (2.7)

where we have neglected all constants that do not affect the minimizer. Note that the argmin can
be multivalued (e.g. if K has a non-trivial nullspace and if J is not strictly convex), and thus we
have an inclusion instead of an equality.

With (2.7) we have derived a variational model that allows us to compute an estimate û of ũ
by abusing the fact that the noise is Gaussian and by incorporating a-priori knowledge on û via
a regularization functional J(u).
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Obviously, in order to model different noise distributions we can derive different variational
frameworks by computing the MAP estimate for different choices of P (u|f) and P (f |u), according
to the distribution of the noise. We are going to present numerous fidelities in Chapter 4 for which
a motivation in terms of Bayesian modeling could be given, which is however not our goal in this
thesis.

Nevertheless, the MAP estimates naturally lead to the questions of existence, uniqueness, and
computation of minimizers of functionals, which is part of variational calculus. Before we are
going to discuss the variational calculus in detail in the upcoming Chapter 2.4, we want to make
sure that we are also able to consider variational models in an analytical framework.

2.3.2 From Discrete to Continuous Variational Frameworks

A-priori knowledge on a solution can usually be incorporated by restricting the functional space
in which the solution has to lie in. For example, if we know that the solution is supposed to be
bounded in the `2-sense, we can simply choose J(u) = 1/2‖u‖2`2 . In that case we are going to
discover that the solution of (2.7) is

0 = (K)T
(
Ku− f

)
+ αu ,

with (K)T denoting the transpose of K. If K is indeed the concatenation of K and a sampling
operator in the limiting case p, q →∞ of infinite samples we therefore have

0 = K∗ (Kû− f) + αû ,

with K∗ denoting the adjoint operator of K, which is – as we will point out in the following
chapter – the solution of

û ∈ arg min
u∈dom(J)

{
1

2
‖Ku− f‖2L2(Σ) + α‖u‖2L2(Ω)

}
.

Hence, though the derivation of the variational model is discrete, we can also study the continuous
L2-variational framework

û ∈ arg min
u∈dom(J)

{
1

2
‖Ku− f‖2L2(Σ) + αJ(u)

}
(2.8)

instead of the discrete setup. Moreover, if we allow the measures on which we integrate to be
point measures, the discrete and the continuous setup can be written in a unified way.

We want to mention that in terms of random variables the transition from discrete to contin-
uous frameworks is not straight forward. However, although we have motivated the derivation of
variational frameworks via Bayes’ formula, which would imply our variables to be random vari-
ables, we are going to deal with deterministic variables only. The derivation via Bayes’ formula
has only been done for motivation purposes. Any limiting cases that are going to be considered
are limiting cases for deterministic variables. We neither want to address the question of finding a
continuous analogue to Bayes’ formula, nor do we want to attempt defining a continuous analogue
of randomly distributed noise.
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2.4 Variational Calculus

The idea of Bayesian modeling in Section 2.3 has led to the idea of considering variational mini-
mization schemes of the type

û ∈ arg min
u∈dom(J)

{Hf (Ku) + αJ(u)} , (2.9)

with Hf : V(Σ) → R ∪ {+∞} and J : dom(J) → R ∪ {+∞} and α ∈ R>0, in order to find
approximate solutions û close to ũ satisfying (2.3).

Variational calculus mainly deals with the questions of existence, uniqueness, and computation
of stationary points of functionals in Banach spaces (in particular function spaces). Finding exis-
tent (unique) global minima is one of the important goals when considering variational frameworks
like (2.9). We only want to give a short overview on variational calculus here; more information
can be found in e.g. [50].

In order to minimize confusion on the use of operators and functionals we make the following
definition first.

Definition 2.6. Let G : (X , τ1)→ (Y, τ2) denote a mapping from a Banach space X with topology
τ1 to a Banach space Y with topology τ2. Then G is called an operator. If Y – as a special case
of a Banach space – is a field, G is called a functional.

To investigate only functionals with non-empty domain we assume every considered functional
to be proper.

Definition 2.7. A functional G : X → R ∪ {∞} is called proper, if the effective domain

dom(G) := {u ∈ X | G(u) <∞}

is not empty.

The calculus of variations can be seen as a generalization of the computation of extreme
values of functions. For that reason, we want to derive a concept of derivatives and gradients for
functionals and operators, similar to the one for functions in Rn.

Definition 2.8. Let G : X → Y be a functional or operator. The directional derivative (also
called first variation) at position u ∈ X in direction v ∈ Y is defined as

dvG(u) := lim
t↓0

G(u+ tv)−G(u)

t
, (2.10)

if that limit exists.

If we define the function ϕv(τ) := G(u + τv), the directional derivative of G is equivalent to
ϕ′v(τ)|τ=0. Note that by definition the direction v has to lie within the same space as the argument
u.

Example 2.1. Let f ∈ L2(Ω) with Ω ⊂ Rn compact and bounded, K : L2(Ω) → L2(Ω) be a
compact and linear operator and let G : L2(Ω)→ R≥0 ∪ {+∞} be defined as

G(u) :=
1

2
‖Ku− f‖2L2(Ω)

=
1

2

∫
Ω

(Ku− f)2dx .
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We define ϕv(τ) := Hf (K(u+ τv)) for v ∈ L2(Ω) and obtain

ϕ′v(τ)|τ=0 =
1

2

d

dτ

∫
Ω

(K(u+ τv)− f)2dx

∣∣∣∣∣∣
τ=0

=

∫
Ω

Kv (Ku− f) dx = 〈Kv,Ku− f〉L2(Σ)

= 〈v,K∗(Ku− f)〉L2(Ω) ,

with K∗ denoting the adjoint operator of K. The permutation of integration and differentiation
is justified, due to [56, Chapter 11, Theorem 2]. Thus, we have obtained

dvG(u) = 〈v,K∗(Ku− f)〉L2(Ω)

as the first variation of Hf at position u in direction v.

Similar to the definition of the first variation (2.10) we are able to define higher variations.
Only the first and second variation will be of further interest for us.

Definition 2.9. Let G : X → Y be a functional or an operator and let dvG(u) exist. The second
directional derivative (also called second variation) at position u in direction w is defined as

d 2
v,wG(u) := lim

t↓0

dvG(u+ tw)− dvG(u)

t
,

if that limit exists.

Furthermore we want to summarize two important and interesting cases of differentiability.

Definition 2.10. Let G : X → Y be a functional or an operator. The set

dG(u) = {dvG(u) <∞ | v ∈ U} (2.11)

is called Gâteaux-derivative. G is called Gâteaux-differentiable, if (2.11) is not empty.

Henceforth we want to explore for which cases the Gâteaux-derivative consists of only one
element. This will lead to the notion of Fréchet-differentiability.

Definition 2.11. Let G : X → Y be a functional or operator, X and Y Banach spaces, and
suppose dvG(u) exists for all v ∈ X . If there exists a continuous linear functional G′(u) : X → Y
such that

G′(u) v = dvG(u) ∀v ∈ X , (2.12)

and

‖G(u+ v)−G(u)−G′(u) v‖Y
‖v‖X

−→ 0 , for ‖v‖X → 0

hold, then G is called Fréchet-differentiable in u and G′ is called Fréchet-derivative.
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Note that G′(u) does not need to be linear in u. In our definition u is fixed and the linearity
– since we want to derive an analogous expression to classical differentiability – is a restriction to
v only.

The functional G is called twice Fréchet-differentiable, if the properties of Definition 2.11 hold
for d 2

v,vG(u) as well. In that case, we are also going to write G′′(u)(v, v) instead of d 2
v,vG(u).

Example 2.2. Consider again Example 2.1. The functional is Fréchet-differentiable with the
Fréchet-derivative

G′(u) = K∗(Ku− f) .

In analogy to standard calculus we can define partial Fréchet-derivatives, Jacobi- and Hesse-
operators for Fréchet-differentiable functionals with multiple arguments.

Definition 2.12. Let G : X1 × X2 × · · · × Xn → Y1 × Y2 × · · · × Ym be a functional or operator
that is Fréchet-differentiable with respect to ui ∈ Xi, i ∈ {1, . . . , n}. Then, G is called partial
Fréchet-differentiable in ui. The partial Fréchet-derivative is denoted with ∂uiGj(u), Gj(u) ∈ Yj,
for j ∈ {1, . . . ,m}. If G is partial Fréchet-differentiable in every argument, then G is called partial
Fréchet-differentiable.

Definition 2.13 (Jacobian). Let G : X1 × X2 × · · · × Xn → Y1 × Y2 × · · · × Ym be a functional
or operator that is partial Fréchet-differentiable. Then, the Jacobi matrix of G is defined as

DG(u) := (∂uiGj(u))i∈{1,...,n},j∈{1,...,m} .

Definition 2.14 (Hessian). Let G : X1 ×X2 × · · · × Xn → Y be an operator or functional that is
twice partial Fréchet-differentiable. Then, the Hesse matrix is defined as

D2G(u) :=
(
∂2
ui,ujG(u)

)
i,j∈{1,...,n}

.

Besides computing potential extremal functions the question of existence and uniqueness arises.
The question of existence can be answered via the fundamental theorem of optimization. First,
we have to define the term of lower semi-continuity in the special case of a Banach space.

Definition 2.15. Let U be a Banach space with topology τ . The functional G : (U , τ)→ R∪{+∞}
is called lower semi-continuous at u ∈ U if

G(u) ≤ lim inf
k→∞

G(uk) ,

for all uk → u in the topology τ .

Together with compactness this leads to the fundamental theorem (see [138]).

Theorem 2.2 (Fundamental Theorem of Optimization). Let U be a Banach space with topology
τ and let G : (U , τ)→ R ∪ {+∞} be lower semi-continuous. Furthermore, let the level set

{u ∈ U |G(u) ≤M}

be non-empty and compact in the topology τ for some M ∈ R. Then there exists a global minimum
of

G(u)→ min
u∈U

.
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Proof. Let G̃ = infu∈U G(u). Then a sequence (uk)k∈N exists with G(uk) → G̃ for k → ∞. For
k sufficiently large, G(uk) ≤ M holds and hence, (uk)k∈N is contained in a compact set. As a
consequence, a subsequence (ukl)l∈N exists with ukl → ũ, for l → ∞, for some ũ ∈ U . From the
lower semicontinuity of G we obtain

G̃ ≤ G(ũ) ≤ lim inf
k→∞

G(uk) ≤ G̃ ,

consequently ũ is a global minimizer.

In finite dimensional optimization, compactness is usually caused by boundedness, which is not
the case in infinite-dimensional optimization. To still conclude compactness from boundedness,
we need a weaker topology. Since we are dealing with Banach spaces and their dual spaces, which
contain the Fréchet-derivatives, we can use the so-called weak and weak-* topology, which are
defined as follows.

Definition 2.16. Let X be a Banach space, with X ∗ denoting its dual space. Then the weak
topology is defined as

uk ⇀ u :⇔ 〈v, uk〉X → 〈v, u〉X ,

for all v ∈ X ∗, and the weak-* topology is defined as

vk ⇀
∗ v :⇔ 〈u, vk〉X ∗ → 〈u, v〉X ∗ ,

for all u ∈ X .

The weak-* topology is weaker than the weak topology on X ∗, since we have X ⊂ X ∗∗. For
a reflexive Banach space (X = X ∗∗), weak and weak-* topology are the same. According to the
theorem of Banach-Alaoglu, the set {v ∈ X ∗ | ‖v‖X ∗ ≤ C}, for C ∈ R>0, is compact in the weak-*
topology.

Theorem 2.3 (Theorem of Banach-Alaoglu). Let X be a Banach space with dual space X ∗. Then
the set

{v ∈ X ∗ | ‖v‖X ∗ ≤ C} ,

for C > 0, is compact in the weak-* topology.

Hence, we could conclude existence of a global minimum for a given infinite dimensional
optimization problem, if we were able to prove lower semi-continuity in the weak-* topology.
In that case, we could simply compute the Fréchet-derivative to obtain the desired minimum.
Unfortunately, in most cases proving lower semi-continuity in the weak-* topology is not trivial.

2.5 Function Spaces

In inverse problems and especially in variational calculus the function spaces that underly the
particular functionals are of significant importance. In the following we want to recall the most
important function spaces and tools that will be of major interest throughout this work. We
want to start with considering Lebesgue and Sobolev spaces first. This review is based on the
introduction of [67], which in turn refers to [1, 75, 104, 132, 137]. Subsequently we want to recall
the basic concepts of the space of bounded variation (see e.g. [29, 113]) and a generalization under
the aspect of symmetric tensor fields based on [12, 18].
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2.5.1 Lebesgue Spaces

In this section we want to briefly summarize the function spaces of Lebesgue-integrable functions.
We start considering Lebesgue-measurable functions first, and subsequently are going to define
the Lebesgue integral as the foundation for the Lebesgue spaces.

Definition 2.17 (σ-Algebra). A collection S of subsets of Rn is called σ-algebra on Rn if this
collection satisfies the following properties:

• ∅,Rn ∈ S,

• A ∈ S implies Rn \A ∈ S,

• If (Ak)k∈N ⊂ S is true, then
⋃∞
k=1Ak ∈ S is valid as well.

With the help of σ-algebras we can define measures as follows.

Definition 2.18 (Measure). A measure µ : S → [0,∞] is a mapping with the following properties:

• µ(∅) = 0,

• If (Ak)k∈N ⊂ S is a sequence of pairwise disjoint sets, then the measure is σ-additive, i.e.

µ

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak) . (σ-additivity)

With these definitions we can establish the notions of Lebesgue-measurable sets and corre-
sponding Lebesgue measures.

Theorem 2.4. There exists the σ-algebra Bn of Lebesgue measurable sets on Rn and the Lebesgue-
measure µ : Bn → [0,∞] with properties:

• Bn contains all open sets (and thus, all closed sets),

• µ is a measure on Bn,

• If B is any ball in Rn, then we obtain µ(B) = |B|, with |B| denoting the volume of the ball,

• If A ⊂ B is valid, with B ∈ Bn and µ(B) = 0, then it follows that A ∈ Bn and µ(A) = 0
hold, which means that (Rn,Bn, µ) is a complete measure space.

The sets A ∈ Bn are called Lebesgue measurable.

The existence of Lebesgue measurable sets and Lebesgue measures brings us closer to the
function spaces of Lebesgue-integrable functions. Prior to that, we want to define the notion of
Lebesgue measurable functions.

Definition 2.19 (Lebesgue Measurable Function). A function u : Rn → [−∞,∞] is called
Lebesgue measurable if we have

{x ∈ Rn : f(x) > α} ∈ Bn ,

for all α ∈ R. If we furthermore have A ∈ Bn, the function f : A → [−∞,∞] is called Lebesgue
measurable on A if f1A is Lebesgue measurable, with 1A denoting the indicator function, i.e.
f1A = f on A and f1A = 0 otherwise.
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With these definitions we can extend the standard integral-theory to Lebesgue-measurable
functions.

Definition 2.20. The set of non-negative elementary functions is defined by

E+(Rn) :=

{
u =

m∑
k=1

αk1Ak | (Ak)1≤k≤m ⊂ Bn pairwise disjoint, αk ≥ 0,m ∈ N

}
.

The Lebesgue integral of u ∈ E+(Rn) is defined via∫
Rn
u(x) dµ(x) :=

m∑
k=1

αkµ(Ak) .

The following Lemma will allow us to extend the Lebesgue-integral term to general Lebesgue
measurable functions.

Lemma 2.1. For any sequence (uk) of Lebesgue measurable functions

• supk uk,

• infk uk,

• lim supk→∞ uk,

• lim infk→∞ uk,

are also Lebesgue measurable functions. Furthermore, for any Lebesgue measurable function u ≥ 0
there exists a monotone increasing sequence (uk)k∈N ⊂ E+(Rn) with u = supk uk.

These facts motivate the following definition of the Lebesgue integral for arbitrary Lebesgue
integrable functions.

Definition 2.21 (Lebesgue Integral).

• For a non-negative Lebesgue measurable function u : Rn → [0,∞] we define the Lebesgue
integral of u as ∫

Rn
u(x) dµ(x) := sup

k

∫
Rn
uk(x) dµ(x) ,

with (uk)k∈N ⊂ E+(Rn) being a monotone increasing sequence with u = supk uk.

• For a Lebesgue measurable function u : Rn → [−∞,∞] we define the Lebesgue integral via∫
Rn
u(x) dµ(x) :=

∫
Rn
u+(x) dµ(x)−

∫
Rn
u−(x) dµ(x) , (2.13)

with u+ := max(u, 0) and u− := max(−u, 0), if the right-hand side of (2.13) is finite. In
this case u is called integrable.

• If we have A ∈ Bn and a function u : A → [−∞,∞] such that u1A is integrable, then we
define the integral on A as∫

A
u(x) dµ(x) :=

∫
Rn
u(x)1A(x) dµ(x) .
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In the following we are often going to write dx instead of dµ(x), for the sake of simplicity. The
notion of the Lebesgue integral allows us to define the (Banach) spaces of Lebesgue integrable
functions, which are of crucial importance for the remainder of this work.

Definition 2.22 (Lebesgue Spaces Lp). For Ω ∈ Bn and 1 ≤ p ≤ ∞ we define the spaces of
Lebesgue integrable functions, the Lebesgue spaces, via

Lp(Ω) :=
{
u : Ω→ R Lebesgue measurable | ‖u‖Lp(Ω) <∞

}
,

with the semi-norm ‖u‖Lp(Ω) defined as

‖u‖Lp(Ω) :=

(∫
Ω
|u(x)|p dx

)1/p

for p ∈ [1,∞[, and

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)| := inf {α ≥ 0 | µ ({|u| > α}) = 0} .

The Lebesgue spaces are not normed spaces, since there exist Lebesgue measurable functions
u : Ω→ R with u 6= 0 but ‖u‖Lp(Ω) = 0. If we use the equivalence relation u ∼ v in Lp(Ω) defined
as

u ∼ v in Lp(Ω) :⇔ ‖u− v‖Lp(Ω) = 0⇔ u = v a.e.

to replace Lp(Ω) by Lp(Ω)/ ∼ (which, for simplicity, will again be denoted by Lp(Ω)), the spaces
of Lebesgue measurable functions become normed Banach spaces with norm ‖ · ‖Lp(Ω).
Moreover, we can define the spaces of locally Lebesgue integrable functions Lploc(Ω) via

Lploc(Ω) := {u : Ω→ R Lebesgue measurable | u ∈ Lp(Ψ) for all Ψ ⊂ Ω compact} .

As for the standard Lebesgue spaces we equip Lploc(Ω) with the above equivalence relation and
denote Lploc(Ω)/ ∼ simply as Lploc(Ω).

An interesting class of Lebesgue spaces for a particular σ-algebra and a specific measure are
the sequence spaces `p.

2.5.2 Sequence Spaces `p

Following [73, Section 1.7], we want to consider the particular σ-algebra Pn := {A | A ⊂ Rn}
of all subsets of Rn (which is the power set of Rn). Moreover, we define the counting measure
µ : Pn → [0,∞] by

µ(A) :=

{
|A| if A ⊂ Rn is finite

∞ otherwise
.

For this particular measure, ∅ is the only set of measure zero and there is no difference between
Lp(Ω) and Lp(Ω)/ ∼. We want to denote this particular space by `p(Rn), for 0 < p ≤ ∞. The
spaces can be characterized as follows. The space `∞(Rn) is the space of all bounded functions
u : Rn → R. The space is equipped with the norm

‖u‖`∞ := sup
x∈Rn

|u(x)|
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for all u ∈ `∞(Rn). For 0 < p < ∞ functions u : Rn → R belong to `p(Rn) iff the set S :=
{x ∈ Rn | u(x) 6= 0} is countable and

∑
x∈S |u(x)|p converges in R. We define

∑
x∈Rn |u(x)|p :=∑

x∈S |u(x)|p and have the `p-norms

‖u‖`p :=

(∑
x∈Rn

|u(x)|p
)1/p

for all u ∈ `p(Rn). In the following we often want to denote `p(Rn) by `p.

2.5.3 Sobolev Spaces

Having the approximation of the solution ũ of (2.3) in mind, Lebesgue spaces supply a broad
class of functions as potential solutions for these inverse problems. However, functions with
high oscillations can also belong to classes of Lebesgue functions, as long as these functions are
Lebesgue integrable. Unfortunately, in practical applications high oscillations usually correspond
to noise. Since, we want to get rid of noise in the data, Lebesgue spaces therefore do not represent
a suitable function space in terms of filtering noise. In order to reduce high oscillations we want
to investigate the Lebesgue spaces of derivatives of Lebesgue integrable functions in the following.

As derivatives are indicators of the smoothness of functions, it is natural to consider Lebesgue
spaces of derivatives of functions. Let us therefore recall the concept of weak derivatives.

Definition 2.23 (Weak Derivative). Let Ω ⊂ Rn be open and let u ∈ L1
loc(Ω) be locally L1

integrable. If there exists a function w ∈ L1
loc(Ω) such that∫

Ω
wϕ dx = (−1)|α|

∫
Ω
uDαϕ dx

holds, for all ϕ ∈ C∞0 (Ω), then w is called the α-th weak partial derivative of u.

In order to easily identify the weak derivative w of u with u we are going to denote w by Dαu,
for the sake of simplicity.

Note that Definition 2.23 is only valid for u ∈ L1
loc(Ω). However, since the Hölder inequality

states that

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω)

holds, for all u ∈ Lp(Ω), v ∈ Lq(Ω) and uv ∈ L1(Ω) with p, q ∈ [0,∞] such that 1/p+ 1/q = 1 is
valid, we easily see that for the indicator function 1Ψ – with Ψ ⊂ Ω being compact – we obtain

‖u‖L1(Ψ) ≤ ‖u‖Lp(Ω)‖1Ψ‖Lq(Ω) . (2.14)

If u ∈ Lp(Ω), the right-hand side of (2.14) is finite and hence, we obtain u ∈ L1(Ψ) for compact
Ψ ⊂ Ω. As a consequence it is sufficient to define weak derivatives for functions in L1

loc(Ω) only,
in order to consider them for functions u ∈ Lp(Ω) in general.

We are now going to define the so-called Sobolev spaces of Lp-functions, for which the weak
derivatives Dαu, for |α| ≤ k, are Lp-functions as well.

Definition 2.24. Let Ω ⊂ Rn be open. For k ∈ N0 and p ∈ [1,∞] the Sobolev space W k,p(Ω) is
defined as

W k,p(Ω) = {u ∈ Lp(Ω) | u has weak derivatives Dαu ∈ Lp(Ω) for all |α| ≤ k} .
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The Sobolev spaces are equipped with the norm

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

for p ∈ [1,∞[, and

‖u‖Wk,∞(Ω) :=
∑
|α|≤k

‖Dαu‖L∞(Ω) .

Let us briefly investigate an example of a function that is in L1
loc(Ω) but not in W k,1(Ω).

Example 2.3. If we consider u(x) : R≥0 → R≥0 defined as u(x) := sin(1/x) we immediately see
that we have u ∈ L1

loc(Rn) because u is bounded on any compact set Ψ ⊂ R≥0, even for x → 0
since the sine is bounded by one. This is no longer valid for the derivative of u for which we obtain
u′(x) = − cos(1/x)/(x2). In case of x → 0 it follows that u′(x) → ∞ and hence, ‖u′‖L1([0,a]) for
0 < a <∞ is not finite.

From this brief example we see that Sobolev spaces seem to be more suitable function spaces for
finding appropriate solutions to inverse problems in contrast to Lebesgue spaces. Unfortunately,
for many applications Sobolev spaces appear to be too restrictive in contrast to the Lebesgue
spaces. As for example piecewise constant functions, which are subject of many important appli-
cations (e.g. in image processing), do not belong to Sobolev spaces as we are going to see with
the following example.

Example 2.4. We are going to see that for the Heaviside function H(x) : R→ {0, 1} with

H(x) =

{
1 for x ≥ 0

0 else

a weak derivative does not exist. For this particular function we see that for any subset [a, b] ⊂ R
with −∞ < a < 0 < b <∞ we obtain∫ b

−a
uϕ′ dx =

∫ b

0
1ϕ′ dx = ϕ(0) ,

for ϕ ∈ C∞0 ([a, b]). A function w ∈ L1
loc([a, b]) with

∫ a
−awϕ dx = ϕ(0) cannot exist and as a

consequence, the Heaviside function H is not weakly differentiable and, moreover, not a Sobolev
space function.

The last example shows the need for a function space different than the Sobolev spaces. In
the following section we are going to recall the space of functions of bounded variation (BV) in
order to find this space being more suitable with respect to the applications that are going to be
considered. Prior to that we are going to extend the Lebesgue and Sobolev spaces from function
spaces to spaces of symmetric tensor fields.
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2.5.4 Spaces of Symmetric Tensor Fields

In order to systematically define function spaces for n-dimensional higher-order derivatives, we
want to briefly introduce spaces of symmetric tensor fields. This section is a short summary of
parts of [12, Chapter 2] and [18, Section 2].
We want to start with a very basic definition of tensor spaces.

Definition 2.25. Let V be a vector space. The scalar-valued multilinear functions with variables
all in either V or V∗ are called tensors over V, and the vector spaces they form are called tensor
spaces over V. The number of variables from V∗ is called contravariant degree, the number of
variables from V covariant degree. We denote the contravariant degree by r, the covariant degree
by k, and the corresponding tensor space by T rk (V). Moreover, a tensor of degree (0, 0) is defined
to be a scalar, i.e. T 0

0 (V) := R. A tensor of degree (1, 0) is called contravariant vector, while a
tensor of degree (0, 1) is named covariant vector. In analogy to this terminology, a tensor of type
(r, 0) is called contravariant tensor, while a tensor of degree (0, k) is called covariant tensor.

Example 2.5. A specific multilinear function u : V∗ × V × V → V mapping from V∗ × V × V to
V is of degree (1, 2), i.e. u ∈ T 1

2 (V).

Throughout this work we are only interested in symmetric covariant tensors on the vector
space V = Rn. Suppressing the contravariant degree in the notation, we find out that for this
setup the vector space of k-tensors Tk(Rn) reads as

Tk(Rn) =

ξ : Rn × · · · × Rn︸ ︷︷ ︸
k-times

→ R | ξ k-linear

 ,

for k ∈ N, and with k-linearity denoting linearity in every component. In case of k = 0 we have
T0(Rn) = R.

Definition 2.26. A tensor ξ ∈ Tk(Rn) is called symmetric, if ξ(a1, . . . , ak) = ξ(π(a1), . . . , π(ak))
for all π ∈ Sk, with Sk representing the permutation group of {1, . . . , k}. The vector space of
symmetric k-tensors is defined as

Symk(Rn) :=

ξ : Rn × · · · × Rn︸ ︷︷ ︸
k-times

→ R | ξ k-linear and symmetric

 .

Basic operations for tensors are the tensor product, the trace and symmetrization.

Definition 2.27. For ξ ∈ Tk(Rn) and η ∈ Tl(Rn) the tensor product (ξ ⊗ η) ∈ Tk+l(Rn) is defined
as

(ξ ⊗ η) (a1, . . . , ak+l) = ξ(a1, . . . , ak)η(ak+1, . . . , ak+l) .

The trace tr(ξ) ∈ Tk−2(Rn) of ξ ∈ Tk(Rn) for k ≥ 2 is defined as

tr(ξ)(a1, . . . , ak−2) =
n∑
i=1

ξ(ei, a1, . . . , ak−2, ei) ,

with ei denoting the i-th canonical basis vector. Furthermore, every k-tensor ξ ∈ Tk(Rn) can be
symmetrized by

(||| ξ) (a1, . . . , ak) =
1

k!

∑
π∈Sk

ξ(aπ(1), . . . , aπ(k)) . (2.15)
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Note that the symmetrization is a projection, i.e. |||2 ξ = ||| ξ. The trace-operation can be
iterated by applying the trace to a tensor product, e.g. trl (ξ ⊗ η) ∈ Symk(Rn) for ξ ∈ Symk+l(Rn)
and η ∈ Syml(Rn).

Example 2.6. Let us consider the case k = 1, i.e. we map from Rn to R. We can define a tensor
ξ1 : Rn → R via ξ1(a1) with ξ1(a1

1, a
1
2, . . . , a

1
n) =

∑n
i=1 a

1
i ξi, for constants ξi ∈ R. As an example,

for n = 2 and constants ξ1 = 1 and ξ2 = −1 we obtain ξ1(a1
1, a

1
2) = a1

1 − a1
2.

Now we want to investigate the case k = 2. Since in that case ξ is a bilinear form, we expect
that ξ can be represented in terms of a vector-matrix-vector multiplication. Indeed we can write
tensors ξ2 : Rn × Rn → R as

ξ2(a1, a2) = (a2)T

 ξ1,1 · · · ξ1,n
...

. . .
...

ξn,1 · · · ξn,n

 a1 ,

for constants ξi,j ∈ R and vectors a1, a2 ∈ Rn. Let us consider the constants(
ξ1,1 ξ1,2

ξ2,1 ξ2,2

)
=

(
1 −2
−2 0

)
as an particular example for n = 2. The matrix of coefficients is symmetric and thus, the tensor
is symmetric and we have

(
||| ξ2

)
(a1, a2) = ξ2(a1, a2). The trace computes as

tr(ξ2) = ξ2(e1, e1) + ξ2(e2, e2)

= (1, 0)

(
1 −2
−2 0

)(
1
0

)
+ (0, 1)

(
1 −2
−2 0

)(
0
1

)
= 1

and indeed equals the trace of the matrix of constants ξi,j .

The spaces Tk(Rn) and Symk(Rn) can be equipped with the scalar product

ξ · η = trk(ξ ⊗ η) =
∑

p∈{1,...,n}k
ξ (ep1 , . . . , epk) η (ep1 , . . . , epk) ,

for ξ(a1, . . . , ak) = ξ(ak, . . . , a1). This scalar product induces the norm |ξ| =
√
ξ · ξ.

If we now assume to have a fixed domain Ω ⊂ Rn we can furthermore define symmetric k-
tensor fields as mappings ξ : Ω → Symk(Rn) and define Lebesgue-spaces in analogy to Section
2.5.1, but based on symmetric k-tensor fields. The Lebesgue-spaces then are defined as

Lp(Ω, Symk(Rn)) :=
{
ξ : Ω→ Symk(Rn) Lebesgue measurable | ‖ξ‖Lp(Ω) <∞

}
,

with

‖ξ‖Lp(Ω) :=

(∫
Ω
|ξ(x)|p dx

)1/p
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for 1 ≤ p <∞, and

‖ξ‖L∞(Ω) := ess sup
x∈Ω

|ξ(x)| .

Note that the usual duality relation Lp(Ω,Symk(Rn))∗ = Lq(Ω,Symk(Rn))∗ for 1 ≤ p < ∞ and
1/p+ 1/q = 1 holds, since the vector norm in Symk(Rn) is induced by a scalar product.
We can also extend the Banach space of continuous functions to symmetric k-tensor fields, via

C(Ω, Symk(Rn)) :=
{
ξ ∈ C(Ω), ξ ∈ Symk(Rn) | supp ξ ( Ω

}
.

For the spaces of differentiable functionals the generalization to symmetric k-tensor fields is more
complicated, since a differential tensor in general is not symmetric. However, we can symmetrize
these tensors via (2.15). For a differential tensor we are going to use the notation(

∇l ⊗ ξ
)

(x)(a1, . . . , ak+l) =
(
Dlξ(x)(a1, . . . , al)

)
(al+1, . . . , ak+l) , (2.16)

with Dlξ : Ω → Ll
(
Rn,Symk(Rn)

)
denoting the l-th Fréchet-derivative of ξ and Ll(X,Y ) being

the space of l-linear and continuous mappings X l → Y .

Example 2.7. For k = 1 and l = 1 we obtain the bilinear form

(∇⊗ ξ) (x)(a1, a2) = aT2 (Dξ) a1 ,

with Dξ being the Jacobi-matrix of ξ (note that Dξ ∈ Rn×n for ξ : Ω ⊂ Rn → Rn).
For k = 0 and l = 2 we have ξ : Ω ⊂ Rn → R and again obtain a bilinear form via(

∇2 ⊗ ξ
)

(x)(a1, a2) = aT2
(
D2ξ

)
a1 ,

with D2ξ being the Hesse-matrix. Note that the application of the trace operation therefore yields

tr
((
∇2 ⊗ ξ

)
(x)(a1, a2)

)
= ∆ξ .

The symmetrization of the differential tensor (2.16) is denoted by E , i.e.

E l(ξ) = |||
(
∇l ⊗ ξ

)
.

This particular definition of differential tensors and subsequent symmetrization allows the exten-
sion of the space of differentiable functions to symmetric k-tensor fields via

C l(Ω, Symk(Rn)) :=
{
ξ : Ω→ Symk(Rn) | ∇m ⊗ ξ continuous on Ω, m = 0, . . . , l

}
,

with the norm defined as

‖ξ‖l,∞ = max
m=0,...,l

‖Em(ξ)‖∞ .

Moreover, we can define the l-divergence for elements of C l(Ω,Symk(Rn)) as(
divlξ

)
:= trl

(
∇l ⊗ ξ

)
.
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Example 2.8. Again, we want to consider the case k = 1 and l = 1. According to Example 2.7
in that case the 1-divergence reads as

tr (∇⊗ ξ) =

n∑
i=1

(∇⊗ ξ) (x)(ei, ei)

=

n∑
i=1

eTi (Dξ) ei

=

n∑
i=1

∂ξi
∂xi

,

and thus equals the standard divergence. In case of second-order derivatives the divergence for
l = 2 and k = 2 reads as

tr (tr ((∇⊗ ξ) (x)(a1, a2, a3, a4)) (a2, a4))

=

n∑
i=1

tr ((∇⊗ ξ) (x)(a1, a2, a3, a4)) (ei, ei)

=

n∑
i=1

n∑
j=1

(∇⊗ ξ) (x)(ej , ei, ei, ej)

=

n∑
i=1

n∑
j=1

((
D2ξ

)
(x)(ej , ei)

)
(ei, ej) . (2.17)

In case of i = j we see that
((
D2ξ

)
(x)(ei, ei)

)
(ei, ei) simply equals

∂2ξi,i
∂x2
i

, while for i 6= j we obtain

mixed derivatives
∂2ξi,j
∂xi∂xj

and
∂2ξi,j
∂xj∂xi

, respectively. Since
∂2ξi,j
∂xi∂xj

=
∂2ξi,j
∂xj∂xi

we can rewrite (2.17) to

div2ξ =

n∑
i=1

∂2ξi,i
∂x2

i

+
∑
i<j

2
∂2ξi,j
∂xi∂xj

.

This second-order divergence term will be the foundation for functionals incorporating higher-
order derivatives presented in Section 4.1.

After having introduced the space of continuous symmetric tensor fields we can extend the
definitions of Sobolev spaces as presented in Section 2.5.3 to symmetric tensor fields. In case of
the Sobolev spaces we obtain

W k,p(Ω, Syml(Rn)) :=
{
ξ ∈ Lp(Ω, Syml(Rn)) | Em(ξ) ∈ Lp(Ω,Syml+m(Rn)),m = 0, . . . , k

}
,

with the norm

‖ξ‖Wk,p(Ω,Syml(Rn)) =

(
k∑

m=0

‖Em(ξ)‖p
Lp(Ω,Syml+m(Rn))

)1/p

for 1 ≤ p <∞, and with

‖ξ‖Wk,∞(Ω,Syml(Rn)) = max
m=0,...,k

‖Em(ξ)‖L∞(Ω,Syml(Rn)) .
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2.5.5 The Space of Functions with Bounded Variation

Finally, we want to define the space of functions with bounded variation (BV). Motivation for
this function space is the consideration of the L1-norm of the gradient, i.e.

‖∇u‖L1(Ω;Rn) =

∫
Ω
‖∇u‖`p dx , (2.18)

for 1 ≤ p < ∞. The functional is called total variation (TV) seminorm, since it measures the
absolute deviation of the gradient of a function. Due to the definition of (2.18) the function
u is supposed to satisfy u ∈ W 1,1

(
Ω,Rd

)
. The problem with u ∈ W 1,1

(
Ω,Rd

)
is, that it does

not contain functions with discontinuities such that ‖∇u‖L1(Ω) is not finite any more, as we have
already pointed out in Section 2.5.3. Hence, the definition of (2.18) needs to be carried over to suit
well also for discontinuous functions by considering the distributional definition of the L1-norm
of the gradient. The distributional derivative is defined as

∂

∂xi
Tu[ϕ] := −Tu

[
∂ϕ

∂xi

]
,

for Tu ∈ D′(Ω) being the distribution Tu[ϕ] =
∫

Ω uϕ dx and for ϕ ∈ C∞0
(
Ω; Sym1(Rn)

)
=

C∞0 (Ω;Rn) being the testfunction. Since ∂ϕ
∂xi
∈ C∞0 (Ω;Rn) the derivative is well-defined. In

analogy, the distributional gradient can be defined as

∇Tu[ϕ] := −
∫

Ω
u divϕ dx ,

for ϕ ∈ C∞0 (Ω;Rn), since the divergence is the dual operator of the gradient, i.e. (∇)∗ = −div.
Moreover, from the duality relation (2.2) of Section 2.1 and the definition of the dual norm (2.1)
it seems to be natural to define

TV(u) := sup
ϕ∈C∞0 (Ω;Rn)
‖ϕ‖∞≤1

∫
Ω
u divϕ dx . (2.19)

For functions u ∈ W 1,1
(
Ω,Rd

)
the definitions (2.18) and (2.19) fall together; however, for dis-

continuous functions (2.19) is also finite.

Example 2.9. If we consider the one-dimensional function u(x) = sign(x) on the interval Ω =
[−1, 1] again, we see that the value of the total variation is

TV(u) = sup
ϕ∈C∞0 (Ω;R)
‖ϕ‖∞≤1

∫ 1

−1
uϕ′ dx = sup

ϕ∈C∞0 (Ω;R)
‖ϕ‖∞≤1

(
−
∫ 0

−1
ϕ′ dx+

∫ 1

0
ϕ′ dx

)

= sup
ϕ∈C∞0 (Ω;R)
‖ϕ‖∞≤1

−2ϕ(0) = 2 <∞ ,

since it is easy to construct a function ϕ ∈ C∞0 (Ω;R) with ‖ϕ‖∞ = 1 and ϕ(0) = −1.

The space of functions for which (2.19) is finite is denoted as the space of functions of bounded
variation (BV), i.e.

BV(Ω) :=
{
u ∈ L1(Ω) | TV(u) <∞

}
.
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Finally, we want to note that we can define higher-order BV-spaces by allowing the divergence
to be of order l > 1. For the derivation of the total variation semi-norm we have considered
testfunctions ϕ ∈ C∞0 (Ω;Rn) = C∞0

(
Ω; Sym1(Rn)

)
and the divergence divϕ = tr1(∇1 ⊗ ϕ).

Obviously we can extend (2.19) to arbitrary symmetric tensor fields by replacing the divergence
term with the divergence for symmetric tensor fields of order l and thus, we can consider

TVl(u) := sup
ϕ∈Cl(Ω;Syml(Rn))

‖ϕ‖∞≤1

∫
Ω
u divlϕ dx (2.20)

instead. This naturally leads to the more general class of spaces of bounded variations in terms
of

BVl(Ω) :=
{
u ∈ L1(Ω) | TVl(u) <∞

}
.

2.6 Convex Analysis

In this section we are going to review basic concepts of convex analysis, including subdifferen-
tial calculus and Legendre-Fenchel duality, which will be of high relevance with respect to the
introduction of Bregman distances in the upcoming chapter. For detailed information on convex
analysis we refer to [50, 108].

2.6.1 Subdifferential Calculus

In the following we assume X to be a Banach space. Moreover, we assume every considered
functional to be proper. Let us recall the definition of a convex set and the definition of a convex
functional on a convex set.

Definition 2.28 (Convex Set). Let X be a Banach space. A subset C ⊆ X is called convex, if

λu+ (1− λ)v ∈ C ,

for all λ ∈ [0, 1] and all u, v ∈ C.

In analogy we can define (strictly) convex functionals on convex sets.

Definition 2.29 (Convex Functional). Let C be a convex set. A functional G : C → R ∪ {∞} is
called convex, if

G(λu+ (1− λ)v) ≤ λG(u) + (1− λ)G(v) (2.21)

for all λ ∈ [0, 1] and all u, v ∈ C. The functional J is called strictly convex, if the equality of
(2.21) only holds for u = v or α ∈ {0, 1}.

Example 2.10 (Absolute Value Function). For C = R and G : R → R≥0 the absolute value
function G(u) = |u| is convex, since the absolute value function is a metric, and the triangular
inequality yields |λu+ (1− λ)v| ≤ λ|u|+ (1− λ)|v|. Obviously, the absolute value function is not
strictly convex.

In the following we want to recall first- and second-order conditions for convexity of a Fréchet-
differentiable functional.
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Lemma 2.2. Let G : C → R ∪ {∞} be Fréchet-differentiable, for convex C ⊆ X . Then, G is
convex iff

G(v) ≥ G(u) + 〈DG(u), v − u〉C , (2.22)

for all u, v ∈ C.

Hence, for convex G a first-order approximation, i.e. a first-order Taylor-linearization, provides
a global underestimate of G. If G is twice Fréchet-differentiable we can give another equivalent
condition to convexity of G.

Lemma 2.3. Let G : C → R ∪ {∞} be twice Fréchet-differentiable, for convex C ⊆ X . Then, G
is convex iff its Hessian is positive semidefinite, i.e.

D2G(u) � 0 , (2.23)

for all u ∈ C.

Example 2.11. If we consider G(u) := 1/2‖Ku−f‖2L2(Σ) as an example again, the Jacobian and
Hessian simply reduce to the first and second Fréchet-derivative, respectively. Hence, condition
(2.22) of Lemma 2.2 reads as

1

2
‖Kv − f‖2L2(Σ) ≥

1

2
‖Ku− f‖2L2(Σ) + 〈K∗(Ku− f), v − u〉L2(Ω) ,

which can be rewritten to

1

2
‖Kv −Ku‖2L2(Σ) ≥ 0 .

Obviously, condition (2.22) is always satisfied for any operator K and hence, G is convex. Alter-
natively we can look at condition (2.23) of Lemma 2.3 that simply reads as K∗K1 ≥ 0, which is
always fulfilled for any operator K.

Example 2.12. For C = R×R>0 the function G : R×R>0 → R≥0 with G(u, v) = u2/v is convex,
which can easily be verified by

D2G(u, v) =
2

v3

(
v2 −uv
−uv u2

)
=

2

v3

(
v
−u

)(
v
−u

)T
� 0 ,

for all v > 0. As a consequence of Lemma 2.3 G is convex.

Lemma 2.2 and 2.3 are nice tools to check once or twice Fréchet-differentiable function-
als for convexity. Nevertheless, throughout this work we are going to investigate mainly non-
differentiable, convex functionals. In order to characterize derivatives of non-differentiable func-
tionals, we want to introduce the notion of subdifferential calculus.

Definition 2.30 (Subdifferential). Let X be a Banach space with dual space X ∗, and let the
functional G : X → R ∪ {∞} be convex. Then, G is called subdifferentiable at u ∈ X , if there
exists an element p ∈ X ∗ such that

G(v)−G(u)− 〈p, v − u〉X ≥ 0

holds, for all v ∈ X . Furthermore, we call p a subgradient at position u. The collection of all
subgradients at position u, i.e.

∂G(u) := {p ∈ X ∗ | G(v)−G(u)− 〈p, v − u〉X ≥ 0 ,∀v ∈ X} ⊂ X ∗ ,

is called subdifferential of G at u.
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If a convex functional G is Fréchet-differentiable, its Fréchet-derivative is the only subgradient,
i.e. ∂G(u) = {G′(u)}.

For non-differentiable functionals the subdifferential is multivalued; we want to consider the
subdifferential of the absolute value function as an illustrative example.

Example 2.13. Let X = R, and let G : R → R≥0 be the absolute value function G(u) = |u|.
Then, the subdifferential of G at u is given by

∂G(u) = sign(u) :=


{1} for u > 0

[−1, 1] for u = 0

{−1} for u < 0

.

This can easily be verified by case differentiation. For u = 0 the inequality |v| ≥ pv is obviously
fulfilled for any v ∈ R iff p ∈ [−1, 1]. For u > 0 the inequality |v| ≥ pv + (1 − p)u is fulfilled
for every v ∈ R iff p = 1. In analogy, p = −1 has to hold for u < 0 in order to guarantee
|v| ≥ pv − (1 + p)u for each v ∈ R.

When considering variational frameworks like (2.9) it will be of importance not just to handle
subdifferentials of functionals but also sums of functionals. With additional restrictions to the
corresponding functionals, the following theorem will allow us to split up a subdifferential.

Theorem 2.5. Let Hf : Y → R ∪ {∞} and J : Z → R ∪ {∞} be proper, convex and lower
semi-continuous functionals, for Banach spaces Y and Z. Let furthermore K : X → Y be a
linear operator between Banach spaces X and Y. Then, if there exists a u′ with Ku′ ∈ dom(Hf )
and u′ ∈ dom(J) such that Hf is continuous at Ku′, the following equality for the particular
subdifferentials holds:

∂Hf (Ku) + ∂J(u) = ∂(Hf (Ku) + J(u)) .

Proof. Since there exists a u′ with Ku′ ∈ dom(Hf ) and u′ ∈ dom(J) such that Hf is continuous
at Ku′, we can apply [50, Chapter 1, Section 5, Proposition 5.6] in order to obtain the desired
result.

Throughout this work we are particularly interested in convex, non-differentiable and one-
homogeneous functionals (like the absolute value function), i.e. we want to consider functionals
G for which G(cu) = |c|G(u) is satisfied, for every c ∈ R. We therefore characterize the subdiffer-
ential of one-homogeneous functionals with the following lemma.

Lemma 2.4 (Subdifferential for One-Homogeneous Functionals). Let G : X → R ∪ {∞} be a
convex and one-homogeneous functional. Then, the subdifferential of G at u can equivalently be
written as

∂G(u) = {p ∈ X ∗ | 〈p, u〉X = G(u), 〈p, v〉X ≤ G(v), ∀v ∈ X} .

Proof. If we consider v = 0 ∈ X in the definition of the subdifferential we immediately see

〈p, u〉X ≥ G(u) ,

while for v = 2u ∈ X we obtain

〈p, u〉X ≤ G(2u)−G(u) = 2G(u)−G(u) = G(u) ,
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due to the one-homogeneity of G. Thus, 〈p, u〉X = G(u) follows. Moreover, if we insert 〈p, u〉X =
G(u) in the definition of the subdifferential we get

〈p, v〉X ≤ G(v) ,

for all v ∈ X .

Example 2.14. If we consider the one-homogeneous absolute value function G : R → R≥0 with
G(u) = |u| again, we see that up = |u| implies p = sign(u). Moreover, we discover that for
arguments v with the same sign as u we obtain vp = |v|, while e.g. for v > 0, having the opposite
sign as u, we get vp = −|v| < |v|.

Theorem 2.6 (Subdifferential Calculus and Optimality). Let G : X → R ∪ {∞} be a proper,
convex functional. An element u ∈ X is a minimizer of G iff 0 ∈ ∂G(u).

Proof. For 0 ∈ ∂G(u) by definition of the subdifferential we have

0 = 〈0, v − u〉X ≤ G(v)−G(u)

for all v ∈ Xand thus, u is a global minimizer of G.
If 0 /∈ ∂G(u) holds, then there exists at least one v ∈ X such that

G(v)−G(u) < 〈0, v − u〉X = 0 ,

and hence, u cannot be a minimizer of G.

2.6.2 Legendre-Fenchel Duality

Finally we want to review specific duality properties of convex functionals that are going to be
of further interest in the course of this work. In particular we want to recall a transformation
called convex conjugate, which is a generalization of the Legendre transformation and also known
as Legendre-Fenchel transformation, named after Adrien-Marie Legendre and Werner Fenchel.
For further information on Legendre-Fenchel duality we refer to [50, 108], [109, Chapter 11], [15,
Chapter 3] or [17, Section 3.3 and Section 5].

Definition 2.31 (Convex Conjugate). Let X be a Banach space with dual space X ∗. For a
functional G : X → R ∪ {∞} the convex conjugate G∗ : X ∗ → R ∪ {∞} is defined as

G∗(p) := sup
u∈X
{〈p, u〉X −G(u)} .

The biconjugate G∗∗ : X → R ∪ {∞} of G is defined as

G∗∗(u) := sup
p∈X ∗

{〈u, p〉X ∗ −G
∗(p)} .

Example 2.15. Let us consider the characteristic functional G : X → R ∪ {∞} of a convex set
C ⊂ X , i.e.

G(u) = χC(u) :=

{
0 if u ∈ C
+∞ else

.
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The convex conjugate of G simply is

G∗(p) = sup
u∈X
{〈p, u〉X − χC(u)}

= sup
u∈C
{〈p, u〉C} .

The convex conjugate and the biconjugate inhere some very interesting properties, few of which
we want to review very briefly.

Lemma 2.5. Let G : X → R ∪ {∞} be a functional with underlying Banach space X . Then,
G∗ : X ∗ → R ∪ {∞} is convex and lower semi-continuous.

Proof. See [91, Section 2.3, Lemma 2.1].

Lemma 2.6. Let G : X → R ∪ {∞} be a functional, for which the underlying Banach space X is
reflexive. Then, G = G∗∗ iff G is convex and lower semi-continuous.

Proof. See [91, Section 2.3, Theorem 2.3].

Example 2.16. If we again consider the characteristic functional χC from Example 2.15, it is
easy to see that χC is convex, since we have

χC(λu+ (1− λ)v) =

{
0 if λu+ (1− λ)v ∈ C
+∞ else

and

λχC(u) + (1− λ)χC(v) =

{
0 if u, v ∈ C
+∞ else

,

for λ ∈ [0, 1]. Due to the convexity of C we have χC(λu + (1 − λ)v) = λχC(u) + (1 − λ)χC(v).
According to Lemma 2.6 and Example 2.15 the convex conjugate of G(u) := supp∈X ∗ {〈p, u〉C}
therefore is G∗(p) = χC(p).

More examples of convex conjugates for some specific functionals can be found in Table 2.1.

G(u) G∗(p)

‖u‖L2(Ω) χ{p | ‖p‖L2(Ω)≤1}
α
2 ‖u‖

2
L2(Ω)

1
2α‖p‖

2
L2(Ω)

‖u‖L1(Ω) χ{p | ‖p‖L∞(Ω)≤1}
‖u‖L∞(Ω) χ{p | ‖p‖L1(Ω)≤1}

max(u) χ{p | p≥1∧‖p‖L1(Ω)=1}

Table 2.1: An overview of functionals G and their corresponding convex conjugates G∗.

For Fréchet-differentiable functionals G with invertible Fréchet-derivative G′ the Fréchet-
derivative of the convex-conjugate equals (G′)−1.
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Lemma 2.7. Let G : X → R be a Fréchet-differentiable functional G with invertible Fréchet-
derivative G′, i.e. (G′)−1 (v) exists for all v ∈ X . Then, this invertible Fréchet-derivative is the
derivative of the convex conjugate of G, i.e. (G∗)′ (v) = (G′)−1 (v).

Proof. For a Fréchet-differentiable functional G with invertible Fréchet-derivative G′ the convex
conjugate reads as

G∗(v) =
〈
v,
(
G′
)−1

(v)
〉
X
−G

((
G′
)−1

(v)
)

.

Computing the Fréchet derivative of G∗(v) therefore yields

(G∗)′ (v) =
(
G′
)−1

(v) + v
((
G′
)−1
)′

(v)−

((G′)−1
)′

(v)G′
((
G′
)−1

(v)
)

︸ ︷︷ ︸
=v

 ,

=
(
G′
)−1

(v) ,

and thus, the assertion holds.

A remarkable result for the biconjugate of a functional is that the biconjugate represents the
convex hull of the related functional.

Lemma 2.8. Let G : X → R ∪ {+∞} be a functional on the Banach space X . Then, G∗∗ : X →
R ∪ {+∞} is the convex hull of G, i.e. we have

G∗∗(u) ≤ G(u) ∀u ∈ X ,

and for any convex functional H satisfying H(u) ≤ G(u) for all u ∈ X we observe

G∗∗(u) ≥ H(u) ∀u ∈ X .

Proof. See [24, Section 5.2.1, Proposition 5.2.3].

Example 2.17. As a brief example we want to compute the convex hull of the function Gα,f :
R→ R≥0 with

Gα,f (u) :=
1

2
(u− f)2 + α|u|0 ,

for f ∈ R and α ∈ R>0. We start considering the convex conjugate of Gα,f , which computes as

G∗α,f (q) := sup
v
{qv −Gα,f (v)}

= sup
v

{
qv − 1

2
(v − f)2 − α |v|0

}
.

In case of v = 0 we simply have

sup
v
{qv −Gα,f (v)} = −1

2
f2 ,
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otherwise we obtain

sup
v
{qv −Gα,f (v)} =

1

2
(q + f)2 − 1

2
f2 − α .

It is easy to see that 1
2 (q + f)2 − 1

2f
2 − α > −1

2f
2 is true only if |q + f | >

√
2α holds. Hence, we

end up with

G∗α,f (q) =

{
1
2 (q + f)2 − 1

2f
2 − α if |q + f | >

√
2α holds

−1
2f

2 otherwise
.

Now we want to continue computing the convex hull of Gα,f , i.e. G∗∗α,f via

G∗∗α,f (u) = sup
q
{uq −G∗(q)} .

If we consider the case |q + f | >
√

2α we have

sup
q

{
uq − 1

2
(q + f)2 +

1

2
f2 + α

}
.

The optimality condition is q = u−f , which also implies that this case is only valid for |u| >
√

2α.
Inserting the optimality condition yields

1

2
(u− f)2 + α

as a supremum for |u| >
√

2α.

If we consider |q + f | ≤
√

2α, we need to focus on

sup
q

{
u
(
±
√

2α− f
)

+
1

2
f2

}
.

It is easy to see that u
(√

2α− f
)

+ 1
2f

2 > u
(
−
√

2α− f
)

+ 1
2f

2 is true if u is non-negative.
Therefore we end up with

G∗∗α,f (u) =

{
1
2 (u− f)2 + α if |u| >

√
2α

|u|
√

2α− uf + 1
2f

2 else
. (2.24)

A plot for G∗∗α,f in comparison to the function Hα,f : R→ R≥0 defined as

Hα,f (u) :=
1

2
(u− f)2 +

α2

2
|u| (2.25)

for exemplary input values can be seen in Figure 2.1. It can be seen that for f = 1 and α = 4/10
the minima of both functions are slightly shifted; the minimum of G∗∗α,f is at u = f = 1, while for

Hα,f (u) the minimum is at u = f − α2/2 = 0.92.

With regard to optimality of variational frameworks the Fenchel duality theorem allows a nice
relation between a functional and its convex conjugate.
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Figure 2.1: The computed convex hull G∗∗α,f for u = −3 to 3, f = 1 and α = 0.4, and in comparison the
function Hα,f (u) as defined in (2.25).

Theorem 2.7 (Fenchel’s Duality Theorem). Let F : Y → R ∪ {∞} and J : Z ⊆ X → R ∪ {∞}
be proper, lower semi-continuous and convex functionals for reflexive Banach spaces X , Y and Z,
such that dom(F ) ∩ dom(J) 6= ∅, and let K : X → Y be a continuous linear operator. Then, the
primal-dual identities

inf
u∈Z

{
1

α
F (Ku− f) + J(u)

}
= sup

p∈Y∗

{
− 1

α
F ∗(αp)− J∗(−K∗p)− 〈p, f〉Y

}
(2.26)

and

inf
u∈Z

{
1

α
F (Ku− f) + J(u)

}
= − inf

p∈Y∗

{
1

α
F ∗(−αp) + J∗(K∗p)− 〈p, f〉Y

}
(2.27)

are satisfied.

Proof. We only want to give a sketch of a proof. A fully detailed proof is given in [50, Chapter 3,
Section 1 - 4]. Formally, we can rewrite

inf
u∈Z

{
1

α
F (Ku− f) + J(u)

}
(2.28)

in terms of a Lagrange functional to

inf
u∈Z,z∈Y

sup
p∈Y∗

{
1

α
F (z) + J(u) + 〈p,Ku− f − z〉Y

}
Due to the assumptions we are allowed to exchange inf and sup to obtain

sup
p∈Y∗

 inf
z∈Y

{
1

α

(
F (z)− 〈αp, z〉Y

)}
︸ ︷︷ ︸

=− 1
α
F ∗(αp)

+ inf
u∈Z
{J(u)− 〈−K∗p, u〉Z}︸ ︷︷ ︸

=−J∗(−K∗p)

−〈p, f〉Y

 ,
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and thus, we have derived (2.26). Alternatively, we can rewrite (2.28) in terms of the Lagrange
functional

inf
u∈Z,z∈Y

sup
p∈Y∗

{
1

α
F (z) + J(u) + 〈p, z −Ku+ f〉Y

}
.

Analogous reasoning as in the previous case yields (2.27).



Chapter 3

Bregman Distances

The major tool in the course of this work is the so-called Bregman distance for general convex, but
not necessarily differentiable functionals. The Bregman distance is named after L. M. Bregman
and has been introduced in [20] first, as a tool for an iterative method in order to find common
points of convex sets.

However, the Bregman distance has probably attracted most of its attention during the last
decade since it has been established as a major tool in the context of variational image processing
and inverse problems in theoretical as well as in computational terms.

Due to the lack of error estimates for the ROF-model (cf. [110]) in an appropriate error
distance measure, capturing the individual features of the L1-type regularization on the gradient,
in [28] Burger and Osher have proposed the use of the Bregman distance as an error measure
to derive error estimates for convex and subdifferentiable functionals. Furthermore, they have
unified already existing estimates for quadratic as well as for nonlinear fidelities and the novel
estimates, also applicable to non-differentiable functionals, to an overall framework. Up to now
many works deal with the consideration of error estimates in the context of Bregman distances,
see for instance [30, 31, 68, 84, 86, 107]. However, most works still focus on a setup with quadratic
fidelity; in Chapter 5 we are going to generalize results of [28] to various other important fidelities.

The use of Bregman distances in the context of variational frameworks with singular regu-
larization energies has not been limited to theoretical purposes only. In [95] the regularization
term of the ROF model, the Total Variation seminorm TV(u) as introduced in Section 2.5.5, has
been replaced by the Bregman distance Dpk

TV(u, uk), for pk ∈ ∂TV(uk) and uk ∈ BV(Ω), in order
to generate an iterative refinement method that allows to overcome the usual loss of contrast of
a standard ROF reconstruction while still suppressing the noise. The method is very related to
iterated Tikhonov regularization (cf. [83, 78, 55]); however, the specific combination of Breg-
man distances and singular regularization energies with multivalued subdifferentials has made the
iterated refinement method very successful. Yet, many singular regularization functionals with
multivalued subdifferential have been replaced by the iterated refinement scheme, respectively a
linearized version of it, see for instance [136, 33, 32].

In [26] the concept of the iterated refinement method has been generalized to a time-continuous
inverse scale space (ISS) method. The ISS method has been studied and analyzed, especially in the
context of Total Variation regularization. In the latter case it can be observed from computational
tests that the ISS evolution has a discrete nature, a fact that has partly been supported by
theoretical results (cf. [26, 25, 23]).

Moreover, the Bregman distance has been used to derive existing algorithms from a different
perspective, see for instance [59]. However, the exploration of this relation is not our goal in this

55
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chapter; we briefly focus on that in Chapter 8.

In the following we want to define Bregman distances and highlight some of the specific
properties they inhere. Subsequently, we want to recall the application of Bregman distances
in deriving error estimates for variational schemes with quadratic fidelity. Afterwards we will
introduce the concept of Bregman iteration and the Inverse Scale Space method, since they will
represent important tools throughout this work. In addition, we want to briefly recall some of
their important properties.

3.1 Definition and Properties

The Bregman distance for general convex, but not necessarily differentiable functionals is defined
as follows.

Definition 3.1 (Bregman Distance). Let X be a Banach space and G : X → R ∪ {∞} be a convex
functional with non-empty subdifferential ∂G. Then, the Bregman distance is defined as

DG(u, v) := {G(u)−G(v)− 〈p, u− v〉X | p ∈ ∂G(v)} . (3.1)

The Bregman distance for a specific subgradient ζ ∈ ∂G(v), v ∈ X , is defined as Dζ
G : X×X → R>0

with

Dζ
G(u, v) := G(u)−G(v)− 〈ζ, u− v〉X . (3.2)

Note that the Bregman distance basically measures the difference between a functional and
its linearization.

In the following we want to consider three particular examples of functions (or functionals)
and their corresponding Bregman distances. More examples can be discovered in Table 3.1.

0 1 2 3 4 5
−2

−1

0

1

2

3

4

 

 
Tangent of G at y = 2
G(x)
Bregman Distance D

G
(4, 2)

Figure 3.1: The function G(x) = x log(x)− x and its tangent at y = 2. The Bregman distance DG(4, 2)
equals the length of the perpendicular from G(x) to this tangent at x = 4.

Example 3.1. Let us consider the quadratic functional G : L2(Ω)→ R>0 with
G(u) := 1

2‖Bu‖
2
L2(Ω), for a linear operator B : W(Ω) → L2(Ω). Since G is Fréchet-differentiable
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with Fréchet-derivative G′(u) = B∗Bu, the subdifferential ∂G(v) reads as ∂G(v) = {B∗Bv}. If
we insert p = B∗Bv into the definition of the Bregman distance we therefore obtain

DG(u, v) =
1

2
‖Bu‖2L2(Ω) −

1

2
‖Bv‖2L2(Ω) − 〈B

∗Bv, u− v〉L2(Ω)

=
1

2
‖Bu‖2L2(Ω) − 〈Bv,Bu〉L2(Ω) +

1

2
‖Bv‖2L2(Ω)

=
1

2
‖B(u− v)‖2L2(Ω) .

Hence, for quadratic L2-terms the corresponding Bregman distance simply equals the quadratic
L2-distance between u and v with respect to the operator B.

Example 3.2. We want to investigate the function G : R≥0 → R with G(x) := x log(x)−x under
the additional assumption 0 log(0) ≡ 0. As in the previous example the subdifferential consists
of the derivative only, which is G′(x) = log(x). Inserting the derivative into the definition of the
Bregman distance yields

DG(x, y) = x log(x)− x− y log(y) + y − log(y)(x− y)

= x log

(
x

y

)
+ y − x ,

for y 6= 0. In Figure 3.1 the function G as well as the Bregman distance DG for exemplary points
x and y is shown.
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G(x) = |x|
Tangent with slope  p = 0.3 ∈  ∂ G(0)
Bregman Distance D

G
(−2, 0)

Figure 3.2: The function G(x) = |x| and one specific tangent at y = 0 with slope p = 3/10 ∈ ∂|0|. The
Bregman distance DG(−2, 0) equals the length of the perpendicular from G(x) to this tangent at x = −2.

Example 3.3. As a third example we want to consider the absolute value function again, i.e.
G : R→ R≥0 with G(x) = |x|. Due to Example 2.13 the subdifferential reads as ∂G(y) = sign(y).
The Bregman distance simplifies to

DG(x, y) = |x| − |y| − sign(y)(x− y)

= (sign(x)− sign(y))x .

Hence, the Bregman distance is only larger than zero if x and y have a different sign. In Figure 3.1
we can see an illustrative example of the Bregman distance D|·|(2, 0) for the subgradient p = 3/10.
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Function Name G(x) dom(G) DG(x, y)

Bit Entropy x log(x) + (1− x) log(1− x) [0, 1] x log
(
x
y

)
+ (1− x) log

(
1−x
1−y

)
Burg Entropy − log(x) ]0,∞[ x

y − log
(
x
y

)
− 1

Hellinger −
√

1− x2 [−1, 1] (1− xy)(1− y2)−1/2 − (1− x2)1/2

`p Quasi Norm −xp (0 < p < 1) [0,∞[ −xp + pxyp−1 − (p− 1)yp

`p Norm |x|p (1 < p <∞) ]−∞,∞[ |x|p − pxsign(y)|y|p−1 + (p− 1)|y|p
Exponential exp(x) ]−∞,∞[ exp(x)− (x− y + 1) exp(y)

Inverse 1/x ]0,∞[ 1/x+ x/y2 − 2/y

Table 3.1: An overview of functions and their corresponding Bregman distances, see [7].

The Bregman distance is no distance in the usual sense; at least Dζ
G(u, u) = 0 and Dζ

G(u, v) ≥ 0
hold for all ζ ∈ ∂G(v), the latter due to the convexity of G. If G is strictly convex, we even obtain

Dζ
G(u, v) > 0 for u 6= v and ζ ∈ ∂G(v).

Moreover, between the Bregman distance for a specific functional G and the Bregman distance
for the convex conjugate G∗ as introduced in Section 2.6.2 is an interesting connection.

Lemma 3.1. Let G : X → R ∪ {+∞} be a convex functional and let G∗ denote its convex
conjugate as defined in Definition 2.31. Then, the relation

sup
v
Dp
G(u, v) = sup

q
Du
G∗(p, q)

holds.

Proof. The statement follows immediately by applying the Legendre-Fenchel transform twice for
p ∈ ∂G(v) and u ∈ ∂G∗(q).

In general, no triangular inequality nor symmetry holds for the Bregman distance. The latter
can be achieved by introducing the so-called symmetric Bregman distance.

Definition 3.2 (Symmetric Bregman Distance). Let X be a Banach space and G : X → R ∪ {∞}
be a convex functional with non-empty subdifferential ∂G. Then, a symmetric Bregman distance
is defined as Dsymm

G : X × X → R≥0 with

Dsymm
G (u1, u2) := Dp1

G (u2, u1) +Dp2

G (u1, u2) = 〈u1 − u2, p1 − p2〉X ∗ , (3.3)

with

pi ∈ ∂G(ui) for i ∈ {1, 2} . (3.4)

Obviously, the symmetric Bregman distance depends on the specific selection of the subgra-
dients pi, which will be suppressed in the notation for simplicity throughout this work.

In the coarse of this work the Bregman distance will be a major tool for considering the
differences of functions with respect to their Bregman distance. In the next section we briefly
want to recall error estimates that can be derived in the Bregman distance setting. As already
mentioned in the introduction, Bregman distances can also be used to improve variational schemes
like (2.8) in order to develop superior algorithms. The replacement of the regularization term in
(2.8) leads to the concept of Bregman iteration, which will be part of Section 3.3. Subsequently,
we will consider the transition from discrete Bregman iteration to time-continuous ISS methods.
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3.2 Error Estimates

In [28] the Bregman distance has been introduced to derive error estimates in case of quadratic
fidelity and subdifferentiable regularization term, comparable to error estimates for quadratic
regularization schemes. In order to obtain error estimates a so-called source condition is needed,
which reads

∃ ξ ∈ ∂J(ũ), ∃ q ∈ L2(Σ) \ {0} : ξ = K∗q . (SCL2)

In case that (SCL2) is satisfied the main result of [28] is the following estimate.

Theorem 3.1. Let ũ denote the exact solution of the inverse problem (2.3). Furthermore assume
that the standard deviation of f and g is bounded, i.e. ‖f − g‖L2(Σ) ≤ δ, and that the source
condition (SCL2) is fulfilled. Then, for every existing minimizer of (2.8) denoted by û we obtain
the error estimate

Dξ
J(û, ũ) ≤ δ2

2α
+ α
‖q‖2L2(Σ)

2
.

Proof. See [28, Theorem 2] or alternatively [30, Theorem 3.1].

In Chapter 5 we want to transfer the concept of error estimation with Bregman distances to
various other fidelities arising from specific applications.

3.3 Bregman Iteration

In [95] the use of the Bregman distance for a particular regularization energy instead of the energy
itself has been proposed in order to overcome the loss of contrast in comparison to the standard
reconstruction. Many publications have followed in which Bregman distances have been applied
to general singular regularization energies (cf. [136, 33, 32]). The idea of the Bregman iteration is
to replace the regularization term of (2.8) with the corresponding Bregman distance. This yields
the following iterative scheme, assuming u0 = 0 ∈ dom(K) ∩ dom(J) and p0 ∈ ∂J(0):

uk+1 ∈ arg min
u∈dom(J)

{
1

2
‖Ku− f‖2L2(Σ) + αDpk

J (u, uk)

}
, (3.5)

with J being a singular, one-homogeneous regularization energy.

For the particular case of J(u) = TV(u) in [95] it has been shown that the optimality condition
of (3.5), i.e.

0 = K∗(Kuk+1 − f) + α(pk+1 − pk) , (3.6)

can be rewritten as

0 = K∗(Kuk+1 − (f + vk)) + αpk+1 (3.7)

for pk := 1
αK
∗vk. In order to satisfy (3.6) we then obtain

vk+1 = vk − (Kuk+1 − f) . (3.8)
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Obviously the considerations can be carried out on any convex and subdifferentiable functional
J . Consequently we end up with the following iterative algorithm that we are going to refer to as
Bregman iteration.

Algorithm 1 Bregman Iteration

1. Parameters: K, f, v0, maxiter ∈ N, α ∈ R>0

for k ≤ maxiter do

Compute uk = arg minu∈dom(J)

{
1
2 ‖Ku− (f + vk−1)‖2L2(Σ) + αJ(u)

}
Compute vk = vk−1 − (Kuk − f)

end for
return umaxiter

In [95] it has been stated that in case of J(u) = TV(u) the iterates of Algorithm 1 are
well-defined.

Lemma 3.2. Let J(u) = TV(u) hold and let u0 = 0 and p0 ∈ ∂J(u0) be guaranteed. Then, for
each k ∈ N there exists a subgradient pk ∈ ∂J(uk) such that

αpk +K∗ (Kuk − f) = αpk−1

is true. If, in addition, K has only the trivial null space, then the minimizer uk is unique.

Proof. See [95, Section 3.2, Proposition 3.1].

In case of a general regularizer J it can furthermore be stated that the iterates are monotoni-
cally non-increasing.

Proposition 3.1. With the same assumptions as in Lemma 3.2, but for general convex J , the
sequence of iterates of Algorithm 1 is monotonically non-increasing; precisely we have

1

2
‖Kuk − f‖2L2(Σ) ≤

1

2
‖Kuk − f‖2L2(Σ) + αD

pk−1

J (uk, uk−1) ≤ 1

2
‖Kuk−1 − f‖2L2(Σ) .

Moreover, for u with TV(u) <∞ we obtain

αDpk
J (u, uk) + αD

pk−1

J (uk, uk−1) +
1

2
‖Kuk − f‖2L2(Σ) ≤

1

2
‖Kuk−1 − f‖2L2(Σ) .

Proof. See [95, Section 3.2, Proposition 3.2].

In [30] the convergence properties of the Bregman iteration scheme have been investigated in
case of general subdifferentiable regularization terms J . Under the additional assumption that
(SCL2) is fulfilled the following important results can be verified.

Theorem 3.2. Let ũ denote the exact solution of the inverse problem (2.3) and assume (SCL2)
to be satisfied. Then, we obtain in case of noise-free data f = g the estimate

Dpk
J (ũ, uk) ≤ α

‖q‖2L2(Σ)

2k
= O

(
1

k

)
,

for the iterates uk of Algorithm 1, and for all k ∈ N \ {1}.
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Proof. See [30, Theorem 4.1].

Note that for k →∞ the iterates are guaranteed to converge to the true solution. In the course
of this work we are going to present setups for which we will be able to even prove convergence
in a finite number of Bregman iterations.

In case of noisy data the Bregman iteration scheme obviously does not converge to ũ but
rather has to be stopped at some optimal iterate.

Theorem 3.3. Let ũ denote the exact solution of the inverse problem (2.3) and assume (SCL2)
to be satisfied. Moreover, the standard deviation of f and g is bounded, i.e. ‖f − g‖L2(Σ) ≤ δ.
Then, we obtain the estimate

Dpk
J (ũ, uk) ≤ α

‖q‖L2(Σ)

2k
+ δ‖q‖L2(Σ) +

δ2k

α
, for all k ∈ N .

Proof. See [30, Theorem 4.3].

Note that for an a-priori choice k∗ ≈ 1/δ we have Dpk
J (ũ, uk∗) = O(δ).

In the following section we want to briefly investigate the interesting transition from discrete
Bregman iteration to time-continuous ISS methods and recall some of the interesting properties.

3.4 Inverse Scale Space Flow

The optimality condition (3.6) for α →∞ can also be seen as the backward Euler discretization
of the evolution equation

∂

∂t
p(t) = K∗ (f −Ku(t)) , (3.9)

which has been termed nonlinear inverse scale space method (ISS) (cf. [26, 25]) in analogy to
previous work on inverse scale space methods by Scherzer and Groetsch [114]. The inverse scale
space flow is a differential inclusion, which can also be formulated as a dual gradient flow using
the relation p = A∗q for some q. This allows us to write

∂

∂t
q(t) = f −Ku(t), u(t) ∈ ∂pJ∗(K∗q),

thus we have

∂

∂t
q(t) ∈ −∂E∗(q),

with the dual energy functional

E∗(q) = J∗(K∗q)− 〈f, q〉,

where J∗ denotes the convex conjugate of J as defined in Section 2.6.2. As a consequence of
Proposition 3.1 we find

‖Ku(t)− f‖L2(Σ) ≤ ‖Ku(s)− f‖L2(Σ), ∀ t ≥ s.
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A second useful property concerns the decrease of the Bregman distance and the dissipation of
the least-squares functional. If ũ is a solution of Ku = f that minimizes J then taking the duality
product with u− ũ reveals

∂

∂t
D
p(t)
J (ũ, u(t)) = −‖Ku(t)− f‖2L2(Σ).

From this inequality we can infer the major convergence properties of the inverse scale space
method, namely

‖Ku(t)− f‖ = O(t−1/2)

and – under appropriate conditions on J – the weak or weak-* convergence of u(t) to solutions of
Ku = f with minimal J along subsequences. Improved convergence properties can be obtained
for data satisfying (SCL2). In that case the following convergence estimates have been proved in
[30].

Theorem 3.4. Let ũ satisfy (2.3) and (SCL2). Moreover, let u be the solution of the ISS (3.9)
for exact data f = g. Then we obtain the convergence rate

D
p(t)
J (ũ, u(t)) ≤

‖q‖2L2(Σ)

2t
= O(t−1) .

Proof. See [30, Theorem 5.1].

In analogy to Theorem 3.3 the following convergence estimate has been derived in case of noisy
data f .

Theorem 3.5. Let ũ satisfy (2.3) and (SCL2), and let the standard deviation of f−g be bounded
by δ, i.e. ‖f − g‖L2(Σ) ≤ δ. Moreover, let u be the solution of the ISS (3.9). Then we obtain the
convergence estimate

D
p(t)
J (ũ, u(t)) ≤ 1

2t

(
‖q‖2L2(Σ) + δt

)2
+
δ2t

8
.

Proof. See [30, Theorem 5.2].

3.4.1 Regularized Inverse Scale Space Flow

By considering a time-continuous flow on (2.8) instead of the optimality condition of
1
2 ‖Ku− f‖

2
L2(Σ) only, we obtain the regularized inverse scale space flow, which is defined as

∂

∂t
p(t) = K∗ (f −Ku(t))− αp(t) , (3.10)

for which analogous reasoning as in the case of the unregularized problem can be carried out,
respectively some results can even be improved due to the presence of p on the right-hand side.
First of all, we obtain a decrease of the objective functional, i.e.

1

2
‖Ku(t)− f‖2L2(Σ) + αJ(u(t)) ≤ 1

2
‖Ku(s)− f‖2L2(Σ) + αJ(u(s)), ∀ t ≥ s.

Concerning the decrease of the Bregman distance we can show a stronger result.
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Proposition 3.2. Let (u, p) be a solution of (3.10) for α > 0. Then, for ûα being a minimizer
of (2.8), the estimate

D
p(t)
J (ûα, u(t)) ≤ e−αtJ(ûα)

holds.

Proof. Taking the duality product of (3.10) with u− û yields

d

dt
Dp
J(û, u) = −〈K∗(Ku−Kû+Kû− f), u− û〉 − α〈p, u− û〉

= −‖Ku−Kû‖2 − α〈p− p̃α, u− û〉
≤ −αDp

J(û, u),

where we have inserted the optimality condition for û with subgradient p̂α ∈ ∂J(ûα) in the second
line. The Gronwall inequality finally yields the assertion.

A similar result can be shown for the dual variable q satisfying p = K∗q. Using

q̂ =
1

α
(f −Kû)

one can show
‖q(t)− q̂‖ ≤ e−αt‖q̂‖,

which by the continuity of K∗ also implies the exponential convergence of p = K∗q.
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Chapter 4

Typical Fidelities and Singular
Regularization Energies

The goal of this thesis is to demonstrate the versatility of Bregman distances in the context of
error estimation of approximate solutions û, arising from variational schemes (2.9), with respect
to true solutions ũ of (2.3), as well as for the analytical and numerical computation of the approx-
imate solutions. This chapter therefore gives an overview on popular regularization and fidelity
functionals suitable for the scheme (2.9). The functionals presented are chosen to incorporate
necessary a-priori information with respect to relevant applications.

4.1 Singular Regularization Energies

One of the main goals of this work is to focus on regularization functionals that are not differen-
tiable in the conventional sense and to analyze their differences, advantages and disadvantages in
comparison to differentiable regularization energies. In this section we want to introduce standard
representatives of the class of singular regularization energies.

4.1.1 `0 Regularization

In the last decade the efficient sampling of datasets with only very few samples has been given
a general framework called compressed sensing or compressive sensing, see for instance [47]. The
typical compressed sensing application is to solve (2.3) or (2.4) with a highly under-determined
matrix operator K ∈ Rm×n, i.e. m � n. However, as an a-priori information the true solution
ũ is assumed to be sparse, i.e. the amount s of non-zero elements of ũ is much smaller than n.
Thus, in order to find an approximate solution û of (2.9) close to ũ the goal is to recover sparse
solutions. A reasonable regularization energy for this kind of a-priori information would be the
`0-“norm”, i.e.

J(u) = ‖u‖`0 =

n∑
j=1

|uj |0 ,

where we use the convention 00 = 0. The `0-norm therefore exactly counts the number of non-zero
elements. Note that ‖·‖`0 is not a proper norm, because it is obviously easy to find vectors u ∈ Rn
and constants λ ∈ R>0 for which λ‖u‖`0 6= ‖u‖`0 = ‖λu‖`0 holds. Nevertheless ‖ · ‖`0 has been

65
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termed norm, since it can be seen as the limit of the `p-norm for p → 0. If we consider (2.9) in
case of K = I, i.e.

û = arg min
u

{
1

2
‖u− f‖2`2 + α‖u‖`0

}
,

we easily discover by case differentiation that û is the hard shrinkage of f with threshold
√

2α,
i.e.

ûj =

{
fj for fj ≥

√
2α

0 else
.

However, for an arbitrary matrix K the solution of (2.9) with J(u) = ‖u‖`0 is difficult (and even
NP-hard), since J is highly non-convex. As an alternative, the use of the convex `1-norm as a
sparsity-promoting regularizer will be discussed in the following section, since under appropriate
conditions on K it can be proved that the minimizing `1- and `0-solutions coincide, see [34, 35,
48, 47].

4.1.2 `1 Regularization

The standard choice of a convex singular regularization functional to promote sparse solutions in
a discrete or semi-discrete setup is the `1-norm, i.e.

J(u) = ‖u‖`1 =

n∑
j=1

|uj | , (4.1)

with its subdifferential

∂J(u) = sign(u) (4.2)

being the component wise signum of u (see Example 2.13), which we will also denote by sign. If
a discrete or semi-discrete inverse problem is considered for which the solutions can be assumed
to be sparse signals, the choice of (4.1) is more natural than the use of a squared `2-norm. Ifwe
compare a sparse signal and a dense signal in the sense of the `2-norm it is possible to have very
different signals but quite similar norm values. If, on the other hand, we compare both signals
in the sense of the `1-norm, the difference in the norm values is quite significant. Figure 4.1
illustrates this property of the two norms. In many compressed sensing applications the `2-`1

variational scheme is considered, i.e.

u ∈ arg min
u∈`1

{
1

2
‖Ku− f‖2`2 + α‖u‖`1

}
. (4.3)

One of the advantages of this scheme is that in case of K = I the solution of (4.3) can easily be
computed pointwise via

uj = shrink(fj , α) ,

with shrink denoting the soft shrinkage operator

shrink(fj , α) = sign(fj) max(|fj | − α, 0) .
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(a) Dense
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(b) Sparse

Figure 4.1: A dense and a sparse signal. The `2-norm of signal 4.1(a) is 1.5431, while the `2-norm of
4.1(b) is 1.7472. The difference in the `1-norm is much more significant. The `1-norm of 4.1(a) is 20.0615
and therefore large in comparison to the `1-norm of 4.1(b), which is 6.2931.

The `1 norm can be used not just for recovering sparse signals but also for promoting sparse
solutions with respect to a certain basis. If a function u can be represented as u =

∑n
j=1〈u, ϕj〉ϕj

with respect to the basis (ϕj)j∈{1,...,n} the functional

J(u) =

n∑
j=1

|〈u, ϕj〉|

would be a reasonable choice for a regularizer if u has a sparse representation with respect to ϕ.

4.1.3 L1 Regularization and Regularization with Radon Measures

As the continuous analogue of the discrete `1 regularization we could consider the L1 norm as a
regularizer, i.e.

J(u) = ‖u‖L1(Ω) ,

for a function u : Ω ⊂ Rd → R, d ∈ N, in L1(Ω). Similar to `1 regularization it might be even
more reasonable to consider not just the L1-norm of a signal as a regularizer but also the L1-norm
of a suitable operator applied to that signal, i.e.

J(u) = ‖Bu‖L1(Θ) , (4.4)

with B : U(Ω) → L1(Θ), for a suitable Banach space U(Ω) and suitable sets Ω and Θ. Unfor-
tunately, as we have already discovered in Section 2.5.5, the space L1 might be too restrictive,
depending on the operator B. We have seen that e.g. for B = ∇ the regularization (4.4) only
allows functions u to be in W 1,1(Ω), which is not desirable. To overcome this problem we have
considered the distributional representation and therefore transferred the L1-type problem to the
space of Radon measures. A general approach for sparsity-promoting regularization in measure
spaces has been considered in [19]. In the cited work, linear inverse problems of the form

K∗µ = g
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have been considered. In this setup, K∗ maps continuously from the space of finite vector-valued
Radon measures M(Ω,Rn) into a Hilbert space H, for g ∈ H. The space of Radon measures
allows for finite combinations of delta distributions, which are the continuous analogue to sparse
patterns in a discrete setup. Thus, in analogy to (4.3) in [19] the Tikhonov minimization scheme

µ ∈ arg min
µ∈M(Ω;Rn)

{
1

2
‖K∗µ− f‖2H + α‖µ‖M

}
has been proposed and analyzed, for f being a noisy version of g. For more information on the
novel concept of regularization with Radon measures we want to refer to [19].

4.1.4 Total Variation Regularization and the ROF-Model

One of the most popular and most extensively studied convex singular regularization functionals
is the distributional representation of the L1-norm of the gradient, as introduced in Section 2.5.5,
i.e. J(u) = TV(u) with the Total Variation seminorm

TV(u) = sup
ϕ∈C∞0 (Ω;Rn)
‖ϕ‖∞≤1

∫
Ω
u divϕ dx .

With the help of Lemma 2.4 the subdifferential of TV(u) is relatively easy to characterize. Lemma
2.4 states that the subdifferential can be characterized via

∂TV(u) =
{
p ∈ BV(Ω)∗ | 〈p, u〉BV(Ω) = TV(u), 〈p, v〉BV(Ω) ≤ TV(v), ∀v ∈ BV(Ω)

}
.

The dual norm ‖p‖BV(Ω)∗ therefore is bounded by one, since we easily check

‖p‖BV(Ω)∗ = sup
v∈BV(Ω)
TV(v)=1

〈p, v〉BV(Ω) ≤ sup
v∈BV(Ω)
TV(v)=1

TV(v) = 1

and consequently we can rewrite the subdifferential of TV to

∂TV(u) =
{
p ∈ BV(Ω)∗ | ‖p‖BV(Ω)∗ ≤ 1, 〈p, u〉BV(Ω) = TV(u)

}
.

Due to the characterization of the dual space of BV via

BV(Ω)∗ =
{

(c,divϕ) | c ∈ R, ϕ ∈ C
(
Ω;Rn

)
, ϕ|∂Ω · n = 0

}
(see [29, Chapter 3]) we know that there has to exist a function ϕ ∈ L∞(Ω;Rn) with p = divϕ.
Thus, the subdifferential of TV can be written as

∂TV(u) =
{

divϕ | ‖ϕ‖L∞(Ω;Rn) ≤ 1, ϕ|∂Ω · n = 0, 〈divϕ, u〉BV(Ω) = TV(u)
}

. (4.5)

The use of the Total Variation seminorm has become popular with the introduction as a regularizer
in [110] of the much-cited ROF-model, i.e.

u ∈ arg min
u∈BV(Ω)

{
λ

2
‖u− f‖2L2(Ω) + TV(u)

}
, (4.6)

named after Rudin, Osher and Fatemi. For (4.6) it can be shown that the scheme is lower semi-
continuous, coercive and strictly convex (cf. [29, Chapter 3]). Hence, the application of Theorem
2.2 ensures existence of a minimizer of (4.6), while the strict convexity states that this existing
minimizer has to be global and unique.

As it has been pointed out in Section 2.5.5 the TV-seminorm can be extended to higher-
order derivatives, which can also be useful in terms of regularization as we want to discuss in the
following section.
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4.1.5 TV2 and Higher-Order Singular Regularization Energies

In analogy to Section 4.1.4 and Section 2.5.5 the distributional representation of the L1-norm of
higher order differential operators can be considered. In particular, we want to focus on higher
order TV, i.e.

J(u) = TVl(u) = sup
ϕ∈Cl(Ω;Syml(Rn))

‖ϕ‖∞≤1

∫
Ω
u divlϕ dx ,

especially in case of l = 2. In analogy to the previous section the subdifferential can be charac-
terized by

∂TVl(u) =
{

divlϕ | ‖ϕ‖L∞(Ω;Syml(Rn)) ≤ 1, ϕ|∂Ω · n = 0, 〈divlϕ, u〉BVl(Ω) = TVl(u)
}

. (4.7)

Usually, promoting sparsity with respect to one particular higher order derivative is not desirable.
However, combinations of various derivatives have been subject of recent publications (cf. [117,
18, 118, 80]). Two particular models for combining the TV and higher order TVl will be presented
in the upcoming sections.

4.1.6 Infimal Convolution Regularization

A regularization approach that has been made popular by Chambolle and Lions ([38]) is the use
of infimal convolutions as regularization functionals. The infimal convolution of two functionals
Φ and Ψ is defined as

(Φ�Ψ) (u) := inf
u=v+w

Φ(v) + Ψ(v) .

Though infimal convolution regularization can be used for arbitrary functionals Φ and Ψ (cf.
[5, 6, 120]), the particular interest of this work will lie on the infimal convolution of TV and TV2.
Hence, we define

ICTVβ(u) :=
(
TV�TV2

)
(u) = inf

u=v+w
TV(v) + βTV2(w)

= inf
u=v+w

sup
p∈C∞0 (Ω;Rn)
‖p‖∞≤1

∫
Ω
v divp dx+ β sup

q∈C∞0 (Ω;Sym2(Rn))
‖q‖∞≤1

∫
Ω
w div2q dx ,

(4.8)

where we have used ‖ · ‖∞ as an abbreviation for both ‖ · ‖L∞(Ω;Rn) as well as ‖ · ‖L∞(Ω;Sym2(Rn)).
Equation (4.8) can be rewritten to

ICTVβ(u) = inf
w

sup
p∈C∞0 (Ω;Rn)
‖p‖∞≤1

∫
Ω

(u− w) divp dx+ β sup
q∈C∞0 (Ω;Sym2(Rn))

‖q‖∞≤1

∫
Ω
w div2q dx

= sup
p∈C∞0 (Ω;Rn)
‖p‖∞≤1

sup
q∈C∞0 (Ω;Sym2(Rn))

‖q‖∞≤1

inf
w

∫
Ω

(u− w) divp dx+ β

∫
Ω
w div2q dx ,



70 4.1. SINGULAR REGULARIZATION ENERGIES

with the infimum for w being attained for βdiv2q = divp. By inserting this relation we end up
with

ICTVβ(u) = sup
p∈C∞0 (Ω;Rn)

q∈C∞0 (Ω;Sym2(Rn))
‖p‖∞≤1
‖q‖∞≤1

βdiv2q=divp

∫
Ω
u divp dx = sup

p∈C∞0 (Ω;Rn)

q∈C∞0 (Ω;Sym2(Rn))
‖p‖∞≤1
‖q‖∞≤1

βdiv2q=divp

β

∫
Ω
u div2q dx .

If we substitute q = βq we obtain

ICTVβ(u) = sup
p∈C∞0 (Ω;Rn)

q∈C∞0 (Ω;Sym2(Rn))
‖p‖∞≤1
‖q‖∞≤β

div2q=divp

∫
Ω
u div2q dx . (4.9)

As in the previous sections we can characterize the subdifferential as

∂ICTVβ(u) =
{

div2ϕ | ‖ψ‖L∞(Ω;Rn) ≤ 1, ‖ϕ‖L∞(Ω;Sym2(Rn)) ≤ β, ϕ|∂Ω · n = 0,

ψ|∂Ω · n = 0,div2ϕ = divψ, 〈div2ϕ, u〉L2(Ω) = ICTVβ(u)
}

.
(4.10)

A typical variational setup for denoising is the combination of the L2 data fidelity and ICTVβ as
a regularizer, i.e.

u ∈ arg min
u∈BV2(Ω)

{
1

2
‖u− f‖2L2(Ω) + αICTVβ(u)

}
.

In comparison to Total Variation regularization the infimal convolution of TV and TV2 is wit-
nessed to reduce the so-called staircasing phenomenon. A solution of the ROF model (4.6) for
a piecewise linear input function corrupted by noise is not a linear but a piecewise constant
stair-like approximation of the input data, which is not the case for ICTVβ regularization if the
regularization parameters are carefully chosen.

However, in higher than one dimension it has been observed that the infimal convolution model
does not separate a function into its TV and TV2 structures properly. Consequently, a modified
infimal convolution model has been proposed that we are going to recall in the following section.

4.1.7 Generalized Total Variation

Since the infimal convolution of TV and TV2 did not yield the desired optimal separations of
piecewise constant and piecewise linear regions for two and higher dimensions, modifications of
(4.9) have been proposed. In [117] a modification of (4.9) named modified infimal convolution
has been developed from a rather algorithmic point of view, while in [18] a generalization and
the analytical foundation for this work has been investigated and analyzed under the name Total
Generalized Variation. Since the name goes back to a pun on French trains we are going to refer
to this model as Generalized Total Variation (GTV). In [118] it has been pointed out that in
case of TV and TV2 as regularizers the modified infimal convolution and GTV coincide. The
generalized total variation of second order is defined as

GTVβ(u) := sup
q∈C∞0 (Ω;Rn)
‖q‖∞≤β
‖divq‖∞≤1

∫
Ω
u div2q dx . (4.11)
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The infimal convolution regularization (4.9) and the generalized TV regularization (4.11) therefore
coincide if p = divq holds.
The subdifferential of the second-order generalized total variation reads

∂GTVβ(u) =
{

div2ϕ | ‖ϕ‖L∞(Ω;Rn) ≤ β, ‖divϕ‖L∞(Ω;Sym2(Rn)) ≤ 1, ϕ|∂Ω · n = 0,

∇ϕ|∂Ω · n = 0, 〈div2ϕ, u〉L2(Ω) = GTVβ(u)
}

.
(4.12)

In Chapter 6, Section 6.3, we are going to investigate the different regularization functionals
and their properties in recovering functions exactly both in the absence and presence of noise.

4.2 Typical Fidelities

Typically, most inverse problems involve the computation of the least-squares-solution with some
additional regularization term, i.e. the data fidelity is assumed to be a squared L2-norm. The
popularity of this fidelity term lies in its computational simplicity, since the optimality condition
of the squared L2-norm yields a linear problem. Moreover, measurement noise can very often
be assumed to be normal-distributed, which also suggests the use of the squared L2-norm as a
reasonable data fidelity.

However, in many applications different fidelities than the standard L2-fidelity are considered,
usually to incorporate different a-priori knowledge on the distribution of noise. Exemplary appli-
cations are Synthetic Aperture Radar, Positron Emission Tomography or Optical Nanoscopy. In
the following, we want to present those fidelities that are of further interest in the course of this
work.

4.2.1 Fidelities with Scaling Properties

In order to provide a rather broad class of general fidelities including the popular quadratic
fidelities, we want to consider general convex fidelities with scaling property, i.e.

Hf (Ku) := F (Ku− f) ,

with F : V(Σ) → R being a convex and Fréchet-differentiable functional such that the scaling
property

λF ′(v) = F ′(s(λ)v) (4.13)

is fulfilled, for all λ ∈ R>0 and for a monotone function s : R>0 → R. The corresponding
variational problem reads as

û ∈ arg min
u∈dom(J)

{F (Ku− f) + αJ(u)} , (4.14)

with optimality condition

0 = K∗F ′(Kû− f) + αp̂ ,

for p̂ ∈ ∂J(û).
Note that the functionals F are Fréchet-differentiable and therefore continuous, and conse-

quently also lower semi-continuous.
Typical examples for data fidelities fulfilling a scaling property are Lp norms to the power of

p (for p > 1), as introduced in Section 2.5.1.
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Lp Fidelities

If we consider

Hf (Ku) :=
1

p
‖(Ku)(y)− f(y)‖pLp(Σ) =

1

p

∫
Σ
|Ku− f |p dµ(y) , (4.15)

for p > 1, we easily see that Hf (Ku) satisfies a scaling property with s(λ) = λ
1
p−1 . As a special

case the choice p = 2 (4.15) yields the most popular among all fidelities,

Hf (Ku) =
1

2
‖Ku− f‖2L2(Σ) , (4.16)

with s(λ) = λ. The optimality condition of (4.14) with Hf (Ku) being defined via (4.16) simply
equals

K∗ (Kû− f) + αp̂ = 0 , p̂ ∈ ∂J(û) . (4.17)

Note that the Fréchet-derivatives of Lp-fidelities to the power of p are continuously invertible for
p > 1.

4.2.2 General Norm Fidelity

Typical non-quadratic fidelity terms, moreover non-Fréchet-differentiable, are norms in general,
i.e.

Hf (Ku) := ‖Ku− f‖V(Σ) ,

without taking a power of it. The corresponding variational problem is given via

û ∈ arg min
u∈W(Ω)

{
‖Ku− f‖V(Σ) + αJ(u)

}
. (4.18)

The optimality condition of (4.18) can be computed as

K∗ŝ+ αp̂ = 0 ŝ ∈ ∂‖Kû− f‖V(Σ), p̂ ∈ ∂J(û) . (4.19)

In the following we want to present two special cases of this general class of fidelity terms that
have been investigated in several applications.

L1 Fidelity

A typical norm fidelity term used in applications involving Laplace-distributed or impulsive noise
(e.g. Salt’n’Pepper noise), is the L1-fidelity (see for instance [40, 39, 133]). The related variational
problem is given via

û = arg min
u∈W(Ω)


∫
Σ

|(Ku)(y)− f(y)| dµ(y) + αJ(u)

 . (4.20)

The optimality condition of (4.20) can easily be computed as

K∗ŝ+ αp̂ = 0, ŝ ∈ sign(Kû− f), p̂ ∈ ∂J(û) , (4.21)

with sign(x) being the signum ”function”, which is the continuous analogue to the discrete point-
wise signum ”function” that we have already considered in (4.2).
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BV∗ Fidelity

In order to separate an image into texture and structure, in [90] Meyer proposed a modification
of the ROF model (4.6) via

F (u, v) := ‖v‖BV (Ω)∗ +
1

2λ
sup

q∈C∞0 (Ω;R2)
‖q‖∞≤1

∫
Ω
u divq dx

with respect to u (structure) and v (texture) for a given image f = u + v, and with ‖·‖BV (Ω)∗

being defined as

‖w‖BV (Ω)∗ := inf
p

∥∥∥∥(|p1|2 + |p2|2
) 1

2

∥∥∥∥
L∞(Ω)

,

subject to divp = w. Initially the norm has been introduced as G-norm.
In this context, we are going to consider the variational model

u ∈ arg min
u∈W(Ω)

{
‖Ku− f‖BV(Σ)∗ + αJ(u)

}
,

with its corresponding optimality condition

K∗ŝ+ αp̂ = 0, ŝ ∈ ∂ ‖Kû− f‖BV(Σ)∗ , p̂ ∈ ∂J(û) .

4.2.3 Kullback-Leibler Fidelity

In applications such as Positron Emission Tomography or Optical Nanoscopy, sampled data usu-
ally obey a Poisson process. For that reason, other fidelities than the L2 fidelity have to be
incorporated into the variational framework. The most popular fidelity in this context is the
Kullback-Leibler divergence (cf. [92]), i.e.

Hf (Ku) = KL(f,Ku) :=

∫
Σ

[
f(y) ln

(
f(y)

(Ku)(y)

)
− f(y) + (Ku)(y)

]
dµ(y) . (4.22)

Note that KL(u, v) equals the Bregman distance D
G′(v)
G (u, v) for G(u) =

∫
Σ u ln (u) − u dµ(y),

because of Example 3.2. Furthermore, due to the nature of the applications and their data,
the function u usually represents a density that needs to be positive. The related variational
minimization problem with an additional positivity constraint therefore reads

û ∈ arg min
u∈W(Σ)
u≥0


∫
Σ

[
f(y) ln

(
f(y)

(Ku)(y)

)
− f(y) + (Ku)(y)

]
dµ(y) + αJ(u)

 . (4.23)

With the natural scaling assumption
K∗1 = 1 , (4.24)

we obtain the complementarity condition

û ≥ 0, K∗
f

Ku
− αp̂ ≤ 1 ,

û

(
1−K∗ f

Kû
+ αp̂

)
= 0 , p̂ ∈ ∂J(û) ,

(4.25)
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to find optimal solutions of (4.23). The questions in which spaces the data f and the solution û
can be considered is not trivial, see for instance [76, Section 4.1.3].

The Kullback-Leibler functional is lower semi-continuous (cf. [106, Section 3]), which is a key
property that allows to show well-posedness of the variational framework (4.23) for particular
choices of the regularization energy (e.g. for J(u) = TV(u), see for instance [21, Section 5.4.2]).

4.2.4 Multiplicative Noise Fidelities

In applications such as Synthetic Aperture Radar the data is supposed to be corrupted by mul-
tiplicative noise, i.e. f = (Ku) v, where v represents the noise following a certain probability law
and where Ku ≥ 0 is assumed. In [4], Aubert and Aujol assumed v to follow a gamma law with
mean one and derived the data fidelity

Hf (Ku) =

∫
Σ

[
ln

(
(Ku)(y)

f(y)

)
+

f(y)

(Ku)(y)
− 1

]
dµ(y) .

Hence, the corresponding variational minimization problem reads as

û ∈ arg min
u∈W(Ω)


∫
Σ

[
ln

(
(Ku)(y)

f(y)

)
+

f(y)

(Ku)(y)
− 1

]
dµ(y) + αJ(u)

 , (4.26)

with the formal optimality condition

0 = K∗
(

(Kû)(y)− f(y)

((Kû)(y))2

)
+ αp̂ , p̂ ∈ ∂J(û) . (4.27)

One main drawback of (4.26) is that the fidelity term is not globally convex and therefore will
not allow unconditional use of the Bregman-distance based analytical framework we are going
to derive in the upcoming sections. In order to convexify this speckle noise removal model, in
[69] Huang et al. suggested the substitution z(y) := ln((Ku)(y)) to obtain the entirely convex
optimization problem

ẑ = arg min
z∈W(Σ)


∫
Σ

[
z(y) + f(y)e−z(y) − 1− ln(f(y))

]
dµ(y) + αJ(z)

 , (4.28)

with optimality condition

1− f(y)e−ẑ(y) + αp̂ = 0 , (4.29)

for p̂ ∈ ∂J(ẑ). This model is a special case of the general multiplicative noise model presented in
[119]. We mention that in case of total variation regularization a contrast change as above is not
harmful, since the structural properties (edges and piecewise constant regions) are preserved.

In ultrasound imaging the use of different data fidelities for incorporating improved a-priori
information on the noise structure has recently become of major interest. In [82] the authors have
proposed the data fidelity term

Hf (Ku) =

∫
Ω

[
(u− f)2

u

]
dµ(x) , (4.30)
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which is based on the assumption that the exact data u is corrupted by multiplicative noise
of the form f = u + n

√
u, with n being a Gaussian distributed random variable with mean

zero and standard deviation σ. In [74] this data fidelity has been combined with total variation
regularization, which motivates the general variational minimization problem

û ∈ arg min
u∈W(Ω)
u>0


∫
Σ

[
(Ku− f)2

Ku

]
dµ(y) + αJ(u)

 , (4.31)

with the formal optimality condition

0 = K∗
(

(Kû)2 − f2

(Kû)2

)
+ αp̂ , p̂ ∈ ∂J(û) . (4.32)
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Chapter 5

Error Estimates

By regularizing the inverse problem (2.4), our goal is to obtain a solution û close to ũ in a robust
way with respect to noise. Hence, we are interested in error estimates that describe the behavior
of û in contrast to ũ with respect to the “data error” δ, and we are interested in optimal choices
for quadratic fitting (see [51]). A major step for error estimates in the case of regularization with
singular energies has been the introduction of (generalized) Bregman distances (cf. [20, 79]) as
an error measure (cf. [49, 28]), as we have already pointed out in Section 3.2.

Many works yet deal with the analysis and error propagation by considering the Bregman
distance between û satisfying the optimality condition of a variational regularization method (2.9)
and the exact solution ũ (cf. [30, 31, 68, 84, 86, 107]). The Bregman distance turned out to be an
adequate error measure since it seems to control only those errors that can be distinguished by the
regularization term. This point of view is supported by the need of so-called source conditions,
which are needed to obtain error estimates in the Bregman distance setting.

Most works yet deal with the case of quadratic fitting, with only few exceptions (see e.g.
[97]). However, as we have seen in Chapter 4, for many applications, such as Positron Emission
Tomography (PET), Microscopy, CCD cameras, or radar, different types of data fidelities appear.

In the following we want to present rather general error estimates for arbitrary fidelities. Then,
we are going to apply these basic error estimates for general, convex variational regularization
methods to the specific models presented in Chapter 4, Section 4.2. We would also like to mention
the parallel development on error estimates for variational models with non-quadratic fidelity in
[97], which yields the same results as our paper in the case of L1 fidelity. Since the analysis in [97]
is rather based on fidelities that are powers of a metric instead of the noise models we use here,
most approaches appear orthogonal. In particular we base our analysis on convexity and duality
and avoid the use of triangle inequalities, which can only be used for a metric. Most of the work
that is considered in this chapter is part of [8].

5.1 Estimates for General Fidelities

After having introduced some frequently used non-quadratic variational schemes in Section 4.2,
we want to present general error estimates for (convex) variational schemes. These basic estimates
will allow us to derive specific error estimates for the specific models. Furthermore we want to
explore duality and will discover an error estimate dependent on the convex conjugates of the
fidelity and regularization terms.

In order to derive estimates in the Bregman distance setting we need to introduce the so-called

77
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source condition

∃ ξ ∈ ∂J(ũ), ∃ q ∈ V(Σ)∗ \ {0} : ξ = K∗q , (SC1)

which can also be written as

R(K∗) ∩ ∂J(ũ) 6= ∅ .

The source condition (SC1) in some sense will ensure that a solution ũ contains features that can
be distinguished by the regularization term J , which can be seen by the following lemma.

Lemma 5.1. The source condition (SC1) is equivalent to the existence of a function h ∈ V(Σ),
such that ũ satisfies

ũ ∈ arg min
u∈dom(J)

{Hh(Ku) + αJ(u)} , (5.1)

for a Fréchet-differentiable functional Hh : V(Σ)→ R such that (H ′h)−1 exists.

Proof. ”⇐”: The fact that ũ minimizes (5.1) implies optimality; hence, the equation

K∗H ′h(Kũ) + αξ = 0

has to hold, for an existing ξ ∈ ∂J(ũ). This in turn implies (SC1) with source element q =
− (K∗H ′h (Kũ)) /α ∈ V(Σ)∗.
”⇒”: The validity of (SC1) implies

0 = αξ − αK∗q ,

which can be rewritten to

0 = αξ +K∗G′h
(
(G∗h)′(−αq)

)
,

with Gh(Ku − h) := Hh(Ku) and G∗h denoting the convex conjugate of Gh, since Lemma 2.7
states that G′h ((G∗h)′(p)) = p. Hence, by defining h := Kũ− (G∗h)′(−αq) we obtain

0 = αξ +K∗G′h(Kũ− h) .

Consequently, Lemma 5.1 guarantees the existence of some data h ∈ V(Σ), such that ũ min-
imizes (2.9) with respect to the data h. This is only possible if ũ contains features that can be
distinguished by the regularization term.

Motivated by [105] we can also define a stronger source condition for centered functionals of
the type Gf (Ku− f) := Hf (Ku). The stronger source condition then is defined as

∃ ξ ∈ ∂J(ũ), ∃ v ∈ U(Ω) \ {0} : ξ = −K∗G′f (Kv) , (SC2)

for f ∈ R(K), which can equivalently be written as

R
(
−K∗G′f (K·)

)
∩ ∂J(ũ) 6= ∅ .

In Section 5.1.3 we are going to see that for a specific type of functionals, namely the functionals
with scaling property (4.13) as defined in Section 4.2.1, the strong source condition (SC2) can be
interpreted as a condition that guarantees ũ to be a minimizer of the variational model (2.9) for
some exact data in the range of K.
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5.1.1 Basic Estimates

In this section we are going to derive basic error estimates in the Bregman distance measure for
general variational regularization methods.

To find a suitable solution of the inverse problem (2.4), close to the unknown exact solution ũ
of (2.3), we consider methods of the form (2.9). We are going to denote a solution of (2.9), which
fulfills the optimality condition due to the Karush-Kuhn-Tucker conditions (KKT), by û.

First of all, we are going to derive a rather general estimate for the Bregman distance Dξ
J(û, ũ).

Lemma 5.2. Let ũ denote an exact solution of the inverse problem (2.3) and let the source
condition (SC1) be fulfilled. Furthermore, let the functional J : W(Ω) → R ∪ {∞} be convex. If
there exists a solution û that satisfies (2.9) for α > 0, then the error estimate

Hf (Kû) + αDξ
J(û, ũ) ≤ Hf (g)− α〈q,Kû− g〉V(Σ)

holds.

Proof. Since û is an existing minimal solution satisfying (2.9) we have

Hf (Kû) + αJ(û) ≤ Hf (Kũ︸︷︷︸
=g

) + αJ(ũ) .

If we subtract α
(
J(ũ) + 〈ξ, û− ũ〉U(Ω)

)
on both sides we end up with

Hf (Kû) + α
(
J(û)− J(ũ)− 〈ξ, û− ũ〉U(Ω)

)︸ ︷︷ ︸
=DξJ (û,ũ)

≤ Hf (g)− α 〈ξ, û− ũ〉U(Ω)︸ ︷︷ ︸
=〈K∗q,û−ũ〉U(Ω)

= Hf (g)− α〈q,Kû− g〉V(Σ) .

Notice that J needs to be convex in order to guarantee the positivity of Dξ
J(û, ũ) and therefore

to ensure a meaningful estimate. In contrast to that, the data fidelity Hf does not necessarily need
to be convex, which makes Lemma 5.2 a very general estimate. Furthermore, the estimate also
holds for any u for which we can guarantee Hf (Ku) +αJ(u) ≤ Hf (Kũ) +αJ(ũ) (a property that
obviously might be hard to prove for a specific u), which might be useful to study non-optimal
approximations to û. Nevertheless, we are mainly going to deal with a specific class of convex
variational problems that allows us to derive sharper estimates, similar to Lemma 5.2 but for
Dsymm
J (û, ũ). Before we start proving these estimates, we are going to define the following class

of problems that we further want to investigate:

Definition 5.1. We define the class C(Φ,Ψ,Θ) as follows: (H,J,K) ∈ C(Φ,Ψ,Θ) if

• K : Θ→ Φ is a linear operator between Banach spaces Θ and Φ

• H : Φ→ R ∪ {∞} is proper, convex and lower semi-continuous

• J : Ψ→ R ∪ {∞} is proper, convex and lower semi-continuous

• There exists a u′ with Ku′ ∈ dom(H) and u′ ∈ dom(J), such that H is continuous at Ku′.
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With this definition we assume more regularity to the considered functionals and are now able
to derive the same estimate as in Lemma 5.2, but for Dsymm

J (û, ũ) instead of Dξ
J(û, ũ).

Theorem 5.1 (Basic Estimate I). Let (Hf , J,K) ∈ C(V(Σ),W(Ω),U(Ω)), for compact and
bounded sets Ω and Σ. Then, if the source condition (SC1) is fulfilled, the error estimate

Hf (Kû) + αDsymm
J (û, ũ) ≤ Hf (g)− α〈q,Kû− g〉V(Σ) (5.2)

holds.

Proof. Since Hf and J are convex, the optimality condition of (2.9) is given via

0 ∈ ∂ (Hf (Kû) + αJ(û)) .

Since both Hf and J are proper, lower semi-continuous and convex, and since there exists u′

with Ku′ ∈ dom(Hf ) and u′ ∈ dom(J), such that Hf is continuous at Ku′, we have ∂Hf (Ku) +
α∂J(u) = ∂ (Hf (Ku) + αJ(u)) for all u ∈ W(Ω), because of Theorem 2.5. Due to the linear
mapping properties of K we furthermore have ∂Hf (K·)(u) = K∗∂Hf (Ku). Hence, the following
equality holds:

K∗η̂ + αp̂ = 0 ,

for η̂ ∈ ∂Hf (Kû) and p̂ ∈ ∂J(û). If we subtract αξ, with ξ fulfilling (SC1), and if we take the
duality product with û− ũ, we obtain

〈K∗η̂, û− ũ〉U(Ω) + α〈p̂− ξ, û− ũ〉U(Ω) = −α〈 ξ︸︷︷︸
=K∗q

, û− ũ〉U(Ω) ,

which equals

〈η̂, Kû− Kũ︸︷︷︸
=g

〉V(Σ) + αDsymm
J (û, ũ) = −α〈q,Kû− Kũ︸︷︷︸

=g

〉V(Σ) .

Since Hf is convex, the Bregman distance Dη̂
Hf

(g,Kû) is non-negative, i.e.

Dη̂
Hf

(g,Kû) = Hf (g)−Hf (Kû)− 〈η̂, g −Kû〉V(Σ) ≥ 0 ,

for η̂ ∈ ∂Hf (Kû). Hence, we obtain

〈η̂, Kû− g〉V(Σ) ≥ Hf (Kû)−Hf (g) .

As a consequence, this yields (5.2).

We can further generalize the estimate of Theorem 5.1 to obtain the second important general
estimate in this work.

Theorem 5.2 (Basic Estimate II). Let (Hf , J,K) ∈ C(V(Σ),W(Ω),U(Ω)), for compact and
bounded sets Ω and Σ. Then, if the source condition (SC1) is fulfilled, the error estimate

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤ (1 + c)Hf (g)

− α〈q, f − g〉V(Σ) − cHf (g)

+ α〈q, f −Kû〉V(Σ) − cHf (Kû)

(5.3)

holds, for c ∈]0, 1[.
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Proof. Due to Theorem 5.1 we have

Hf (Kû) + αDsymm
J (û, ũ) ≤ Hf (g)− α〈q,Kû− g〉V(Σ) .

The left hand side is equivalent to

(1− c)Hf (Kû) + αDsymm
J (û, ũ) + cHf (Kû) ,

while the right-hand side can be rewritten to

(1 + c)Hf (g)− α〈q,Kû− g〉V(Σ) − cHf (g) ,

for c ∈]0, 1[, without affecting the inequality. The dual product 〈q,Kû − g〉V(Σ) is equivalent to
〈q, f +Kû− g − f〉V(Σ) and hence we have

−α〈q,Kû− g〉V(Σ) = −α〈q, f − g〉V(Σ) + α〈q, f −Kû〉V(Σ) .

Subtracting cHf (Kû) on both sides and replacing −α〈q,Kû− g〉V(Σ) by
−α〈q, f − g〉V(Σ) + α〈q, f −Kû〉V(Σ) yields (5.3).

In Section 5.2 these two basic estimates will allow us to easily derive specific error estimates
for the fidelities described in Section 4.2.

5.1.2 A Dual Perspective

In the following we provide a formal analysis in terms of Fenchel duality, which highlights a general
way to obtain error estimates and provides further insights. In order to make the approach rigorous
one needs to check detailed properties of all functionals allowing to pass to dual problems formally
(cf. Section 2.6.2), which is however not our goal here.

In order to formulate the dual approach we redefine the fidelity to Gf (Ku − f) := Hf (Ku).
Under appropriate conditions, Theorem 2.7 implies the primal-dual relation

inf
u∈W(Ω)

[
1

α
Gf (Ku− f) + J(u)

]
= − inf

q∈V(Σ)∗

[
J∗(K∗q)− 〈q, f〉V(Σ) +

1

α
G∗f (−αq)

]
as well as a relation between the minimizers û of the primal and q̂ of the dual problem, namely

K∗q̂ ∈ ∂J(û), û ∈ ∂J∗(K∗q̂).

More precisely, the optimality condition for the dual problem becomes

Kû− f − r = 0, r ∈ ∂G∗f (−αq̂).

If the exact solution ũ satisfies a source condition with source element d (i.e. K∗d ∈ ∂J(ũ)), then
we can use the dual optimality condition and take the duality product with q̂ − d, which yields

〈K(û− ũ), q̂ − d〉V(Σ)∗ =
1

α
〈r, (−αd)− (−αq̂)〉V(Σ)∗ + 〈f − g, q̂ − d〉V(Σ)∗ .

One observes that the left hand side equals

Dsymm
J (û, ũ) = 〈û− ũ,K∗(q̂ − d)〉U(Ω)∗ ,
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i.e. the Bregman distance we want to estimate. Using r ∈ ∂G∗f (−αq̂) we find

〈r, (−αd)− (−αq̂)〉V(Σ)∗ ≤ G∗f (−αd)−G∗f (−αq̂).

Under the standard assumption Gf (0) = 0 we find that G∗f is nonnegative and hence in the
noise-free case (f = g) we end up with the estimate

Dsymm
J (û, ũ) ≤ 1

α
G∗f (−αd).

Hence the error in terms of α is determined by the properties of the convex conjugate of Gf . For
typical smooth fidelities Gf we have G∗f (0) = 0 and (G∗f )′(0) = 0, hence 1

αG
∗
f (−αd) will at least

grow linearly for small α, which will also be confirmed by our results below.
In the applications to specific noise models our strategy will be to estimate the terms on the

right-hand side of (5.3) by quantities like G∗f (−αd) and then work out the detailed dependence
on α.

5.1.3 General Estimates with Strong Source Condition

In contrast to Section 5.1.1 we want to consider error estimates for a rather general class of func-
tionals such that the strong source condition (SC2), inspired by [105], has to be satisfied. We
therefore consider variational minimization problems like (4.14), such that F fulfills the scaling
property (4.13). In case of this specific type of data fidelity (SC2) has a very intuitive interpreta-
tion, as the following lemma states.

Lemma 5.3. Let F : V(Σ)→ R ∪ {∞} satisfy a scaling property (4.13). Then, the strong source
condition (SC2) is equivalent to the existence of a function u ∈ U(Ω) for which ũ, satisfying (2.3),
is a valid, existing minimizer of (4.14) with data f = Ku, i.e.

ũ = arg min
u∈W(Ω)

{F (Ku−Ku) + αJ(u)} .

Proof. ”⇐”: Since ũ is supposed to be a minimizer of (4.14) for f = Ku, the optimality condition

0 = K∗F ′(Kũ−Ku) + αξ , ξ ∈ ∂J(ũ)

needs to be satisfied. We can rewrite this equation to

ξ = −K∗F ′
(
s

(
1

α

)
(Kũ−Ku)

)
,

which implies that (SC2) is fulfilled, with v = s(1/α)(û− u).
”⇒”: If we assume that (SC2) holds, we have

K∗F ′(Kv) + ξ = 0 , ξ ∈ ∂J(ũ)

which we can multiply with α to obtain

K∗F ′(s(α)Kv) + αξ = 0 .

Defining u = ũ− s(α)v finally yields

K∗F ′(Kũ−Ku) + αξ = 0 .
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In contrast to Lemma 5.1, Lemma 5.3 states that (SC2) is equivalent to ũ being a minimizer
of (4.14) with some exact data in the range of K, i.e. the input data g can be represented as Ku
with some exact data u.

Lemma 5.3 will allow us to derive a similar estimate for noise-free data g as in [105, Theorem
2.1] for variational minimization problems of the type (4.14).

Theorem 5.3. Let (F, J,K) ∈ C(V(Σ),W(Ω),U(Ω)) be satisfied, for reflexive Banach spaces
U(Ω), W(Ω) and V(Σ), such that F satisfies a scaling property (4.13) with scaling function s,
and such that (F ′)−1 exists. Moreover, we assume the regularization functional J to be one-
homogeneous. Then, if the strong source condition (SC2) is fulfilled and if we have exact, noise-
free data f = g, the error estimate

Dξ
J(û, ũ) ≤ Dξ

J(ũ+ s(α)v, ũ) (5.4)

holds.

Proof. We know that û is the solution of

û = arg min
u∈W(Ω)

{
1

α
F (Ku− g) + J(u)

}
.

Since all underlying Banach spaces are assumed to be reflexive, we can apply Theorem 2.7 to
obtain the relation

inf
u∈W(Ω)

{
1

α
F (Ku− g) + J(u)

}
= sup

w∈V(Σ)∗

{
− 1

α
F ∗(αw)− J∗(−K∗w)− 〈w, f〉V(Σ)

}
with the convex-conjugates F ∗ and J∗. Considering the optimality condition of the dual problem
yields

0 = −(F ∗)′(αŵ) +Kû− g , û ∈ ∂J∗(−K∗ŵ)

⇔ 0 = Kû−Kũ− s(α)(F ∗)′(ŵ) , (5.5)

since we have

(F ∗)′(αw) = (F ∗)′(αF ′((F ∗)′(w))) = (F ∗)′(F ′(s(α)(F ∗)′(w))) = s(α)(F ∗)′(w) ,

because of Lemma 2.7. Due to Lemma 5.3 we know that (SC2) is equivalent to the existence of
a function u ∈ W(Ω) such that ũ satisfying (2.3) is the solution of

ũ = arg min
u∈W(Ω)

{F (Ku−Ku) + αJ(u)} .

In analogy to the previous variational minimization problem we can apply Theorem 2.7 to obtain
the dual optimality condition

0 = Kũ−Ku+ s(α)(F ∗)′(w̃) , ũ ∈ ∂J∗(−K∗w̃)

⇔ 0 = s(α)Kv − s(α)(F ∗)′(w̃) (5.6)

with u = ũ− s(α)v.
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If we subtract (5.6) from (5.5), and if we take the duality product with w̃ − ŵ, such that
ξ = −K∗w̃ ∈ ∂J(ũ) and p̂ = −K∗ŵ ∈ ∂J(û) holds, we obtain

0 = 〈w̃ − ŵ,K(û− ũ− s(α)v)〉V(Σ) − s(α)
〈
w̃ − ŵ, (F ∗)′(ŵ)− (F ∗)′(w̃)

〉
U(Ω)∗

⇔ 0 = 〈p̂− ξ, û− ũ− s(α)v〉U(Ω) + s(α)
〈
ŵ − w̃, (F ∗)′(ŵ)− (F ∗)′(w̃)

〉
U(Ω)∗

. (5.7)

Since F ∗ is convex (due to Lemma 2.5) we know that (F ∗)′ is a monotone operator, and therefore〈
ŵ − w̃, (F ∗)′(ŵ)− (F ∗)′(w̃)

〉
U(Ω)∗

≥ 0

is fulfilled. Together with (5.7) this implies

〈p̂− ξ, û− ũ− s(α)v〉U(Ω) ≤ 0 (5.8)

If we consider the Bregman distance Dξ
J(û, ũ), we easily see that together with (5.8) we have

Dξ
J(û, ũ) = J(û)− J(ũ)− 〈ξ, û− ũ〉U(Ω) , ξ ∈ ∂J(ũ)

≤ J(û)− J(ũ)− 〈ξ, û− ũ〉U(Ω) − 〈p̂− ξ, û− ũ− s(α)v〉U(Ω)

= J(û)− J(ũ)− 〈p̂, û− ũ〉U(Ω) + 〈p̂− ξ, s(α)v〉U(Ω)

≤ 〈p̂, ũ〉U(Ω) − J(ũ) + 〈p̂− ξ, s(α)v〉U(Ω) ,

with the last inequality being a consequence of the subdifferential property J(û) − 〈p̂, û〉U(Ω) ≤
J(0) = 0. Hence, we can derive the desired estimate via

Dξ
J(û, ũ) ≤ 〈p̂, ũ+ s(α)v〉U(Ω) − J(ũ)− 〈ξ, s(α)v〉U(Ω)

≤ J(ũ+ s(α)v)− J(ũ)− 〈ξ, ũ+ s(α)v − ũ〉U(Ω) = Dξ
J(ũ+ s(α)v, ũ) ,

since J is assumed to be one-homogeneous, which implies 〈p̂, ũ+ s(α)v〉U(Ω) ≤ J(ũ+ s(α)v) due
to Lemma 2.4. Hence, we have achieved the desired estimate.

Remark 5.1. Note that for F (Ku− g) = 1/2‖Ku− g‖2L2(Σ) we have s(α) = α and therefore we
end up with

Dξ
J(û, ũ) ≤ Dξ

J(ũ+ αv, ũ) , (5.9)

which is exactly the result obtained in [105].

5.2 Application to Specific Fidelities

We want to use the basic error estimates derived in Section 5.1 to derive specific error estimates
for the fidelities presented in Section 4.2. In the following it will be assumed that the operator K
will satisfy the conditions of Theorem 5.1 and Theorem 5.2.
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5.2.1 Squared L2-Fidelity

Error estimates in the context of Bregman distances for the standard fidelity choice of a squared
L2-fidelity have been considered in [28] first, and have been generalized to Bregman iteration- and
ISS-schemes in [30]. The estimate that has been established in that case is (cf. [30, Theorem 3.1])

1

2
‖Kû− g‖2L2(Σ) + αDsymm

J (û, ũ) ≤ δ2

2
+
α2

2
‖q‖2L2(Σ) . (5.10)

We are going to see that with the use of Theorem 5.2 we can find a very similar estimate to (5.10)
but with the exact data g on the left hand side of (5.10) replaced by the noisy data f . First of
all we need to prove the following lemma.

Lemma 5.4. Let α, ϕ and γ be real numbers, i.e. α,ϕ, γ ∈ R. Furthermore, let c ∈]0, 1[. Then,
the family of functions

hn(x) := (−1)nαγ(ϕ− x)− c

2
(ϕ− x)2 ,

for x ∈ R and n ∈ N, are strictly concave and have their unique maxima at

xhn = ϕ− (−1)n
α

c
γ

and are therefore bounded by

hn(x) < hn(xhn) =
α2

2c
γ2 .

Proof. It is easy to see that h
′′
n(x) = −c < 0 and hence, hn is strictly concave for all n ∈ N. The

unique maxima xhn can be computed via h
′
n(xhn) = 0. Finally, since hn is strictly concave for all

n ∈ N, hn(xhn) has to be a global maximum.

We can use Lemma 5.4 to prove the following estimate.

Theorem 5.4. Let û satisfy the optimality condition (4.17) and let ũ denote the exact solution
of (2.3). Furthermore, the difference between exact data g and noisy data f is bounded in the
L2-norm, i.e. ‖f − g‖L2(Σ) ≤ δ and (SC1) holds. Then, for the symmetric Bregman distance

Dsymm
J (û, ũ) for a specific regularization functional J , such that

(Hf , J,K) ∈ C(L2(Σ),W(Ω),U(Ω))

is satisfied, the estimate

1− c
2
‖Kû− f‖2L2(Σ) + αDsymm

J (û, ũ) ≤ 1 + c

2
δ2 +

α2

c
‖q‖2L2(Σ) (5.11)

holds.

Proof. We have (Hf , J,K) ∈ C(L2(Σ),W(Ω),U(Ω)) and therefore are allowed to apply Theorem
5.1 and Theorem 5.2, which leads to

1− c
2
‖Kû− f‖2L2(Σ) + αDsymm

J (û, ũ) ≤ 1 + c

2
δ2

− α〈q, f − g〉L2(Σ) −
c

2
‖g − f‖2L2(Σ)

+ α〈q, f −Kû〉L2(Σ) −
c

2
‖Kû− f‖2L2(Σ)

.
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The pointwise application of Lemma 5.4 on the functionals of the right-hand side yields

−α〈q, f − g〉L2(Σ) −
c

2
‖g − f‖2L2(Σ) ≤

α2

2c
‖q‖2L2(Σ) ,

and

α〈q, f −Kû〉L2(Σ) −
c

2
‖Kû− f‖2L2(Σ) ≤

α2

2c
‖q‖2L2(Σ) .

Substitution of these estimates yields the overall estimate (5.11).

Remark 5.2. Note that in the limiting case c→ 1 the right-hand side of estimate (5.11) equals
the right-hand side of estimate (5.10) up to a factor of two. The estimate (5.11) therefore is not
as sharp as (5.10), but at least reveals the same asymptotic behavior. Furthermore, a significant
difference between the estimates is that in the left hand side of (5.10) the L2-norm between Kû
and the exact data g has been considered, while the estimate (5.11) only involves considering the
L2-norm between Kû and the noisy data f .

5.2.2 General Norm Fidelity

With the use of Theorem 5.1 we can – in analogy to the error estimates for the exact penalization
model in [28] – obtain the following estimate for Hf (Ku) := ‖Ku− f‖V(Σ), with û satisfying the
optimality condition (4.19) and ũ being the exact solution of (2.3).

Theorem 5.5. Let û satisfy the optimality condition (4.19) and let ũ denote the exact solution
of (2.3). Furthermore, the difference between exact data g and noisy data f is bounded in the
V-norm, i.e. ‖f − g‖V(Σ) ≤ δ, and (SC1) holds. Then, for the symmetric Bregman distance

Dsymm
J (û, ũ) for a specific regularization functional J , such that

(Hf , J,K) ∈ C(V(Σ),W(Ω),U(Ω))

is satisfied, the estimate(
1− α ‖q‖V(Σ)∗

)
Hf (Kû) + αDsymm

J (û, ũ) ≤
(

1 + α ‖q‖V(Σ)∗

)
δ (5.12)

holds. Furthermore, for α < 1
‖q‖V(Σ)∗

, we obtain

Dsymm
J (û, ũ) ≤ δ

(
1

α
+ ‖q‖V(Σ)∗

)
. (5.13)

Proof. Since we have (Hf , J,K) ∈ C(V(Σ),W(Ω),U(Ω)), we obtain (due to Theorem 5.1)

Hf (Kû) + αDsymm
J (û, ũ) ≤ Hf (g)︸ ︷︷ ︸

≤δ

−α〈q,Kû− g〉V(Σ)

≤ δ − α〈q,Kû− f + f − g〉V(Σ)

= δ − α
(
〈q,Kû− f〉V(Σ)

+〈q, f − g〉V(Σ)

)
≤ δ + α ‖q‖V(Σ)∗

(
‖Kû− f‖V(Σ)

+ ‖f − g‖V(Σ)

)
≤ δ + α ‖q‖V(Σ)∗

(
‖Kû− f‖V(Σ) + δ

)
,
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which leads to (5.12). If we insert Hf (Kû) = ‖Kû− f‖V(Σ) and set α < 1
‖q‖V(Σ)∗

we can subtract

‖Kû− f‖V(Σ) on both sides. If we divide by α we obtain (5.13).

As expected from the dual perspective above, we obtain in case of exact data (δ = 0) for α
sufficiently small

Dsymm
J (û, ũ) = 0, Hg(Kû) = 0.

For larger α no useful estimate is obtained. In the noisy case we can choose α small but indepen-
dent of δ and hence obtain

Dsymm
J (û, ũ) = O(δ).

We remark on the necessity of the source condition (SC1). In usual converse results one proves
that a source condition needs to hold if the distance between the reconstruction and the exact
solution satisfies a certain asymptotic in δ (cf. [94]). Such results so far exist only for quadratic
fidelity and special regularizations and cannot be expected for general Bregman distance estimates
– even less with non-quadratic fidelity models. We shall therefore only look at the asymptotics
of Hf in the noise free case and argue that for this asymptotic the source condition is necessary
(at least in some sense). In case of a general norm fidelity this is particularly simple due to the
asymptotic exactness for α small. The optimality condition K∗ŝ+ αp̂ = 0 can be rewritten as

p̂ = K∗q, p̂ ∈ ∂J(û), q ∈ V(Σ)∗,

with q = − 1
α ŝ. Since û is a solution minimizing J for α sufficiently small, we see that if the

asymptotic in α holds, there exists a solution of Ku = g with minimal J satisfying (SC1).

5.2.3 Kullback-Leibler Fidelity

In case of Poisson noise the source condition can be written as

∃ ξ ∈ ∂J(ũ), ∃ q ∈ L∞(Σ) : ξ = K∗q . (SCL1)

and we have the Kullback-Leibler fidelity

Hf (Ku) =

∫
Σ

[
f(y) ln

(
f(y)

(Ku)(y)

)
− f(y) + (Ku)(y)

]
dµ(y) ,

and a positivity constraint u ≥ 0. Theorem 5.2 will allow us to derive an error estimate of the
same order as known for quadratic fidelities. Before that, we have to prove the following lemma.

Lemma 5.5. Let α and ϕ be positive, real numbers, i.e. α,ϕ ∈ R+. Furthermore, let γ ∈ R be a
real number and c ∈]0, 1[. Then, the family of functions

hn(x) := (−1)nαγ(ϕ− x)− c
(
ϕ ln

(ϕ
x

)
− ϕ+ x

)
,

for x > 0 and n ∈ N, are strictly concave and have their unique maxima at

xhn =
ϕ

1 + (−1)n αc γ

and are therefore bounded by

hn(x) < hn(xhn) = (−1)nαγϕ− cϕ ln
(

1 + (−1)n
α

c
γ
)

,

for α
c |γ| < 1 and x 6= xhn.
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Proof. It is easy to see that h
′′
n(x) = −c ϕ

x2 < 0 and hence, hn is strictly concave for all n ∈ N.

The unique maxima xhn can be computed via h
′
n(xhn) = 0. Finally, since hn is strictly concave for

all n ∈ N, hn(xhn) has to be a global maximum.

Furthermore, we have to ensure the existence of u′ ≥ 0 with Ku′ ∈ dom(Hf ) and u′ ∈ dom(J),
such that Hf is continuous at Ku′. If e.g. dom(J) = BV(Ω), we do not obtain continuity of Hf at
Ku′ if K maps to e.g. L1(Σ). Therefore we restrict K to map to L∞(Σ). However, we still keep
(SCL1) to derive the error estimates, which corresponds to an interpretation of K mapping to L1.
This implies more regularity than needed, since one usually uses q in the dual of the image space,
which would mean q ∈ L∞(Σ)∗. For the latter we are not able to derive the same estimates. Note
however that the assumption of K mapping to L∞(Σ) is used only to deal with the positivity of
K. With the help of Lemma 5.5 and the restriction of K, we are able to prove the following error
estimate.

Theorem 5.6. Let û satisfy the optimality condition (4.25) with K : U(Ω) → L∞(Σ) satisfying
N (K) = {0}, let ũ denote the exact solution of (2.3) and let f be a probability density measure,
i.e.

∫
Σ f dµ(y) = 1. Furthermore, the difference between noisy data f and exact data g is bounded

in the Kullback-Leibler measure, i.e.∫
Σ

[
f ln

(
f

g

)
− f + g

]
dµ(y) ≤ δ

and (SCL1) holds. Then, for c ∈]0, 1[ and α < c
‖q‖L∞(Σ)

, the symmetric Bregman distance

Dsymm
J (û, ũ) for a specific regularization functional J , such that

(Hf , J,K) ∈ C(L1(Σ),W(Ω),U(Ω))

is satisfied, is bounded via

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤ (1 + c)δ − c ln

(
1− α2

c2
‖q‖2L∞(Σ)

)
. (5.14)

Proof. We have (Hf , J,K) ∈ C(L1(Σ),W(Ω),U(Ω)). Using an analogous proof as in Theorem 5.2
with the non-negativity of û being incorporated in a variational inequality, we can still derive (5.3)
in this case. Hence, we have to investigate −α〈q, f − g〉L1(Σ) − cHf (g) and α〈q, f −Kû〉L1(Σ) −

cHf (Kû). If we consider both functionals pointwise and force α2 <
(
c
q

)2
, we can use Lemma 5.5

to estimate

−α〈q, f − g〉L1(Σ) − cHf (g) ≤
∫
Σ

f
(
−αq − c ln

(
1− α

c
q
))

dµ(y)

and

α〈q, f −Kû〉L1(Σ) − cHf (Kû) ≤
∫
Σ

f
(
αq − c ln

(
1 +

α

c
q
))

dµ(y) .

Adding these terms together yields the estimate

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤(1 + c)Hf (g)︸ ︷︷ ︸

≤δ

+

∫
Σ

f

(
−c ln

(
1− α2

c2
q2

))
dµ(y) .
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It is easy to see that for α < c
‖q‖L∞(Σ)

we have

− ln
(

1− α2

c2
q2
)
≤ − ln

(
1− α2

c2
‖q‖2L∞(Σ)

)
. Hence, for positive f we obtain

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤(1 + c)δ

+

∫
Σ

f

(
−c ln

(
1− α2

c2
‖q‖2L∞(Σ)

))
dµ(y)

=(1 + c)δ − c ln

(
1− α2

c2
‖q‖2L∞(Σ)

)∫
Σ

f dµ(y)

︸ ︷︷ ︸
=1

and hence, (5.14) holds.

One observes from a Taylor approximation of the second term on the right-hand side of (5.14)
around α = 0 that

Hf (Kû) = O
(
δ + α2

)
, Dsymm

J (û, ũ) = O
(
δ

α
+ α

)
for small α, which is analogous to the quadratic case.

Remark 5.3. The assumption N (K) = {0} is very strict. If N (K) is larger, the error estimate is
still satisfied since Hf is convex (no longer strictly convex) and the terms −α〈q, f−g〉L1(Σ)−cHf (g)
and α〈q, f −Kû〉L1(Σ)− cHf (Kû) are concave (instead of being strictly concave). Hence, Lemma
5.5 can still be applied to find an upper estimate, the only difference is that there can be more
than just one maximum.

5.2.4 Multiplicative Noise Fidelities

In the case of multiplicative noise we are going to examine model (4.28) instead of (4.26), since
(4.28) is convex for all z and therefore allows the application of Theorem 5.2. The source condition
slightly differs, since there is no operator in (4.28). Therefore we get

∃ ξ ∈ ∂J(z̃), ∃ q ∈ L∞(Σ) : ξ = q . (zSCL1)

In analogy to the Poisson case we have to prove the following lemma first, to derive qualitative
and quantitative error estimates the case of multiplicative noise.

Lemma 5.6. Let α and ϕ be positive, real numbers, i.e. α,ϕ ∈ R+. Furthermore, let γ ∈ R be a
real number and c ∈]0, 1[. Then, the family of functions

kn(x) := (−1)nαγ(ϕ− x)− c(x+ ϕe−x − 1− ln(ϕ)) ,

for x > 0 and n ∈ N, are strictly concave and have their unique maxima at

xkn = − ln

(
c+ (−1)nαγ

cϕ

)
,



90 5.2. APPLICATION TO SPECIFIC FIDELITIES

for α
c |γ| < 1. Hence, kn is bounded via

kn(x) < kn(xkn) = αγ

(
(−1)n

(
ϕ+ ln

(
c+ (−1)nαγ

cϕ

))
− 1

)
+ c ln

(
c+ (−1)nαγ

c

)
,

for x 6= xkn.

Proof. Similarly to Lemma 5.5, it can easily be shown that k
′′
n(x) = −cϕe−x < 0 for all x ∈ R+

and hence, the kn are strictly concave for all n ∈ N. The arguments xkn are computed to satisfy
k
′
n(xkn) = 0. Since the kn are strictly concave, kn(xkn) has to be a global maximum for all n ∈ N.

With the help of Lemma 5.6 we are able to prove the following error estimate.

Theorem 5.7. Let ẑ satisfy the optimality condition (4.29) and let z̃ denote the solution of
z̃ = ln (Kũ) = ln(g), with ũ being the exact solution of (2.3). Furthermore, the difference between
noisy data f and exact data g is bounded in the measure of (4.26), i.e.∫

Σ

[
ln

(
g

f

)
+
f

g
− 1

]
dµ(y) ≤ δ

and (zSCL1) holds. Then, for c ∈]0, 1[ and α < c
‖q‖L∞(Σ)

, the symmetric Bregman distance

Dsymm
J (ẑ, z̃) for a specific regularization functional J such that

(Hf , J, Id) ∈ C(L1(Σ),W(Σ),U(Σ))

is satisfied, is bounded via

(1− c)Hf (ẑ) + αDsymm
J (ẑ, z̃) ≤(1 + c)δ + α |Σ| ‖q‖L∞(Σ) ln

(
c+ α ‖q‖L∞(Σ)

c− α ‖q‖L∞(Σ)

)
. (5.15)

Proof. First of all we have Hf ∈ C(L1(Σ),W(Σ),U(Σ)). Furthermore, there exists u′ with Ku′ ∈
dom(Hf ) and u′ ∈ dom(J), such that Hf is continuous at Ku′. Hence, we can apply Theorem
5.2 to obtain (5.3). Therefore, we have to consider the functionals −α〈q, f − g〉L1(Σ)− cHf (g) and
α〈q, f − ẑ〉L1(Σ) − cHf (ẑ) pointwise. Due to Lemma 5.6 we have

− α〈q, f − g〉L1(Σ) − cHf (g) + α〈q, f − ẑ〉L1(Σ) − cHf (ẑ)

≤
∫
Σ

αq

(
1− f − ln

(
c− αq
cf

))
+ c ln

(
c− αq
c

)
dµ(y)

+

∫
Σ

αq

(
f + ln

(
c− αq
cf

)
− 1

)
+ c ln

(
c+ αq

c

)
dµ(y)

= α

∫
Σ

q

(
ln

(
c+ αq

cf

)
− ln

(
c− αq
cf

))
︸ ︷︷ ︸

=ln
(
c+αq
c−αq

)
dµ(y)

+ c

∫
Σ

(
ln

(
c+ αq

c

)
+ ln

(
c− αq
c

))
︸ ︷︷ ︸

=ln
(

1−α2

c2
q2

)
dµ(y) ,
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for α < c
q . It is easy to see that q ln

(
c+αq
c−αq

)
≤ ‖q‖L∞(Σ) ln

(
c+α‖q‖L∞(Σ)

c−α‖q‖L∞(Σ)

)
. Furthermore, it

can also easily be verified that the function l(x) := ln
(

1− α2

c2
x2
)

is strictly concave and has

its unique global maximum l(x) = 0 at x = 0. Hence, if we consider ln
(

1− α2

c2
q2
)

pointwise,

c
∫

Σ ln
(

1− α2

c2
q2
)
dµ(y) ≤ 0 has to hold. Inserting these estimates into (5.3) yields (5.15).

Again a Taylor approximation of the second term on the right-hand side of (5.15) around
α = 0 yields the asymptotic behavior

Hf (Kû) = O
(
δ + α2

)
, Dsymm

J (û, ũ) = O
(
δ

α
+ α

)
.

For the multiplicative noise model (4.31) we can assume the considered functions to be L1

functions, and hence, the source condition for this particular model again is (SCL1). In order to
prove an error estimate via Theorem 5.2 we need the following Lemma.

Lemma 5.7. Let α,ϕ and γ be positive, real numbers, i.e. α,ϕ, γ ∈ R>0. Furthermore, let c be
a real number with c ∈]0, 1[. Then, the function

h1(x) := −αγ(ϕ− x)− c
(

(x− ϕ)2

x

)
for x > 0 and 0 < γ < c/α is strictly concave and has its unique maximum at

xh1 = − ϕ√
1− α

c γ

and is therefore bounded by

h1(x) < h1(xh1) =
ϕ
(√

1− α
c γ + 1

) (
c
(√

1− α
c γ + 1

)
− αγ

)√
1− α

c γ
. (5.16)

Moreover, the function

h2(x) := αγ(ϕ− x)− c
(

(x− ϕ)2

x

)
for x > 0 and 0 < γ < c/α is strictly concave and has its unique maximum at

xh2 =
ϕ√

1 + α
c γ

and is globally bounded by

h2(x) < h2(xh2) =
−ϕ

(√
1 + α

c γ − 1
) (
c
(√

1 + α
c γ − 1

)
− αγ

)√
1 + α

c γ
.
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Proof. We immediately see that h1 and h2 are strictly concave, since we have h′′1(x) = h′′2(x) =
−(2cϕ2)/(x3) < 0 for ϕ 6= 0, c > 0 and x > 0. Solving the optimality condition h1(x1,2) = 0
actually yields x1,2 = ±ϕ/

√
1− (αq)/c. Inserting x1,2 into h1 leads to the two options

h1(x1,2) =


−ϕ(
√

1−α
c
γ−1)(c(

√
1−α

c
γ−1)+αγ)√

1−α
c
γ

ϕ(
√

1−α
c
γ+1)(c(

√
1−α

c
γ+1)−αγ)√

1−α
c
γ

.

For γ < c/α and ϕ we can compute that

−ϕ
(√

1− α

c
γ − 1

)(
c

(√
1− α

c
γ − 1

)
+ αγ

)
< ϕ

(√
1− α

c
γ + 1

)(
c

(√
1− α

c
γ + 1

)
− αγ

)
is always satisfied and hence, (5.16) is the global maximum. The proof for the estimate of h2 can
be done in a completely analogous way.

The use of Lemma 5.7 allows us to prove the following theorem.

Theorem 5.8. Let û satisfy the optimality condition (4.32) with K : U(Ω) → L∞(Σ) satisfying
N (K) = {0}, let ũ denote the exact solution of (2.3) and let f be a probability density measure,
i.e.

∫
Σ f dµ(y) = 1. Furthermore, the difference between noisy data f and exact data g is bounded

in the terms of the fidelity (4.30), i.e.∫
Σ

[
(g − f)2

g

]
dµ(y) ≤ δ

and (SCL1) holds. Then, for c ∈]0, 1[ and α < c
‖q‖L∞(Σ)

, the symmetric Bregman distance

Dsymm
J (û, ũ) for a specific regularization functional J , such that

(Hf , J,K) ∈ C(L1(Σ),W(Ω),U(Ω))

is satisfied, is bounded via

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤ (1 + c)δ + 2c

(
2 +

√
1 +

α

c
‖q‖L∞(Σ) −

√
1− α

c
‖q‖L∞(Σ)

)
.

(5.17)

Proof. Similar to the proof of Theorem 5.6 we have (Hf , J,K) ∈ C(L1(Σ),W(Ω),U(Ω)). Again,
we can use an analogous proof as in Theorem 5.2 with the non-negativity of û being incorporated
in a variational inequality, and therefore we are still able to derive (5.3). Hence, we have to
investigate −α〈q, f −g〉L1(Σ)− cHf (g) and α〈q, f −Kû〉L1(Σ)− cHf (Kû) again. We consider both
functionals pointwise and force α < c

q in order to use Lemma 5.7 to estimate

−α 〈q, f − g〉L1(Σ) − cHf (g) ≤
∫

Σ
f

((√
1− α

c q + 1
) (
c
(√

1− α
c q + 1

)
− αq

)√
1− α

c q

)
dµ(y)
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and

α 〈q, f −Kû〉L1(Σ) − cHf (Kû) ≤ −
∫

Σ
f

((√
1 + α

c q − 1
) (
c
(√

1 + α
c q − 1

)
− αq

)√
1 + α

c q

)
dµ(y) .

If we add both terms together we obtain the estimate

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤ (1 + c)δ + 2c

∫
Σ
f

(
2 +

√
1 +

α

c
q +

√
1− α

c
q

)
dµ(y) .

Since for −c/α < q < c/α we can estimate
√

1 + (αq)/c+
√

1− (αq)/c ≤
√

1 +
(
α‖q‖L∞(Σ)

)
/c+√

1−
(
α‖q‖L∞(Σ)

)
/c the estimate for the Bregman distance simplifies to

(1− c)Hf (Kû) + αDsymm
J (û, ũ) ≤ (1 + c)δ

+ 2c

(
2 +

√
1 +

α

c
‖q‖L∞(Σ) +

√
1− α

c
‖q‖L∞(Σ)

)∫
Σ
f dµ(y)︸ ︷︷ ︸

=1

,

and thus, equals (5.17).

As for the last two estimates a Taylor approximation of the second term on the right-hand
side of (5.15) around α = 0 yields the asymptotic behavior

Hf (Kû) = O
(
δ + α2

)
, Dsymm

J (û, ũ) = O
(
δ

α
+ α

)
.

Remark 5.4. Like in case of the Kullback-Leibler fidelity the assumption N (K) = {0} is not
really necessary. If N (K) is larger, the error estimate is still satisfied because Hf is yet convex
and the upper bounds for the terms −α〈q, f − g〉L1(Σ)− cHf (g) and α〈q, f −Kû〉L1(Σ)− cHf (Kû)
are not affected. Hence, Lemma 5.7 can still be applied in order to prove Theorem 5.8.

5.3 A-posteriori Parameter Choice

Before we start discussing the question of how to recover a function ũ exactly, we want to shortly
consider a-posteriori parameter choices for variational problems. A typical a-posteriori parameter
choice rule is the discrepancy principle. For a general norm fidelity ‖Ku− f‖V(Σ) the discrepancy
principle states that for a given noise bound ‖f − g‖V(Σ) ≤ δ the solution û of a regularized
variational problem should satisfy ‖Kû− f‖V(Σ) ≤ δ, i.e.

û ∈ arg min
u∈W(Ω)

{J(u)} , (5.18)

subject to

‖Ku− f‖V(Σ) ≤ δ . (5.19)

We can reformulate this problem to

û ∈ arg min
u∈W(Ω)

{
Xδ
(
‖Ku− f‖V(Σ)

)
+ J(u)

}
, (5.20)
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with Xδ being the characteristic function

Xδ(v) :=

{
0 if v ≤ δ
+∞ else

,

as introduced in Example 2.15 and Example 2.16. With the use of the triangular inequality of
the norm and the monotonicity and convexity of the characteristic function it can easily be seen

that Xδ
(
‖Ku− f‖V(Σ)

)
is convex and by setting Hf (Ku) = Xδ

(
‖Ku− f‖V(Σ)

)
we can apply

Lemma 5.2 to obtain the following theorem.

Theorem 5.9. Let ũ denote the exact solution of (2.3) and let the source condition (SC1) be
fulfilled. If there exists a minimal solution û satisfying (5.18) subject to (5.19) and if ‖f − g‖V(Σ)

is also bounded by δ, the error estimate

Dξ
J(û, ũ) ≤ 2δ ‖q‖V(Σ)∗

holds.

Proof. If we apply Lemma 5.2 to the variational problem (5.20) we obtain

Xδ

‖Kû− f‖V(Σ)︸ ︷︷ ︸
≤δ


︸ ︷︷ ︸

=0

+Dξ
J(û, ũ) ≤ Xδ

‖f − g‖V(Σ)︸ ︷︷ ︸
≤δ


︸ ︷︷ ︸

=0

−〈q,Kû− g〉V(Σ)

= −
(
〈q,Kû− f〉V(Σ) + 〈q, f − g〉V(Σ)

)
≤ ‖q‖V∗(Σ)

‖Kû− f‖V(Σ)︸ ︷︷ ︸
≤δ

+ ‖f − g‖V(Σ)︸ ︷︷ ︸
≤δ


= 2δ ‖q‖V(Σ)∗

Remark 5.5. Obviously a discrepancy principle can also be considered for general fidelities, not
only for norm fidelities, i.e. we replace ‖Ku− f‖V(Σ) in (5.19) by a general fidelity Hf (Ku). In
that case we can add and subtract the terms cHf (Kû) and cHf (g) for c > 0 in order to compute
estimates for 〈q, f − g〉V(Σ) − cHf (g) and 〈q, f − Kû〉V(Σ) − cHf (Kû) similar as in Lemma 5.5
and Lemma 5.6), and in addition make us of the estimate cHf (Kû) + cHf (g) ≤ 2cδ. For the
Kullback-Leibler fidelity we therefore would obtain the estimate

Dξ
J(û, ũ) ≤ 2cδ − c ln

(
1−
‖q‖2L∞(Σ)

c2

)
,

for c > 0 and ‖q‖L∞(Σ) < c. For the multiplicative-noise fidelities the corresponding error esti-
mates would read as

Dξ
J(û, ũ) ≤ 2cδ + |Σ|‖q‖L∞(Σ) ln

(
c+ ‖q‖L∞(Σ)

c− ‖q‖L∞(Σ)

)
,
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or respectively

Dξ
J(û, ũ) ≤ 2c

δ + 2 +

√
1 +
‖q‖2L∞(Σ)

c
−

√
1−
‖q‖2L∞(Σ)

c

 ,

also for c > 0 and ‖q‖L∞(Σ) < c.
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Chapter 6

Ground States and Eigenfunctions

In this chapter we want to move beyond error estimates, and address the question of exact
recovery. In the previous Chapter 5 we have focused our attention on estimating upper bounds
for the Bregman distance between the true but unknown solution ũ and the solution û of the
variational framework (2.9), for arbitrary input data f . In this chapter, we want to focus on
particular input data. We assume that the input data is given as the operator K of the inverse
problem (2.3) applied to an Eigenfunction of a specific regularization functional. Throughout
this chapter, we are going to show that with the use of the Bregman distance we will be able
to prove that the solution of the variational framework (2.8) with this specific input data is the
Eigenfunction itself, up to a constant factor. The chapter is organized as follows. First of all,
we are going to introduce the terminology of Eigenfunctions, and present numerous examples of
Eigenfunctions for the regularization functionals presented in Section 4.1. Subsequently, we will
prove that for data given in terms of an Eigenfunction, the Eigenfunction can be recovered up to
a constant factor by the use of (2.8), even in the presence of noise.

6.1 Ground States

In the context of variational schemes like (2.8), we are particularly interested in non-trivial Ground
States of the regularization energy. Therefore we define Ground States as follows.

Definition 6.1. Let J : dom(J) ⊆ L2(Ω)→ R ∪ {+∞} be a proper functional and K : L2(Ω)→
L2(Σ) a linear operator. Then, a Ground State u0 is defined as

u0 = arg min
u∈dom(J)
‖Ku‖L2(Σ)=1

{J(u)} . (6.1)

Note that Ground States may not be unique. In the following we want to give some examples
of Ground States for the regularization energies of Chapter 4, Section 4.1. For simplicity we
assume K = I.

Example 6.1. In case of J(u) = ‖u‖`1 every basis element of the canonical basis (ej)j∈{1,...,N},

with ej = (0, 0, . . . , 0, 1, 0, . . . , 0)T having a single one at j-th position and zeros everywhere else,
is a Ground State of J .

Example 6.2. In case of Total Variation regularization, i.e J(u) = TV(u), it is easy to see that
u0 can be determined as the constant function u0 ≡ 1/|Ω|, with |Ω| denoting the cardinality of
the underlying set Ω, since TV(u) ≡ 0 iff u is constant.

97
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Example 6.3. For regularization energies that incorporate second-oder derivatives, as e.g. TV2

or second-order ICTVβ and GTVβ, every affine-linear function yields J(u) ≡ 0. Hence, the
Ground States u0 are all functions u0(x) = ax+ b for which the constants a and b are chosen such
that

a =
1− b|Ω|∫

Ω x dx

holds.

6.2 Eigenfunctions

Similar to the characterization of Eigenfunctions of linear operators as in case of quadratic varia-
tional schemes we want to define Eigenfunctions for the scheme (2.8), especially in case of singular
and one-homogeneous regularization energies.

Definition 6.2. Let J : dom(J) ⊆ L2(Ω) → R ∪ {+∞} be a convex functional with non-empty
subdifferential ∂J and let K : L2(Ω) → L2(Σ) be a linear operator. Then, every function u 6= 0
that satisfies

λK∗Ku ∈ ∂J(u)

is called Eigenfunction of J with corresponding Eigenvalue λ.

Remark 6.1. The Ground State is a trivial Eigenfunction, a fact that can be seen from a Lagrange
multiplier point of view. If we rewrite condition (6.1) in terms of the Lagrange multiplier

L(u;λ) = J(u) +
λ

2

(
1− ‖Ku‖2L2(Ω)

)
,

then we obtain

λK∗Ku ∈ ∂J(u) ,

as the equation for the optimality condition ∂uL = 0. Moreover, taking a dual product with u
yields the general Eigenvalue relation

λ =
J(u)

‖Ku‖2
L2(Ω)

in case of a one-homogeneous functional J . Hence, a Ground State u0 is an Eigenfunction with
Eigenvalue λ0 = J(u0)/‖Ku0‖2L2(Ω) = J(u0); moreover, we immediately see that for any other

Eigenvalue we have λ ≥ J(u0). Furthermore, Eigenvalues measure the ratio between J(u) and
‖Ku‖2L2(Ω) and are therefore a global measure of scale.

In order to point out the connection to standard Eigenfunction-theory and to present inter-
esting and revealing examples of Eigenfunctions, we are discussing examples of Eigenfunctions for
the regularization energies introduced in Section 4.1.
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6.3 Examples

To highlight the connection to standard Eigenfunction theory, we want to consider the quadratic
functional J(u) = 1/2‖∇u‖2L2(Ω) as a regularizer first. Since J is Fréchet-differentiable the sub-
differential consists of the Fréchet-derivative only, and the Eigenvalue Definition 6.2 in that case
reads as

λK∗Ku ∈ ∂J(u) = {−∆u} .

For the choice of K = I we therefore end up with the classical Eigenfunction-problem of the
Laplace operator, i.e.

−λu = ∆u

with its solutions

u(x) =

∞∑
n=1

an cos(bnx) ,

if
∑∞

n=1 b
2
n exists and λ =

∑∞
n=1 b

2
n holds, due to the Neumann-boundary conditions implied by the

optimality condition of (2.8) for J(u) = 1/2‖∇u‖2L2(Ω). Hence, Definition 6.2 is a generalization
of standard Eigenfunction-theory to subdifferential calculus.

In the following we want to show some typical non-trivial examples of Eigenfunctions for the
specific variational models consisting of an L2 fidelity and the regularization functionals introduced
in Chapter 4.

6.3.1 `1 Regularization

In the context of discrete `1-regularization as introduced in Section 4.1.2, the subgradient simply
reads as

∂‖u‖`1 = (sign(un))n∈{1,...,n} ,

as it has been shown in Section 2.6, Example 2.13. Hence, we basically need to find functions for
which K∗Ku is in their signum.

Example 6.4 (Dante’s Peak). In Example 6.1 we have already seen that Kronecker delta-
functions are Ground States of the `1-functional for K = I. Moreover, we know from Remark
6.1 that these Ground States are also Eigenfunctions with Eigenvalue λ = 1. If we consider a
semi-discrete operator K : `2 → L2(Σ), or a fully discrete operator K : `2 → `2, the following
theorem will state the logical consequence that any Kronecker δ multiplied by a factor 1/λ is an
Eigenfunction of the `1-norm with Eigenvalue λ.

Theorem 6.1. Let K : `1 → L2(Σ) be a linear operator with |〈K∗ei,Kej〉`2 | ≤ 1 for all i ∈
{1, . . . , n} and j ∈ {1, . . . , n}, such that i 6= j, and with |〈K∗ej ,Kej〉`2 | = 1. Then, ũ = δj/λ,
with λ ∈ R \ {0} and δ representing the Kronecker-δ-function, i.e.

δj =

{
1 if i = j

0 else
,

is an Eigenfunction of the `1-norm with Eigenvalue λ.
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Proof. If we evaluate q̃n := (K∗Kũ)n = 1/λ (K∗Kδj)n we easily see that λq̃n ∈ sign(ũn) holds, if
|〈K∗ej ,Kej〉`2 | = 1 and |〈K∗ei,Kej〉`2 | ≤ 1, for i ∈ {1, . . . , n} with i 6= j.

Remark 6.2. Consequently, for a fully discrete linear operator or matrix K : `2 → `2 this implies
that the `2-norms of the columns have to be less or equal to one; the `2-norm of the j-th column
needs to be exactly one.

6.3.2 Total Variation Regularization

In case of total variation regularization as introduced in Section 4.1.4 we have figured out that
the subdifferential of TV can be written as (4.5).

In the following, we assume K = I for the sake of simplicity and are going to present some
functions ũ for which we will prove that they are Eigenfunctions of TV, i.e. λũ ∈ ∂TV(ũ) for
λ ∈ R \ {0}. In order to prove that a function ũ is an Eigenfunction with Eigenvalue λ, we need
to find a function q such that the subdifferential conditions are satisfied, i.e.

1. divq = λũ, (in a weak sense)

2. q|∂Ω = 0,

3. ‖q‖L∞(Ω) = 1,

4. 〈divq, ũ〉L2(Ω) = TV(ũ).

If such a particular function q exists, then λũ ∈ ∂TV(ũ) holds.

The One-Dimensional Setting

In order to get familiar with Eigenfunctions of the ROF model we want to start considering
examples in one dimension. The subdifferential in 1D simplifies to

∂TV(u) =
{
p′ | p ∈ L∞0 ([a, b]), ‖p‖∞ = 1,

〈
p′, u

〉
L2([a,b])

= TV(u)
}

,

for x ∈ [a, b], a, b ∈ R with b > a. In the following, we are going to consider symmetric intervals,
i.e. b = −a, b ∈ R>0. Here and throughout this chapter L∞0 (Ω) denotes the space of all functions
in L∞(Ω) that vanish at the boundary in direction of the normals.

Example 6.5 (The Edge). As a first example we want to show that the function

ũ(x) = sign(x)

on the interval Ω = [−L,L], L > 0, is an Eigenfunction of TV with Eigenvalue λ = 1/L. Therefore,
we define the function

q(x) := (|x| − L)/L .

It is easy to see that q satisfies the subgradient properties, since we have

• q′(x) = sign(x)/L = λũ,

• q(L) = q(−L) = 0,
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• ‖q‖L∞([−L,L]) = |q(0)| = 1,

• 〈q′, ũ〉L2([−L,L]) = 1/L
∫ L
−L 1 dx = 2 = TV(sign) = TV(ũ).

Therefore, ũ(x) = sign(x) is an Eigenfunction of TV with Eigenvalue 1/L. Figure 6.1 shows a
plot of ũ and the corresponding dual variable q.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 dual variable q

Figure 6.1: The Eigenfunction ũ = sign(x) and its corresponding dual variable q ∈ ∂TV(ũ) on the interval
[−1, 1].

Example 6.6 (The Cylinder). As a second intuitive example we want to consider the function

ũ(x) = 2H(L/2− |x|)− 1 ,

with H denoting the Heaviside function, on the interval [−L,L]. We are going to show that ũ is
an Eigenfunction of TV with Eigenvalue λ = 2/L. Defining q with

q(x) :=
2

L


x x ∈ [−L/2, L/2[

L− x x ∈ [L/2, L]

−L− x x ∈ [−L,−L/2[

will allow us to prove this assumption. Considering the subdifferential properties yields

• q′(x) = (4H(L/2− |x|))/L− 2/L = λũ,

• q(L) = q(−L) = 0,

• ‖q‖L∞([−L,L]) = |q(−L/2)| = q(L/2) = 1,

• 〈q′, ũ〉L2([−L,L]) = 2/L
∫ L
−L 1 dx = 4 = TV(ũ),

and hence, ũ is an Eigenfunction of TV with Eigenvalue λ = 2/L. A plot of ũ and q can be found
in Figure 6.2.
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Figure 6.2: The function ũ = 2H(1 − |x|) − 1 and the corresponding dual variable q ∈ ∂TV(ũ) on the
interval [−2, 2].

Example 6.7 (The Hat). Finally, to conclude this section on the one-dimensional TV-setting, we
want to consider a function that is no TV-Eigenfunction. Let us therefore investigate the function

ũ(x) =
L

2
− |x| .

It is easy to see that a function q satisfying q′(x) = λũ for some constant λ needs to be of the
form

q(x) = λ

(
L

2
x− 1

2
sign(x)|x|2

)
in order to be continuous and to fulfill q(L) = q(−L) = 0. The trouble lies in matching the
subdifferential conditions 3 and 4. On the one hand, we have

〈
q′, ũ

〉
L2([−L,L])

= λ

∫ L

L

(
L

2
− |x|

)2

dx = λ
L3

6

and TV(ũ) = 2L, which leads to the conclusion λ = 12/
(
L2
)
. On the other hand, we would

therefore obtain ‖q‖L∞([−L,L]) = q (L/2) =
(
12
(
L2/4− L2/8

))
/
(
L2
)

= 3/2 > 1, which is a
violation of subdifferential condition 3. Due to this contradiction in constructing a unique function
q such that q satisfies the subdifferential properties, ũ is not an Eigenfunction of TV. The functions
ũ and q can be seen in Figure 6.3. Nevertheless, the function q gives us a good intuition of how
a ROF-minimizer with input data f = ũ should look like. If we consider q̃ with

q̃(x) = max

(
min

(
6

L
x− 6

L2
sign(x)|x|2, 1

)
,−1

)

=


1 x ∈ [L/2− L/

√
12, L/2 + L/

√
12]

−1 x ∈ [−L/2− L/
√

12,−L/2 + L/
√

12]
6
Lx−

6
L2 sign(x)|x|2 else

,

then from the optimality condition of the ROF-model p = (ũ−u)/α we can intuitively guess that
in regions where |q̃| = 1 holds the functions ũ and the ROF minimizer coincide. In the regions
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Figure 6.3: The function ũ = 1− |x| and the dual variable q ∈ ∂TV(ũ) on the interval [−2, 2].

where q̃ is not constant, we expect the ROF minimizer to be constant, such that the overall
function is continuous; an intuition that is also supported by the relation between the ROF-model
and the taut string algorithm (cf. [61]). The solution of the dual variable for the ROF-model
with this particular input function indeed is

q(x) =
1

α



√
2αx− 1

2sign(x)|x|2 x ∈ [−
√

2α,
√

2α]

α x ∈ [−L+
√

2α,−
√

2α[

−α x ∈]
√

2α,L−
√

2α]

(L−
√

2α)x+ 1
2x

2 + 1
2L

2 −
√

2αL x ∈ [−L,−L+
√

2α[

(L−
√

2α)x− 1
2x

2 − 1
2L

2 +
√

2αL x ∈]L−
√

2α,L]

,

for L >
√

2α.

The Anisotropic Two-Dimensional Setting

What is special about the total variation semi-norm is that in two or higher dimensions there are
different classes of Eigenfunctions of the semi-norm, depending on the particular choice of vector
norm for the supremum of the dual variable. In this context, we basically want to differ between
two important cases; the isotropic and the anisotropic TV-setting. If we take a look at the formal
definition of the TV-semi-norm, i.e.

TV(u) =

∫
Ω
‖∇u‖p dx ,

we see that we can use different choices for the inner vector norm ‖ · ‖p. In literature, the most
popular cases are p = 1 (anisotropic TV) and p = 2 (isotropic TV); in this thesis, we are going to
focus on Eigenfunctions for two-dimensional anisotropic TV only, for the sake of simplicity.
The subifferential in the anisotropic case can be written as

∂TV(u) =
{

divp | p ∈ L∞0 (Ω;R2), max (|px|, |py|) = 1, 〈divp, u〉L2(Ω) = TV(u)
}

,

with p = (px, py).
In the following, we want to extend the one-dimensional Example 6.6 to two dimensions.
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Example 6.8 (The Checkerboard). Let ũ be defined as

ũ(x, y) :=


4
L (x, y) ∈ [−L/2, L/2]2

0 ((|x| > 1) ∧ (|y| ≤ 1)) ∨ ((|x| ≤ 1) ∧ (|y| > 1))

− 4
L else

, (6.2)

for (x, y) ∈ [−L,L]2. We are going to show that ũ is an Eigenfunction of anisotropic TV with
Eigenvalue λ = 1. Let us therefore consider q with

qx(x, y) :=
2

L


x x ∈ [−L/2, L/2[

L− x x ∈ [L/2, L]

−L− x x ∈ [−L,−L/2[

,

and

qy(x, y) :=
2

L


y y ∈ [−L/2, L/2[

L− y y ∈ [L/2, L]

−L− y y ∈ [−L,−L/2[

.

With q defined as q = (qx, qy) we can prove the subdifferential properties of q in order to show
that ũ is an Eigenfunction.

• divq = ∂xqx + ∂yqy = λũ

• qxnx = 0, qyny = 0, with nx and ny denoting the normals of qx and qy in x- and y-direction,
respectively

• ‖q‖L∞([−L,L]2) = max (|qx|, |qy|) = 1

•

〈divq, ũ〉L2([−L,L]2;R2) = 16/
(
L2
)(∫ L/2

−L/2

∫ L/2

−L/2
1 dx dy +

∫ −L/2
−L

∫ −L/2
−L

1 dx dy

+

∫ L

L/2

∫ −L/2
−L

1 dx dy +

∫ −L/2
−L

∫ L

L/2
1 dx dy +

∫ L

L/2

∫ L

L/2
1 dx dy

)
= 32 = TV(ũ)

Hence, ũ is an Eigenfunction of anisotropic TV. Note that the factor 4/L has been chosen to
guarantee λ = 1. We could have also considered a function with a different factor, denoted by β,
and would have proved this function to be an Eigenfunction, but with Eigenvalue λ = 4/(βL).

6.3.3 TV2

After considering a few intuitive Eigenfunction examples for the total variation semi-norm, we now
want to investigate second-order total variation, as introduced in Section 4.1.5. The subdifferential
of TV2 can be characterized via (4.7).

For the sake of simplicity we want to focus on the one-dimensional setting; extensions to
anisotropic or isotropic higher-dimensional settings are comparable to the way one-dimensional
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(a) On-top view of ũ (b) 3d view of ũ

(c) Dual variable qx (d) Dual variable qy

Figure 6.4: The figure shows an on-top view of the function ũ as defined in (6.2), a three-dimensional
view and the corresponding dual variables (qx, qy) ∈ ∂TV(ũ) on the interval [−2, 2]2.

TV-Eigenfunctions extend to higher dimensions. The subdifferential (4.7) in one dimension sim-
plifies to

∂TV2(u) =
{
p′′ | p ∈ L∞0 ([a, b]), ‖p‖L∞([a,b]) = 1,

〈
p′′, u

〉
L2([a,b])

= TV2(u)
}

,

for b > a, a, b ∈ R.

Example 6.9 (The Hat). As a first example, we want to consider the hat-function ũ(x) = L/2−|x|
on the interval [−L,L] again. In Example 6.7 we have seen that ũ is not an Eigenfunction of the
total-variation semi-norm, as expected. We would indeed expect, that ũ is an Eigenfunction of
TV2 (with Eigenvalue λ = 12/

(
L3
)
); in order to verify this assumption let us therefore define the

function q with

q(x) :=
3

L2
x2 − 2

L3
|x|3 − 1 .

Examining the subdifferential properties yields
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• q′′ = 6/(L2)− (12/(L3))|x| = λũ,

• q(L) = q(−L) = 0,

• q′(L) = q′(−L) = 0

• ‖q‖L∞([−L,L]) = |q(0)| = 1,

• 〈q′′, ũ〉L2([−L,L]) = (12/(L3))
∫ L
−L (L/2− |x|)2 dx = 2 = TV2(ũ),

therefore we have q′′ ∈ ∂TV2(ũ) and thus, ũ is an Eigenfunction of TV2.

Figure 6.5: The function ũ = 1 − |x| and the corresponding TV2-dual variable q ∈ ∂TV2(ũ) on the
interval [−2, 2].

Example 6.10 (The Edge). Intuitively it is obvious that piecewise constant functions cannot be
Eigenfunctions of TV2. With the edge-function ũ = sign(x) on the interval [−L,L] of Example
6.5 as a counter example we are going to support this intuition. Let us therefore make an attempt
and define a function q with

q(x) :=
1

2
sign(x)|x|2 + constant

in order to guarantee q′′(x) = sign(x). However, ensuring q(L) = q(−L) = 0 such that q is
continuous is impossible and hence, ũ is not an Eigenfunction of TV2, since there does not exist
a function q satisfying both q′′ = ũ and q′′ ∈ ∂TV2(ũ).

Example 6.11 (The Cylinder). In Example 6.10 we have seen that the piecewise constant function
ũ(x) = sign(x) is not an Eigenfunction of TV2, mainly because of wrong boundary conditions.
That the wrong boundary conditions are not the only obstacle for piecewise constant functions to
become TV2-Eigenfunctions can be seen from the cylinder function of Example 6.6, i.e. ũ(x) =
2H(L/2− |x|)− 1. For this function it is easy to construct a dual variable that meets the desired
boundary conditions, since the cylinder-function changes it’s sign twice. However, the TV2-value
of a piecewise constant function is given in terms of the derivative of a distribution, which is
not a valid Radon-measure any more. Hence, TV2(ũ) does not exist. However, the integral
〈q′′, ũ〉L2([−L,L]) takes a finite value and therefore the subgradient condition 〈q′′, ũ〉L2([−L,L]) =

TV2(ũ) is never met for any piecewise constant function ũ.
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6.3.4 Infimal Convolution

As we have seen in the two previous sections, there exist piecewise constant TV-Eigenfunctions,
which are no TV2-Eigenfunctions, and piecewise linear TV2-Eigenfunctions that are no TV-
Eigenfunctions. For infimal convolution regularization based on TV and TV2 as presented in
Section 4.1.6, we are going to see that there exist Eigenfunctions that are either just TV- or
TV2-Eigenfunctions, but at the same time both ICTVβ-Eigenfunctions.

For the sake of simplicity we consider the one-dimensional case only. In 1D the subdifferential
(4.10) simplifies to

∂ICTVβ(u) =
{
q′′ | p, q ∈ L∞0 ([a, b]), ‖p‖L∞([a,b]) = 1, ‖q‖L∞([a,b]) = β,

q′′ = p′,
〈
q′′, u

〉
L2([a,b])

= ICTVβ(u)
}

.

Note that both p and q need to have Dirichlet-boundary, due to the derivation of ICTVβ. In
accordance to this definition, from a distributional point of view we see from

〈
u, q′′

〉
L2([a,b])

=

∫ b

a
uq′′ dx = uq′

∣∣b
a
−
∫ b

a
u′q′ dx = uq′

∣∣b
a
− u′q

∣∣b
a

+

∫ b

a
u′′q dx (6.3)

that 〈
u, q′′

〉
L2([a,b])

=
〈
u′′, q

〉
L2([a,b])

is only satisfied for any twice-differentiable u if either q(a) = q(b) = 0 and q′(a) = q′(b) = 0
holds. However, for u with Neumann-boundary, i.e. u′(a) = u′(b) = 0, we see that the demand
for Neumann-boundaries on q would be enough in order to guarantee that all boundary terms in
(6.3) vanish. Nevertheless we assume the dual variable to have Dirichlet-boundary anyways.

Example 6.12 (The Hat). Again, we consider ũ(x) = L/2 − |x| on the interval [−L,L]. We
are going to show that ũ is an Eigenfunction of ICTV 2

3
L with Eigenvalue λ = 8/

(
L2
)
. For that

reason we want to define q and p as

q(x) :=
2

L
x2 − 4

3L2
|x|3 − 2

3
L

and

p(x) :=
4

L
x− 4

L2
sign(x)|x|2 .

By taking a closer look we see that q and p satisfy the properties

• q′′(x) = 4/L− (8|x|)/
(
L2
)

= (8ũ)/
(
L2
)

= λũ,

• q′′ = p′,

• q(L) = q(−L) = 0,

• p(L) = p(−L) = 0,

• ‖q‖L∞([−L,L]) = (2L)/3 = β,

• ‖p‖L∞([−L,L]) = 1,



108 6.3. EXAMPLES

Figure 6.6: The function ũ(x) = 1 − |x| and the corresponding dual variables p, q ∈ ∂ICTV 4
3
(ũ) on the

interval [−2, 2].

• 〈q′′, ũ〉L2([−L,L]) = 〈p′, ũ〉L2([−L,L]) = 8/
(
L2
) ∫ L
−L (L/2− |x|)2 dx = (4/3)L = ICTV 2

3
L(ũ),

and therefore we have q′′ ∈ ∂ICTV 2
3
L(ũ) and hence, ũ is an Eigenfunction.

Example 6.13 (The Cylinder). Considering the cylinder function of Example 6.6, i.e. ũ(x) =
2H(L/2− |x|)− 1, for x ∈ [−L,L], we want to show that ũ is an Eigenfunction of ICTV 1

2
L with

Eigenvalue λ = 2/L. We therefore define

p(x) :=
2

L


x x ∈ [−L/2, L/2[

L− x x ∈ [L/2, L]

−L− x x ∈ [−L,−L/2[

in analogy to Example 6.6, and

q(x) :=
2

L


1
2x

2 − 1
4L

2 x ∈ [−L/2, L/2[

Lx− 1
2x

2 − 1
2L

2 x ∈ [L/2, L]

−Lx− 1
2x

2 − 1
2L

2 x ∈ [−L,−L/2[

.

It is easy to see that q and p satisfy the properties

• q′′ = (2ũ)/L = λũ,

• q′′ = p′,

• q(L) = q(−L) = 0,

• p(L) = p(−L) = 0,

• ‖q‖L∞([−L,L]) = 2/L = β,

• ‖p‖L∞([−L,L]) = 1,
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Figure 6.7: The function ũ(x) = 2H(1− |x|)− 1 and the corresponding dual variables p, q ∈ ∂ICTV1(ũ)
on the interval [−2, 2].

• 〈q′′, ũ〉L2([−L,L]) = 〈p′, ũ〉L2([−L,L]) = 2/ (L)
∫ L
−L 1 dx = 4 = ICTV 1

2
L(ũ).

Hence, ũ is an Eigenfunction of ICTV 1
2
L with Eigenvalue λ = 2/L.

From Example 6.13 we have seen that the function u(x) = 2H(L/2 − |x|) − 1, which is a
TV-Eigenfunction (Example 6.6), but not a TV2-Eigenfunction (Example 6.11), is a ICTV 1

2
L-

Eigenfunction. In Example 6.12 we have shown that the function u(x) = L/2 − |x| is an Eigen-
function of ICTV 2

3
L; moreover, u is an Eigenfunction of TV2 (Example 6.9), but not of TV

(Example 6.7). Hence, we have found two functions that are Eigenfunctions of ICTVβ, but not
Eigenfunctions of both TV and TV2. Unfortunately, TV- and TV2-Eigenfunctions are not always
ICTVβ-Eigenfunctions in general, as we are about to see with the following example.

Example 6.14 (The Edge). As a last ICTVβ-example we want to discuss the edge-function
ũ(x) = sign(x) again, for x ∈ [−L,L]. If we define q and p as

q(x) =
1

L

(
1

2
sign(x)|x|2 − Lx

)
and

p(x) =
1

L
(|x| − L) ,

we can verify that the conditions

• q′′(x) = sign(x)/L = λũ(x),

• q′′ = p′,

• q′(L) = p(L) = q′(−L) = p(−L) = 0,

• ‖q‖L∞([−L,L]) = L/2,

• ‖p‖L∞([−L,L]) = 1,
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• 〈q′′, ũ〉L2([−L,L]) = 〈p′, ũ〉L2([−L,L]) = 1/L
∫ L
L 1 dx = 2 = ICTVL

2
(ũ),

hold. Almost all conditions that have to be satisfied in order to guarantee that ũ is an Eigenfunc-
tion are met, except for q(L) = q(−L) = 0, since we have
q(L) = −L/2 and q(−L) = L/2. As a consequence, ũ, which is a TV-Eigenfunction, is not an
Eigenfunction of ICTV 1

2
L.

The main difference between sign(x) and 2H(L/2 − |x|) − 1 on the interval [−L,L] is that
sign(x) is not orthogonal to the Ground States of ICTVβ, i.e. 〈x, sign(x)〉L2([−L,L]) = 2L 6= 0,
while 2H(L/2− |x|)− 1 is orthogonal to the Ground States, since we have
〈x, 2H(L/2− |x|)− 1〉L2([−L,L]) = 0 and 〈c, 2H(L/2− |x|)− 1〉L2([−L,L]) = 0 for any constant
factor c.

We could assume that though ũ(x) = sign(x) is not an Eigenfunction, the solution of (2.9)
with J(u) = ICTVβ(u) is still producing a preferable result. However, for f = ũ we can actually
compute that the solution of (2.9) with J(u) = ICTVβ(u) for β ≥ (4L)/27 and α < L/4 on the
interval [−L,L] is given as

u(x) =

{
6α
L2x− 4α

L + 1 for x ≥ 0
6α
L2x+ 4α

L − 1 else
,

This result is actually not desirable, since homogeneous regions are tipped. An exemplary plot
for L = 1 and L = 2 can be seen in Figure 6.8.
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(b) L = 2

Figure 6.8: The function ũ(x) = sign(x), which is a TV-Eigenfunction, but not an ICTVβ-Eigenfunction,
and two exemplary ICTV 4

27L
reconstructions with f = ũ and α = 1/10 on the intervals [−1, 1] and [−2, 2],

respectively.

6.3.5 Generalized Total Variation

Generalized Total Variation regularization has very similar characteristics as the Infimal Convo-
lution regularization. As it has been pointed out in [118] the main advantages with respect to
ICTVβ appear in dimensions higher than one; however, since a characterization of Eigenfunctions
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in two or more dimensions is very complicated, we still want to focus on the one-dimensional
setting. In 1D the subdifferential (4.12) simplifies to

∂GTVβ(u) =
{
p′′ | p ∈ L∞0 ([a, b]), ‖p‖L∞([a,b]) = β, ‖divp‖L∞([a,b]) = 1,〈
p′′, u

〉
L2([a,b])

= GTVβ(u)
}

.

It is easy to see that the Eigenfunction-examples of Section 6.3.4 and their results can easily
be transferred to the one-dimensional Generalized Total Variation. Hence, GTVβ has the same
advantages towards TV and TV2 as ICTVβ, e.g. the fact that both TV- and TV2-Eigenfunctions
can simultaneously be Eigenfunctions of GTVβ. It also inheres the same problematic nature as
ICTVβ that only those TV-Eigenfunctions are GTVβ-Eigenfunctions that are orthogonal to the
TV2-Groundstates. In recent work on GTVβ (cf. [18, 118]) it has been very popular to use a
piecewise linear block image to demonstrate superiority of GTVβ towards ICTVβ. However, we
want to show that a 1D profile of this image basically is not an Eigenfunction of GTVβ.

Example 6.15 (Counter-Linearity). We want to consider the function

ũ(x) :=

{
−x x ∈ [−L/2, L/2]

x else

on the interval [−L,L]. The problem with ũ is that it is not orthogonal to the Ground States,
since we have 〈x, ũ〉L2([−L,L]) = L3/2 6= 0. If we modify ũ by subtracting (3x)/4, then we obtain
the function

ũ(x) :=

{
−7

4x x ∈ [−L/2, L/2]
1
4x else

,

for which we can compute 〈c, ũ〉L2([−L,L]) = 0 and 〈x, ũ〉L2([−L,L]) = 0, for any constant c. Never-
theless, we want to show that ũ is not an Eigenfunction of GTVβ. We make the attempt for the
dual variable by defining q ∈ C2

0 ([−L,L]) as

q(x) :=
1

L2


−7

3x
3 + L2x x ∈ [−L/2, L/2]

1
3x

3 − L2x+ 2
3L

3 x ∈ ]L/2, L]
1
3x

3 − L2x− 2
3L

3 x ∈ [−L,−L/2[

.

We can easily compute that q satisfies the properties

• q′′ = λũ,

• q(L) = q(−L) = 0,

• q′(L) = q′(−L) = 0,

• ‖q‖L∞([−L,L]) = q(L/
√

7) = (2
√

7L)/21 = β,

• ‖q′‖L∞([−L,L]) = q′(0) = 1,

and hence, we would obtain q ∈ ∂GTV 2
√

7
21

L
(ũ) with λ = 8/(L2) if we in addition could guarantee

〈q′′, ũ〉L2([−L,L]) = GTV 2
√

7
21

L
(ũ). Computing the dual product actually yields 〈q′′, ũ〉L2([−L,L]) =
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(7L)/3. We want to show that this value does not equal the value GTV 2
√

7
21

L
(ũ) and therefore

consider the decomposition ũ(x) = ṽ(x) + w̃(x) with

ṽ(x) =


0 x ∈ [−L/2, L/2]

L x ∈ ]L/2, L]

−L x ∈ [−L,−L/2[

and

w̃(x) =


−7

4x x ∈ [−L/2, L/2]
1
4x− L x ∈ ]L/2, L]
1
4x+ L x ∈ [−L,−L/2[

.

We easily see that for these two functions we obtain TV(ṽ) = 2L and TV2(w̃) = L. From the
underlying infimal convolution point of view we would expect GTV 2

√
7

21
L

(ũ) to equal TV(ṽ) +

βTV2(w̃) (cf. (4.8)), which would imply GTV 2
√

7
21

L
(ũ) = 2L+ (2

√
7L2)/21 6= (7L)/3. Hence, ũ is

not an Eigenfunction of GTVβ.

Example 6.16 (The Cylinder-Hat). By taking a closer look at the decomposition of ũ from the
previous Example 6.15 we see that we indeed have orthogonality of ũ to the Ground States of
generalized TV, while for ṽ and w̃ we can easily compute 〈x, ṽ〉L2([−L,L]) = (3L3)/4 6= 0 and

〈x, w̃〉L2([−L,L]) = (3L3)/4 6= 0. As a consequence, ṽ is an Eigenfunction of TV but w̃ is not an

Eigenfunction of TV2. We may assume that an additive composition of a TV-Eigenfunction and a
TV2-Eigenfunction that are both GTVβ-Eigenfunctions will allow us to discover an Eigenfunction
of GTVβ that is neither an Eigenfunction of TV nor of TV2. Let us therefore define ũ(x) :=
ṽ(x) + w̃(x) with ṽ(x) := 2H(L/2− |x|)− 1 (which is an Eigenfunction of either TV and ICTVβ

due to Example 6.6 and Example 6.13) and w̃(x) := L/2−|x| (which is an Eigenfunction of either
TV2 and ICTVβ due to Example 6.9 and Example 6.12), i.e.

ũ(x) =

{
(L/2 + 1)− |x| x ∈ [−L/2, L/2]

(L/2− 1)− |x| else
.

We are going to show that ũ is an Eigenfunction of GTVL2+3L

6+ 3
2L

with Eigenvalue λ = 1/(L(1/2 +

L/8)) and therefore define the dual variable q with

q(x) :=
1

L
(

1
2 + L

8

)


1
2

(
L
2 + 1

)
x2 − 1

6 |x|
3 − L2

12 (L+ 3) x ∈ [−L/2, L/2]
1
2

(
L
2 − 1

)
x2 − 1

6x
3 + Lx− L2

12 (L+ 6) x ∈]L/2, L]
1
2

(
L
2 − 1

)
x2 + 1

6x
3 − Lx− L2

12 (L+ 6) x ∈ [−L,−L/2[

.

For these functions we can verify the properties

• q′′(x) = ũ/(L(1/2 + L/8)) = λũ(x),

• q(L) = q(−L) = 0,

• q′(L) = q′(−L) = 0,
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• ‖q‖L∞([−L,L]) =
(
L2 + 3L

)
/ (6 + (3L)/2) = β,

• ‖q′‖L∞([−L,L]) = 1,

•

〈
q′′, ũ

〉
L2([−L,L])

=
(
4
(
(L+ 3)2 + 3

))
/ (3 (4 + L))

= TV(2H(L/2− |x|)− 1) + βTV2(L/2− |x|) = GTVL2+3L

6+ 3
2L

(ũ),

and as a consequence the sum of the Eigenfunctions 2H(L/2− |x|)− 1 and L/2− |x| indeed is an
Eigenfunction of GTVL2+3L

6+ 3
2L

with Eigenvalue λ = 1/(L(1/2 + L/8)).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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dual variable q

Figure 6.9: The function ũ(x) = 2H(1 − |x|) − |x| and the corresponding dual variable q ∈ ∂GTV 10
9

(ũ)

and its derivative q′ on the interval [−2, 2].

6.4 Exact Reconstruction of Eigenfunctions

In this section we are going to see that the recovery of Eigenfunctions is closely related to Bregman
distances. First of all, we want to recall a criterion that has been shown by Meyer in [90] in order
to derive trivial Eigenfunctions for the ROF-model. These considerations can be generalized by
the use of Bregman distances as it can be seen by the following theorem.

Theorem 6.2. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex functional and let K : L2(Ω)→
L2(Σ) be a linear operator. If the condition

1

α
K∗f ∈ ∂J(0) (6.4)

is satisfied, the minimizer of (2.8) is given as û ≡ 0.

Proof. We can rewrite (2.8) to

û = arg min
u∈dom(J)

{
1

2
‖Ku‖2L2(Σ) + α

(
J(u)−

〈
1

α
K∗f, u

〉
L2(Ω)

)
+

1

2
‖f‖2L2(Σ)

}
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Since (6.4) is satisfied, we can define q := (K∗f)/α such that

Dq
J(u, 0) = J(u)− J(0)− 〈q, u〉L2(Ω)

is a non-negative Bregman distance. Hence, ignoring the constant part 1/2‖f‖L2(Σ) we have

û = arg min
u∈dom(J)

{
1

2
‖Ku‖2L2(Σ) + αDq

J(u, 0)

}
for which the obvious minimizer is given via û = 0, since both terms are non-negative and vanish
for u = 0.

Remark 6.3. Note that if (6.4) is satisfied for a specific α̃ and J being positive (which is a natural
assumption for regularization functionals), then (6.4) is automatically guaranteed for every α ≥ α̃,
since (K∗f)/α̃ ∈ ∂J(0) implies

J(v) ≥
〈

1

α̃
K∗f, v

〉
L2(Ω)

,

for all v ∈ dom(J). If we multiply both sides of the inequality with α̃ we obtain

α̃J(v) ≥ 〈K∗f, v〉L2(Ω) ,

since α̃ is positive. Due to the positivity of J we even have

αJ(v) ≥ α̃J(v)

for all v ∈ dom(J) and α ≥ α̃, and hence, (6.4) is guaranteed for all α ≥ α̃.

Theorem 6.2 gives us an explicit condition on the regularization parameter α to enforce the
solution of (2.9) to be zero. Furthermore, according to the following Lemma for Eigenfunctions ũ
of one-homogeneous functionals there even have to exist parameters α such that (6.4) is fulfilled
for f = Kũ.

Lemma 6.1. Let J : dom(J) ⊆ L2(Ω) → R ∪ {+∞} be a convex, nonnegative and one-
homogeneous functional and let K : L2(Ω)→ L2(Σ) be a linear operator. If u ∈ dom(J)∩dom(K)
is a function such that Theorem 6.2 is never valid for any α ∈ R>0 with data f = Ku, i.e.

1

α
K∗Ku /∈ ∂J(0) ∀α ∈ R>0 ,

then, u is not a non-trivial Eigenfunction with Eigenvalue λ 6= 0.

Proof. We want to prove the statement by contradiction. We therefore assume that on the one
hand, u is an Eigenfunction with non-zero Eigenvalue λ, i.e. λK∗Ku ∈ ∂J(u). Taking a duality
product of λK∗Ku = p, p ∈ ∂J(u), with u yields the equality

λ‖Ku‖2L2(Σ) = J(u) , (6.5)

due to the one-homogeneity of J (see Lemma 2.4). Moreover, from the definition of the subdif-
ferential, the Eigenvalue property yields

J(v) ≥ J(u) + λ 〈K∗Ku, v − u〉L2(Ω) ∀v ∈ dom(J) . (6.6)
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On the other hand, we know due to (K∗Ku) /α /∈ J(0) for all α ∈ R>0 that there has to exist a
function v ∈ dom(J) with

〈Ku,Kv〉L2(Σ) > αJ(v) . (6.7)

If we insert (6.6) into (6.7), for the particular choice of v we therefore obtain

〈Ku,Kv〉L2(Σ) > α
(
J(u) + λ 〈Ku,Kv〉L2(Ω) − λ‖Ku‖

2
L2(Σ)

)
⇔ (1− λα) 〈Ku,Kv〉L2(Σ) > α

(
J(u)− λ‖Ku‖2L2(Σ)

)
. (6.8)

Equation (6.8) is supposed to be true for every α ∈ R>0, especially for the particular choice
α = 1/λ. In this case, (6.8) reads as

λ‖Ku‖2L2(Σ) > J(u) ,

for λ > 0, and therefore is a contradiction to (6.5).

The reverse statement of Lemma 6.1 therefore is that for every data f given in terms of an
Eigenfunction, i.e. f = Kũ, there exists a parameter α̃ such that Theorem 6.2 is valid for α ≥ α̃.

Moreover, condition (6.4) guarantees that the data f needs to satisfy certain properties in
order to vanish for a large regularization parameter α, e.g. f does need to have zero mean for
K = I in the case of TV-regularization.

Remark 6.4. Note that, however, it is possible for a particular function f that there does not
exist a parameter α such that (6.4) is fulfilled, though f is a trivial Ground-State-Eigenfunction
with Eigenvalue λ = 0, e.g. for f 6≡ 0 being a constant function and J being the total variation
regularizer.

In the following we are going to investigate the reconstruction of Eigenfunctions with given
data f = Kũ, while ũ represents an Eigenfunction, in the absence and presence of noise.

6.4.1 Clean Data

In case of clean data f = γKũ, γ > 0 and ũ being a non-trivial Eigenfunction, we are interested
in finding a solution of (2.8) that can be expressed in terms of this Eigenfunction, i.e. û = cũ
for a positive constant c. We want to call such a function almost exact solution. The following
theorem gives us the conditions on α needed for recovering a multiple of ũ.

Theorem 6.3. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional
and let K : L2(Ω) → L2(Σ) be a linear operator. Furthermore, let ũ be an Eigenfunction with
corresponding Eigenvalue λ. Then, if the data f is given via f = γKũ for a positive constant γ,
the solution of (2.8) is û = cũ for

c = γ − αλ ,

if γ > αλ is satisfied.
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Proof. Again, we rewrite (2.8) in terms of a Bregman distance. Inserting f = γKũ yields

û = arg min
u∈dom(J)

{
1

2
‖Ku− γKũ‖2L2(Σ) + αJ(u)

}
= arg min

u∈dom(J)

{
1

2
‖Ku− cKũ‖2L2(Σ) + αJ(u) + αJ(cũ)− γ − c

λ
〈λK∗Kũ, u〉L2(Ω)

+
1

2

(
〈γKũ, γKũ〉L2(Σ) + 〈cKũ, cKũ〉L2(Σ)

)
− αJ(cũ)

}
.

By ignoring the constant part, for γ > αλ and c = γ − αλ > 0 we therefore obtain

û = arg min
u∈dom(J)

{
1

2
‖Ku− cKũ‖2L2(Σ) + αDq

J(u, cũ)

}
,

with

q = λK∗Kũ ∈ ∂J(ũ)
J one-homogeneous

= ∂J(cũ) .

The obvious minimizer is û = cũ.

6.4.2 Noisy Data

The multivaluedness of the subdifferential ∂J allows to obtain almost exact solutions even in
the presence of noisy data, i.e. f = γKũ + n, though the case of noisy data is slightly more
complicated to prove. If the most significant features of ũ with respect to the regularization
energy J are left unaffected by the noise, then the following theorem guarantees almost exact
recovery of the Eigenfunction ũ.

Theorem 6.4. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional
and let K : L2(Ω) → L2(Σ) be a linear operator. Furthermore, let ũ be an Eigenfunction with
corresponding Eigenvalue λ. The data f is assumed to be corrupted by noise n, i.e. f = γKũ+n
for a positive constant γ, such that there exist positive constants µ and η with

µK∗Kũ+ ηK∗n ∈ ∂J(ũ) . (6.9)

Then, the solution of (2.8) is given via û = cũ for

c = γ − αλ+
λ− µ
η

,

if γ satisfies the SNR-condition

γ >
µ

η
,

and if α ∈ [1/η, γ/λ+ 1/η[ holds.
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Proof. Similar to the proof of Theorem 6.3 we rewrite (2.8) to

û = arg min
u∈dom(J)

{
1

2
‖Ku− γKũ− n‖2L2(Σ) + αJ(u)

}

= arg min
u∈dom(J)

{
1

2
‖Ku− cKũ‖2L2(Σ) + αJ(u)− α

〈
γ − c
α

K∗Kũ+
1

α
K∗n, u

〉
L2(Ω)

}

= arg min
u∈dom(J)

{
1

2
‖Ku− cKũ‖2L2(Σ) + αDq

J(u, cũ)

}
,

with obvious minimizer û = cũ, if we neglect the constant parts and if we can manage to choose
c such that

γ − c
α

K∗Kũ+
1

α
K∗n ∈ ∂J(ũ) = ∂J(cũ) .

Note that since ∂J(ũ) is a convex set not only λK∗Kũ and (6.9) are elements of ∂J(ũ), but also
any convex-combination, i.e.

((1− β)λ+ βµ)K∗Kũ+ βηK∗n ∈ ∂J(ũ) ,

for each β ∈ [0, 1].
Hence, we need to choose c > 0 and β ∈ [0, 1] such that 1/α = βη and (γ−c)/α = (1−β)λ+βµ.

Therefore, the unique solutions for β and c are

β =
1

αη

and

c = γ − αλ+
λ− µ
η

.

In order to satisfy β ≤ 1 and c > 0, α has to be chosen such that α is bounded via

1

η
≤ α < γ

λ
+

1

η
+

µ

λη
.

This condition can only be satisfied, if γ > µ/η holds.

6.5 Subdifferential-Invariant Transforms

Under particular circumstances, the definition of Eigenfunctions actually allows us to easily com-
pute analytic solutions of certain variational models for input data, which is not given in terms
of an Eigenfunction. We are going to see that these particular circumstances can be expressed
via subdifferential-invariant transforms. Prior to that, we would like to give a short example as a
motivation first.

Let us therefore consider the ROF-model (4.6). We assume that ũ is an Eigenfunction of TV
with Eigenvalue λ, i.e. λũ ∈ ∂TV(ũ), and that the data f is given in terms of that Eigenfunction,
but shifted by a constant factor s ∈ R \ {0}. We immediately see that, due to Theorem 6.1,
f = γ (ũ+ s) is not an Eigenfunction, since Theorem 6.2 is not satisfied. However, we make the
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attempt that the solution of the ROF-model is given via u = (γ − αλ)ũ + γs. Considering the
optimality condition of (4.6) actually yields

p̂ =
1

α
(f − û) ,

for p̂ ∈ ∂TV(û). Inserting f = γ(ũ+ s) and û = (γ − αλ)ũ+ γs leads to

p̂ = λũ .

If we can guarantee ∂TV(û) = ∂TV(ũ), then the optimality condition is fulfilled and û is the true
and unique solution. We therefore have to check if ∂TV((γ − αλ)ũ + γs) = ∂TV(ũ), which can
be verified via

∂TV((γ − αλ)ũ+ γs) =

divp

∣∣∣∣∣∣∣∣ p ∈ L
∞
0 (Ω;Rn), ‖p‖L∞(Ω;Rn) ≤ 1,

〈divp, (γ − αλ)ũ+ γs〉L2(Ω)︸ ︷︷ ︸
=(*)

= TV((γ − αλ)ũ+ γs)︸ ︷︷ ︸
=(**)


= ∂TV(ũ)

with

(γ − αλ)

〈divp, ũ〉L2(Ω) +

〈
divp,

γs

γ − αλ

〉
L2(Ω)︸ ︷︷ ︸

=0

 = (γ − αλ) 〈divp, ũ〉L2(Ω) , (*)

and

(γ − αλ)TV

(
ũ+

γs

γ − αλ

)
= (γ − αλ)TV(ũ). (**)

The subdifferential ∂TV therefore is invariant with respect to constant translations. We want to
establish the notion of subdifferential invariance.

Definition 6.3. Let J : dom(J)→ R ∪ {∞} be a convex functional with non-empty subdifferential
∂J . Then, ∂J is called invariant under the transformation T : dom(J)→ dom(J), if

∂J(u) = ∂J(T (u))

is true for all u ∈ dom(J).

Remark 6.5. Note that for any one-homogeneous functional J the corresponding subdifferential
∂J is invariant under multiplication with a positive constant s > 0, i.e. ∂J(su) = ∂J(u).

For the introductory example the transformation T simply was given via Ts,µ(u) := su + µ.
In the following we want to investigate a few more interesting examples that even allow us to
analytically compute solutions of variational schemes with non quadratic fidelities.
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6.5.1 TV2 and Affine-Linear Transformations

In analogy to the TV-example of the previous section we would expect any subdifferential of
a particular regularization functional to be invariant with respect to the Ground States of this
functional. In case of J(u) = TV2(u) this would suggest subdifferential-invariance with respect
to affine-linear functions. Therefore, we would like to consider the transformation

Tµ,s1,s2(u(x)) := s1u(x) + s2x+ µ .

We immediately see that the affine-linear part would vanish either in the definition of TV2 and
in the integral representation

〈
div2p, u

〉
L2(Ω)

, due to the second-order divergence term. Hence,

we can conclude ∂TV2(Tµ,s1,s2(ũ)) = ∂TV2(ũ) for any TV2-Eigenfunction ũ with Eigenvalue λ.
Consequently we can compute the analytical TV2-solution for a function f = γ(ũ+ sx+ µ) via

û(x) = (γ − αλ)ũ(x) + γ(sx+ µ) .

6.5.2 `1 and Positive Diagonal Operators

In case of the `1 functional we want to show that the subdifferential ∂‖ · ‖`1 is invariant with
respect to positive diagonal operators. If D : `1 → `1 represents a positive diagonal operator, i.e.
(Du)n = unvn for v ≥ 0, then we want to define the transformation Ts1,s2(u) : `1 → `1 with

Ts1,s2(u) := (s1D − s2I)u , (6.10)

such that s1vn > s2 for all n. We immediately see that the last condition guarantees sign(u) =
sign (Ts1,s2(u)) and hence, the subdifferential is invariant with respect to (6.10). As a consequence,
for input data f = γKDũ the solution of (2.8) with J(u) = ‖u‖`1 can be computed as

û = (γD − αλI) ũ , (6.11)

if ũ is an Eigenfunction with Eigenvalue λ and if γ and α are chosen such that (γD − αλI) is
positive. This can – in analogy to the proof of Theorem 6.3 – be seen by

û = arg min
u∈`1

{
1

2
‖Ku− γKDũ‖2L2(Σ) + αJ(u)

}
= arg min

u∈`1

{
1

2
‖Ku−K(γD − αλI)ũ‖2L2(Σ) + αDλK∗Kũ

J (u, (γD − αλI)ũ)

}
,

for which the obvious minimizer is (6.11), as long as sign(û) = sign(ũ) = λK∗Kũ holds.

6.5.3 KL-TV

Up to now we have only considered affine-linear transformations and their use in computing
analytical solutions of (2.8) with changing regularization terms. Another interesting question
that arises is the effect of different fidelity terms on the solution. We therefore want to investigate
the total variation semi-norm as a regularizer again, but in combination with the Kullback-
Leibler fidelity as introduced in Section 4.2.3. We are going to see that we will be able to
compute analytical solutions for this setup by considering a non-linear subdifferential-invariant
transformation.

We want to investigate the following setup. We assume ũ to be an Eigenfunction of TV with
Eigenvalue λ. Moreover, the input data is given as f = γ(ũ + µ) with µ ∈ R>0 such that f > 0.
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Figure 6.10: The comparison of data f , given in terms of f(x) = sign(x) + 3 (Figure 6.10(a)) and
f(x) = sign(x) + 5 (Figure 6.10(b)), and computational reconstructions û for α = 3/10, on the interval
[−2, 2]. The reconstructions exactly behave as predicted by (6.12).

We make the attempt that the solution of (2.9) with Hf (u) = KL(f, u) and J(u) = TV(u) is
given by û = Tµ,γ,αλ(ũ), with

Tµ,s1,s2(u) =
s1 (u+ µ)

1 + s2u
.

Inserting û and f in the optimality condition of (4.25) yields p̂ = λũ for p ∈ TV(ũ). Again it
remains to prove ∂TV(Tµ,s1,s2(ũ)) = ∂TV(ũ), which however is not trivial since the transformation
Tµ,s1,s2 is non-linear. The important feature is that the transformation does not affect the edge-set
of the input function, which is all that matters in case of ∂TV.

In the following we are going to consider the particular Eigenfunction ũ(x) = sign(x) on the
interval x ∈ [−L,L]. The transformed function û(x) = Tµ,αλ,γ(ũ(x)) in that case reads as

û(x) =


µ+γ
1+α

L
x ≥ 0

µ−γ
1−α

L
else

. (6.12)

We easily see that the total variation value simply equals the difference of the constant values, i.e.

TV(û) =
µ+ γ

1 + α
L

− µ− γ
1− α

L

=
2L(γL− αµ)

L2 − α2
,

for α < (Lγ)/µ < L, in order to be positive (the last inequality is true since µ > γ has to
hold for û to be positive). Moreover, the total variation value actually equals the integral value
〈û, q′〉L2([−L,L]) for q(x) = (|x| − L)/L and as a consequence, both ũ and û have the same corre-
sponding subgradient λũ. Hence, for this particular Eigenfunction the subdifferential indeed is
invariant under this non-linear transformation.

This example supports the view that in contrast to the standard L2-fidelity for the Kullback-
Leibler-fidelity the intensity of the input data also controls the amount of smoothing and therefore
the loss of contrast. For fixed regularization parameter α, length L > 0 and scaling factor γ the
total variation value gets smaller for growing µ. This has been illustrated in Figure 6.10 for
different values of µ.
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6.6 Relation to the Strong Source Condition

For the quadratic L2-fidelity F (Ku − f) = 1
2 ‖Ku− f‖

2
L2(Σ) the strong source condition (SC2)

can be written as

∃ ξ ∈ ∂J(ũ), ∃ v ∈ U(Ω) \ {0} : ξ = −K∗Kv ,

and therefore appears to be very related to the Eigenfunction condition λK∗Kũ ∈ ∂J(ũ) of
Definition 6.2. We would therefore assume that we are able to improve the error estimate (5.4)
of Theorem 5.3, i.e.

Dξ(û, ũ) ≤ Dξ(û− αv, ũ) ,

which can actually be seen by the following theorem.

Theorem 6.5. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex functional and let K : L2(Ω)→
L2(Σ) be a linear operator. Furthermore, let there exist a regularization parameter α > 0 and two
functions ũ ∈ dom(K) ∩ dom(J) and v ∈ dom(J) \ {0} that satisfy

K∗Kv ∈ ∂J(ũ− αv) .

Then, for input data g = Kũ the minimizer of (4.14) with F (Ku− g) = 1
2 ‖Ku− g‖

2
L2(Σ) is given

by

û = ũ− αv .

Proof. We can rewrite (4.14) to

û = arg min
u∈dom(J)

{
1

2
‖Ku−Kũ‖2L2(Σ) + αJ(u)

}
= arg min

u∈dom(J)

{
1

2
‖Ku−Kũ‖2L2(Σ) + α 〈Ku,Kv〉L2(Σ) + αJ(u)− α 〈Ku,Kv〉L2(Σ)

}
= arg min

u∈dom(J)

{
1

2
‖Ku−Kũ+ αKv‖2L2(Σ) + αDK∗Kv

J (u, ũ− αv)

}
.

The obvious minimizer is given via û = ũ− αv.
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Chapter 7

Unbiased Recovery

In Chapter 6 we have introduced the concept of Ground States and Eigenfunctions for the varia-
tional framework (2.9) in order to examine, under which conditions we can recover these Eigen-
functions almost exactly with a loss of contrast. In this chapter we want to extend this topic to the
question of exact recovery without a loss of contrast, in the absence and presence of noise. There-
fore, we are going to investigate the concept of Bregman iterations and its analytical counterpart,
the inverse scale space flow.

7.1 Bregman Iteration

The goal of this section is to show that for one-homogeneous functionals the discrete Bregman
iteration as introduced in Section 3.3 allows to converge to the exact solution in finitely many
iteration steps. In analogy to Section 6.4.1 we want to investigate the noise-free setup first,
i.e. we consider input data of the form f = γKũ, with ũ denoting an Eigenfunction as defined in
Definition 6.2. Subsequently we want to shortly examine a two-homogeneous counter-example, for
which we can prove convergence in infinitely many iterations, in order to support the importance
of one-homogeneity. Finally, we want to investigate the setup for noisy data similar to Section
6.4.2.

7.1.1 Clean Data

With the following Theorem we want to prove finite convergence of the Bregman iteration in
case of L2-fidelity, one-homogeneous regularization functional and input data given in terms of
an Eigenfunction, i.e. f = γKũ.

Theorem 7.1. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional
and let K : L2(Ω) → L2(Σ) be a linear operator. Furthermore, let ũ be an Eigenfunction with
corresponding Eigenvalue λ. Then, if the data f is given via f = γKũ and if α is large enough
such that the conditions of Theorem 6.2 are satisfied, the solution uj+1 = γũ of the Bregman
iteration scheme (3.5) is achieved for finite j ∈ N. Furthermore, the solution remains uk = γũ
for k > j + 1.

Proof. Since the conditions of Theorem 6.2 are met, the first iterate simply is u1 ≡ 0. Depending
on the choice of α there exists a finite index j > 1 for which all previous Bregman iterations equal
zero. Hence, the formula for the update for v reads as vj−1 = (j − 1)f = (j − 1)γKũ. Without
loss of generality we assume j to be large enough such that jγ

α K
∗Kũ /∈ ∂J(0) holds. Hence, the
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solution of the Bregman update for u reads as uj = cũ for c = jγ − αλ, due to Theorem 6.3. As
a consequence, the Bregman update for v becomes

vj = vj−1 − (Kuj − f) = (j − 1)γKũ− (cKũ− γKũ) = αλKũ

and hence, the update for u has to be computed via

uj+1 = arg min
u∈dom(J)

{
1

2
‖Ku− (γ + αλ)Kũ‖2L2(Σ) + αJ(u)

}
.

Because of Theorem 6.3 the solution is given as uj+1 = cũ = γũ, since we have c = γ + αλ− αλ.
Moreover, we inductively see that for every further iteration the update for v remains vk = αλKũ
and hence, uk = γũ is valid for all k > j + 1.

Remark 7.1. Theorem 7.1 is only valid for one-homogeneous functionals, which can be seen
from the fact that we have used ∂J(ũ) = ∂J(cũ) in the proof of Theorem 6.3. Moreover we can
construct a very simple counter example by considering (2.9) with J(u) = 1/2‖u‖2L2(Ω) and K = I.

Since the Bregman distance for this particular functional J simply reads as D
uk−1

J (u, uk−1) =
1/2‖u− uk−1‖2L2(Ω), the Bregman iteration scheme becomes

uk = arg min
u∈L2(Ω)

{
1

2
‖u− f‖2L2(Ω) +

α

2
‖u− uk−1‖2L2(Ω)

}
.

If we consider the optimality condition and assume the input data f = ũ to be an Eigenfunction
of J , the Bregman update can be written as

uk = ũ+
αk

(1 + α)k
(u0 − ũ) .

On the one hand we see that for α < 1 we have limk→∞ uk = ũ. On the other hand we also see
that there is no convergence in a finite number of steps for u0 6= ũ, in contrast to convergence in
a finite number of iterations for one-homogeneous functionals, due to Theorem 7.1.

7.1.2 Noisy Data

In the case of noisy data we can, in analogy to Theorem 6.4, find criteria such that the Bregman
iteration converges to the Eigenfunction before adding back the noise to the solution.

Theorem 7.2. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional
and let K : L2(Ω) → L2(Σ) be a linear operator. Furthermore, let ũ be an Eigenfunction with
corresponding Eigenvalue λ. The data f is assumed to be corrupted by noise n, i.e. f = γKũ+n,
for a positive constant γ, such that there exists an α large enough in order to satisfy the conditions
of Theorem 6.2, positive constants µ, η, φ and ψ, and an iteration index j > 1, with

µK∗Kũ+ ηjK∗n ∈ ∂J(ũ) (7.1)

and

φK∗Kũ+ ψ(j + 1)K∗n ∈ ∂J(ũ) . (7.2)

Then, the solution uj+1 = γũ of the Bregman iteration scheme (3.5) is achieved for finite j ∈ N.
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Proof. In analogy to the proof of Theorem 7.1 we know that uk ≡ 0 for k < j, due to Theorem
6.2. Hence, we have vj−1 = (j − 1)f . The upcoming Bregman update then computes as

uj = arg min
u∈dom(J)

{
1

2
‖Ku− jf‖2L2(Σ) + αJ(u)

}
.

Due to Theorem 6.4 uj is given via uj = cũ for c = γj − αλ + (λ − µ)/η. The update for v
therefore reads as

vj = vj−1 − (Kuj − f) =

(
αλ− λ− µ

η

)
Kũ+ jn

and again by applying Theorem 6.4 we obtain uj+1 = γũ.

Remark 7.2. Note that it is important to choose α large enough in order to find an appropriate
index j to guarantee the conditions (7.1) and (7.1).

7.2 Inverse Scale Space Methods

The analytic counterpart to Bregman iteration is the inverse scale space flow as introduced in
Section 3.4. Similar to the discrete case of Bregman iteration we are going to prove for which
times t Eigenfunctions can be reconstructed exactly, even in the presence of noise.

Moreover we are briefly going to address the converse question, under which circumstances
for any given data-function f the image u(t∗) with corresponding time t∗, for which u(t∗) is no
longer a trivial Ground State, is an Eigenfunction.

7.2.1 Clean Data

Similar to Chapter 6, Section 6.4.1, we are going to consider data of the type f = γKũ, with ũ
denoting an Eigenfunction. For this setup we are able to derive the following result.

Theorem 7.3. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional
and let K : L2(Ω) → L2(Σ) be a linear operator. Furthermore, let ũ be an Eigenfunction with
corresponding Eigenvalue λ. Then, if the data f is given via f = γKũ for a positive constant γ,
the solution of the inverse scale space flow (3.9) at time t > t∗ = λ/γ is u(t) = γũ.

Proof. Due to Lemma 6.1 we know that there exists a parameter α̃ to guarantee (K∗f) /α =
(γK∗Kũ) /α ∈ ∂J(0) for α ≥ α̃. Hence, in the limiting case α → ∞ we can apply Theorem 6.2
and obtain u(t) ≡ 0 for t < t∗, and therefore

∂

∂t
p(t) = K∗f = γK∗Kũ .

Integrating with respect to t yields

p(t) = tγK∗Kũ ,

because p(0) = 0 holds. Since p is continuous in t we can continuously extend p(t) to p(t∗) and
hence, for t∗ = λ/γ we obtain p(t∗) ∈ ∂J(ũ) = ∂J(γũ). Due to Section 3.4 the ISS is convergent
and thus the unique ISS solution for t ≥ t∗ is given via u = γũ and p = λK∗Kũ.
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7.2.2 Noisy Data

Similar as in the case of Bregman iteration the case of noisy data is a little bit more complicated.
In order to recover an Eigenfunction exactly despite the contamination of the data f with noise,
we basically need the signal ratio µ as introduced in Theorem 6.4 to equal the Eigenvalue λ. More
precisely we obtain the following result.

Theorem 7.4. Let J : dom(J) ⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional
and let K : L2(Ω) → L2(Σ) be a linear operator. Furthermore, let ũ be an Eigenfunction with
corresponding Eigenvalue λ. The data f is assumed to be corrupted by noise n, i.e. f = γKũ+n
for a positive constant γ, such that there exist positive constants µ and η that satisfy (6.9). Then,
the solution of the Inverse Scale Space Flow (3.9) for time t∗ ≤ t < t∗∗ is given via u(t) = cũ for

c = γ +
λ− µ
η

. (7.3)

Proof. With a similar argumentation as in the proof of Theorem 7.3 we obtain

p(t∗) = t∗γK
∗Kũ+ t∗K

∗n

as the corresponding subgradient to the first non-zero u. Analogous to the proof of Theorem 6.4
we can treat the equation above as a convex combination of λK∗K and (6.9) for any β ∈ [0, 1]
and hence, we obtain

β =
λ

λ+ γη − µ

and

t∗ =
λη

λ+ γη − µ
.

Moreover, we get a solution u(t∗) = cũ to the corresponding subgradient p(t∗) and assume that
u(t) remains constant over time as long as t ∈ [t∗, t∗∗[ holds, for some t∗∗. The subgradient of
u(t), p(t), then needs to satisfy p(t∗) = t∗K

∗f and ∂tp(t) = K∗(f − cKũ) and can be described
via

p(t) = tK∗f − (t− t∗)cK∗Kũ
= tK∗(γKũ+ n)− (t− t∗)cK∗Kũ
= tK∗n+ (γt− c(t− t∗))K∗Kũ .

If we compare this equation with (6.9) we need to choose c such that

t = η

and

µ = γt− c(t− t∗)

hold. Substituting t∗ = (λη)/(λ+ γη − µ) then yields (7.3).

Remark 7.3. Note that for the particular choice γ = 1 the Eigenfunction ũ can be recovered
perfectly if the Eigenvalue λ equals the signal amount µ, no matter which value η takes (as long
as µ and η satisfy (6.9)). However, naturally µ 6= λ holds, as we are going to discover in Section
9.1.2.
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(a) f (b) u4

Figure 7.1: The input data f(x, y) = 2 − |x| − |y| and the first non-trivial Bregman iterate u4(x, y) in
case of anisotropic total variation regularization, for α = 2. It is obvious that u4(x, y) is given in terms of
the Eigenfunction ũ(x, y) of Section 6.3.2, Example 6.8.

7.3 Decomposition into Eigenfunctions

Despite the fact that Eigenfunctions can be recovered perfectly with the use of ISS, an interesting
question that arises is the converse question: is the first non-zero solution of the ISS for arbitrary
data f satisfying (6.4) an Eigenfunction? If so, the ISS would allow a decomposition of arbitrary
data into Eigenfunctions of a particular functional J , since we could recursively subtract the
Eigenfunction from the data and repeat the ISS application to this modified data. Unfortunately,
the general answer to the converse question is no, which we will prove with the following counter
example.

Lemma 7.1. For the one-homogeneous functional J : L2([a, b])→ R ∪ {∞} with
J(u) = ‖u′‖L2([a,b]) the first non-zero ISS solution for K = I and data f , satisfying (6.4) for α ≥ α̂
for a specific parameter α̂, that is not given in terms of an Eigenfunction, is not an Eigenfunction
of J .

Proof. We proof the statement by contradiction. Let t∗ denote the time for which u(t∗) 6≡ 0
is true, while u(t) ≡ 0 for t < t∗ holds. We assume u(t∗) to be an Eigenfunction, i.e. there
exists a parameter λ with λu(t∗) = ∂‖u′(t∗)‖L2([a,b]) = (u′′(t∗)) / ‖u′(t∗)‖L2([a,b]) (note that since

u(t∗) is a non-trivial Eigenfunction we have u′(t∗) 6= 0 and therefore the functional J is Fréchet-
differentiable). From the ISS-definition we know that p(t∗) = t∗f ∈ ∂ ‖u′(t∗)‖L2([a,b]) also needs
to be satisfied. Hence, we obtain the relation t∗f = λu(t∗), which is a contradiction to the
assumption that f is not given in terms of an Eigenfunction.

Though the converse is not true in general there do exist interesting cases in which the first
non-trivial ISS-solution is indeed an Eigenfunction of the particular regularization functional. Let
us for example consider the `1-functional J(u) = ‖u‖`1 . The inverse scale space in that particular
case reads as

∂

∂t
p(t) = K∗ (f −Ku(t)) ,
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for p ∈ ∂J(u(t)) = sign(u(t)). We easily see that for every p(t) we have ‖p(t)‖`∞ = 1. Let t∗
denote the time for which u(t) ≡ 0 for t < t∗ and u(t∗) 6≡ 0 is fulfilled. We immediately see that
due to continuous extension we obtain t∗ = 1/‖K∗f‖`∞ . Hence, the subgradient p(t∗) is given
via p(t∗) = (K∗f)/‖K∗f‖`∞ . Now assume K = I to be the identity and f to be arbitrary data
f 6≡ 0 with unique and existing supx |f(x)|, then p(t∗) is exactly one or minus one at one specific
position j. Hence, the corresponding primal variable u(t∗) is u(t∗) = µδj for a parameter µ ∈ R
and therefore is an Eigenfunction of the `1-functional, according to Section 6.1, Example 6.1.

That the converse question seems to be true not only for rather simple examples (as for the
`1-functional) can be seen by considering two-dimensional anisotropic total variation ISS. If we
consider the function

f(x, y) := 2− |x| − |y|

on the interval [−2, 2]2, and compute Bregman iterates for α = 2, we discover that the iterates
u1, u2 and u3 all equal zero, while the fourth iterate u4(x, y) equals the function ũ(x, y) of Section
6.3.2, Example 6.8, up to a constant factor. Hence, the first non-zero ISS-solution indeed seems
to be an Eigenfunction of the anisotropic total variation. The plots of f and u4 can be seen in
Figure 7.1.

A detailed analysis on when recovery of Eigenfunctions via ISS for arbitrary input data f and
an associated Eigenfunction-decomposition is possible is beyond the scope of this thesis and will
be part of future work. However, from the above examples it seems to be likely that for `1- or
L1-type polyhedral norms (as e.g. anisotropic total variation) the first ISS solution appears to
be an Eigenfunction of the corresponding functional, while for norms for which the shapes have a
continuous boundary (as e.g. L2-norms or isotropic total variation) this does not seem to be the
case.



Chapter 8

Algorithms

With this chapter we want to provide algorithms that allow the computational solution of appli-
cations discussed in the next chapter. First of all we want to give an overview on various existing
methods we are going to use in the following. Subsequently, we will present a novel algorithm
for the compressed sensing setup (4.3) as introduced in [27], which is based on the ISS-concept
presented in Section 3.4.

8.1 State-of-the-Art-Methods

In the following we want to present state-of-the-art methods to solve variational schemes of the
type (2.9), or even algorithms that attempt to solve a constrained minimization problem with
constraint (2.4). The basic concept is the splitting of a given separable problem into subproblems.
Hence, we are going to focus on so-called splitting methods in the upcoming section. Subsequently
we will point out the relation to primal-dual problems and present alternative methods for the
computational realization in comparison to splitting methods. Afterwards, we are going to extend
the concept of Bregman iteration as described in Section 3.3 to the Kullback-Leibler fidelity
instead of the standard L2-fidelity. Finally, we will recall the orthogonal matching pursuit (OMP)
algorithm (cf. [96, 88, 124]) that basically finds its applications in compressed sensing.

8.1.1 Splitting Methods

In this section we want to focus on so-called splitting methods. As already mentioned, the
concept of splitting methods is to exploit the fact that operators or functionals inhere a separable
structure. Splitting methods split the original problem into subproblems, solve these subproblems,
and iteratively produce a solution for the original problem. The reason for splitting up a problem
into subproblems lies in the effort that is needed to solve a problem. Most of the variational
schemes presented in Chapter 4 cannot be solved directly and therefore have to be split up into
problems that can be solved easily. In the following we are going to present different variants
of one of the most simple splitting strategies called Forward-Backward-Splitting. Subsequently
we will present the concept of augmented Lagrangian methods that suits very well to variational
schemes with quadratic fidelity and singular regularization term.

129
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Forward-Backward Splitting

One of the most simple and intuitive splitting strategy is Forward-Backward-Splitting (FBS). For
a given problem

u ∈ arg min
u∈dom(L)

{L(u) = F (u) +G(u)} ,

that can be split up additively into two separate functionals F and G, the idea of FBS is to
introduce an additional variable and to iteratively solve

uk+ 1
2
∈
{
uk − τk ∂uF (uk)

}
uk+1 ∈

{
uk+ 1

2
− τk ∂uG(uk+1)

} ,

with a positive stepsize-sequence τk > 0. It is easy to see that if we insert uk+ 1
2

into the formula

for uk+1 we end up with

uk+1 − uk
τk

= − (F (uk) +G(uk+1)) .

FBS is a simple strategy to split a problem into an explicit (the forward step) and an implicit
problem (the backward step). It seems to be obvious that this strategy is suitable for variational
problems of the type (2.9); in particular for problems with L2-fidelity (2.8). In the latter case we
obtain the two subproblems

uk+ 1
2

= uk − τk K∗(Kuk − f)

uk+1 ∈ arg min
u∈dom(J)

{
1

2τk

∥∥∥u− uk+ 1
2

∥∥∥2

L2(Ω)
+ αJ(u)

} ,

which offer the advantage that the iterative computation of the minimizer can be done without
inverting K∗K and that the implicit subproblem reduces to a simple L2-denoising problem for
which efficient algorithms are supposed to exist. The obvious drawback is that this iteration
scheme can become very slow depending on the ill-posedness of the operator K, respectively
the ill-conditioning of the matrix representing the discretization of K. Finally, in case of the
variational framework (2.8) the FBS algorithm can be summarized as follows.

Algorithm 2 FBS with L2-Fidelity

1. Parameters: K, f, α > 0, maxiter, (τk)k∈{0,...,maxiter−1}
2. Initialization: u0 = 0
for k = {0, . . . ,maxiter− 1} do

Compute uk+ 1
2

= uk − τk K∗(Kuk − f)

Solve uk+1 ∈ arg minu∈dom(J)

{
1

2τk

∥∥∥u− uk+ 1
2

∥∥∥2

L2(Ω)
+ αJ(u)

}
end for
return umaxiter

In order to achieve a significant speedup the choice of the adaptive stepsize τ has to be done
in an “optimal way”. In case of quadratic fidelity and quadratic regularization energy the optimal
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choice of τ is straightforward. If we define the function

s(τ) :=
1

2
‖K(u+ τv)− f‖2L2(Ω) +

α

2
‖D(u+ τv)‖2L2(Ω)

for u, v ∈ dom(K) ∩ dom(D), and compute τ that satisfies the optimality condition s′(τ) = 0, we
end up with

τ =
−〈v, r〉

α‖Dv‖2 + ‖Kv‖2
,

with r denoting the residual function r = K∗(Ku−f)+αD∗Du. If we insert the gradient descent
for v, i.e. v = −r, we obtain

τ =
‖r‖2

α‖Dr‖2 + ‖Kr‖2
,

which is a strategy known as exact stepsize, see for instance [2, Section 4.5.1].
We easily see that an optimal choice for the algorithmic stepsize τ is difficult or probably

impossible to find if either the fidelity term or the regularization term is not quadratic. The latter
is of particular relevance in case of singular regularization energies. Moreover, in practice often
line-search methods are considered instead of the exact stepsize strategy.

However, in the following we are going to discuss how to choose an optimal algorithmic step-
size in case of the compressed sensing setup (4.3), i.e. quadratic fidelity and `1-regularization.
Subsequently, we are going to present a FBS technique for the Kullback-Leibler instead of the
quadratic L2 fidelity.

Forward-Backward Splitting with Quadratic Fidelity and `1-Regularization

In [60] the authors have reformulated the variational scheme (4.3) to a low-rank problem. If we
suppose to have two successive iterates uk−1 and uk of the FBS method for (4.3) with the same
support (i.e. sign(uk−1) = sign(uk)) and if we assume D to be the diagonal matrix with Dii = 1
if uk−1 6= 0 and Dii = 0 otherwise, then, obtaining uk from uk−1 via FBS is equivalent to

uk = arg min
u∈`1

{
‖KDu− f‖22 + α〈u, s〉

}
, (8.1)

with s = α sign(uk−1). Hence, if we have the same support for two successive iterates we have
to solve a simple quadratic problem for which in analogy to the overall quadratic problem in the
previous section we can find an optimal algorithmic stepsize for FBS via

τk =
‖rk‖22
‖Krk‖22

(8.2)

with r denoting the residual of (8.1). If sign(uk−1) 6= sign(uk) holds, still standard FBS needs to
be applied on (4.3). Consequently, in [60] the residual has been rewritten to

rk = DkK
T (KDkuk − f) + α sign(uk) + (I −Dk) shrink

(
KT (Kuk − f) , α

)
. (8.3)

With this reformulation of problem (4.3) to a low-rank problem the FBS with adaptive stepsize
reads as follows.
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Algorithm 3 CS-FBS with Adaptive Stepsize

1. Parameters: K, f, α > 0, maxiter
2. Initialization: u0 = 0
for k = {0, . . . ,maxiter− 1} do

Compute gk = KT (Kuk − f)

Define Dk as the diagonal matrix with Dii =

{
1 (uk)i 6= 0

0 (uk)i = 0
.

Compute rk via (8.3)
Update τk via (8.2)
Compute uk+1 = shrink (uk − τkgk, ατk)

end for
return umaxiter

Forward-Backward Splitting with Kullback-Leibler Fidelity

In order to compute numerical solutions of a variational framework with Kullback-Leibler Fidelity
without inverting the operator K, in [111, 21, 22] a specific FBS-approach has been proposed in
case of total variation regularization, which can also be generalized to other regularization energies.

First of all we want to recall that a very popular approach for minimizing KL(f,Ku) with re-
spect to u ≥ 0 is the standard Expectation Maximization (EM) algorithm, based on the optimality
condition of û ∈ arg minû∈L1

≥0(Ω) KL(f,Ku), which is

0 = û

(
1−K∗ f

Kû

)
. (8.4)

The corresponding standard EM algorithm (cf. [92]) is the simple iterative scheme

uk+1 =
uk

K∗1
K∗
(

f

Kuk

)
, (8.5)

for which convergence to the solution of (8.4) can be proved under approriate assumptions on the
operator and the data f . The standard EM algorithm can be summarized as follows.

Algorithm 4 Standard EM Algorithm

1. Parameters: K, f, maxiter
2. Initialization: u0 > 0
for k = {0, . . . ,maxiter− 1} do

Compute uk+1 via (8.5)

end for
return umaxiter

If we assume to have given a variational minimization problem with Kullback-Leibler fidelity,
convex regularization energy and positivity constraint, i.e.

u ∈ arg min
u∈dom(J)

u≥0

{KL(f,Ku) + αJ(u)} , (8.6)
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the particular FBS idea is to compute

uk+ 1
2

= uk − σk∂uKL(f, uk)

uk+1 = uk+ 1
2
− σkαpk+1 , pk+1 ∈ ∂J(uk+1)

with adaptive stepsize σk = τk
uk
K∗1 , τk > 0. The idea behind this special choice of σ is to reduce

(8.6) to an iterate (8.5) of Algorithm 4 (in the following denoted by uEM) and a regularized
weighted-L2-problem. Inserting σk yields

uk+ 1
2

= uk − τk

uk − uk
K∗1

K∗
(

f

Kuk

)
︸ ︷︷ ︸

=uEM


uk+ 1

2
= (1− τk)uk + τkuEM .

Hence, uk+1 is the solution of the weighted-L2-problem

uk+1 ∈ arg min
u∈dom(J)

u≥0

{
1

2
〈wk(u− uk+ 1

2
), u− uk+ 1

2
〉L2(Ω) + ατkJ(u)

}
(8.7)

with weight wk := K∗1
uk

. Note that if J is one-homogeneous and can therefore be written as
J(u) = 〈u, p〉 for p ∈ ∂J(u) due to Lemma 2.4, we can rewrite (8.7) to

uk+1 ∈ arg min
u∈dom(J)

u≥0

{
1

2

∥∥∥u− uk+ 1
2

∥∥∥2

L2(Ω)
+ ατk〈u,w−1

k p〉
}

.

This can be helpful especially when dealing with `1- and L1-type regularizations, since the notation
allows the modification of existing denoising schemes for the particular regularization energy
simply by introducing a weight in the regularization term. In [111, 21, 22] the authors have
analyzed the computational scheme above in the case of J(u) = TV(u). In case of total variation
regularization it has been shown that the solution of (8.7) is positive if the input data uk+ 1

2
is

positive, due to a proved maximum-principle [21, Section 5.4.3]. Furthermore, for appropriate
conditions on τk (cf. [21, Section 5.4.4, Theorem 5.4.12]) it has been shown that the iteration
scheme converges to the exact minimizer of (8.6) for J(u) = TV(u).

We want to summarize the recent considerations to the following algorithm.
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Algorithm 5 Regularized EM Algorithm

1. Parameters: K, f, α > 0, maxiter, (τk)k∈{0,...,maxiter−1}
2. Initialization: u0 > 0
for k = {0, . . . ,maxiter− 1} do

Compute uk+ 1
2

= uk
K∗1K

∗
(

f
Kuk

)
(EM-iterate)

Set uk := (1− τk)uk + τkuk+ 1
2

Define ωk := uk/(K
∗1)

Solve uk+1 ∈ arg minu∈dom(J)
u≥0

{
1
2

∥∥∥u−uk√
ωk

∥∥∥2

L2(Ω)
+ ατkJ(u)

}
end for
return umaxiter

We want to mention that there exist various other methods that aim at solving (8.6) for various
choices of regularization terms. In [41, 100, 99] (parallel) proximal-point algorithms have been
investigated to solve (2.9) for different fidelities (for instance Hf (Ku) = KL(f,Ku)) and multiple
regularization terms for different domains, by efficiently splitting the whole variational framework
up into subproblems.

In [14, 13] a scaled projective gradient method and an inexact interior point method have been
considered to minimize (8.6) in image deblurring applications. However, the application of these
methods require the considered functionals to be differentiable.

In [65] the Kullback-Leibler fidelity has been approximated by its second-order Taylor lin-
earization. More precisely, a simple FBS-strategy as in Algorithm 2 was performed, for which the
stepsize has specifically been chosen via a Barzilai-Borwein-related criterion, based on the second
derivative of the Kullback-Leibler fidelity.

Augmented-Lagrangian-Type Methods

Other popular splitting schemes originate in the consideration of saddle-point problems. A saddle-
point problem is defined as follows.

Definition 8.1 (Primal-Dual Saddle-Point Problem). Let L : U × V → R ∪ {∞} be a functional
that is convex in u ∈ U and concave in p ∈ V, for Banach spaces U and V. Then, the saddle-point
problem is defined as

inf
u∈U

sup
p∈V
L(u; p) , (8.8)

with u denoting the primal, and p denoting the dual variable.

Typical convex-concave functionals are Lagrange-functionals, that transform constrained op-
timization problems into unconstrained problems.
Finding a saddle-point pair (ū, p̄) is equivalent to finding a pair that satisfies

L(ū, p) ≤ L(ū, p̄) ≤ L(u, p̄) , ∀(u, p) ∈ U × V .

It is easy to see that problems like (8.8) can be split into two separate problems, which are
infu∈U F (u) for F (u) := supp∈V L(u; p); or, equivalently, supp∈V G(p) for G(p) := infu∈U L(u; p),
since inf and sup can be interchanged in specific cases, see for instance [91, Section 3.2, Theorem
3.1] in case of the ROF model (4.6).
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In the following we want to discuss two typical constrained minimization problems that result
from the variational frameworks we are interested in. The first problem can be defined as follows.

Problem 8.1.

u ∈ arg min
u∈dom(J)

J(u)

subject to

Ku = f

In order to turn Problem 8.1 into an unconstrained minimization problem, we can define the
Lagrange functional

L(u;µ) := J(u) + 〈µ,Ku− f〉L2(Σ)

with Lagrange multiplier µ, and rewrite Problem 8.1 to the saddle-point problem

(u, µ) ∈ arg min
u∈dom(J)

arg max
µ∈L2(Σ)

L(u;µ) . (8.9)

In case of a quadratic functional J the system of equations derived from the Karush-Kuhn-Tucker
(KKT) conditions, i.e. the optimality conditions, of (8.9) can be solved easily. In case of a singular
regularization energy, (8.9) is not that easy or even impossible to solve. Therefore we want to
introduce the augmented Lagrange functional of Problem 8.1, i.e.

LA(u;µ) = J(u) + 〈µ,Ku− f〉L2(Σ) +
δ

2
‖Ku− f‖2L2(Σ) . (8.10)

As we see the only modification of the standard Lagrange multiplier is an additional squared
L2-term of the constraint, balanced by a positive relaxation parameter δ. The ALM goes back to
[66, 98] and has been originally introduced as the method of multipliers. In [57, 58, 72] an extensive
overview of the ALM can be found. It can be seen that a saddle-point of the standard Lagrange
functional is also a saddle-point of the augmented Lagrange functional, since the additional L2-
term does on the one hand not affect the optimality condition for µ and on the other hand vanishes
for Ku = f . The basic algorithmic idea in order to split the overall problem into subproblems
is to apply the standard Uzawa algorithm without preconditioning ([3, Chapter 10]) on (8.10).
Furthermore the stepsize of the gradient ascent on the dual variable (which is the Lagrange
multiplier) is set to the relaxation parameter. Hence, we obtain the following algorithm, called
method of multipliers ([66, 98]) or the augmented Lagrangian method (ALM).

Algorithm 6 Augmented Lagrangian Method for Problem 8.1

1. Parameters: K, f, α > 0, maxiter, (δk)k∈{0,...,maxiter−1}
2. Initialization: u0 ∈ dom(J), µ0 ∈ L2(Σ)
for k = {0, . . . ,maxiter− 1} do

Compute

uk+1 ∈ arg min
u∈dom(J)

LA(u;µk)

= arg min
u∈dom(J)

{
J(u) + 〈µk,Ku− f〉L2(Σ) +

δk
2
‖Ku− f‖2L2(Σ)

}
Update µk+1 = µk + δk (Kuk+1 − f)

end for
return umaxiter
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The second problem we want to discuss is a variational minimization framework with additional
equality constraint.

Problem 8.2.

(u, v) ∈ arg min
u,v

{Hf (Ku) + αJ(v)}

subject to

v = Bu

A typical problem that can be reformulated to be of the type of Problem 8.2 is the computation
of a ROF-minimizer (4.6). Computing a ROF-minimizer can be rewritten to

(u, v) ∈ arg min
u∈BV(Ω)

v∈M(Ω;Rn)

{
1

2
‖Ku− f‖2L2(Σ) + α‖v‖M(Ω;Rn)

}

subject to v = ∇u ,

(8.11)

with M(Ω;Rn) being the space of Radon measures on Ω. In analogy to Problem 8.1 we can
define the augmented Lagrange functional for Problem 8.2 and iteratively compute the separate
optimality conditions. The ALM for Problem 8.2 reads as follows.

Algorithm 7 Augmented Lagrangian Method for Problem 8.2

1. Parameters: K, f, α > 0, maxiter, (δk)k∈{0,...,maxiter−1}
2. Initialization: u0 with Bu0 ∈ dom(J), µ0 ∈ L2(Σ)
for k = {0, . . . ,maxiter− 1} do

Compute uk+1 ∈ arg minu∈dom(J(B·))

{
Hf (Ku) + 〈µk, Bu− vk〉L2(Ω) + δk

2 ‖Bu− vk‖
2
L2(Ω)

}
Solve vk+1 ∈ arg minv∈dom(J)

{
αJ(v) + 〈µk, Buk+1 − v〉L2(Ω) + δk

2 ‖Buk − v‖
2
L2(Ω)

}
Update µk+1 = µk + δk (Buk+1 − vk+1)

end for
return umaxiter

For problems like (8.11) the ALM approach offers the advantage to separate the nonlinear
problem into two linear problems and a nonlinear problem that can be solved analytically. If we
consider (8.11) the ALM reads as

uk+1 = arg min
u∈BV(Ω)

{
1

2
‖Ku− f‖2L2(Ω) + 〈µk,∇u− vk〉L2(Ω) +

δk
2
‖∇u− vk‖2L2(Ω)

}
,

(8.12)

vk+1 = arg min
v∈M(Ω;Rn)

{
α‖v‖M(Ω;Rn) + 〈µk,∇uk+1 − v〉L2(Ω) +

δk
2
‖∇uk+1 − v‖2L2(Ω)

}
,

(8.13)

µk+1 = µk + δk (∇uk+1 − vk+1) , (8.14)
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for which equation (8.12) and (8.13) can be solved via

(K∗K − δk∆)uk+1 = K∗f − δkdiv

(
vk −

1

δk
µk

)
, (8.15)

and

vk+1 = shrink

(
∇uk+1 −

1

δk
µk,

α

δk

)
, (8.16)

respectively. We see that we have to solve iteratively the two linear equations (8.15) and (8.14)
of which only (8.15) involves a matrix inversion. If K is the identity operator (8.15) can even be
solved directly since ∆ is diagonalizable with respect to a certain basis depending on the boundary
conditions. For K = I and Neumann boundary conditions on ∆ we can use the Cosine transform
for diagonalization, which is briefly explained in Appendix A.1. The computation of (8.16) is a
direct, pointwise operation as well, which makes the ALM a very suitable algorithmic scheme for
problems like (8.11).

The computational scheme (8.11) in order to solve (4.6) has been introduced in [59] as the
Split Bregman method. Many works (cf. [115, 116] together with [52, 54]) yet have pointed
out the relation between ALM, Split Bregman and other splitting methods. Moreover, further
developments of ALM especially in the context of imaging and total variation regularization can
be found in [52, 54, 53, 139, 140, 133, 71, 21]. In the following we briefly want to highlight
the connection between ALM and Bregman Distances. If we consider the primal minimization
problem of ALM for Problem 8.1 in Algorithm 6, i.e.

uk ∈ arg min
u∈dom(J)

{
J(u) + 〈µk−1,Ku− f〉L2(Σ) +

δk−1

2
‖Ku− f‖2L2(Σ)

}

= arg min
u∈dom(J)

{
1

δk−1
J(u) +

1

2

∥∥∥∥Ku− (f − 1

δk−1
µk−1

)∥∥∥∥2

L2(Σ)

} ,

we can set δk−1 = 1/α for all k and a fixed positive constant α and substitute vk−1 := −αµk−1 to
obtain

uk ∈ arg min
u∈dom(J)

{
αJ(u) +

1

2
‖Ku− (f + vk−1)‖2L2(Σ)

}
.

The update for the Lagrange multiplier µk−1,

µk = µk−1 + δk−1 (Kuk − f) ,

modifies to

vk = vk−1 − (Kuk − f) ,

and hence, the ALM Algorithm 6 for Problem 8.1 and the Bregman Iteration Algorithm 1 are
equivalent for constant stepsize of the gradient ascent on the Lagrange multiplier.
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8.1.2 Direct Methods

In this section we want to discuss alternative concepts for the computational solution of (8.8), for
the particular problem

inf
u

sup
‖p‖∞≤1

{
1

2
‖u− f‖2L2(Ω) + α 〈u,B∗p〉L2(Ω)

}
. (8.17)

One concept is based on a projected gradient descent method applied to the dual problem, while
the other concept is founded on a quasi-Newton approach.

Dual Gradient-Descent Methods

In [37] a primal-dual gradient-descent method has been presented in order to find computational
solutions of the ROF-model (4.6). In this section we want to briefly recall the algorithm in case
of an arbitrary linear operator B. The basic idea is to compute the dual problem of (4.6) instead
of the primal problem. If we consider

inf
u∈BV(Ω)

sup
‖p‖∞≤1

{
1

2
‖u− f‖2L2(Ω) + α 〈B∗p, u〉L2(Ω)

}
,

we can at least in case of B = ∇ interchange inf and sup due to [91, Section 3.2, Theorem 3.1] to
obtain the minimization problem

inf
u∈BV(Ω)

1

2
‖u− f‖2L2(Ω) + α 〈B∗p, u〉L2(Ω) .

The function u that minimizes this expression is simply given via u = f − αB∗p. Hence, we end
up with the dual optimization problem

sup
‖p‖∞≤1

{
−1

2
‖αB∗p‖2L2(Ω) + α 〈B∗p, f〉L2(Ω)

}
= inf
‖p‖∞≤1

{
1

2
‖αB∗p− f‖2L2(Ω)

}
,

for which the optimality condition is

BB∗p =
1

α
Bf , (8.18)

subject to ‖p‖∞ ≤ 1. The idea of the algorithm presented in [37] in case of B = ∇ is to solve
(8.18) via a projected gradient descent method, i.e. p is approximated via

pk+1 =
pk − τB

(
B∗pk − 1

αf
)∥∥pk − τB (B∗pk − 1

αf
)∥∥
∞

. (8.19)

If pk has converged up to a certain tolerance, the primal variable can be obtained via the relation
u = f − αB∗p. If we summarize the different algorithmic steps we end up with the following
algorithm.

Algorithm 8 Chambolle Algorithm

1. Parameters: f, α > 0, τ > 0, maxiter
2. Initialization: p0 ∈ dom(B∗), with ‖p0‖∞ ≤ 1
for k = {0, . . . ,maxiter− 1} do

Compute pk+1 via (8.19)

end for
return pmaxiter, umaxiter = f − αB∗pmaxiter
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Primal-Dual Quasi-Newton Methods

In the previous section we have presented a projected gradient descent method in order to solve
(8.17). In this section we want to consider the same problem but we want to discuss an alternative
method that has originally been proposed in [125] (in order to solve the ROF model, i.e. B = ∇).
For this method a nonlinear problem needs to be split up into a linear and a nonlinear part, while
the nonlinear part has to be linearized and subsequently both parts have to be merged together
into a linearized iterative scheme.

We want to approximate the dual characterization of the L1 regularization of Bu, i.e.
supp∈C∞0 (Ω;Rn)

‖p‖∞≤1

〈u,B∗p〉, by a nonlinear penalty term. Precisely, we want to consider Lagrange

functionals of the type

LP(u; p) :=
1

2
‖Ku− f‖2L2(Ω) + α 〈u,B∗p〉L2(Ω) −

ε

2
‖max (|p| − 1, 0)‖2L2(Ω) . (8.20)

The optimality conditions of (8.20) are

∂uLP(u; p) = 0 = K∗(Ku− f) + αB∗p (8.21)

∂pLP(u; p) = 0 = αBu− εH(p) (8.22)

with H(p) being defined as

H(p) := sign(p) max (|p| − 1, 0) . (8.23)

We have a linear (8.21) and a nonlinear (8.22) equation as our optimality system. We now want
to linearize (8.22) by approximating (8.23) via its first order Taylor approximation, i.e.

H(pk+1) ≈ H(pk) +H ′(pk)(pk+1 − pk) , (8.24)

with

H ′(p) =

{
1 if |p| > 1

0 else
.

If we replace H(p) via its linearization (8.24) and add a damping term with respect to the dual
variable p we end up with the iterative Quasi-Newton-scheme

0 = K∗(Kuk+1 − f) + αB∗pk+1 ,

0 = αBuk+1 − εH(pk)− εH ′(pk)(pk+1 − pk)− τk(pk+1 − pk) ,

for a sequence of positive damping parameters τk, which we can rewrite to

K∗Kuk+1 + αB∗pk+1 = K∗f , (8.25)

αBuk+1 +Mkpk+1 = vk , (8.26)

with

Mk := −εH ′(pk)− τkI , (8.27)
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and

vk := ε(H(pk)−H ′(pk)pk)− τkpk . (8.28)

By applying a Schur-Complement strategy the system of equations (8.25) and (8.26) can be
reduced to one equation. If we solve (8.26) for pk+1 we obtain

pk+1 = M−1
k (vk −Buk+1) . (8.29)

Note that M−1
k is easy to invert (for τk 6= 0), since M−1

k is a diagonal operator. Inserting pk+1

into (8.25) yields

uk+1 =
(
K∗K + αB∗M−1

k B
)−1 (

K∗f −B∗M−1
k vk

)
. (8.30)

If K∗K is easily invertible, the solution of uk+1 and subsequent insertion into (8.26) could be an
alternative option. The above considerations lead to the following algorithm.

Algorithm 9 Primal Dual Quasi-Newton Method

1. Parameters: f, α > 0, ε > 0, maxiter, (τk)k∈{0,...,maxiter−1}
2. Initialization: p0 ∈ dom(B∗), with ‖p0‖∞ ≤ 1
for k = {0, . . . ,maxiter− 1} do

Define Mk via (8.27)
Set vk as in (8.28)
Solve uk+1 via (8.30)
Update pk+1 via (8.29)

end for
return umaxiter, pmaxiter

In [91] the Primal-Dual Quasi-Newton method has been parallelized and optimized for com-
puting ROF-minimizers, i.e. K = I and B = ∇u. In more than one dimensions implementing the
Primal-Dual Quasi-Newton method for ROF-minimization can become more complicated. The
anisotropic case is straight forward. The dual variables in the different dimensions are not linked
as they are in the isotropic case. Therefore additional penalty terms are all independent of each
other, and hence, computations can be done in an analogous way as in the one dimensional case.
For isotropic total variation regularization the extension of the computational scheme is much
more complicated, since the dual variables are linked via the condition

√
p2

1 + p2
2 + · · ·+ p2

n ≤ 1.

8.1.3 Bregman-Iteration for the Kullback-Leibler Fidelity

The concept of Bregman iteration as introduced in Section 3.3 can be transferred to other data
fidelities. In [21, Section 5.6.1] a computational scheme for the solution of

ul ∈ arg min
u∈dom(J)

{
KL(f,Ku) + αDpl−1

J (u, ul−1)
}

(8.31)

has been presented and analyzed in case of J(u) = TV(u). Considering the optimality condition
of (8.31) yields

0 = K∗
(

1− f

Kul

)
+ α

(
pl − pl−1

)
.
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If we substitute pl :=
(
K∗1vl

)
/α we obtain the update formula

vl = vl−1 −
(

1− 1

K∗1
K∗
(

f

Kul

))
. (8.32)

In analogy to the derivation of Algorithm 1 the idea of substituting v for p is to shift the Bregman
update for v into the data fidelity. If we consider Algorithm 5 again, our goal is to replace (8.7)
with

ulk+1 ∈ arg min
u∈dom(J)

u≥0

1

2

∫
Ω

K∗1
(
u−

(
(1− τk)ulk + τku

l
k+ 1

2

))2

ulk
dµ(x) + τkαD

pl−1

J (u, ul−1)

 .

If we replace pl−1 by vl−1 with
(
K∗1vl−1

)
/α = pl−1 we can shift vl−1 into the fidelity term to

obtain

ulk+1 ∈ arg min
u∈dom(J)

u≥0

1

2

∫
Ω

K∗1
(
u−

(
(1− τk)ulk + τku

l
k+ 1

2

+ τkv
luk

))2

ulk
dµ(x) + τkαJ(u)

 .

(8.33)

The whole procedure can be summarized into the following algorithm.

Algorithm 10 Bregmanized EM Algorithm

1. Parameters: K, f, α > 0, maxiter, bregiter, (τk)k∈{1,...,maxiter×bregiter}
2. Initialization: ul0 > 0, v0 = 0
for l = {0, . . . ,bregiter− 1} do

for k = {1, . . . ,maxiter} do

Solve ul
k+ 1

2

=
ulk
K∗1K

∗
(

f
Kulk

)
Compute ulk+1 via (8.33)

end for
Update vl via (8.32)

end for
return ubregiter

maxiter

8.1.4 Orthogonal Matching Pursuit

The efficient computation of sparse solutions for underdetermined linear systems of equations
(LES) is of high relevance, since many applications (especially those related to the terminology
of compressed sensing) can be described as problems for which the desired solution has a sparse
representation with respect to a certain basis. This representation therefore allows recovery of
this sparse pattern if the rank of the LES is still high enough in contrast to the level of sparsity.

A very simple and intuitive algorithm to solve underdetermined LES for solutions with sparse
patterns is the orthogonal matching pursuit (OMP) algorithm (cf. [96, 88, 124]) as summarized
in Algorithm 11. Note that PI denotes the projection on I.
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Algorithm 11 Orthogonal Matching Pursuit

1. Parameters: K, f, threshold > 0
2. Initialization: r0 = f , I0 = ∅
while ‖rk‖ > threshold do

Compute Ik = Ik−1 ∪ i with i such that
∣∣(KT rk)i

∣∣ = ‖KT rk‖∞
Compute uk = arg minu

{
‖KPIku− f‖2

}
Update rk+1 = f −KPIkuk

end while
return uk

The idea behind OMP is to iteratively consider the coefficients that represent most of the
data, to subsequently project the data on these coefficients and to subtract the result from the
data, until a specified threshold has been reached. The features that make the algorithm very
attractive is its simplicity and the fact that only low-dimensional LES have to be solved in each
iteration. Moreover, for matrices K that have special properties it can even be proved that OMP
converges to the sparsest possible solution (cf. [121, 85]). However, for rather difficult or ill-
conditioned matrices OMP is not producing desirable results, which is the motivation for the
upcoming section to investigate a new OMP-related algorithm based on the ISS (3.9) in case of
the compressed sensing setup (4.3), which has been proposed in [27].

8.2 Adaptive Inverse Scale Space Methods

Inspired by the ISS method as introduced in Section 3.4, and greedy methods such as OMP
considered in the previous section, we want to present a novel algorithm that, in analogy to OMP,
iteratively solves small least-squares problems in order to recover the sparse set of coefficients that
represents given data best. In contrast to OMP we are going to see that the novel algorithm is
guaranteed to converge to at least the `1-minimizing solution that solves the LES.

8.2.1 Inverse Scale Space Methods for Compressed Sensing

In the following we are going to investigate the behaviour of inverse scale space methods in the
compressed sensing setup

∂tp(t) = KT (f −Ku(t)), p(t) ∈ ∂‖u‖`1 . (8.34)

Similar to the Eigenfunction-decomposition example for J(u) = ‖u‖`1 in Section 7.3 we want to
start with a rather general statement related to Theorem 6.2 in case of α→∞.

Lemma 8.1. For

t < t1 :=
1

‖KT f‖`1

a solution (u, p) of the inverse scale space flow (8.34) is given by

u(t) = 0, p(t) = tKT f.

Proof. We immediately see

∂tp(t) = KT f = KT (f −Ku(t))
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and
‖p(t)‖`1 = t‖KT f‖`1 < t1‖KT f‖`1 = 1,

thus
p(t) ∈ ∂‖0‖`1 = ∂‖u(t)‖`1 .

The observation in Lemma 8.1 is the basis for further characterizing the inverse scale space
flow for larger times. We expect changes in the primal variable u only to occur at some discrete
time steps, when some |pi(t)| reaches the value one and that p behaves linearly in the intermediate
times. It remains to characterize u at the discrete time steps tk. This can be understood from
the limit of the Bregman iteration

1

2
‖Ku− f‖2`2 + α(‖u‖`1 − p · u)

as α → ∞. In order to obtain a minimum we expect the Bregman distance to go to zero, i.e.
p · u = ‖u‖`1 (thus p ∈ ∂‖u‖`1), and the squared norm to be minimized subject to this constraint.
In this way we can indeed compute the detailed behaviour of the inverse scale space flow:

Theorem 8.1. There exists a sequence of times

0 = t0 < t1 < t2 < . . .

such that
u(t) = u(tk), p(t) = p(tk) + (t− tk)KT (f −Ku(tk)) (8.35)

for t ∈ [tk, tk+1) is a solution of the inverse scale space flow (8.34), where u(tk) is a solution of

‖Ku− f‖`2 → min
u,p(tk)∈∂‖u‖`1

. (8.36)

Moreover tk+1 =∞ if and only if KTKu(tk) = KT f .

Proof. Due to Lemma 8.1 the assertion clearly holds for k = 0 (with t0 = 0), noticing that

p(0) = 0 ∈ ∂‖u(0)‖`1 = ∂‖0‖`1 .

Now we proceed inductively. Given u(tk) and p(tk) we compute

tk+1 = min{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) 6= pj(tk)}, (8.37)

where

pj(t) = pj(tk) + (t− tk)ej ·KT (f −Ku(tk)) (8.38)

holds.
Now u(tk) minimizes ‖Ku−f‖`2 subject to the constraint p(tk) ∈ ∂‖u‖`1 , which we can rewrite

as a linearly constrained quadratic problem of minimizing ‖Ku− f‖2`2 subject to

uj ≥ 0 if pj = 1

uj ≤ 0 if pj = −1

uj = 0 if − 1 < pj < 1.

From the optimality condition we obtain:
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• uj(tk) > 0 or uj(tk) < 0 implies ej ·KT (Ku(tk)− f) = 0, hence pj(t) = pj(tk) = ±1.

• uj(tk) = 0 and pj(tk) = 1 implies ej ·KT (Ku(tk) − f) ≥ 0, hence −1 ≤ pj(t) ≤ pj(tk) = 1
for t small.

• uj(tk) = 0 and pj(tk) = −1 implies ej ·KT (Ku(tk)− f) ≤ 0, hence 1 ≥ pj(t) ≥ pj(tk) = −1
for t small.

• uj(tk) = 0 and pj(tk) ∈]− 1, 1[ implies pj(t) ∈ [−1, 1] for t small.

Hence the construction yields a solution in [tk, tk+1) and tk+1 is well-defined. The existence of
u(tk+1) follows from a standard result for quadratic programs.

Theorem 8.1 provides a direct way to formulate the inverse scale space method as an adaptive
scheme for compressed sensing. We will refer to this method as adaptive inverse scale space
method (aISS):

Algorithm 12 Adaptive Inverse Scale Space Method

1. Parameters: K, f, threshold ≥ 0
2. Initialization: t1 = 1/

∥∥KT f
∥∥
∞ , p(t1) = t1 K

T f, I1 = {i | |pi(t1)| = 1}
while ‖Ku(tk)− f‖`2 > threshold do

Compute u(tk) = arg minu
{
‖KPIku− f‖2`2

}
subject to u(tk)p(tk) ≥ 0

Obtain tk+1 as the minimal time for which (8.37) holds
Update the dual variable p(t) via (8.38) with t = tk+1

Compute Ik+1 = {i | |pi(tk+1)| = 1}
end while
return u(tk)

We want to mention that the solution of the quadratic programming problem in each step is
a very low-dimensional one, since we can directly set uj(tk) = 0 for |pj(tk)| < 1. Hence we can
minimize the problem on the lower-dimensional index set Ik of components where |pj(tk)| = 1. In
most cases we expect the solution to be the same as (KPIk)†f , hence we might try to solve the
low-dimensional least-squares problem first and then check the signs of the solution.

The resulting characterization of the inverse scale space method is reminiscent to greedy
methods for compressed sensing, in particular orthogonal matching pursuit (see Algorithm 11).
We can easily see the differences concerning the structure of the algorithm

• OMP restricts the index set similar to the inverse scale space method, but does not enforce
a sign constraint.

• OMP only adds single indices in each iteration, while it is possible to change the index set
arbitrarily in inverse scale space methods (practical observations confirm however a change
of only one index in a vast majority of cases).

• OMP – brought to the inverse scale space notation – uses the supremum norm of KT (f −
Ku(tk)) to select relevant indices, while the inverse scale space method uses sp(tk)+KT (f−
Ku(tk)) for varying s (related to t− tk).

We expect the last point to be the major change from OMP to inverse scale space methods. The
update of the dual variable encodes some history and improves the convergence behaviour. In
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situations where OMP performs well, the first two points are probably no major differences, since
we expect to automatically find correct signs by solving the unconstrained least-squares problem
and we expect the index set to increase by one in each step also in the inverse scale space method.
The sign constraint and the different update of the index set (in particular also the chance to
make it smaller) are expected to yield improved behaviour in situations where OMP does not
perform well (see also the numerical examples in Section 9.1.4), it also reflects the convergence of
the inverse scale space method in arbitrary situations.

In analogy to Theorem 8.1 and Algorithm 12 we can derive similar results for the regularized
inverse scale space flow (3.10). The major modification is that the update of the dual variable
(8.38) changes to

pj(t) =

(
pj(tk)−

1

α
ej ·KT (f −Ku(tk))

)
exp (−α (t− tk))

+
1

α
ej ·KT (f −Ku(tk)) .

(8.39)

The related regularized-aISS-algorithm reads:

Algorithm 13 Adaptive Regularized Inverse Scale Space Method

1. Parameters: K, f, threshold ≥ 0
2. Initialization: t1 = − log

(
1− α/

∥∥KT f
∥∥
∞
)
/α, p(t1) =

(
KT f

)
(1− exp(αt1)) /α, I1 =

{i | |pi(t1)| = 1}
while ‖Ku(tk)− f‖`2 > threshold do

Compute u(tk) = arg minu
{
‖KPIku− f‖2`2 + α (PIku · p(tk))

}
subject to u(tk)p(tk) ≥ 0

Obtain tk+1 as the minimal time for which (8.37) holds
Update the dual variable p(t) via (8.39) with t = tk+1

Compute Ik+1 = {i | |pi(tk+1)| = 1}
end while
return u(tk)

8.2.2 Further Convergence Analysis

In the following we provide some additional analysis confirming the favorable properties of the
method in typical setups for compressed sensing. We shall assume that

f = Kũ, PI ũ = ũ, ũ · ei 6= 0, i ∈ I. (8.40)

where ũ is the sparsest solution of Ku = f . Here I denotes an index set, and PI the projection
onto the elements supported on this index set. Hence, the above condition ensures that I is the
index set of nonzero entries of the sparsest solution. In addition we shall assume a normalization
condition on the columns of the matrix K, i.e.,

‖Kei‖`2 = 1, ∀ i . (8.41)

First of all, we can see that each iteration improves the approximation accuracy of the data:

Proposition 8.1. The approximation error ‖Ku(t)−f‖`2 of the inverse scale space flow is strictly
decreasing at the times tk, i.e.

‖Ku(tk+1)− f‖`2 < ‖Ku(tk)− f‖`2
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Proof. We will prove the above Proposition in two steps

1. Show that ‖Ku(tk+1)− f‖`2 < ‖Ku(tk)− f‖`2 if p(tk) /∈ ∂‖u(tk+1)‖`1 .

2. Show that p(tk) /∈ ∂‖u(tk+1)‖`1 is always satisfied.

First part: Let us assume that p(tk) /∈ ∂‖u(tk+1)‖`1 . In this case we have

D
p(tk)
‖·‖`1

(u(tk+1), u(tk)) > 0. (8.42)

Notice that u(tk+1) is a minimizer of

Q(u) =
1

2
(tk+1 − tk)‖Ku− f‖2`2 +D

p(tk)
‖·‖`1

(u, u(tk)),

which can easily be verified by confirming that the formula for p(tk+1) coincides with the optimality
condition of the above functional. Using (8.42) this yields the conclusion

1

2
(tk+1 − tk)‖Ku(tk+1)− f‖2`2 < Q(u(tk+1))

≤ Q(u(tk))

=
1

2
(tk+1 − tk)‖Ku(tk)− f‖2`2 ,

and since (tk+1 − tk) > 0 we have shown ‖Ku(tk+1)− f‖`2 < ‖Ku(tk)− f‖`2 .

Second part: By construction, more specific by the choice of tk+1, there exists an index i such that
|pi(tk+1)| = 1 and |pi(tk)| < 1. Let us assume pi(tk+1) = 1, pi(tk) < 1, and i is – without restriction
of generality – the only index at which the value of the subgradient becomes 1 (the negative case
is similar and so is the case of multiple indices). We will show that ui(tk+1) > 0 which then (by
the characterization of the subdifferential (4.2)) allows the conclusion pi(tk) /∈ ∂‖u(tk+1)‖`1 .
Given pi(tk+1) = 1, pi(tk) < 1 we know that

[KT (f −Ku(tk))]i =
1

tk+1 − tk
(pi(tk+1)− pi(tk)) > 0

Now we can prove ui(tk+1) > 0 by contradiction. If we had ui(tk+1) = 0, we already knew
that u(tk+1) = u(tk). Based on our previous calculation, this would mean that also [KT (f −
Ku(tk+1))]i > 0. However, u(tk+1) is determined as the minimizer of

1

2
‖KPIk+1

u− f‖2`2 + λ · u, (8.43)

with Lagrange multipliers λ that enforce the constraint uj ≥ 0, if pj = 1, uj ≤ 0, if pj = −1,
which means that λj ≤ 0 if pj = 1, λj ≥ 0 if pj = −1. Now the optimality condition of (8.43) in
the ith coefficient tells us that

0 ≥ λi = [KT (f −Ku(tk+1))]i,

which is a contradiction to [KT (f −Ku(tk+1))]i > 0. Therefore, our assumption must have been
wrong and thus ui(tk+1) > 0, which means pi(tk) /∈ ∂‖u(tk+1)‖`1 .

The previous proposition allows us to conclude the finite time convergence of aISS to an `1

minimizing solution:
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Theorem 8.2. Let (u, p) be a solution of the adaptive inverse scale space method as above, then
there exists a M > 0 such that tM+1 =∞ and u(t) is an `1-minimizing solution for t ≥ tM .

Proof. Let us denote

Ik1 = {i : pi(tk) = 1}
Ik2 = {i : pi(tk) = −1}
Ik3 = {i : |pi(tk)| < 1}

Notice that the solution u(tk) and therefore the `2 error ‖Ku(tk)− f‖`2 only depend on the index
sets Ik1 , I

k
2 , I

k
3 . If there exists an l 6= k such that Ik1 = I l1, Ik2 = I l2, Ik3 = I l3, then obviously

‖Ku(tk)− f‖`2 = ‖Ku(tl)− f‖`2 .

However, Proposition 8.1 shows that this cannot happen, i.e.

‖Ku(tk)− f‖`2 < ‖Ku(tl)− f‖`2

for k > l. Since in finite dimensions there are only finitely many possibilities for Ik1 , I
k
2 , I

k
3 to be

different we can conclude that the method has to converge in a finite number of iterations, i.e.
there exists a M > 0 such that tM+1 =∞.

As we have seen in Theorem 8.1, tM+1 = ∞ implies KTKu(tM ) = KT f and since in (8.40)
we have assumed that f is in the range of K, we obtain Ku(tk) = f . To show that u(tk) indeed
is an `1-minimizing solution, let û be another solution to Ku = f . Then the Bregman distance
between û and u(tk) is

0 ≤ D
p(tM )
‖·‖`1

(û, u(tM ))

= ‖û‖`1 − ‖u(tM )‖`1 − 〈p(tM ), û− u(tM )〉

= ‖û‖`1 − ‖u(tM )‖`1 −

〈
M∑
i=1

(ti − ti−1)KT (f −Ku(ti−1)), û− u(tM )

〉

= ‖û‖`1 − ‖u(tM )‖`1 −

〈
M∑
i=1

(ti − ti−1)(f −Ku(ti−1)), Kû︸︷︷︸
=f

−Ku(tM )︸ ︷︷ ︸
=f︸ ︷︷ ︸

=0

〉

= ‖û‖`1 − ‖u(tM )‖`1 ,

which shows that u(tM ) is an `1 minimizing solution.

The above proof of Theorem 8.2 yields finite time convergence but not much information about
the complexity needed to reach the desired solution. In a reasonable setup we expect convergence
with low complexity, i.e. few iteration steps with small support of the iterates. We shall obtain
further information on the complexity by the following analysis. We start with a simple property
for only one nonzero entry:

Proposition 8.2. If |I| = 1 and let (u, p) be a solution of the adaptive inverse scale space method
as above. Then u = ũ for t ≥ t1.
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Proof. Let k be the index of the nonzero entry of ũ. For t < t1 we have

∂tpi = (Kei) · f = ũk(Kei) · (Kek).

From (8.41) and the Cauchy-Schwarz inequality we see

pk(t) = tũk

and for i 6= k
|pi(t)| = t|ũk||(Kei) · (Kek)| < t|ũk| = |pk(t)|.

Hence for t = t1 we have |pi(t1)| < 1 for i 6= k and pk(t1) equals the sign of ũk. Consequently,
u(t1) is determined by minimizing ‖Ku − f‖`2 over all u such that only the k-th component is
nonzero and has the same sign of ũk, thus ũ is the obvious minimizer. Since KT (Ku− f) = 0 we
obtain ∂tp = 0 for t ≥ t1, thus u remains unchanged.

For more than one nonzero entry we need further properties of the matrix K, several of which
are regularly used in compressed sensing. The most prominent example is the restricted isometry
property (RIP) due to Candes and Tao [34], for which equivalence of `0 and `1 minimization can
be shown. Here we shall use a weaker property due to Tropp [122], the so-called exact recovery
condition (ERC), which can be used to show that also in the noisy case the exact support can be
reconstructed: In [122, 123] J. A. Tropp has introduced a condition that guarantees recovery of
the true support of a solution for the compressed sensing setup (4.3), namely the exact recovery
condition (ERC). The exact recovery condition is defined as∥∥∥(KPI)

†Kej

∥∥∥
`1
< 1 ∀j ∈ Ic , (ERC)

for I denoting the index set of the true solution ũ, Ic representing the complement of I, PI : `2 → `2

being the projection of a vector onto the index set and with (KPI)
† denoting the generalized

Moore-Penrose inverse of (KPI). Before we continue to verify that for K satisfying (ERC) the
inverse scale space method only operates on the support of the exact solution, we first want to
highlight how (ERC) is connected to the source condition (SC1). Actually, (ERC) implies (SC1),
which we will prove with the following Lemma.

Lemma 8.2. Let ũ denote the exact solution of (2.3) with support-set I, for a linear operator
K : `2 → V(Σ). Then, if KPI is injective (with PI denoting the projection on I), the exact
recovery condition (ERC) implies the source condition (SC1) for J(ũ) = ‖ũ‖`1.

Proof. The source condition in case of J(u) = ‖u‖`1 reads as

∃ ξn ∈ sign(ũn), ∃ q ∈ V(Σ)∗ \ {0} : ξn = (K∗q)n .

If we define

q := ((KPI)
∗)† sign(PI ũ)

we see that for this particular choice of q we have ξn = ((KPI)
∗q)n = sign(PI ũn) on the index set

I, since KPI is assumed to be injective. Hence, the source condition (SC1) is already fulfilled on
the index set I. It remains to show that (SC1) is also valid on the complement of I. Therefore
the only thing left that needs to be shown is

|〈K∗q, ej〉| < 1
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for j ∈ Ic. We obtain

|〈K∗q, ej〉| = |〈q,Kej〉| = |〈((KPI)∗)† sign(PI ũ),Kej〉|
= |〈sign(ũ), (KPI)

†Kej〉| ≤ ‖(KPI)†Kej‖`1 < 1 ,

due to (ERC) and hence, (SC1) is valid.

Using the exact recovery condition we can verify that the inverse scale space method only
operates on the support of the exact solution:

Proposition 8.3. Let f = KPI ũ and let condition (ERC) be satisfied. Moreover let (u(t), p(t))
be the solution of the inverse scale space method as above. Then |pj(t)| < 1 for all j /∈ I and all
t > 0.

Proof. We look for a solution u = PIu and project the equation

∂tp = KT (f −Ku) = KTKPI(ũ− u)

onto I and with the regularity of (KPI)
TKPI we find

PI(ũ− u) = (PIK
TKPI)

−1∂tPIp

and hence

KPI(ũ− u) = K(PIK
TKPI)

−1∂tPIp = ((KPI)
†)T∂tPIp.

Now let j /∈ I, then

∂tpj(t) = ej ·KTKPI(ũ− u) = (Kej) · ((KPI)†)T∂tPIp.

Since all initial values are zero we can integrate this identity to obtain

pj(t) = ((KPI)
†Kej) · PIp.

Now (ERC) and ‖PIp‖∞ ≤ 1 imply |pj(t)| < 1 for all t.

With (ERC) we can also obtain a result further confirming the optimal behaviour for a very
small index set:

Proposition 8.4. Assume |I| = 2, (ERC), and let (u, p) be a solution of the adaptive inverse
scale space method as above. Then u = ũ for t ≥ t2.

Proof. Without restriction of generality let |ũ1| ≥ |ũ2| > 0 be the nonzero elements. We already
know that uj(t) = 0 for all t > 0 and j > 2, thus it suffices to consider the two-dimensional
subspace. In the following, let Ki denote the ith column of K. If ũ1 > 0 then for 0 < t < t1 we
have

1

t
p1(t) = [KT f ]1 = K1 · f = K1 ·Kũ = K1 · (K1ũ1 +K2ũ2)

= (K1 ·K1)︸ ︷︷ ︸
=1

ũ1 + (K1 ·K2)︸ ︷︷ ︸
>−1

ũ2

> ũ1 − ũ2 ≥ 0
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while for ũ1 < 0 we can show in a similar fashion that

p1(t) < 0.

Hence, p1 has the same sign as ũ1 and by considering the different cases of signs for ũ1 and ũ2 one
can easily verify that |p1(t)| ≥ |p2(t)|. If equality holds, then it is easy to see that |ũ1| = |ũ2| and
thus, u(t1) is obtained by minimizing the residual on the two-dimensional subspace with indices
I. Since the signs of ui(t1), i = 1, 2, are the same as the signs of ũi, we obviously have u(t1) = ũ
and thus u(t) = ũ for all t ≥ t1.

If |p1(t)| > |p2(t)|, the residual is minimized over the one-dimensional subspace with index 1
and sign constraint. It is easy to verify that u1(t1) = 0 cannot be the minimizer, thus

K1 · (Ku(t1)− f) = 0

and consequently p1 remains constant in (t1, t2). Due to Proposition 8.3 we must have |p2(t2)| = 1
and it is easy to check that the sign of p2 equals the sign of ũ2. Hence, the minimization of the
residual at time t2 is carried out over the two-dimensional subspace I with same signs as ũ, which
implies u(t2) = ũ and thus, u(t) = ũ for t ≥ t2.



Chapter 9

Applications

This chapter is all about applications that involve methods that have been subject of this the-
sis so far. We start supporting some of the rather theoretic results of the Chapters 5, 6 and
7 by computational examples. Moreover, we want to compare different computational scenar-
ios for the aISS algorithm introduced in Section 8.2 and the OMP algorithm, to point out the
strengths and weaknesses of the two algorithms. Subsequently we want to consider two real world
applications, namely Positron Emission Tomography (PET) and Bioluminiscence Tomography
(BLT), and present complex computational schemes that allow us to approximate solutions of
these inverse problems very well.

9.1 Synthetic Examples

In this section we are going to discuss a few synthetic, computational examples to support the
general error estimates of Chapter 5 for the L1- and the Kullback-Leibler fidelity. Subsequently, we
want to present computational results that confirm the statements of Theorem 6.3 and Theorem
6.4 and even fail, if the necessary assumptions are not fulfilled. Finally, we want to point out the
advantages and disadvantages of the aISS Algorithm 12 in comparison to the OMP Algorithm 11.

9.1.1 Error Estimates

In this section we particularly want to demonstrate that in case the assumptions of Theorem 5.5
or Theorem 5.6 are fulfilled, computational examples will verify these results and will not violate
the estimates. Moreover, in case of Theorem 5.5 we are even going to show that in case of violated
assumptions the error in the solution can become arbitrary large.

We want to start with a little Salt’n’Pepper-denoising example to support Theorem 5.5 in case
of the considered norm fidelity being the L1-fidelity. Afterwards we want to create a compressed
sensing setup for data being corrupted by Poisson-distributed noise in order to examine the
capability of Theorem 5.6.

Salt’n’Pepper Noise Removal

In order to validate the asymptotic exactness or non-exactness in case of Laplacian noise we
investigate a denoising approach with quadratic regularization, i.e. the minimization∫

Ω
|u− f | dx+

α

2

∫
Ω

(|∇u|2 + u2) dx→ min
u∈H1(Ω)

, (9.1)

151
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Figure 9.1: The Bregman distance error between û and g for α ∈ [10−3, 1]. As soon as α ≤ 1
2 , the error

equals zero.

whose optimality condition is

−α∆u+ αu+ s = 0, s ∈ sign (u− f).

A common approach to the numerical minimization of functionals like (9.1) is a smooth approx-
imation of the L1-norm, e.g. by replacing |u − f | with

√
(u− f)2 + ε2 for small ε. Such an

approximation will however alter the asymptotic properties and destroy the possibility to have
asymptotic exactness. Hence we shall use a dual approach as an alternative, comparable to Algo-
rithm 8 but with fidelity and regularization term changed. Again, we derive the algorithm from
the dual characterization of the one-norm:

inf
u

[∫
Ω
|u− f | dx+

α

2

∫
Ω

(|∇u|2 + u2) dx

]
= inf

u
sup
|s|≤1

[∫
Ω

(u− f)s dx+
α

2

∫
Ω

(|∇u|2 + u2) dx

]
= sup
|s|≤1

inf
u

[∫
Ω

(u− f)s dx+
α

2

∫
Ω

(|∇u|2 + u2) dx

]
.

Again, exchanging infimum and supremum in the last formula can easily be justified with standard
methods in convex analysis (cf. [91, 50]). The infimum can be calculated exactly from solving

−α∆u+ αu = −s

with homogeneous Neumann boundary conditions, and hence we obtain after a simple manipula-
tion the dual problem (with the notation A := (−∆ ·+·))

1

2

∫
Ω
s(A−1s) dx+ α

∫
Ω
fs dx→ min

s∈L∞(Ω)
‖s‖∞≤1

.

This bound-constrained quadratic problem can be solved with efficient methods, we simply use
a projected gradient approach, i.e.,

sk+1 = P1

(
sk − τ

(
A−1sk + αf

))
,
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Figure 9.2: The exact function g(x) = cos(x), and the noisy function f(x), corrupted by Laplace noise
with mean zero, σ = 0.1 and δ ≈ 0.1037.

where τ > 0 is a damping parameter and P1 is the pointwise projection operator

P1(v)(x) =

{
v(x) if |v(x)| ≤ 1
v(x)
|v(x)| else

.

Due to the quadratic H1 regularization we obtain

Dsymm
H1 (û, g) = 2DH1(û, g) = ‖û− g‖2H1(Ω) , (9.2)

and the source condition becomes

q(x) = −∆g(x) + g(x) , for x ∈ Ω and q ∈ H1(Ω),

∂q

∂n
= 0 , for x ∈ ∂Ω.

(SCH1)

In the following we want to present two examples and their related error estimates.

Example 9.1. For our first data example we choose g(x) = cos(x), for x ∈ [0, 2π]. Since
g ∈ C∞([0, 2π]) and g′(0) = g′(2π) = 0, the source condition (SCH1) is fulfilled. Hence, the
derived error estimates in Section 5.2 should work.

First of all we check (5.12) and (5.13) numerically for noise-free data, i.e. f = g and δ = 0. The
estimates predict that as soon as α ≤ 1

2 holds (note that ‖q‖L∞([0,2π]) = 2 ‖cos(x)‖L∞([0,2π]) = 2),
the regularized solution û should be identical to the exact solution g in the Bregman distance
setting (9.2). This is also found in computational practice, as Figure 9.1 confirms.

In the following we want to illustrate the sharpness of (5.13) in case of non-zero δ. For
that reason, we have generated Laplace-distributed random variables and have added them to g,
to obtain f . We have generated random variables with different values for the variance of the
Laplace distribution, to obtain different noise levels δ in the L1-measure. Figure 9.2 shows g and
an exemplarily noisy version of g with δ ≈ 0.1037. In the following, we have computed δ as the
L1-norm over [0, 2π], to adjust the dimension of δ to the H1-norm (in the above example δ then
approximately becomes δ ≈ 0.6).

In order to validate (5.13) we have produced many noisy functions f with different noise levels
δ in the range of 0 to 2. For five fixed α values (α = 0.2, α = 0.4, α = 0.52, α = 0.6 and α = 1)
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Logarithmically Scaled Plot of the Error Bound and the Regression Line, for alpha = 0.2

 

 

Error bound δ ( 1 / α + || q || )
Regression Line of the Bregman Distances

(f) α = 0.2

Figure 9.3: The plots of computed symmetric Bregman distances for α = 0.2, 0.4, 0.52, 0.6 and α = 1,
against δ = 0 to δ = 2. It can be seen that in 9.3(a) and 9.3(b) the computed Bregman distances lie below
the error bound derived in (5.13), while the distances in 9.3(c), 9.3(d) and 9.3(e) partly violate this bound.
Figure 9.3(f) shows the logarithmically scaled error bound in comparison to the logarithmically scaled
regression line of the Bregman distances for α = 0.2. It can be observed, that the slope of the regression
line is smaller than the slope of the error bound. Hence, for the particular choice of g(x) = cos(x) there
might exist an even stronger error bound than (5.13).
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we have plotted the symmetric Bregman distances between the regularized solutions û and g, the
regression line of these distances and the error bound given via (5.13); the results can be seen in
Figure 9.3. It can be observed that for α = 0.2 and α = 0.4 the computed Bregman distances
lie below that bound, while for α = 0.52, α = 0.6 and α = 1 the error bound is violated, which
seems to be a good indicator of the sharpness of (5.13).
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(b) Dsymm

H1 (û, g2) vs α

Figure 9.4: The symmetric Bregman distances Dsymm
H1 (û, g1) 9.4(a) and Dsymm

H1 (û, g2) 9.4(b), for α ∈[
10−3, 1

]
.

Example 9.2. In order to validate the need for the source condition (SCH1) we want to consider
two more examples; g1(x) = sin(x) and g2(x) = |x− π|, x ∈ [0, 2π]. Both functions do violate
(SCH1); g1 does not fulfill the Neumann boundary conditions, while the second derivative of g2 is
a δ-distribution centered at π/2 and therefore is not integrable. In case of g2 there does not exist
a q such that there could exist an α to guarantee (5.13). Nevertheless, in order to visualize that

there exists no such error bound, we want to introduce a reference bound δ
(

1/α+ ‖w‖L∞([0,2π])

)
with w(x) := −∆g2(x) + g2(x), x ∈ ([0, π[) ∪ (]π, 2π]), which yields ‖w‖L∞([0,2π]) = π.

As in Example 9.1 we want to begin with the case of exact data, i.e. f = g. If we plot the
symmetric Bregman distance against α we obtain the graphs displayed in Figure 9.4. It can be
seen that for g1 as well as for g2 the error tends to be zero only if α gets very small. To illustrate
the importance of the source condition in the noisy case with non-zero δ we have proceeded as
in Example 9.1. We have generated Laplace-type noise and added it to g1 and g2 to obtain f1

and f2 for different error values δ. Figure 9.5 shows the Bregman distance error in comparison
to the error bound given via (5.13) and in comparison to the reference bound as described above,
respectively. It can be seen that in comparison to Example 9.1 the error and reference bounds are
completely violated, even for small α. Furthermore, in the worst case of g2 for α = 1 the slope
of the logarithmically scaled regression line is equal to the slope of the reference bound, which
indicates that the error assumingly will in general never get beyond this reference bounds. The
results support the need for the source condition to find quantitative error estimates.
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Error bound δ ( 1 / α + || q || )
Regression Line of the Bregman Distances

(e) α = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

Logarithmically Scaled δ

Lo
ga

rit
hm

ic
al

ly
 S

ca
le

d 
S

ym
m

et
ric

 B
re

gm
an

 D
is

ta
nc

e

Logarithmically Scaled Plot of the Reference Bound and the Regression Line, for alpha = 1
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(f) α = 1

Figure 9.5: The plots of the computed Bregman distances with violated (SCH1). Figure 9.5(a) and Figure
9.5(b) show the Bregman distances Dsymm

H1 (û, g1) for α = 0.4 and α = 0.6, respectively. Figure 9.5(c) and
Figure 9.5(d) represent the Bregman distances Dsymm

H1 (û, g2) for α = 0.4 and α = 1. Furthermore, Figure
9.5(e) and Figure 9.5(f) show the logarithmically scaled versions of the error/reference bound in comparison
to a line regression of the Bregman distances for α = 1.
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Compressed Sensing with Poisson-Distributed Noise

For the validation of the error estimates in the Poisson case we want to consider the two-
dimensional, fully discrete compressed sensing setup

û ∈ arg min
u∈dom(‖W ·‖`1 )

{
k∑
l=1

[
fl log

(
fl

(Ku)l

)
+ (Ku)l − fl

]
+ α‖(Wu)‖`1

}
, (9.3)

with W ∈ R(mn)×(mn) being a level-6 Haar-wavelet transform matrix, K ∈ {0, 1}k×(mn) being
a sensing matrix with k � (mn) and KT1 = 1, and for m and n being the dimensions of the
2D-variable u. In order to generate a specific example we set m = n = 64 and define an exact

(a) ũ
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(b) Wũ

Figure 9.6: The function ũ and its 2D level-6 Haar-wavelet transform.

solution ũ that can bee seen in Figure 9.6. The exact solution inheres a remarkable similarity to
Matlabs famous camera man image, and moreover has a sparse representation with respect to the
level-6 Haar-wavelet transform. Only 44 of the 4096 discrete values are non-zero values, while all
other values equal zero. In the following we want to denote the index set of non-zero indices with
I.

For the sensing matrix K we set k = 1024 and simply construct a matrix that randomly
samples 1024 of the 4096 data points, i.e. each row of K consists of a single one and 4095 zeros.
In addition we randomly add ones to each column if KT1 = 1 is violated, in order to guarantee
KT1 = 1. The exact data g therefore is defined as the sensing g = Kũ. Conclusively, we corrupt
the data g by Poisson distributed noise; we replace every data point gl by a Poisson random
variable with expected value λ = gl.

In order to validate the error estimate (5.14) computationally, we want to find the vector q
among all vectors q satisfying (SC1) with minimal supremum-norm ‖q‖∞. The source condition
for this setup reads

ξ = W−1KT q , ξ ∈ sign(Wũ) ,

since W is invertible. Hence, we have to compute functions q and ξ such that ξ = W−1KT q holds,
and for which sign(PIξ) = sign(PIWũ) as well as PIcξ ∈ [−1, 1] is guaranteed, with PI denoting
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the projection on I and with Ic representing the complement of I. Figure 9.7 shows the solutions
q and ξ among all possible solutions for which q has the smallest supremum norm ‖q‖∞ = 2.
Consequently, the error estimate (5.14) for this particular computational example reads as
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(a) ξ

0 200 400 600 800 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) q with ‖q‖∞ = 2

Figure 9.7: The vectors ξ and q that satisfy the source condition and for which q is the vector among all
vectors q that satisfy (SC1) that has the smallest supremum norm, which is ‖q‖∞ = 2.

(1− c)KL(f,Kû) + αDsymm
‖W ·‖`1

(û, ũ) ≤ (1 + c)δ − c

(
k∑
l=1

fl

)(
ln

(
1− 4

α2

c2

))
= (1 + c)δ − γc

(
ln

(
1− 4

α2

c2

)) , (9.4)

for α < c/2 and γ =
∑k

l=1 fl. Note that the factor γ has to be multiplied with the logarithm-term

on the right-hand side, since we have not normed the data to ensure
∑k

l=1 fl = 1 as it is necessary
for the application of Theorem 5.6 without additional factor. We did several computations with
different values for α and the constant c ∈]0, 1[ to support the error estimate (5.14). The results
can be seen in Table 9.1. Note that the values of the symmetric Bregman distance Dsymm

‖W ·‖`1
(û, ũ)

can easiliy be computed via

Dsymm
‖W ·‖`1

(û, ũ) =

mn∑
i=1

(p̂i − ξi) ((Wû)i − (Wũ)i) ,

for p̂ ∈ sign(Wû).
The computational solution of (9.3) has been realized via Algorithm 5, while the subproblem

has been solved with Algorithm 7 in case of J(u) = ‖Wu‖`1 . Since wavelet-regularization is not
necessarily positivity preserving, we have furthermore added a projection step that ensures Wu
to be positive.

9.1.2 Unbiased Recovery

In this section we want to support some of the results of Chapter 6 and Chapter 7 with com-
putational examples. We therefore focus on L1-type regularization functionals, namely TV and



CHAPTER 9. APPLICATIONS 159

Left Hand Side Right Hand Side

c α (1− c)KL(f,Kû) Dsymm
‖W ·‖`1

(û, ũ) (1 + c)δ −γc
(

ln
(

1− 4α
2

c2

))
0.99 0.494 0.6001 45.82 189.1 10390
0.99 0.329 0.3225 47.89 189.1 1099
0.99 0.164 0.0972 39.38 189.1 219.2
0.5 0.249 10.1 47.04 142.6 4599
0.5 0.1657 4.948 39.68 142.6 550.6
0.5 0.08233 1.396 23.68 142.6 109.3
0.1 0.049 0.9496 15.48 104.5 614.8
0.1 0.03233 0.4268 10.69 104.5 103.1
0.1 0.01567 0.1042 5.383 104.5 19.68
0.99 0.494 0.2782 5.663 40.61 10430
0.99 0.329 0.1981 6.964 40.61 1103
0.99 0.164 0.08013 9.872 40.61 220
0.5 0.249 7.14 8.846 30.61 4616
0.5 0.1657 4.068 9.856 30.61 552.6
0.5 0.08233 1.26 8.379 30.61 109.7
0.1 0.049 0.875 6.104 22.45 617.1
0.1 0.03233 0.3995 4.434 22.45 103.5
0.1 0.01567 0.09785 2.362 22.45 19.75
0.99 0.494 0.1853 7.357 20.41 10410
0.99 0.329 0.1353 2.513 20.41 1101
0.99 0.164 0.0665 4.044 20.41 219.5
0.5 0.249 5.4 1.723 15.38 4606
0.5 0.1657 3.371 4.005 15.38 551.4
0.5 0.08233 1.131 4.833 15.38 109.5
0.1 0.049 0.8154 3.761 11.28 615.8
0.1 0.03233 0.3774 2.852 11.28 103.3
0.1 0.01567 0.09396 1.581 11.28 19.71

Table 9.1: Comparison of the left hand and right-hand side of (9.4) for different parameters c, α and δ,
and their consequent computations of f and û. The right-hand side is always larger than the left hand side
and hence, the results support the derived error estimate.

GTVβ, since they are one-homogeneous and do have a large multivalued subdifferential at the
singular points, which will be of importance when applying the Theorems of Section 6.4, 7.1 and
7.2.

ROF Minimization

In case of ROF minimization we want to start with the sign-function of Example 6.5 again. For
the sake of simplicity we are going to consider ũ(x) = sign(x) on the interval x ∈ [−1, 1]. As we
have seen from Example 6.5, in that case ũ is an Eigenfunction of TV with Eigenvalue λ = 1.
Hence, for input data f = γũ, γ ∈ R>0, the solution of (4.6) for fixed α should be û = cũ, for
c = γ − α and γ > α, due to Theorem 6.3. In Figure 9.8 we actually see computational results
of the ROF-model that have been realized with Algorithm 9 as described in Section 8.1.2, for
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γ = 1 and the α-values α = 7/10, α = 3/10 and α = 1/20. It can be seen that the computational

(a) α = 0

x=−1..1

 

(b) α = 7/10

x=−1..1

 

(c) α = 3/10

x=−1..1

 

(d) α = 1/20

Figure 9.8: Exemplary ROF computations for f(x) = ũ(x) = sign(x) on the interval [−1, 1] and α =
7/10, 3/10, 1/20. The data has been sampled with stepsize h = 0.001 at 2001 discrete points.

examples match with the analytical solution predicted by Theorem 6.3.
Obviously the case of exact data is rather trivial; more interesting is the case of noisy data

f = ũ+ n. For that reason we want to corrupt ũ by a very specific noise n, given via

n(x) = A cos(ϕπx) ,

with A ∈ R>0 and ϕ ∈ Z denoting the amplitude and the phase of the noise, respectively. The
application of Theorem 6.4 states that for input data f the solution of (4.6) is given via u = cũ
with c = 1− α+ (1− µ)/η, if there exist constants µ and η that satisfy condition (6.9), i.e.

µsign(x) + ηA cos(ϕπx) ∈ ∂TV(sign(x)) . (9.5)

In order to verify (9.5) we consider the function q with

q(x) = µ(|x| − 1) +
ηA

ϕπ
sin(ϕπx)
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for which we want to show that it is a subgradient at ũ, i.e. q′ ∈ ∂TV(ũ). In analogy to the
Eigenfunction examples of Section 6.3.2 we therefore have to prove that q fulfills the subdifferential
properties. We easily check

• q(−1) = q(1) = 0,

• 〈q′, ũ〉L2([−1,1]) = µ
∫ 1
−1 1 dx = TV(ũ) = 2,

if we guarantee µ = 1. In that case we can also ensure |q(0)| = 1 and, as an immediate consequence,
the loss of contrast c simplifies to c = 1− α. The question that remains is: for which parameters
can we guarantee ‖q‖∞ < 1 for x 6= 0? We will see that this condition is naturally satisfied if
the amplitude of the noise is not too large and if the phase is not too small with respect to the
regularization parameter α, which controls the bounds for η. If for instance we set A = 1/10
and ϕ = 26, and compute the ROF minimizers for the same values of α as we did for clean
data, we discover that in order to apply Theorem 6.4 we need to ensure α ≥ 1/η. In particular,
this means that for α = 7/10 it follows that η ≥ 10/7 needs to hold, while for α = 3/10 we
obtain the condition η ≥ 10/3 and for α = 1/20 the value of η even has to be larger or equal
20. However, for η ≥ 20 we can compute ‖q‖∞ > 1 and hence, Theorem 6.4 is not applicable,
while for η = 10/7 and η = 10/3 we obtain ‖q‖∞ ≤ 1. From a theoretical point of view we can
therefore ensure that for α = 7/10 and α = 3/10 the ROF minimum is û = cũ with c = 3/10 and
c = 7/10, respectively. But for α = 1/20 we cannot conclude c = 19/20 as we did in the noise-free
case. Moreover, computational results as shown in Figure 9.9 demonstrate that for α = 1/20 the
computed ROF solution indeed features parts of the noise.

Obviously, the considered noise has the specific structure that is does not affect the edge of
ũ, which allows µ = λ. If we would apply an ISS-related algorithm (e.g. Bregman iteration) on f
with this specific type of noise we therefore could expect to recover ũ perfectly despite the noise,
since Theorem 7.4 states that there exists a time t∗ such that u(t∗) = ũ is the solution of the ISS.

However, realistically modeled noise usually affects the edge-set of an Eigenfunction and as
a consequence, we have to face µ 6= λ. More precisely, if for x ∈ [−L,L] we assume f(x) =

sign(x)+n(x) to be corrupted by noise n(x) that satisfies
∫ L
−L n(x) dx = 0 andN(L) = N(−L) = 0,

for N being the primitive of n (i.e. N ′(x) = n(x)), we observe the following. As an attempt to
guarantee

µsign(x) + ηn(x) ∈ ∂TV(sign(x))

we define

q(x) = µ (|x| − L) + ηN(x) ,

for which we obtain q(L) = q(−L) = 0 due to the definition of n. Moreover, we discover

〈
q′, sign

〉
L2([−L,L])

= µ

∫ L

−L
1 dx+ η

(∫ L

0
n(x) dx−

∫ 0

−L
n(x) dx

)
= 2(µL− ηN(0)) , (9.6)

which equals TV(sign) = 2 if η fulfills

η =
µL− 1

N(0)
. (9.7)
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x=−1..1

 

(a) α = 7/10 (b) α = 3/10

(c) α = 1/20 (d) α = 1/20

Figure 9.9: Exemplary ROF computations for f(x) = ũ(x) + n(x) on the interval [−1, 1] and α =
7/10, 3/10, 1/20. The data has been sampled with stepsize h = 0.001 at 2001 discrete points. Figure 9.9(d)
is a close-up of Figure 9.9(c).

From (9.6) and (9.7) we see that, in order to ensure η > 0, µ needs to be chosen such that
µ = 1

L = λ if N(0) = 0

µ > 1
L = λ if N(0) > 0

µ < 1
L = λ if N(0) < 0

is guaranteed. Note that for the above noise-example n(x) = A cos(ϕπx) the noise was defined
to satisfy N(0) = 0. From Theorem 6.4 we know that η has to be large enough to guarantee
η ≥ 1/α, consequently, in case of N(0) > 0, µ has to be chosen such that

µ =
1 +N(0)η

L
≥

1 + N(0)
α

L
>

1

L
.
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Figure 9.10: The functions ũ + v and cũ + v for c = 11/15, and a numerical reconstruction for α = 2/5
and β = 10/9. The data has been sampled with stepsize h = 0.01 at 401 discrete points.

The question if Theorem 6.4 is applicable again reduces to the question, for which regularization
parameter α we still can ensure ‖q‖∞ ≤ 1. In any case we obtain q(0) = −µL + ηN(0) = 0, but
if ηN(x) is too large in contrast to µsign(x) this likely yields ‖q‖∞ > 1. However, if Theorem 6.4
is applicable and if N(0) > 0, the loss of contrast can be computed via

c = 1− α

L
+

1
L −

1+
N(0)
α

L
1
α

= 1− α+N(0)

L
,

for L−N(0) > α.

Generalized Total Variation Regularization

Before we continue with the extensive investigation of the aISS Algorithm 12, we want to consider
a brief example that describes the capability of subdifferential-invariant transforms in terms of
an analytical computation of solutions of (2.8) for J(u) = GTVβ(u). Again, we want to consider
the Eigenfunction Example 6.16 with ũ(x) = 2H(1 − |x|) − |x| on the interval [−2, 2]. The
corresponding Eigenvalue in that case reads as λ = 2 for β = 10/9. We want to perturb the
function ũ by a second, affine-linear function v(x) = −x/5 + 1/2, to obtain the input data
g(x) = ũ(x) + v(x). Since the subdifferential ∂GTV 10

9
is invariant with respect to affine-linear

transformations, we would expect a computational solution û to satisfy û(x) = cũ + v(x) for
c = 1 − 2α. In Figure 9.10 we compare ũ + v, u and a solution of a computational realization
of (2.8) for J(u) = GTVβ(u) and α = 2/5. The computational realization of the GTV-model
has been done via a Quasi-Newton approach similar to the one proposed in Section 8.1.2. Unlike
Algorithm 9, an additional Lagrange multiplier ensuring w = divq and a second penalty term
guaranteeing ‖w‖∞ ≤ β have been incorporated. Obviously the reconstruction and u coincide,
demonstrating the ability of designing analytical solutions for variational schemes with singular
regularization based on Eigenfunctions and subdifferential-invariant transformations.
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9.1.3 AISS on a Random Matrix

To get a better understanding of the behavior of the adaptive inverse scale space flow of Algorithm
12, let us take a look at the simple case of generating a matrix K ∈ Rm×n, n� m, with random
values between 0.5 and −0.5. We normalize each column with respect to the two-norm and
generate a signal ũ which has random values between −5 and 5 at s random indices, where the
sparsity level s is small in comparison to the size n of the signal. The data is generated as f = Kũ.
Figure 9.11 shows the aISS iterations as well as ũ for an example of n = 50, m = 1000, and s = 5.
We can see that on the first seven iterations aISS reconstructs one peak at a time. The first
three peaks are indeed peaks of the true solution. The peaks reconstructed in iteration four and
five are not part of the true solution. However, in the course of the iteration aISS does find the
remaining two true peaks and immediately eliminates the three false peaks in the last iteration
as the subgradient of the last missing peak (at index 310) reaches 1 and therefore is included in
the support. In the following section we want to provide a detailed analysis on the differences,

Figure 9.11: Example iteration of the aISS method for a random matrix. The true input signal is shown
in the upper left.

advantages and disadvantages of either the OMP Algorithm 11 and the aISS Algorithm 12.
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9.1.4 Comparison: OMP vs ISS

In this subsection we compare aISS and OMP in two steps. First, we will describe the problem of
monotonic increase of the support of OMP and present an algorithm to construct a sensing matrix
K and a signal f for which OMP fails. Second, we will compare aISS and OMP on different types
of matrices including random matrices, combined wavelet matrices, and ill-conditioned matrices
arising in dynamic Positron Emission Tomography (PET) to see how frequently the problem setup
we present in the next subsection occurs in realistic, practical settings.

A counter example for OMP

As discussed before, a major difference between OMP and aISS is that OMP never decreases
the support of the solution and (in the terminology of aISS) resets the dual variable/subgradient
after each iteration, whereas aISS is able to decrease its support and to continuously evolve the
subgradient, taking the information of all previous iterations into account. In this subsection
we will show that this difference can have a major effect on the reconstruction results leading
to arbitrarily non-sparse results of OMP while aISS can still recover the exact solution. We can
construct an example for which OMP fails as follows: Assume we have data f which can be
written as f = c(v1 + v2) for two normalized vectors v1, v2 and a constant c. We will include v1

and v2 in our matrix K, since this will guarantee the sparsest solution of Ku = f to be 2-sparse.
We start the construction of K by choosing a small ε, setting K0 = ∅, and define an r0 = f , which
will correspond to the residual in the construction. Let f ∈ Rn, then we iteratively choose for
i = 1, ..., n

1. Ki = [Ki−1, ri−1 − εei]

2. ri = f −Ki((Ki)†f),

where (Ki)† denotes the generalized inverse of the current matrix Ki. The first step takes the
current residual and deflects it by a small ε in the direction of the ith unit normal vector. This
will make OMP select this vector in the ith step since for ε small enough, the correlation of
this vector to the current residual will be maximal. However, the small disturbance will lead to
OMP not having converged yet. Therefore, we compute the next residual ri that will come up
in the OMP algorithm and again provide a column in Ki that has a very high correlation to this
residual but does not enable the method to solve Kiu = f exactly. Iteratively, we construct n
such vectors. Note that n is the least sparse vector one can get for the description of f ∈ Rn,
since any additional vector would automatically be linearly dependent. Finally, we add v1 and v2

as the last two columns to obtain the final K = [Knv1v2], which we normalize afterwards.

Although v1 and v2 are sufficient to describe f they will likely not have the highest correlation
to any residual of OMP. Figure 9.12 shows some iterations of the OMP algorithm on an K
constructed as described above with n = 50 and v1 = en, v2 = en−1, f = 0.5v1 + 0.5v2, ε = 0.15.
As we can see OMP indeed adds one component after the other until at the 50th iteration it finally
has the maximum number of linearly independent vectors in Rn and can therefore reconstruct
f exactly. The OMP answer is as non-sparse as possible although the input signal was 2-sparse
(which is the sparsest possible without being reconstructed in 1 iteration by either of the two
methods aISS or OMP).

Now let us take a look at the iteration of aISS for the same example. Figure 9.13 shows not
only the solution at each iteration but also the corresponding subgradient since this is crucial for
understanding the difference between the two methods. We can see that the first three iterations
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(a) Iteration 10 (b) Iteration 40

(c) Iteration 50 (d) True 2-sparse solution

Figure 9.12: Iterates of OMP on a constructed example. Red dots indicate the coefficients at which the
current solution is non-zero.

coincide with the OMP method, and components corresponding to a high correlation with the
residual are added to the set of non-zero elements. However, the subgradient shows that aISS
‘sees’ that the last two components in the matrix K also have a good correlation to the signal f .
Their correlation is not as high as for the first columns of K which is why neither aISS nor OMP
added them immediately. However, OMP basically resets the subgradient at each iteration and
includes the vector with the highest correlation to the residual. aISS on the contrary, does not
reset the subgradient and keeps adding to the correlation of the last 2 vectors until, at iteration
4, the subgradient of components 51 and 52 hits 1, which immediately leads to the right, 2-sparse
answer. aISS converged in only 4 iterations to the correct answer while OMP converged in 50
iterations to the least sparse answer possible.
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Figure 9.13: Iterates of aISS on constructed example. Red dots indicate the coefficients at which the
current solution is non-zero.

Random Matrices and Combined Wavelet Basis

In this subsection we will investigate how aISS and OMP compare on noise free data. The criteria
for our comparison will be

1. Frequency of exact recovery of the sparsest signal,

2. Sparsity of the solution each algorithm found, i.e. number of non-zero elements ‖u‖`0 ,
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(a) Frequency of exact recovery (b) Number of non-zero coefficients

(c) Number of iterations (d) Runtime

Figure 9.14: Comparison of OMP and aISS on random matrices and input signals with random values.
The plots show the comparison metrics with respect to the sparsity level of the input signal.

3. Number of iterations each algorithm took,

4. Runtime of each algorithm.

The tests will be based on cases, where neither of the two algorithms is guaranteed to converge to
the sparsest solution (for theoretical guarantees for this kind of convergence see for instance [93]).
Notice, that aISS will always converge to the `1 minimizing solution of Ku = f . The criteria
of frequency of exact recovery as well as sparsity of the solution are therefore rather based on
the question whether the `1 minimizing solution coincides with the `0 minimizing solution than a
convergence/quality property of our algorithm in particular. The examples where aISS does not
reconstruct the sparsest solution are therefore a violation of the requirements we need for the `1

minimizing solution to be the sparsest solution.
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In the first experiment we generate a matrix K ∈ R128×512 with random entries between −0.5
and 0.5. Then, we normalize each column of K and generate a signal ũ also with random values
between −0.5 and 0.5 at s random indices. s is the sparsity level of the true, sparsest solution.
We vary s from 10 to 60, run each algorithm 50 times per s, and record the comparison metrics
described above. Figure 9.14 shows the results among all sparsity levels.

(a) Frequency of exact recovery (b) Number of non-zero coefficients

(c) Number of iterations (d) Runtime

Figure 9.15: Comparison of OMP and aISS on random matrices and input signals with random +1 and
−1 values. The plots show the comparison metrics with respect to the sparsity level of the input signal.

We can see that the greedy approach to `0 minimization works much better in this example.
The frequency of exact recovery is higher, and even for the cases where the sparsest solution is
not recovered exactly, the sparsity of the OMP solution is much better than for the aISS solution.
Furthermore, OMP obtained its results in fewer iterations and less runtime.

Despite the very good results OMP gave in this example, we will see that this is not the case
in general. In our second example, we create the random matrix K in the same fashion as in the
previous experiment. The only change is that we generate the signal ũ as a random sign function
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at s coefficients, i.e. we set s values in ũ randomly to −1 or +1. As we can see in Figure 9.15 this
changes the results dramatically.

(a) Frequency of exact recovery (b) Number of non-zero coefficients

(c) Number of iterations (d) Runtime

Figure 9.16: Comparison of OMP and aISS on a matrix of combined ‘Haar’ and ‘Daubechies4’ wavelet
basis and input signals with random values. The plots show the comparison metrics with respect to the
sparsity level of the input signal.

In this case, aISS clearly outperforms OMP regarding the quality of the results, yielding
better frequency of recovery and sparser solutions. It is interesting to see that the aISS recovery
frequency stays almost the same as in the previous example, whereas the recovery frequency of
OMP dropped significantly. Note that the number of iterations of OMP and aISS is very similar
up to a sparsity of 32 of the input signal. The runtime is almost the same up to a sparsity of 28.
After that, aISS pays for the higher accuracy and higher sparsity with more computational effort
– however, even for the most complex example the runtime is below 0.5 seconds using a Laptop
with 2Ghz dual core processor and 3GB memory.
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We obtain similar results on more structured, over-complete bases like the combination of
Matlabs ‘Haar’ and ‘Daubechies4’ bases for a level 6 decomposition. With K being generated
as the normalized combination of those two bases, again using 128 to be the number of rows
of K, we choose a signal ũ also with random values between -0.5 and 0.5 at s random indices.
Figure 9.16 shows the comparison of OMP and aISS in this test case. First of all we can see that
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Figure 9.17: The columns of K as defined in this section. The left-hand-side shows the columns, repre-
senting the basis functions (9.9). The right-hand-side shows the normalized columns with respect to the
2-norm.

this example was more challenging for both algorithms yielding a lower frequency of recovery at
earlier iterations in comparison to the random matrices. Again, aISS outperforms OMP in terms
of frequency of exact recovery and sparsity of the recovered signal. In this case, even the number
of iterations is similar, whereas the runtime is similar up to iteration 20, then increasing stronger
but still being relatively fast.

As mentioned earlier, aISS finds the `1 minimizer which might not be the sparsest solution.
Thus, we could also compare two other cases: If among all examples mentioned above, we compare
OMP and aISS only on the cases where both methods reconstruct the sparsest solution exactly,
OMP gives the correct result faster only needing about 0.0045 seconds whereas aISS needs 0.027
seconds on average. This difference in speed is also due to the average number of iterations needed
to find the solution which is 16.2 for OMP and 30.3 for aISS. Comparing the methods only for
the cases where the `1 minimizing solution coincides with the `0 minimizing solution we have a
sparsest signal recovery rate of 100% for aISS and about 75.8% for OMP. In these examples the
average OMP solution is much more dense with an average number of non-zero coefficients of
32.4 opposed to 17.3 for the aISS solutions. To also compare OMP and aISS on matrices K used
in practical applications we will discuss temporal basis functions for dynamic PET in the next
subsection.

Temporal Basis Functions for Dynamic PET

In [102] an exponential basis operator has been introduced in order to improve dynamic Positron
Emission Tomography (PET) images. For applications like e.g. myocardial perfusion quantifi-
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(b) σ ≈ 0.073
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(c) σ ≈ 0.0124
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(d) σ ≈ 0.0260

Figure 9.18: Comparison of particular aISS and OMP reconstructions with the true coefficients in the
noise-free (Figure 9.18(a)) and in the noisy case (Figure 9.18(b) – 9.18(d)), for varying standard deviation
σ.

cation (see for instance [10] and Section 9.2) it is a standard assumption that the measured
dynamic signal is a composition of a so-called input function (which we assume to be known)
and a Laplace-convolution of that input function with a specific exponential function. In this
short computational example we therefore intend to solve the inverse problem Ku = f with the
operator K given as the linear combination

(Ku) (t) := u0h(t) +
N∑
n=1

unb̃n(t) , (9.8)
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of basis functions b̃n(t) defined as

b̃n(t) :=

∫ t

0
h(τ) exp (−bn (t− τ)) dτ , (9.9)

for a given positive input function h : [0, T ]→ R>0 and a given vector b = (bn)n∈{1,...,N} containing
non-negative real values.

For the sake of simplicity, we focus on a one-dimensional setting; To simulate input data realis-
tically, we sample the time t ∈ [0, T ], with T = 320 seconds, at 26 discrete points {20, 25, 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 140, 160, 180, 200, 230, 260, 290, 320}. The basis func-
tions b̃n were computed on a finer grid via a simple Euler-scheme, for N = 61 given values
bn ∈ [0, 6] with stepsize 0.1, and were subsequently sampled at the discrete temporal points. The

underlying function h is defined as h(t) := t
64 exp

(
−−t2128

)
and normalized with respect to the

‖ · ‖∞-norm.
Hence, we obtain a fully discrete matrix K ∈ R26×62, for which its columns (which are the

discrete analogue of the basis functions b̃n) can be seen in Figure 9.17. As in the previous examples
we are going to normalize the columns of K in order to weight the basis functions correctly and
not to distort reconstructions. Figure 9.17 makes already clear that the considered matrix is very
ill-conditioned, since the columns appear to be very similar to each other. As described above it
is very natural to assume the exact signal g to be a composition of the function h and one single
basis function. We therefore define an example such that the true coefficients are given as the
vector

ũj :=


≈ 0.931 if j = 0

≈ 1.270 if j = 15

0 else

and the exact data g = Kũ. Moreover, we compute a set of noisy datum f , for which we disturb
g with normal-distributed noise with mean zero and standard-deviation σ. In Table 9.2 we have

Noise Level σ = 0 σ = 0.0075 σ = 0.0125 σ = 0.03

Method aISS OMP aISS OMP aISS OMP aISS OMP

Runtime 0.004041 0.0008346 0.004103 0.0005302 0.004306 0.0005242 0.004577 0.0005098
`0-norm 2 12 2.27 4.971 2.099 4.611 2.073 4.152
`1-norm 2.201 3.198 2.199 3.473 2.198 3.378 2.189 3.217
‖û−ũ‖`1
‖ũ‖`1

0 1.607 0.3493 1.744 0.5658 1.739 0.9673 1.721

‖Aû− g‖`2 0 0 0.002058 0.003509 0.00364 0.005829 0.009601 0.01206
‖Aû− f‖`2 0 0 0.007254 0.006916 0.01215 0.01158 0.02939 0.02789
No. of iter. 22 12 22.58 4.971 23.77 4.611 25.11 4.152

Table 9.2: Comparison of aISS and OMP for the matrix K as defined in (9.8) with normalized columns
in terms of runtime, sparsity of û (`0), `1-norm, error to ũ, standard-deviation between Kû and g and
standard-deviation between Kû and f . The results are average values for each σ-value. All computations
have been made on a laptop with a 2.53 GHz dual core processor and 4 GB memory.

listed the results of several computations with metric values similar to the ones of the previous
comparisons. We have compared the runtime, the total number of non-zero coefficients, the `1-
norms as well as a normed `1-difference between û and ũ (with û denoting the reconstruction),
and the standard-deviations between Kû and g and Kû and f , respectively, for different noise
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levels σ. The results are average values over 1000 computations for each value of σ. In case of
σ 6= 0 we have stopped the aISS- and OMP-computations according to the discrepancy principle
that if the standard-deviation between û and f is below σ the computation is stopped.
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(b) σ ≈ 0.0073
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(c) σ ≈ 0.0124

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in seconds

F
u

n
ct

io
n

 v
al

u
es

σ = 0.025884

 

 

g
f

(d) σ ≈ 0.0260

Figure 9.19: The function g and different noisy functions f , for which the noise has standard deviation
σ.

It can be seen that for any σ the OMP algorithm needs less iterations and therefore less runtime
than the aISS algorithm. However, regarding the quality of the results aISS outperforms OMP
for each σ-value, which we would also expect since the matrix is highly ill-conditioned. In the
noise-free case aISS perfectly recovers the two desired coefficients after 21 iterations, while OMP
recovers 12 coefficients in order to somehow approximate the exact data without reconstructing a
sparse solution. In the presence of noise and by applying the discrepancy principle (which might
not guarantee the algorithm to stop at the iteration that produces the best result) we see that
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‖ũ‖
`1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

α = 0..1

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 b
et

w
ee

n
 A

u
 a

n
d

 g

 

 

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(e) std(Au− g)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

α = 0..1

N
u

m
b

er
 o

f 
It

er
at

io
n

s

 

 

σ = 0
σ = 0.0075
σ = 0.0125
σ = 0.03

(f) Number of iterations

Figure 9.20: The average attributes runtime, `0-norm, `1-norm, weighted `1-deviation between û and
ũ, standard deviation between Au and g and the number of iterations, over 1000 computations per α-
and σ-value, for α ∈ [0.001, 1] and σ ∈ {0, 0.0075, 0.0125, 0.03}. All computations have been made on a
computer with 2.83 GHz quad core processor with 8 GB memory.
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aISS is not always computing the sparsest approximation, since the average `0-value is larger than
two. But in comparison to OMP the results are significantly closer to two-sparsity as the results
with OMP. The `1-norms of the computed aISS-solution are closer to the `1-norm of the true
signal, and the weighted `1-norm between reconstruction and exact solution is also lower for aISS-
than for OMP-computations. In addition, the standard-deviation of Kû to Kũ (= g) is smaller
in case of aISS than for OMP; the OMP solutions better approximate the noisy data f .

Moreover, we have plotted exemplary reconstructions in Figure 9.18 for particular noisy func-
tions f that can be seen in Figure 9.19. For moderate noise aISS is able to recover the true support
of the exact solution. Note that there is no additional positivity constraint in the computation of
aISS. In the presence of severe noise neither OMP nor aISS can obtain the true support, which
surely is a result of the severely ill-conditioned matrix K, but might also be a consequence of the
early stopping due to the discrepancy principle.

Finally, we also run several tests for Algorithm 13, computing a solution of the regularized
inverse scale space flow (3.10). We compute the average values over 1000 reconstructions for α
varying between 0.001 and 1, for different noise levels with standard deviation σ. In Figure 9.20
we plot almost the same attributes as we have compared in Table 9.2 (except for the standard
deviation between Kû and f , which is rather similar to the standard deviation between Kû and
g), for varying α and the different noise levels. Obviously the runtime as well as the number of
iterations decreases for increasing α, which seems to be natural since a more regularized solution
should become sparser. This is indeed the case if we take a look at Figure 9.20(b). Moreover,
the `1-norm (which is ≈ 2.201 for ũ) is monotonically decreasing for increasing α, which we also
would expect. The weighted `1-difference reveals interesting insights, since for increasing α in the
noiseless case the difference first increases (up to an α-value of about 0.57) and then decreases
again; in case of noisy data, the behavior is similar, except for a slight decrease for small α,
indicating that the optimal α seems to be somewhere inbetween 0.001 and 0.05. The standard
deviation between Kû and g is almost monotonically increasing, which is not surprising but rather
expectable.

9.2 Positron Emission Tomography

Positron Emission Tomography (PET) is an imaging technique that produces 2D- or 3D-images
of physiological processes in human or animal bodies. It therefore differs from imaging techniques
as e.g. Computerized Tomography (CT), which basically produce morphological information. In
PET imaging a specific radionuclide (a so-called tracer) is injected into the human or animal
body that is being placed in a so-called PET-scanner. Within the body, the tracer interacts
with the body’s molecules depending on its specific molecular structure (radioactive glucose for
example locates in areas with high metabolic activity, e.g. tumors). Furthermore, the tracer
emits positrons, which annihilate with the body’s electrons into pairs of gamma rays. These pairs
(coincidences) are collected by detectors in the PET-scanner architecture, and are subsequently
stored by a processing unit in a certain data format. Finally, image reconstruction techniques are
performed on the collected data in order to produce the desired images.

There are different ways the data can be stored by the processing unit. The data is either
stored as list-mode data, which is basically a collection of all coincidences and the time each
coincidence has been collected. However, in order to perform reconstruction algorithms on these
list-mode datasets, the data needs to be organized in a way a reconstruction algorithm is able to
produce a satisfactory image or a sequence of images (so-called frames). This data organization is
called binning. Typically, the data is organized in a set of different slices with the use of advanced
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mathematical methods (e.g. Fourier Rebinning, [45, 46]). For each slice the coincidences are
parameterized as lines with parameters s and θ, where s represents the smallest distance between
the line and the origin of the coordinate system, and θ denotes the angle with respect to the
coordinate axes. The parameterized data is called sinogram-data.

The data does not only need to be binned in geometric slices, but also into temporal slices.
The size of these temporal bins clearly affects the quality of the image reconstruction. The more
events stored in one temporal bin, the higher the image quality of the corresponding frame of
this particular temporal bin should become after image reconstruction. Often, the overall data is
stored into one single temporal bin in order to achieve the best possible image quality. However,
the power of PET lies in the interaction between the tracer and the body’s molecules. Recent
research has focused on studying the behavior of the interacting tracer over time. Hence, the
goal, in order to make dynamic studies of the tracer interaction, is to split the data into as many
temporal bins as possible. The amount and the size of the temporal bins has to be chosen to
obtain an optimal trade-off between frame quality and frame quantity.

There are several other approaches of reorganizing list-mode data, e.g. the organization into
so-called gates to overcome the problem of motion blur (see for instance [42, 44, 43]). Basically,
the data is not organized into temporally consecutive bins but rather into bins of different motion
phases.

In the course of this chapter we are only going to focus on data that has been parameterized
as sinograms and that has been organized into one single or several temporally consecutive bins.

From a mathematical point of view, the process of PET imaging for one particular temporal
bin of sinogram data can be described as the inverse problem of recovering u from f via

℘(Ku) = f , (9.10)

with

(Ku)(s, θ) =

∫
x·θ=s

u(x) dx (9.11)

being the Radon-transform (in two dimensions), for θ ∈ Sn−1 and s ∈ R, respectively with

(Ku)(θ, x) =

∫
R
u(x+ tθ) dx (9.12)

being the X-ray transform in higher dimensions, for θ ∈ Sn−1 and x ∈ θ⊥. The data f is a
collection of randomly sampled intensities along the lines x · θ = s or x + tθ respectively, which
suits well as a model for the detected gamma ray annihilations. The random sampling process is
denoted by ℘, to highlight that this sampling process is a Poisson process.

The mathematical setup that has been introduced is rather simple and neglects many effects
that occur in PET, as e.g. scattering (cf. [81, 130, 89]) or partial volume effects (cf. [16]).
Basically, most of these effects can be modeled by linear operators that can easily be integrated
into (9.10). We continue focusing on the above setup though, for the sake of simplicity.

It is well known that the inverse problem (9.10) is ill-posed (cf. [92]); furthermore, the data is
corrupted by Poisson-distributed noise. Hence, in order to recover u from (9.10) with given data
f we need to consider a specific variational regularization scheme to obtain suitable solutions in
the following section.
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Moreover, we want to focus on the dynamic PET problem and will present a modification of
(9.10) with respect to the dynamic behavior of the tracer. We are going to explain the compu-
tational realization of this model and will show computational results on both artificial and real
PET data.

For more information on PET we refer to [131, 62].

9.2.1 Static PET

In order to find a function û close to the function ũ, which exactly solves Kũ = g, just from the
single-frame sinogram data f , while g and ũ are not available, we propose to use the variational
scheme as introduced in Section 4.2.3, Equation (4.23), i.e.

û ∈ arg min
u∈dom(J)

u≥0

{KL(f,Ku) + αJ(u)} ,

with α ∈ R>0 and a regularization energy J .

In practice, instead of model (4.23) KL is often minimized without an additional regulariza-
tion functional, but with an additional linear convolution operator R in order to improve image
quality by modeling a deconvolution process, due to computational simplicity. The minimizer of
KL(f, K̃u) with K̃ = KR under the positivity constraint u ≥ 0 is given via (8.4). The most intu-
itive iteration scheme in order to solve (8.4) is Algorithm 4. Here, the use of a linear Gauss-filter
as the convolution operator R to improve image quality of the solution is most prevalent in the
application of PET.

However, we want to discuss the use of (4.23) with the typical singular regularization energy
TV(u) and its algorithmic realization in order to show that singular energies represent good
alternatives to linear filtering techniques and that they have superior behavior with respect to
contrast enhancement via Bregman iteration.

As an example, we are going to discuss PET in the context of total variation regularization in
the following.

EM-TV

The use of a combination of the Kullback-Leibler functional as a data fidelity and the total
variation seminorm as a regularizer, i.e.

û ∈ arg min
u∈BV(Ω)
u≥0

{KL(f,Ku) + αTV(u)} ,

has extensively been studied in [21]. As a computational model the use of the forward-backward
scheme presented in Algorithm 5 has been proposed. Due to the fact that the use of this scheme
yields the alternating computation of either a standard EM algorithm step and a subsequent
weighted-ROF-computation the scheme has been named EM-TV. The computation of the back-
ward step can be done via efficient computational schemes for weighted-ROF-computation; in
[21] the author chose a variant of Algorithm 8. Nevertheless, other schemes like e.g. Augmented
Lagrangian based or Primal-Dual-type Quasi-Newton methods as presented in Section 8.1.1 and
Section 8.1.2 might perform as well or even better. Moreover, as described in Section 8.1.3 the use
of the Bregman distance DTV(u, ul) as a regularizer in order to produce a sequence of contrast-
enhanced solutions ul+1 has been considered.
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(a) ũ (b) f

(c) u5 for α = 0.5 (d) u7 for α = 0.5

(e) u1 for α = 0.1

Figure 9.21: Exemplary EM-TV reconstructions with and without Bregman iteration. Figure 9.21(a)
shows the exact image data ũ ∈ R256×256, while Figure 9.21(b) shows the corresponding sinogram data
f ∈ R256×257, computed via a Monte-Carlo simulation. In Figure 9.21(c) and Figure 9.21(d) we can see
two exemplary reconstructions of Algorithm 10, for α = 1/2, l = 5 and l = 7, respectively. Figure 9.21(e)
shows a standard EM-TV reconstruction without Bregman iteration for α = 1/10.
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Figure 9.21 shows EM-TV computations for synthetic 2D PET data f ∈ R256×257, computed
via a Monte-Carlo simulation for s ∈ [−1, 1] sampled at 257 samples and θ ∈ [0, 2π] sampled at 256
samples, with the use of an augmented Lagrangian approach in order to solve the weighted-ROF-
problem. Figure 9.22 shows computational results of real 3D PET data. The underlying data is a
temporal bin containing five seconds of 2D-mode sinogram data approximately one minute after
tracer injection. The tracer that has been used is radioactive water, H2

15O. Radioactive water
has a very short half-life and hence, the amount of events in the particular bin is very small.

(a) Transversal View (b) Transversal View

(c) Coronal View (d) Coronal View

(e) Sagittal View (f) Sagittal View

Figure 9.22: EM-TV and Bregmanized EM-TV reconstructions of real H2
15O-data. The images on the

left hand side show a transversal, a coronal and a sagittal slice of a standard EM-TV reconstruction of
dimension 175× 175× 47, for α = 10. The images on the right-hand side show the same slices for the 6-th
EM-TV Bregman iteration with α = 100.
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9.2.2 Dynamic PET

In comparison to static PET, dynamic PET aims at producing a sequence of frames from a certain
number of temporal bins of sinogram data. An easy image reconstruction approach would be the
division of the sinogram data into a set of temporal bins and subsequent image reconstruction with
a static method for each bin independently. The obvious drawback is that the temporal correlation
between events in different bins is completely neglected. Furthermore, the image quality gets worse
the less events are contained in an underlying bin. In the following, we therefore want to introduce
an additional operator that temporarily correlates the PET frames.

Tracer Kinetics: Myocardial Perfusion Quantification as a Motivation

In order to motivate a reasonable operator that temporarily correlates dynamic PET frames we are
going to briefly introduce compartment modeling and will illustrate the topic with the application
of myocardial perfusion quantification (see for instance [11, 70, 112, 10]).

For this motivation we assume that the particular tracer that is being used is radioactive water
H2

15O. Radioactive water is used to examine how well tissue is provided with blood, or – with
other words – how well tissue is perfused. The exchange between blood in the vessels and blood
in tissue occurs in the capillaries; so does the exchange between H2

15O in blood and H2
15O in

tissue. Assume that we are given a region that simply consists of tissue and a capillary vessel.
The capillary vessel transports the radioactive water coming from an artery so that it can perfuse
into tissue. This influx JA can be described as a multiplication of the perfusion F with the arterial
tracer concentration, denoted by h. Moreover, the capillary carries away the depleted blood from
tissue back into a vein. Hence, we have an outflux JV that equals the perfusion F and the venous
tracer concentration, denoted by v. If we assume to have a fixed spatial region of capillary vessel
for which the radioactive concentration only varies over time, we can describe this simplified setup
as in Figure 9.23. With the same notation as above we can describe the process in Figure 9.23

Tissue

Blood

Figure 9.23: The one-compartment model with tracer in- and out-flux, for the modeling of a tracer
exchange in the capillaries. The compartment consists of two regions, blood and tissue. The tracer
concentration for the latter is described by the function u(t). The tracer concentration in the blood
depends on the capillary in- and outflux JA = Fh(t) and JA = Fv(t), respectively, with h(t) denoting
the tracer concentration in the arterial and with v(t) representing the tracer concentration in the venous
blood. The flux is controlled by the perfusion constant F .

via

d

dt
u(t) = F (h(t)− v(t)) ,

u(0) = 0 .
(9.13)
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The initial condition u(0) = 0 is rather natural, since we do not expect to observe radioactivity
other than background activity within the body before the tracer is injected.

In case of radioactive water as a tracer, we can moreover assume that the tissue concentration
quickly equilibrates with the venous outflow, since H2

15O is highly diffusible. We denote this
equilibrium state as the partition coefficient λ = u/v. If we substitute v(t) with u(t)/λ in (9.13)
we obtain the simple ODE

d

dt
u(t) = F

(
h(t)− u(t)

λ

)
,

u(0) = 0 ,

(9.14)

or, by variation of parameters, the integral equation

u(t) = F

∫ t

0
h(τ) exp (−F (t− τ)) dτ , (9.15)

which have been introduced in [11] first.
If we now assume (9.15) to hold for every spatial region x in a domain Ω, for spatially varying

perfusion values F (x), we can introduce the spatio-temporal operator G

(G(F, h)) (x, t) := F (x)

∫ t

0
h(τ) exp

(
−F (x)

λ
(t− τ)

)
dτ , (9.16)

as in [10], to modify the inverse problem (9.10) to

℘(KG(F, h)) = f . (9.17)

We now face to solve an inverse problem with an operator concatenation KG that spatially and
temporally correlates every input frame. We therefore expect to obtain better image reconstruc-
tions by solving the inverse problem (9.17) instead of (9.10). Nevertheless there are certain
drawbacks of this approach. First of all, the modeling can be argued to be unrealistic. For in-
stance no underlying motion (breathing, heart-beating etc.) is modeled and conclusively these
effects will affect the reconstruction results of the new model in a negative way. Furthermore, due
to the lack of high-resolution, spillover effects are likely to occur, forcing spatial regions to contain
mixtures of independent regions. To overcome at least the spillover problem a modification of
(9.16) has been proposed in [70], including additional tissue fraction and spillover terms, i.e.

(GM(F,R, S, h)) (x, t) := R(x) (G(F, h)) (x, t) + S(x)h(t) , (9.18)

with R denoting the tissue fraction per spatial region x and with S representing the arterial
spillover per x ∈ Ω. However, a challenging mathematical difficulty is that the operator equa-
tions (9.16) and (9.18) are at least nonlinear with respect to F and therefore lead to non-convex
variational schemes.

To overcome the difficulties regarding the nonlinearity, a reasonable option is the linearization
of the operator G, which yields an operator we have already examined in Section 9.1.4. We define
a set of n ∈ N basis elements bi ∈ R≥0 and introduce the operator

(B(a, h))(x, t) :=

n∑
i=1

ai(x)b̃i(t) , (9.19)
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with basis functions

b̃i(t) :=

∫ t

0
h(τ) exp (−bi(t− τ)) dτ ,

a coefficient vector (ai(x))i∈{1,...,n}, x ∈ Ω, and the arterial input curve h as input data. In order
to allow a linearized approximation also for the myocardial perfusion model (9.18), including
spillover and tissue fraction terms, we can define the additional basis function b̃0(t) := h(t), with
a0(x) being the corresponding spillover coefficient. The operator (9.19) is not only linear in h
but also linear in a, which makes the inverse problem much easier to solve if either one of the
parameters is assumed to be fixed. However, often both parameters are unknown and hence, the
inverse problem still might not have a unique solution. For simplicity, we assume the arterial
input function to be given.

Originally, (9.19) has been derived in [102] as a multiple-compartment-model for the use of
dynamic FDG-reconstructions. Hence, the model is much more versatile to use than just for
myocardial perfusion quantification. Nevertheless, in the following we are going to focus on the
application of myocardial perfusion quantification and present computational results for either
synthetic 2D-/3D- and real 3D-/4D-data.

For more information and different variants of dynamic PET reconstruction we for instance
may refer to [36, 134, 135, 101, 102, 103, 77].

9.2.3 Variational Model

In order to approximately solve the inverse problem

℘(KBa) = f ,

we need to find an appropriate variational model of the form (2.9) with its minimizer being close
to the desired exact but unknown solution vector ãn(x). From Section 4.2.3 we know that the
Kullback-Leibler functional is supposed to be the right data fidelity term in order to incorporate
the knowledge that the noise is Poisson distributed. As a regularizing term we would like to
use a functional that allows to obtain a sparse solution for each spatial x ∈ Ω, i.e. the vector
an(x) should be forced to become sparse. This sparsity assumption on the coefficients is rather
natural, as we have introduced (9.19) as a linearization of (9.16). We therefore would like to
obtain only two non-zero coefficients per spatial region; a0 on the one hand, to recover the arterial
spillover, and aj for j 6= 0 on the other hand, to recover a particular perfusion and tissue fraction
value. If we define the exemplary values F (x) = 1.344 (perfusion), S(x) = 0.3 (arterial spillover),
T (x) = 0.6 (tissue fraction) at position x and a partition coefficient of λ = 0.96, then – if the
j-th value of b is bj = 1.4 – the j-th coefficient at position x ideally should equal aj(x) = 0.8064,
while a0(x) = 0.3 and ai(x) = 0 for i 6= j 6= 0 shall be satisfied. In order to promote sparsity
in a variational setup with L2 fidelity we know from Section 4.1.2 that the `1-norm is a suitable
regularizer, since the variational model (4.3) is the convex relaxation of the `0-problem. However,
in case of Kullback-Leibler as the fidelity term, the `1-norm does not necessarily promote sparsity
of a solution, as we will discover in the following.

Example 9.3 (Kullback’s and Leibler’s Peak). First of all, we want to argue why the natural
scaling assumption (4.24) indeed is necessary in case we want to recover a single peak as in analogy
to Example 6.4 for a Kullback-Leibler fidelity.
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Theorem 9.1. Let K : `1≥0 → L1(Σ) be a linear operator with K∗1 = 1. Then, û = cδj, with
c = 1/(1 + α) and δ representing the Kronecker-δ-function, is the solution of the variational
scheme (2.9) with Hf (Ku) = KL(f,Ku) and J(u) = ‖u‖`1, for given input data f = Kδj.

Proof. Considering the optimality condition of (2.9) with the particular functionals yields

p̂n =
1

α

(
K∗
(
f −Kû
Kû

))
n

,

for p̂n ∈ sign(ûn). If we insert f = Kδj and û = cδj we end up with

p̂n =
1− c
αc

(K∗1)n = 1 ,

for all n. In particular we therefore have p̂j = 1 and p̂i ∈ sign(ûi) for i 6= j and hence, the
optimality condition is satisfied.

Moreover, the proof of Theorem 9.1 points out that for an operator-scaling different than
K∗1 = 1, the coefficient δi for which (K∗1)i is largest is returned as a solution of (2.9).

However, if we have an operator with large nullspace (which is natural in case of compressed
sensing, and is also true for the operator B as defined in (9.19) for a large number of bn’s) and if
we have only non-negative coefficients un ≥ 0, then we easily see

‖u‖`1 = 〈1, u〉`1 = 〈K∗1, u〉`1 = 〈1,Ku〉L1(Σ) = 〈1, f〉L1(Σ) .

Hence, with the scaling assumption K∗1 = 1 every non-negative solution of Ku = f has the same
`1-norm. As a consequence, the values of (2.9) with Hf (Ku) = KL(f,Ku) and J(u) = ‖u‖`1
equal each other for every solution of Ku = f , no matter if u is sparse or not. Therefore, the
`1-norm does not suit as a regularizer in case of our desired setup.

The development of a setup recovering sparse coefficients in the presence of the Kullback-
Leibler fidelity would go beyond the scope of this thesis. We therefore decide not to pursue
a setup as in [9], but rather to split up the process of sparse recovery into two steps. First
of all, we are going to reconstruct the image sequence u = Ba without assuring sparsity, but
with ensuring a spatial smoothness of the coefficients. Subsequently, we are going to compute
two-sparse coefficients for each pixel (consisting of one spillover and one perfusion coefficient) by
comparing the least-squares values for each combination per pixel.

In order to realize the first step we want to propose the use of the Bregman-iteration-scheme

al = arg min
a∈BV(Ω;Rn+1)

{
KL(f,KBa) + αDpl−1

TV (a, al−1)
}

, (9.20)

with the informal TV-definition

TV(a) :=

n∑
i=1

∫
Ω
‖ai(x)‖`p dx ,

p ∈ {1, 2}, to ensure spatial smoothness for each single coefficient function without loss of contrast.
The functional is minimized with the use of Algorithm 10 and Algorithm 5. The inner weighted
ROF-problem of Algorithm 5 is solved via Algorithm 7.
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For the second step we compute for every pixel x ∈ Ω and every combination (0, j) for all
j ∈ {1, . . . , n} the coefficient combination with the minimal least-squares error, i.e.

inf
j∈{1,...,n}

inf
a0(x),aj(x)

∥∥∥u(x, ·)−
(
a0(x)h(·) + aj(x)b̃j(·)

)∥∥∥
L2([0,T ])

∀x ∈ Ω , (9.21)

for u(x, t) = (Bal)(x, t). In addition, we also check the (unlikely) case if a spatial region is being
represented best by the input curve h only, i.e.

inf
a0(x)

‖u(x, ·)− a0(x)h(·)‖L2([0,T ]) ∀x ∈ Ω . (9.22)

In the following, we are going to present computational results on synthetic as well as on real
H2

15O-data.

9.2.4 Computational Results

In this section we want to investigate 2+1 dimensional synthetic and 3+1 dimensional real H2
15O-

data to demonstrate the capabilities and limitations of the proposed scheme. As in Section 9.1.4,
for both synthetic and real data we sample the time t ∈ [0, T ], with T = 320 seconds, at the 26
discrete points {20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 140, 160, 180, 200,
230, 260, 290, 320}. In both cases, after interpolating the data to a finer and equidistant temporal
grid via bicubic interpolation, we compute the discrete approximations of the basis functions b̃j via
a simple forward Euler strategy with stepsize ∆t = 0.001, and apply a subsequent reinterpolation
to the original temporal grid.

Synthetic Data

(a) Exact Data (b) Sinogram Data

Figure 9.24: The 11-th frame of the exact data sequence U ∈ R256×256×26 and the corresponding sinogram
data Y ∈ R256×257×26 of the same frame.

In case of fully synthetic data we consider a 2+1 dimensional image sequence U ∈ R256×256×26,
for which the 11-th frame (time after 70 seconds) can be seen in Figure 9.24(a). This sequence
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has been designed to attain spillover, tissue fraction and myocardial perfusion values as in Figure

9.25, for the input curve h(t) := h̃(t)/‖h̃‖∞, with h̃(t) := t
64 exp

(
−−t2128

)
. Subsequently, the frames

of the sequence are processed to sinogram data Y ∈ R256×257×26 via a Monte-Carlo-simulation,
generating 10000 photon counts in average per frame, for which the 11-th sinogram frame can be
seen in Figure 9.24(b). The sinogram parameter s is sampled at 257 samples for s ∈ [−1, 1], while

(a) Arterial Spillover (b) Myocardial Perfusion (c) Tissue Fraction

Figure 9.25: The per-pixel-values of arterial spillover, myocardial perfusion and tissue fraction that are
attained by the designed image sequence U .

the angle θ ∈ [0, 2π] is sampled at 256 discrete points, leading to sinogram data Y ∈ R256×257×26.
For the sinogram data Y as the input data we have computed 8 Bregman iterations of scheme
(9.20) via Algorithm 10 for α = 10. The considered dynamic PET matrix has been generated with
the basis vector b ∈ R61 with bj ∈ [0, 6], sampled with stepsize 0.1, and subsequently normalized
to ensure BT1 = 1. The 11-th frame of the reconstruction can be seen in Figure 9.26(c), in
comparison to the exact frame and the static PET reconstruction of Section 9.2.1. As expectable,
the dynamic reconstruction appears to resemble the exact frame more than the static frame,
due to the additional a-priori information of the exact input curve and the temporal correlation
between the frames being embedded in the reconstruction process. In addition, Figure 9.27 shows
the comparisons of the exact spillover, tissue fraction and myocardial perfusion values with the
values reconstructed via (9.21) and (9.22). The values have been computed via the following

(a) Exact Data (b) Static Bregman Reconstruction (c) Dynamic Bregman Reconstruc-
tion

Figure 9.26: Comparison of the 11-th frame of exact data, static and dynamic pet reconstruction.

procedure. The spillover term S(x) equals a0(x), while the myocardial perfusion F (x) is being
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set to F (x) = bjλ, with j denoting the non-zero index and λ being the partition coefficient set to
λ = 0.96. Finally, the tissue fraction value has been computed via R(x) = aj(x)/F (x).

It can be seen that despite the very bad signal-to-noise ratio the recovered spillover and tissue
fraction values are quite close to the exact values. However, the quality of the recovered myocardial
perfusion values is slightly worse, probably due to the fact that F can only attain the discrete
values determined by (bj){1,...,n}, or due to the nonlinearity of F in the original problem that
cannot be handled by the linearization. Note that we have manually set all values of F for which
R is almost zero to zero as well. Nevertheless, the quality of the reconstructions allows to draw
quantitative conclusions on the observed values, although the quality of the data is limited.

Real H2
15O Data

In this section we want to consider results for real H2
15O-sinogram data. We have collected 26

sinogram frames Y , sampled at the discrete timesteps defined in the introduction of this section,
with a Siemens PET Scanner ECAT EXACT operating in 2D-mode, which means that only those
events have been collected that were detected in perpendicular slices. Figure 9.28 shows the 11th
frame of the sinogram data. The related image sequence data is reconstructed with the dimensions
175×175×47 per frame. In order to handle the huge data matrices that therefore occur in the re-
construction process, we limit the number of basis elements to 29. More precisely we define b as the
vector b = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3,
3.5, 4, 4.5, 5, 5.5, 6}. Again, the resulting dynamic PET matrix B is normalized to ensure BT1 = 1
and rescaled after the first part of the parameter reconstruction process is finished.

Another problem we face is that in contrast to synthetic data for which we know the exact
data we do not necessarily know the exact input curve in case of real data. Since we have already
discovered in the previous section that in case of the exact input curve being given the method
is capable to recover the desired parameters very well, in this section we do not claim to exactly
recover these parameters. We rather choose a specific input curve and show that the method
operates in a full 4D setup for real data as well as for the synthetic 3D setup. We therefore define
the input curve as the spectral mean over all voxels in the field-of-view of the scanner of one single
EM-iterate with initial value u0 = 1. In Figure 9.29 this input curve is visualized for illustrative
purposes.

For the computations we proceed analogously as in case of synthetic data. First, we compute
five Bregman iterations of scheme (9.20) via Algorithm 10 for α = 10. Subsequently, we compute
the two-sparse solution via (9.21) and (9.22) for every voxel in order to determine the spillover,
perfusion and tissue fraction values.

In Figure 9.30 three particular slices with different orientation (transversal, coronal and sagit-
tal) of the 11-th frame of the static and the dynamic PET reconstruction have been compared.
From a visual point of view the dynamic PET reconstruction appears to include more details and
structures than the frame-independent static PET reconstruction.

In Figure 9.31 the results of the parameter identification step for the parameters S (spillover)
and R (tissue fraction) that have been processed via the second least-squares step are visualized.

It is easy to see that the particular choice of h as described above and visualized in Figure 9.29
does not seem to be a good choice with respect to myocardial perfusion quantification. Most of
the cardiac regions (including the tissue regions) can be represented by the input curve, leading
to high spillover values but extremely low tissue fraction values. In contrast, the tissue fraction
values grow large in areas below the cardiac and lung regions. Due to the high amount of areas
for which the tissue fraction values are very small we refrain from visualizing the parameter F
(myocardial perfusion), since in analogy to the synthetic data case the perfusion values cannot be
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(a) Arterial Spillover (b) Arterial Spillover Reconstruction

(c) Myocardial Perfusion (d) Myocardial Perfusion Reconstruction

(e) Tissue Fraction (f) Tissue Fraction Reconstruction

Figure 9.27: Comparison between exact and reconstructed values for arterial spillover S(x), myocardial
perfusion F (x) and tissue fraction R(x). Note that for illustrative purposes we have set F (x) = 0 if R(x)
is almost zero, since a small tissue fraction also implies a small perfusion value.
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(a) Transversal View

(b) Coronal View

(c) Sagittal View

Figure 9.28: Three-dimensional sinogram data of the 11th frame of real dynamic H2
15O PET data

collected with a Siemens PET Scanner ECAT EXACT.

recovered properly and indeed become very large. Alternatively, in Figure 9.32 the product FR
is visualized, representing the coefficient values of the non-input-curve coefficients.

The dynamic reconstruction therefore seems to be very sensitive regarding the choice of the
input curve. In order to draw quantitative conclusions from the dynamic PET reconstruction,
the considered input curve needs to be very accurate. The method proposed for dynamic PET
reconstruction therefore is only as good as the quality of the input curve is, with respect to the
considered application. This suggests that both the coefficients as well as the input curve should
be recovered simultaneously.

Nevertheless, if an accurate input curve is given, the use of Bregman iteration in combination
with total variation regularization allows a quantitative analysis of dynamic PET data.
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Figure 9.29: The input curve h(t) that has been used for the dynamic PET reconstruction of real H2
15O-

data.

9.3 Bioluminescence Tomography

A very novel optical molecular imaging technique in order to make bioluminescent markers in small
animals (particularly genetically engineered mice) visible is Bioluminescence Tomography (BLT),
which has been developed in [128] and extensively studied in [129, 64, 126, 127]. According to
[129], BLT “collects emitted photons from multiple 3-D directions with respect to a living mouse
marked by bioluminescent reporter luciferases, and reconstructs an internal bioluminescent source
distribution based on both the outgoing bioluminescent signals and a prescanned tomographic
volume, such as a CT/micro-CT volume, of the same mouse”. While transmitting through tissue
the bioluminescent photons are exposed to scattering and absorption. These phenomena can
accurately be described by the Radiative Transfer Equation (RTE) (cf. [92]). However, analysis
and computational realization of the RTE based BLT is very difficult. For that reason most recent
existing studies are limited to BLT with a diffusion approximation of the RTE (cf. [64]). Precisely,
the goal is to recover a light source function p that obeys the diffusion equation

−∇ · (D∇u) + µu = p in Ω , (9.23)

with the boundary conditions

D
∂u

∂ν
= −f on Γ , (9.24)

and

2D
∂u

∂ν
+ = g− on Γ , (9.25)

with D = (3 (µ+ µ′))−1, µ and µ′ being absorption and scattering coefficients, f denoting the
measurements and g− being the given influx function (which is typically zero for standard BLT
applications), for the domain Ω with Lipschitz boundary Γ.

The recovery of p from (9.23), (9.24) and (9.25) is an ill-posed problem and therefore needs
further regularization. In [64] the considered variational minimization problem was the classical
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(a) Transversal View (b) Transversal View

(c) Coronal View (d) Coronal View

(e) Sagittal View (f) Sagittal View

Figure 9.30: Transversal, coronal and sagittal view of the 11th frame of the static PET reconstruction
(left side) and the dynamic PET reconstruction (right side). The additional a-priori information allows a
qualitative improvement of the reconstruction leading to more details and structures in the reconstructed
frames.

Tikhonov regularization scheme with quadratic regularization term, i.e.

p ∈ arg min
p∈L2(Ω)

{
1

2
‖Kp− f‖2L2(Γ) +

α

2
‖p‖2L2(Ω)

}
,
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(a) Transversal View (b) Transversal View

(c) Coronal View (d) Coronal View

(e) Sagittal View (f) Sagittal View

Figure 9.31: Transversal, coronal and sagittal view of the recovered parameters S (spillover, left side)
and R (tissue fraction, right side). Note that the transversal views of both parameters do not show the
same slice, in order to visualize slices that contain high tracer activity. The coronal and sagittal views
however show the same slides in both cases. The results demonstrate the bad choice of the input function.
The input curve represents much of the coronary areas so well that the spillover in these regions is very
high. The tissue fraction values in these regions tend to zero, while they appear to be relatively high in
the lower areas. Note that the red dots in the tissue-fraction-reconstruction are outliers.

with K denoting the linear operator that relates p to the data f in terms of (9.23), (9.24) and
(9.25). In common computational realizations the diffusion equation is approximated via a finite
element scheme, leading to a fully discrete setup

p ∈ arg min
p∈`2

{
1

2
‖Kp− f‖2`2 +

α

2
‖p‖2`2

}
. (9.26)

The problem-formulation (9.26) has actually two drawbacks. In [87] it has been argued that the
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(a) Transversal View

(b) Coronal View

(c) Sagittal View

Figure 9.32: Transversal, coronal and sagittal view of FR, with F denoting the myocardial perfusion and
R representing the tissue fraction.

`1-norm is a more suitable regularizer than the `2-norm, since the finite element approximation
usually implies that the number of surface discretized points is significantly fewer than the number
of discretized points in the inner domain. Thus, the finite-element-discretization leads to a matrix
K ∈ Rm×n with m� n and therefore, K has a large nullspace. In order to find a suitable solution
among all possible solutions the `1-norm-minimizing solution seems to be a preferable choice and
has been realized in [87] in case of quadratic fidelity, i.e.

p ∈ arg min
p∈`2

{
1

2
‖Kp− f‖2`2 + α‖p‖`1

}
. (9.27)

The second drawback is that the noise the data is contaminated with is supposed to be Poisson-
distributed photon count noise, similar to the application of PET. As a consequence, the choice
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of a `2-fidelity does not seem to be the best option, since the a-priori information that the noise is
Poisson-distributed is not incorporated into the reconstruction process. However, we have discov-
ered in Section 9.2.3 that the combination of the Kullback-Leibler fidelity and `1-regularization
might be a good alternative to (9.26), but will not produce sparse and satisfactory results and
therefore will not represent a good alternative to (9.27).

In the following we want to present a different option, leading to qualitatively improved results.
If we consider the general variational framework with Kullback-Leibler fidelity (i.e. (4.23)) again
and compute the optimality condition with neglected positivity constraint, we obtain

0 = KT

(
Kp− f
Kp

)
+ αq , with q ∈ ∂J(p).

Approximating Kp in the denominator of the fraction via f yields the related `2-type problem

p ∈ arg min
p∈dom(J)

{
1

2

∥∥∥∥Kp− f√
f

∥∥∥∥2

`2
+ αJ(p)

}
. (9.28)

In case that we know the noise bound between noisy data f and exact data g in terms of

1

2

∥∥∥∥g − f√f
∥∥∥∥2

`2
≤ δ , (9.29)

an alternative to minimizing (9.28) is to consider the ISS with discrepancy principle, i.e.

∂

∂t
q(t) = KT (f −Kp(t)) , for q(t) ∈ ∂J(p(t)), (9.30)

until we obtain

1

2

∥∥∥∥Kp(t∗)− f√
f

∥∥∥∥2

`2
≤ δ ,

for 0 < t∗ < ∞, leading to better approximations without loss of contrast. In the following, we
want to computationally realize (9.30) for J(p) = ‖p‖`1 via Algorithm 12 and compare computa-
tions for synthetic data with different sparsity levels.

9.3.1 Computational Realization

As mentioned in the previous section we want to consider the setup

∂

∂t
q(t) = AT (f −Ap(t)) , for q(t) ∈ sign(p(t)), (9.31)

with A denoting the matrix A = DK for D being defined as the positive diagonal matrix

Di,j =

{
1√
f l

for (i, j) = (l, l)

0 else
,

for all l of the discrete domain of f that we want to denote with m. If we assume p to consist of
n pixels (or voxels, respectively), we therefore have K ∈ Rm×n, D ∈ Rm×m and A ∈ Rm×n. In
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Figure 9.33: Comparison of OMP and aISS for the matrix A1 and noise-free data, for varying sparsity
level s. The plots show the comparison metrics with respect to the sparsity level of the input signal.

order to recover at least trivial peaks we furthermore normalize the columns of A with respect to
the two-norm, due to Example 6.4. We therefore define another diagonal matrix N ∈ Rn×n with

Ni,j =

{
1

‖Ar‖`2
for (i, j) = (r, r)

0 else
,

for i, j, r ∈ {1, · · · , n}, with Ar denoting the r-th column of A, and define Ã := AN as the matrix to

consider in (9.31) instead of A. After computing iterations of (9.31) until 1
2

∥∥∥Ãp(t∗)−√g∥∥∥2

`2
≤ δ is

satisfied, we can recover the original scaling of the coefficients via pscal = Np. The computational
realization of (9.31) is done with Algorithm 12 for parameters Ã (the considered matrix), f (the
input data) and δ (the threshold).

9.3.2 Computational Results

In the following we briefly want to show and compare numerical examples on exact and noisy
synthetic data. The underlying matrices K are generated as in [87], by finite-element discretiza-
tions with different amounts of discretized surface points. More precisely, we consider two matrices
K1 ∈ R256×4096 and K2 ∈ R1352×4096. In the following section, we want to run computational tests
of either aISS and OMP on clean data for the two matrices in order to compare the performances
of aISS and OMP as well as the ill-conditioning of the matrices.

Clean Data

First of all we investigate the aISS- and OMP-setup for K1 and K2 in case of noise-free data.
We define matrices A1 and A2 as described in Section 9.3.1 and compare the frequency of exact
recovery as well as the number of iterations needed for both aISS and OMP. The exact data
is produced by applying the matrices A1 and A2 to random signals with sparsity level s. The
procedure is repeated 50 times for each sparsity level, and obtained frequency and number of
iterations are averaged. The results of the subsequent reconstructions can be seen in Figure 9.33
for sparsity levels s = 1 to s = 30.
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Figure 9.34: Comparison of OMP and aISS for the matrix A2 and noise-free data, for varying sparsity
level s. The plots show the comparison metrics with respect to the sparsity level of the input signal.

For matrix A1 it can be seen that the problem is highly ill-conditioned. Only for signals
with sparsity level s = 1 exact recovery can be guaranteed with a frequency of one. Then, with
increasing sparsity level the frequency gets terribly worse. Despite the fact that the matrix A1 is
very ill-conditioned and therefore very impractical, in terms of frequency aISS does a better job
than OMP. In analogy to the comparisons of Section 9.1.4 the improvements in frequency are at
the expense of a higher number of iterations.

The same computational experiments as for A1 have also been performed for A2, for increasing
sparsity level s = 1 to s = 35. The comparisons of frequency of exact recovery as well as the
number of iterations for aISS and OMP are presented in Figure 9.34.

Both algorithms can at least handle low sparsity levels much better as in case of A1, which is
not surprising since for A2 many more surface points are sampled. However, this time aISS is not
only able to recover the true coefficients better than OMP, but also with fewer iterations needed.

In the following, we want to discuss whether the proposed model leads to improved recon-
structions in case of Poisson-distributed noise, in contrast to the use of the standard `2-fidelity.
For that purpose we want to focus on the underlying matrix K2 only, since K1 appears to be
impractical for further use due to its high degree of ill-conditioning.

Noisy Data

In case of noisy data we compare the frequency of exact recovery, the number of iterations and
the normed `1-difference between a reconstruction and the true solution, i.e. ‖p̂ − p̃‖`1/‖p̃‖`1 ,
with p̃ denoting the true and p̂ representing the recovered solution. We do not only compare the
different algorithms aISS and OMP, but also the use of the matrix A2 and the matrix K2, since
we have assumed to obtain an extra benefit from the modeling of A2 in case of data corrupted by
Poisson distributed noise. The basic setup is as follows. We generate random signals with sparsity
level s as our true solutions p̃, for s varying from one to 20. We compute the corresponding exact
data g = A2p̃ (and g = K2p̃ respectively) and corrupt the data g by Poisson-noise bounded by
δ in the sense of (9.29), to obtain the input data f . Subsequently we compute the first 150 ISS
iterates via Algorithm 12 for the input data f to compute solutions p̂ of which we pick the solution



CHAPTER 9. APPLICATIONS 197

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity Level

F
re

qu
en

cy
 o

f e
xa

ct
 r

ec
ov

er
y

Frequency of exact recovery vs. Sparsity of the input signal

 

 

aISS for A
aISS for K
OMP for A
OMP for K

(a) Frequency of exact recovery

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Sparsity Level

N
um

be
r 

of
 it

er
at

io
ns

Number of iterations vs Sparsity of the input signal

 

 

aISS for A
aISS for K
OMP for A
OMP for K

(b) Number of iterations

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

Sparsity Level

N
or

m
ed

 l1  d
iff

er
en

ce
 to

 e
xa

ct
 s

ol
ut

io
n

l1 Normdifference vs Sparsity of the input signal

 

 

aISS for A
aISS for K
OMP for A
OMP for K

(c) Normed `1-difference to p̃

Figure 9.35: Comparison of OMP and aISS for noisy data and different matrices A2 and K2, for varying
sparsity level s. The plots show the comparison metrics with respect to the sparsity level of the input
signal.

with smallest `1-difference to p̃ among all 150 iterates. For every sparsity level s we repeat this
procedure 50 times for different random signals p̃ to obtain reliable average values. The computed
results are shown in Figure 9.35.

First of all it can be seen that the use of aISS in contrast to OMP brings a visible improvement
for the reconstruction in case of noisy data, at the cost of more iterations until converging to the
best possible solution. Moreover, in terms of frequency of exact recovery the use of A2 instead
of K2 improves the frequency for both aISS and OMP. Considering A2 instead of K2 with OMP
only leads to results that are almost qualitatively as good as they are for the use of aISS with
matrix K2. In terms of normed `1-differences however the considered combinations of algorithms
and matrices used appear to lead to similar results, except in case of OMP with matrix A2, which
is significantly worse.
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Appendix A

Computational Realization

In this chapter we briefly describe the computational realization of the discrete Laplace inversion,
needed for some of the algorithms presented in Chapter 8, via the discrete Cosine transform.

A.1 Discrete Laplace Inversion via Cosine Transform

Assume that we face to solve the operator equation

−∆u = f , (A.1)

with u satisfying Neumann boundary conditions. Then, a discrete finite differences approximation
of (A.1) in two dimensions RM × RN is given via

fi,j = 2

(
1

h2
x

+
1

h2
y

)
ui,j −

1

h2
x

(ui+1,j + ui−1,j)−
1

h2
y

(ui,j+1 + ui,j−1) , (A.2)

with hx and hy denoting the stepsizes in x- and y-direction. Due to the Neumann boundary
conditions, we can rewrite u and f in terms of the inverse cosine transform (IDCT), i.e.

ui,j =
M−1∑
p=0

N−1∑
q=0

αMp α
N
q ûp,q cos

(
π(2i+ 1)p

2M

)
cos

(
π(2j + 1)q

2N

)
,

with

αTt =


1√
T

if t = 0√
2
T if 0 ≤ t ≤ T − 1

,

for 0 ≤ i ≤M − 1 and 0 ≤ j ≤ N − 1. Replacing u and f via the IDCT-representation yields

2

(
1

h2
x

+
1

h2
y

)
ûp,q cos

(
π(2i+ 1)p

2M

)
cos

(
π(2j + 1)q

2N

)
− 1

hx
ûp,q cos

(
π(2j + 1)q

2N

)(
cos

(
π(2i+ 3)p

2M

)
+ cos

(
π(2i− 1)p

2M

))
(A.3)

− 1

hy
ûp,q cos

(
π(2i+ 1)p

2M

)(
cos

(
π(2j + 3)q

2N

)
+ cos

(
π(2j − 1)q

2N

))
(A.4)

= f̂p,q cos

(
π(2i+ 1)p

2M

)
cos

(
π(2j + 1)q

2N

)
,

199



200 A.1. DISCRETE LAPLACE INVERSION VIA COSINE TRANSFORM

for all 0 ≤ p ≤M − 1 and 0 ≤ q ≤ N − 1. We can rewrite (A.3) and (A.4) to

− 2

hx
ûp,q cos

(
π(2i+ 1)p

2M

)
cos

(
π(2j + 1)q

2N

)
cos
(πp
M

)
and

− 2

hy
ûp,q cos

(
π(2i+ 1)p

2M

)
cos

(
π(2j + 1)q

2N

)
cos
(πq
N

)
,

due to the addition theorem cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y). By defining

ĥp,q := 4

(sin
( πp

2M

)
hx

)2

+

(
sin
( πq

2N

)
hy

)2
 (A.5)

we obtain an equivalent represantation for (A.2) as

ûp,q =
f̂p,q

ĥp,q
, (A.6)

due to the relation cos(2x) = 1 − 2 sin2(x). In analogy to the computations above the Laplace
inversion can also be done for n-dimensional data, the only difference is that (A.5) changes to

ĥp = 4
n∑
k=1

sin
(
πpk
2Mk

)
hk

2

,

with Mk being the k-th dimension, hk being the stepsize in the k-th dimension and with p denoting
a multiindex that satisfies 0 ≤ pk ≤Mk − 1, for all k ∈ {1, . . . , n}.

A computational issue with (A.6) is that we have to divide by zero at (p, q) = 1. But usually,
as we have seen in Chapter 8, Laplace inversions arise from optimality conditions of the form

(I − δ∆)u = f . (A.7)

With B denoting the cosine transform operator, we can rewrite this equation to

Bu− δB∆u = Bf

Bu+ δ(Bu)ĥ = Bf

u = B∗
(

Bf

1 + δĥ

)
,

which is completely unproblematic to solve. Moreover, computing a discrete approximation of
(A.7) by using the Bilaplace operator ∆∆ instead of the Laplace operator ∆ (with Neumann
boundary conditions) can simply be done via

u = B∗
(

Bf

1 + δĥ2

)
.
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Motion correction in respiratory gated cardiac pet/ct using multi-scale optical flow. LNCS.
177

[44] M. Dawood, N. Lang, X. Jiang, and K. P. Schäfers. Lung motion correction on respiratory
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