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Purpose: A Fourier-based iterative algorithm, termed equally sloped tomography (EST), in 

conjunction with advanced regularization methods, has been applied to reduce the radiation dose 15 

in medical CT. To quantify the amount of CT dose reduction achievable by EST, image quality 

phantom and an anonymous pediatric patient data sets were acquired from a Siemens 

SOMATOM Sensation 64 scanner.  

Methods: EST iterates back and forth between real and Fourier space utilizing the pseudo-polar 

fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical 20 

regularization are enforced in real space, while the measured data is applied in Fourier space. 

The algorithm, monitored by an error metric, is guided towards a global minimum that is 

consistent with the measured data. To prevent any human intervention, the algorithm is 



automatically terminated when no further improvement can be made. Quantitative comparisons 

are conducted on the filtered back projection (FBP) and EST reconstructions at different flux 25 

settings using signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs). 

Results: Based on the phantom and anonymous pediatric patient data sets and the image 

quantification metrics such as SNRs and CNRs, our experimental results demonstrate that the 

39mAs EST reconstructions produce comparable or better image quality, resolution and contrast 

than the 140mAs FBP reconstructions. 30 

Conclusions: As the radiation dose is linearly proportional to the x-ray flux, our results suggest 

that EST enable a reduction of the CT dose by ~70% while producing comparable or better 

image quality, contrast and resolution than the conventional reconstruction method. Compared to 

other iterative algorithms, EST takes advantage of the best features in both real and Fourier space 

iterative algorithms: i) eliminating the need for interpolation in Fourier space, 2) utilizing the 35 

PPFFT that is algebraically exact and computationally fast, and 3) searching for a global 

minimum using the measured data through an iterative process in conjunction with advanced 

mathematical regularization. While we demonstrate the radiation dose reduction with fan-beam 

CT data in this article, EST can also be extended to circular/helical cone-beam geometry through 

the rebinning process.  40 

Keywords: equally sloped tomography (EST), radiation dose reduction, iterative algorithm, 

oversampling, pseudopolar fast Fourier transform (PPFFT) 

I. INTRODUCTION 

Since its inception in the 1970s, X-ray computed tomography (CT) has become a 

revolutionary medical tool in diagnosis of diseases and visualization of critical interventional 45 



procedures1-3. However, due to the requirement of sufficiently high flux projections from 

multiple directions for achieving high quality images, a major concern in medical CT is the 

unavoidable radiation dose delivered to the patient, especially to the more radiosensitive 

population such as pediatrics4-9. According to the 2009 report from the National Council on 

Radiation Protection & Measurements10, CT accounts for about 15% of the total radiological 50 

examinations, but is disproportionately responsible for approximately 50% of the medical 

radiation exposure and nearly 25% of the total population exposure. Recently, the combination 

of real space iterative algorithms with modern optimization methods has been rapidly developed 

to reduce radiation dose in CT11-18. While these methods perform well under certain 

circumstances (i.e. for piecewise constant objects), partially due to the presence of noise in the 55 

CT data as well as limitations in the computation speed, currently the most popular method in 

clinical CT and other tomographic fields remains filtered back projection (FBP) or its 

variations19-20. In this article, we applied equally sloped tomography (EST)21-26, a Fourier-based 

iterative reconstruction algorithm, together with modern optimization methods24,27-29 to a 

phantom and an anonymous pediatric patient data set acquired from a Siemens SOMATOM 60 

Sensation 64 scanner. Our experimental results from the phantom and the anonymous pediatric 

patient data sets indicate that EST can reduce the CT dose by ~70%, while producing 

comparable or better image resolution and contrast than the conventional FBP reconstructions.  

 

II. METHODS 65 

II.A. The Pseudopolar Fast Fourier Transform 

Conventional equally-angled acquisitions result in a polar distribution of points, and in 

order to reconstruct 3D objects in the Cartesian grid, interpolations must be implemented either 



in real or Fourier space1-3,20. Unlike interpolations in real space where the interpolation error is 

constrained in the neighboring area, interpolations in Fourier space affect the quality throughout 70 

the entire image30-32. Furthermore, since the radial density of sampling points becomes sparser at 

higher spatial frequencies in Fourier space, the image is degraded at higher frequencies. 

Although it is believed that no direct and exact fast Fourier transform algorithm can be 

constructed between the polar and Cartesian grids32, it has been shown the existence of an 

algebraically exact fast Fourier transform algorithm between the pseudopolar and Cartesian grids, 75 

termed the pseudopolar fast Fourier transform (PPFFT)33, 34. As depicted in Fig. 1, for a 

N N× Cartesian grid, the pseudopolar grid is defined by a set of 2N lines, each line consisting of 

2N grid points mapped out on N concentric squares. The 2N lines are subdivided into two groups. 

A horizontal group (in gray) is defined by y = sx, where s is the slope, |s| ≤ 1 and ∆s is a constant 

(2/N), while a vertical group (in red) is defined by x = sy, where |s| ≤ 1 and ∆s is a constant (2/N) 80 

as well. The horizontal and vertical groups are symmetric under the interchange of x and y. These 

pseudopolar lines are termed “equally-sloped” since the slope, s, of successive lines in both 

groups changes by an equal sloped increment of Ns /2=∆   as opposed to a fixed equal angled 

increment as in the polar grid. Unlike the polar grid, the distance between sampling points on the 

individual lines of the pseudopolar grid varies from line to line. The fractional Fourier transform 85 

(FrFT) can be used to vary the output sampling distance of the Fourier transform35. The 1D FrFT 

is defined by 
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This is equivalent to the standard 1D fast Fourier transform but with an extra factor of α in the 

exponent; by choosing an appropriate value for α, the projection data can be mapped on to the 90 

grid points of any line on the pseudopolar grid. Taking the vertical group as an example, the 



PPFFT is expressed as 
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Note that the pseudopolar grid and the PPFFT algorithm were originally developed to interpolate 

tomographic projections from the polar to the Cartesian grid in reciprocal space33, 34. The idea of 

acquiring tilt-series at equal slope increments and then combining the PPFFT with iterative 

algorithms for tomographic reconstructions was first proposed by Miao et al. in 200521. 

II.B. The EST Method 100 

Although the PPFFT and its inverse provide an algebraically exact way to do fast Fourier 

transform between the Cartesian and pseudopolar grids, three difficulties limit its direct 

application to tomographic reconstruction. First, to accurately invert the Fourier data using the 

PPFFT, knowledge of 2N data points along the 2N equally-sloped lines are needed34. This 

requirement of a large number of projections is not desirable in experiment due to radiation dose 105 

or technical restrictions. Second, the pseudopolar grid points past the resolution circle (indicated 

by the dotted circle in Fig. 1) cannot be experimentally determined21 and, consequently, exact 

reconstructions through the inverse PPFFT are not possible. Third, in order to enhance the image 

quality and reduce radiation dose, the physical constraints and mathematical regularizations have 

to be applied in the image reconstruction, which requires the use of iterative algorithms.  110 

To overcome these difficulties, the EST method was developed, which iterates back and 

forth between real and Fourier space21-26. The algorithm starts with padding each projection with 



zeros and calculating its oversampled Fourier slice in the pseudopolar grid (red lines in Fig. 2 

top-right). The oversampling concept (i.e. sampling the Fourier slice at a frequency finer than the 

Nyquist interval) has been widely used to solve the phase problem in coherent diffraction 115 

imaging36-38. In the EST method, oversampling does not provide extra information about the 

object, but allows the use of iterative algorithms to extract the correlated information among 

different projections. In the first iteration, the grid points outside the resolution circle and on the 

missing projections (blue lines in Fig. 2 top-right) are set to zero. The algorithm then iterates 

back and forth between real and Fourier space by using the PPFFT. As shown in Fig. 2, the jth 120 

iteration consists of the following 6 steps: 

i) Apply the adjoint transform to the Fourier-space slices )(kFj

v
 , and obtain a real-

space image, )(rf j
v  (Fig. 2 bottom-right). Here the adjoint PPFFT instead of the 

inverse PPFFT is used because the former is implemented through a conjugate 

gradient method and can be computed much faster than the latter without 125 

compromising the accuracy 24. 

ii) Derive a new object, )(rf r
j
v , by applying mathematical regularizations to )(rf j

r . In 

our reconstructions, we applied the non-local total variation regularization29 once in 

every other iteration. The nonlocal total variation regularization is defined as: 
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           Where the weight function ),( 21 ppw  describing the similarity between the patches 

around different pixels 1p  and 2p . The object is regularized by minimizing: 
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This is not performed in the last iteration so that the final reconstruction is consistent 

with the measured data.   135 

iii) A support is determined based on the zero padding of the projections. Outside the 

support,  )(rf r
j
r  is set to zero and inside the support, the negative values of )(rf r

j
r  

are set to zero as a physical constraint. A new image is obtained, defined as )(' rf j
r  

(Fig. 2 bottom-left).    

iv) Apply the PPFFT to )(' rf j
v  and obtain updated Fourier-space slices, )(' kFj

r
(Fig.2 top-140 

left);  

v) Obtain the Fourier slices for the (j+1)th iteration, (Fig. 2 top-right), by replacing )(' kFj

r
 

with the measured Fourier slices (red lines in Fig. 2). The grid points outside the 

resolution circle and on the missing Fourier slices remained unchanged.  

vi) An error metric is calculated, 145 
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where )(kF
r

 represents the measured Fourier slices,  )(' kFj

r
 is the calculated Fourier 

slices in the jth iteration, and R is the radius of the resolution circle. 

In our reconstructions, the algorithm is automatically terminated when the error becomes 

stabilized after about 20 iterations. 150 

II.C.  Data Acquisition 

The data sets were acquired from a Siemens SOMATOM Sensation 64 scanner with axial 

mode on and only central slice was selected for reconstruction. As the scanner employs fan beam 

geometry, a rebinning step was performed prior to initiating the algorithm in order to transform 



the fan beam projections to parallel projections along equally-sloped lines of the pseudopolar 155 

gird. Since the scanner utilizes a flying focal spot (FFS) technology to increase detector 

sampling, the raw projections were interlaced and corrected prior to rebinning39.  

II.C.1. Phantom Studies 

The Siemens image quality phantom (EMMA) is used to quantify the amount of CT dose 

reduction achievable by the EST method. The phantom contains resolution inserts to measure the 160 

image resolution (Fig. 3a), and contrast inserts to measure the image contrast (Fig. 3b-c). The 

resolution inserts, consisting of air, start at a resolution of 0.067 line pair per mm in group 1, to a 

resolution of 1 line pair per mm in group 11. The contrast inserts contain 8 different sets of 

cylindrical regions of varying contrast and size. The level of contrast is defined by the 

normalized electron density ratios (relative to solid water background): 1.01 (1% signal), 1.03 165 

(3% signal), 1.05 (brain), 1.07 (liver), 1.09 (inner bone), 1.17 (acrylic), 1.48 (bone), and 0.001 

(air), respectively for the regions labeled 1-8. The EMMA phantom was systematically scanned 

at different flux settings, ranging from a maximum of 583 mAs to a minimum of 39 mAs. All 

scans are performed under axial mode with the tube current modulation off and the voltage set to 

120kVp. The scanner (FBP) reconstructions are performed with a standard uncropped ramp filter 170 

in conjunction with cubic interpolation for the back projection process. The EST reconstructions 

are computed by using the iterative algorithm described in Methods II.B. 

II.C.2. Patient Studies 

To further quantify the radiation dose reduction of medical CT in clinical environment 

with the EST method, a pediatric patient data set consisting of a cranial scan of an anonymous 8 175 

year old boy is used. The scan was acquired under axial mode with a voltage of 120kVp and a 

flux setting of 140mAs. However, unlike the phantom studies, it is not possible to acquire 



repeated scans of the patient at different flux settings due to radiation dose concerns. To address 

this issue, we implement an algorithm to simulate low dose patient data based on existing 

scans40,41. Using this algorithm and the pediatric patient data set with a flux setting of 140 mAs, 180 

we generate CT scans at 39 mAs, the lowest possible flux setting of the Siemens Sensation 

SOMATOM 64 scanner, and 20 mAs, which is about 15% of the radiation dose for the original 

data set. Both the FBP and EST reconstructions are computed in the same manner as the 

phantom studies. 

II.D. Evaluation Methods 185 

We perform quantitative comparisons between the EST and the FBP reconstructions. In 

the phantom studies, the contrast and resolution inserts are used to evaluate the image contrast 

and image resolution at different flux levels. In both phantom and patient studies, quantitative 

comparisons are done by measuring the mean values and their standard deviation at various 

contrast regions to calculate the SNRs and the CNRs, defined as  190 

))]()((5.0[)()(

)()(

2121 ROIROIROIROI

ROIROI

IStdIStdIMeanIMeanCNR

IStdIMeanSNR

+×−=

=
                        (7) 

where IROI  represents the pixel values in the region of interest (ROI). 

 

III. RESULTS 

III.A. Quantification of the Image Contrast 195 

The detectability of low contrast features is one of the important criteria in low dose 

reconstructions, especially when using iterative algorithms. We have quantified the image 

contrast and quality of the EST and FBP reconstructions at different flux settings by using the 

medium and low contrast inserts of the EMMA phantom. Figures 4a-d show the FBP 

reconstructions at 583mAs, 140mAs, 39mAs and EST at 39mAs of the medium contrast insert, 200 



respectively. This inserts consist of 4 different sets of the cylinders, and the zoomed views of the 

lowest contrast set of the cylinders (9% signal) are shown in Fig. 4e-h. Compared to the FBP 

reconstructions at 140mAs and 39mAs, the EST reconstruction at 39mAs (Figs. 4d and h) 

exhibits better image quality and is more consistent with the reference reconstruction (FBP at 

583mAs). As indicated by the arrows in the zoomed views (Fig. 4e-h), the smallest cylinder 205 

(3mm in diameter) is more visible in the 39mAs EST reconstruction than the 140 mAs FBP 

reconstruction. The SNRs and the CNRs were also calculated for the largest diameter cylinder 

(indicated in Figs. 4e-h). The SNRs and CNRs of the 39mAs EST reconstruction outperform all 

FBP ones, including the 583 mAs reference reconstruction. Fig. 5 shows the reconstruction 

images for the low contrast inserts of EMMA phantom. The overall quality of the 39 mAs EST 210 

reconstruction (Fig. 5d) is in good agreement with that of 583 mAs FBP (Fig. 5a), while the 140 

mAs (Fig. 5b) and 39 mAs (Fig. 5c) FBP reconstructions are degraded by noise. Figures 5e-h 

show the zoomed view of the second highest contrast set of the cylinders (5% signal). The 

second smallest cylinder (5mm in diameter), indicated by arrows, is visible in the 583 mAs FBP 

and 39 mAs EST reconstructions, but becomes noisy in 140 mAs FBP and almost invisible in 39 215 

mAs FBP. The SNRs and CNRs of the 39 mAs EST reconstruction are higher than those of all 

the FBP reconstructions.  

III.B. Quantification of the Image Resolution 

We quantified the image resolution of the FBP and EST reconstructions by using the 

resolution inserts of the EMMA phantom. Figures 6a-d show bar groups 10 and 11 in the 220 

resolution insert obtained from the 583mAs FBP, 140mAs FBP, 39mAs FBP, and 39mAs EST 

reconstructions, respectively. The smallest bar group 11 (1 line pair per mm) is not clearly 

discernable, but the second smallest bar group 10 (0.8 line pairs per mm) is visible in all 



reconstructions. In contrast to FBP reconstructions at 140 mAs and 39 mAs, in which noise 

degrades the geometrical fidelity of the bars as sharp rectangular objects, the 39mAs EST 225 

reconstruction (Fig. 6d) maintains a noise-free appearance similar to the 583mAs FBP 

reconstruction (Fig. 6a).  

III.C.  Pediatric Patient Data 

Figures 7a-e show the results for a slice of the patient reconstructed at various low flux 

settings by FBP and EST. Visually it is noted that the low-dose EST reconstructions at 39 mAs 230 

and 20 mAs contain noise characteristics similar to FBP at 140 mAs, while the image quality of 

the low-dose FBP reconstructions (39 mAs and 20 mAs) are degraded by noise. This is more 

clearly illustrated in Figs. 7f-j which show zoomed images of a representative region with fine 

and low-contrast structures. In the area delineated by dotted ellipses, it is visible that some low-

contrast features are significantly deteriorated in the low-dose FBP reconstructions. On the other 235 

hand, the EST 39 mAs reconstruction (Figs. 7c and h) is in good agreement with FBP at 140 

mAs (Figs. 7a and f), while some geometrical inconsistencies can be noted in EST at 20 mAs. To 

quantify the EST reconstructions, the SNR and CNR in the regions indicated by a square in Fig. 

7f are calculated. As indicated in Figs. 7f-j, the SNR and CNR of EST at 39 mAs are better than 

those of FBP at 140 mAs. A reconstruction of a second slice of the patient at a different anatomic 240 

region results in similar conclusion (Fig. 8). As more clearly illustrated in the zoomed regions in 

Fig. 8f-j, the fine features of the EST 39 mAs reconstruction are in good agreement with FBP at 

140 mAs.  

 

IV. CONCLUSION 245 



Using the EMMA imaging quality phantom and a pediatric patient data acquired from a 

clinical CT scanner, we have demonstrated that the 39mAs EST reconstruction produces 

comparable or better image quality, resolution and contrast than the 140mAs FBP reconstruction. 

As the radiation dose is linearly proportional to the x-ray flux, our results suggest that EST 

enable a reduction of the CT dose by about 70% without compromising the image quality and 250 

accuracy. While we demonstrate the radiation dose reduction by using fan-beam CT data, the 

EST method can also be extended to circular/helical cone-beam geometry. Our recent studies 

have indicated that by using the rebinning process42-45, circular/helical cone-beam projections 

can be used to calculate parallel projections along equally-sloped lines of the pseudopolar grid. A 

3D object can then be reconstructed from the parallel projection using the iterative EST method. 255 

This work will be presented in a follow-up paper. 

Compared to other iterative algorithms, EST takes advantage of the unique features in 

both real and Fourier space iterative algorithms by i) utilizing the algebraically exact and 

efficient PPFFT, ii) improving the computational speed as the PPFFT has the same computation 

complexity as the FFT, iii) eliminating the necessity for interpolation in Fourier space, and iv) 260 

searching for a global minimum, not only strictly consistent with the measured data but also 

satisfying the physical constraints and mathematical regularization. Due to these unique features, 

it is anticipated that the EST method can be applied not only to medical CT1-3,20, but also other 

tomography fields22,23,26,37. 
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 375 

FIG. 1. Geometrical representation of a Cartesian and pseudopolar grids, related by the 

algebraically exact PPFFT. The dotted circle represents the resolution circle. 

 

 

FIG. 2. Schematic of the EST method which iterates back and forth between real and Fourier 380 

space. The forward transform from a Cartesian grid in real space (bottom-left) to a pseudopolar 

grid in Fourier space (top-left) is performed by the pseudopolar fast Fourier transform (PPFFT). 

The backward step from Fourier space to real space is performed by the adjoint transform of the 

PPFFT (PPFFT+), .In each iteration, physical and mathematical constraints are enforced in real 



space (bottom-right), while measured data (red lines in top-right) is applied in Fourier space. An 385 

error metric is used to monitor the convergence of the iterative algorithm. 

 

 

FIG. 3. Three different slices of Siemens’ image quality phantom (EMMA). (a) Resolution insert 

(b) Low contrast insert  (c) Medium contrast insert . 390 

 



 

FIG. 4. Comparative reconstructions of the medium contrast insert of the EMMA phantom. 

Reconstructions of (a) 583 mAs FBP, (b) 140 mAs FBP, (c) 39 mAs FBP, and (d) 39 mAs EST. 

(e)-(h) Zoomed images of the 9% signal region from (a)-(d), where the SNRs and CNRs were 395 

calculated for the largest diameter cylinder, indicated by the circle in (e). 

 



 

FIG. 5. Comparative reconstructions of the low-contrast insert of EMMA phantom. (a) 583 mAs 

FBP, (b) 140 mAs FBP, (c) 39 mAs FBP and (d) 39 mAs EST. (e)-(h) Zoomed views of the 5% 400 

signal region (dotted square). The 5mm diameter cylinder is indicated by arrows. The SNRs and 

CNRs of the circled region, labled in (e), were calculated for all the reconstructions. 

 



 

FIG. 6. Comparative reconstructions of the resolution insert of the EMMA phantom. Zoomed 405 

images of two smallest bar groups 10 & 11 for the reconstructions of (a) 583 mAs FBP, (b) 140 

mAs FPB, (c) 39 mAs FBP, and (d) 39 mAs EST.  

 



 



FIG. 7.  Comparative reconstructions of a head slice from an anonymous pediatric patient. (a-e) 410 

Whole slice reconstructions for 140 mAs FBP, 39 mAs FBP, 39 mAs EST, 20 mAs FBP and 20 

mAs EST, respectively. (f-j) The corresponding zoomed images of a representative region (the 

dotted square) with fine and low-contrast structures. The SNR and CNRs were calculated in the 

regions indicated by the square in (f). The while arrows point  to a fine feature. 

 415 



 



FIG. 8.  Comparative reconstructions of another head slice from the same pediatric patient data 

set.(a-e) Whole slice reconstructions for 140 mAs FBP, 39 mAs FBP, 39 mAs EST, 20 mAs FBP 

and 20 mAs EST, respectively. (f-j) The corresponding zoomed images of a representative 

region (the dotted square) with fine and low-contrast structures. The SNR and CNRs were 420 

calculated in the regions indicated by the square in (f).  

 

 


