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Abstract. This work intends to extend the results of [Bae, Yuan and Tai [1], Global
minimization for continuous multiphase partitioning problems using a dual approach,
IJCV, 2011] in several directions. First, we propose a direct primal-dual approach for
global minimization of the continuous Potts model with applications to piecewise con-
stant Mumford-Shah model for multiphase image segmentation. We provide sufficient
and necessary conditions to guarantee a global minimum. The conditions for the global
optimum are obtained from a direct binary setting without using convex relaxation.
Moreover, some numerical schemes are proposed. The underlying algorithms involve al-
most the minimum number of parameters, are fast and easy to implement, and usually
can produce global optimum.

1. Introduction

The multiclass labeling and multiphase segmentation problems share some similarity

in nature, as typically both of them aim to find a partition of an image into m disjoint

regions (phases or classes) according to some optimization rule. As a matter of fact, the

former term is commonly used in computer vision, while the latter one often appears in

the variational and PDE community. A typical model for piecewise constant multiphase

image segmentation that minimizes the total interface of edge sets is the piecewise constant

Mumford-Shah model (PCMSM) [21]:

min
{ci,Ωi}m

i=1

{

EPCMS

(

{ci}
m
i=1, Γ

)

:= λ

m
∑

i=1

∫

Ωi

|ci − I|2dx + |∂Ωi|
}

, λ > 0, (1.1)

where I : Ω → R is the input image, {ci} are the optimal mean values and the subregions

{Ωi} forms a non-overlapping partition of Ω (with Γ = ∪m
i=1∂Ωi). With an appropriate

numerical implementation, this model has many applications in segmenting images with

nearly piecewise constant intensities or in finding a simplified “cartoon” approximation of

a given image (see, e.g., [9, 17, 4] and the references therein). The development of fast and

robust methods for multi-phase segmentation has attracted many recent attentions and been

yet challenging. Indeed, even the intensity values {ci} are known a prior, minimizing the
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PCMSM is a hard task. In this situation, it turns out to be a special case of the (continuous)

Potts model [27] for multiclass labeling without favoring ordering:

min
{Ωi}m

i=1

{

EPTS

(

Γ
)

:= λ

m
∑

i=1

∫

Ωi

fi(x) dx +

m
∑

i=1

|∂Ωi|
}

,

subject to ∪n
i=1 Ωi = Ω with Ωk ∩ Ωl = ∅, ∀k 6= l,

(1.2)

where the parameter λ > 0, and {fi}m
i=1 can be viewed as intrinsic forces to enforce the

criterion of classification and labeling. In general, the multi-class labeling problem is to

assign each pixel x ∈ Ω a unique label l from a set of m labels (or classes) {l1, · · · , lm}. It

is known that it is NP-hard when it is approached in a “discrete” manner, as the number

of unknowns grows exponentially with the size of the problem. Accordingly, many recent

attempts tackle this problem from a continuous point of view by minimizing the continuous

Potts model (1.2) (see, e.g., [11, 26, 24, 5, 1] and the references therein). An important issue

on solving (1.2) is to find a convex approximation of the non-convex problem:

min
{ui}m

i=1

{

E
(

{ui}
m
i=1

)

:= λ

m
∑

i=1

∫

Ω

fi(x)ui(x)dx +

m
∑

i=1

TV (ui)
}

, (1.3)

subject to ui ∈ {0, 1} and
∑m

i=1 ui = 1 on Ω, where {ui} are the labeling functions and the

total variation (TV) is defined by

TV (u) =

∫

Ω

|Du| = sup
p∈S

∫

Ω

u divp dx, (1.4)

with

S :=
{

p = (p1, p2) ∈ C1
c (Ω; R2) : |p| ≤ 1, ∀x ∈ Ω

}

, (1.5)

where |p| =
√

p2
1 + p2

2. The optimum ui is expected to be the indictor function 1
Ωi

of Ωi,

i.e., a binary value.

Indeed, a major class of methods is based on the convex relaxation of the admissible set

by allowing for the labeling functions to take “intermediate” values from the unit simplex:

∆+ :=
{

~u := (u1, · · · , um) ∈ R
m : ui ∈ [0, 1] and

m
∑

i=1

ui = 1, ∀x ∈ Ω
}

. (1.6)

Here, we just mention a few contributions along this line. Zack et al. [36] minimized

the energy in (1.3) over (1.6) by introducing additional variables to decouple the TV-term

and the data term, while Lellmann et al. [11] replaced the TV-term by non-isotropic TV:
∫

Ω
(
∑

i |∇ui|2)1/2dx, and applied a Douglas-Rachford splitting algorithm for solving the

modified model (also refer to [12] for an up-to-date review). Pock et al. [26] proposed a

primal-dual projected gradient algorithm for minimizing an energy functional different from

(1.3) that produced a tighter bound on the energy and often (computationally) led to global

minimizer. Li et al. [15, 14] applied the same labeling technique to the piecewise constant

Mumford-Shah-type model with data fidelity involving fuzzy membership functions, and

minimized the resulting model by using alternative minimization methods as in [4]. More

recently, Bae, Yuan and Tai [1] proposed a dual-type method for the approximate model:

min
~u∈∆+

Eε(~u) :=
m

∑

i=1

{

TV (ui) +

∫

Ω

(

λfiui + εui log ui

)

dx
}

, (1.7)
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where ε > 0 is a sufficiently small. The additional log-sum term can be essentially viewed

as a penalization of the constraint ui = 0, 1. Sufficient conditions for the existence of global

optimum solution of the primal-dual model were derived. Moreover, the comprehensive com-

parison conducted in [1] demonstrated the dual-type approach outperformed most of the

existing approaches mentioned above, and could achieve global minimizers at least computa-

tionally. In [19], the TV-term in (1.3) was replaced by another term which approximates the

length term. Afterward, a special linearization technique was used to derive an algorithm

that was shown to be fast without solving any equations (since all subproblems admitted

explicit solutions, and certain narrow-band technique could be applied to accelerate the

algorithm).

Another family of methods based on convex formulation via functional lifting and em-

bedding in a higher-dimensional space has also attracted much recent attention, see, e.g.,

[22, 26, 5, 6, 25].

This paper is motivated by [1], and the main features and contributions can be summa-

rized as follows.

• Different from most of the previous works, we stick with the binary setting (i.e.,

without relaxing the admissible set as in (1.6)) by seeking the minimizer from

A :=
{

~u = (u1, u2, · · · , um) : u2
i = ui,

m
∑

i=1

ui = 1
}

, (1.8)

and conduct a direct analysis for the primal-dual formulation of (1.3):

min
~u∈A

max
~p∈S

{

E(~u, ~p) :=
m

∑

i=1

∫

Ω

ui

(

divpi + λfi

)

dx
}

, (1.9)

where ~p = (p1, p1, · · · , pm) and S = Sm. We provide the sufficient and necessary

conditions for finding the global optimum of the primal-dual model (1.9). Although

some results have been derived earlier in [1], the arguments and means are quite

different.

• Based on the augmented Lagrangian method, we obtain an explicit expression of the

primal variables in terms of the dual variables, where the primal variables take the

binary values in most of the situations. As a result, the thresholding is not necessary

in this case. Moreover, the iterative algorithm contains almost the minimum number

of parameters and is easy to initialize. The essential step is very analogous to the

Chambolle’s algorithm [7] for image denoising, so the method is expected to be fast

and robust.

• The approach can also be interpreted as a multiphase level-set method based on

piecewise constant interpolation of the phases (or classes), so it is anticipated to be

stabler than the classical level-set method [32] and the piecewise constant level-set

method [17] (a global polynomial interpolation).

The rest of the paper is organized as follows. We formulate and analyze the algorithm in

the forthcoming section. More precisely, we derive the sufficient and necessary conditions

for finding global optimum of the primal-dual model (1.9) without using convex relaxation.

We develop the algorithm which can oftentimes achieve the global optimum. We conduct
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a comparison study and provide ample numerical results to show the strengths and perfor-

mance of the proposed method for multiclass labeling and multiphase image segmentation

in the last section.

2. Analysis of the primal-dual model and the algorithm

In this section, we conduct analysis of the global optimum of the primal-dual model (1.9),

and introduce the fast algorithms. Due to similar nature of the labeling and segmentation

problems, we shall not distinguish the words “class” and “phase”, and likewise “multiclass”

and “multiphase” throughout the paper.

2.1. Two-phase case. To provide some insights of the algorithms for multiphase prob-

lems, we first discuss the two-phase case. In this situation, the admissible set (1.8) can be

characterized by a single labeling function u1 as u2 = 1 − u1. For convenience, we define

u = 2u1 − 1, so we have u1 = (1 + u)/2 and u2 = (1 − u)/2. Accordingly, the constraint on

u1 and u2 becomes u2 = 1, and the primal-dual formulation (1.9) is reduced to

min
u2=1

max
p∈S

{

L(u, p) := 〈u, divp + λg〉
}

, (2.1)

where 〈u, v〉 =
∫

Ω uv dx and g = (f1 − f2)/2. The global optimal u is the binary value ±1.

The following characterization is essential for the development of algorithms.

Theorem 2.1. The pair (u∗, p∗) is the optimum of the primal-dual problem (2.1), if and

only if (u∗, p∗) satisfies

|u∗| = 1, (divp∗ + λg) + |divp∗ + λg|u∗ = 0 a.e. on Ω, (2.2)

and

p∗ = argmin
p∈S

∫

Ω

|divp + λg|dx. (2.3)

Proof. Notice that

L(u, p) ≥ −‖u‖L∞(Ω)‖divp + λg‖L1(Ω),

where ‖ · ‖Lp(Ω) is the usual Lp-norm. Therefore, for any u in the admissible set, we have

max
p∈S

L(u, p) ≥ max
p∈S

(

− ‖divp + λg‖L1(Ω)

)

= min
p∈S

‖divp + λg‖L1(Ω).

Therefore, the optimum is attained if and only if the equality holds, that is, the second

identity of (2.2) is true. �

Remark 2.1. It is worthwhile to point out that the solution of (2.1) is not unique. Indeed,

the primal-dual problem (2.1) is equivalent to

min
u2=1

max
p∈S∩Ec

p

{

L(u, p) := 〈u, divp + λg〉
}

, (2.4)

where Ep := {x ∈ Ω : divp + λg = 0}. Therefore, u∗ is undetermined on Ep∗ , but is well

defined by

u∗ = −
divp∗ + λg

|divp∗ + λg|
, ∀x ∈ Ec

p∗ , (2.5)

which indicates that u∗ takes the sign of −(divp∗ + λg). �
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Remark 2.2. The situation is reminiscent to the Chambolle’s dual algorithm [7] for the ROF

model [29]:

min
u

{

TV (u) +
µ

2
‖u − f‖2

L2(Ω)

}

, µ > 0, (2.6)

where f is a given noisy image. In this case, the primal-dual problem takes the form

min
u

max
p∈S

∫

Ω

(

u divp +
µ

2
|u − f |2

)

dx. (2.7)

The dual algorithm in [7] is essentially based on minimizing the the dual problem:

min
p∈S

∫

Ω

|divp − µf |2dx, (2.8)

by solving the nonlinear equation:

−∇(divp − µf) + |∇(divp − µf)|p = 0. (2.9)

It is important to notice the difference between (2.3) and (2.8), that is, L1-minimization

versus L2-minimization.

In [33], a different principle (cf. [4]) was adopted to derive a Chambolle-type algorithm

for two-phase segmentation. However, the current approach appears more natural. �

Now, we are in a position to introduce the algorithm for the two-phase model (2.1).

Following the Chambolle’s dual algorithm [7], we use the augmented Lagrangian method to

solve (2.3) and obtain the nonlinear equation analogous to (2.9):

−∇
( divp + λg

|divp + λg|

)

+
∣

∣

∣
∇

( divp + λg

|divp + λg|

)∣

∣

∣
p = 0, (2.10)

which can be solved by a gradient descent approach. More precisely, we consider the time-

dependent counterpart of (2.10):

∂p

∂t
= −∇u − |∇u|p with u := −

divp + λg

|divp + λg|
. (2.11)

Let τ be the time step size and pn be the approximation of p at t = nτ. To avoid division

by zero, we adopt the conventional regularization (cf. [23]) and define

un := −
divpn + λg

|divpn + λg|β
, (2.12)

where |divpn + λg|β = |divpn + λg| + β for a sufficiently small β > 0. Then, we resort to

the semi-implicit discretization in time as in [7], to solve (2.11):

pn+1 − pn

τ
= −∇un − |∇un|pn+1 ⇒ pn+1 =

pn − τ∇un

1 + τ |∇un|
. (2.13)

It is seen that the L1-minimization (2.3) induces additional nonlinearity, compared with

the L2-minimization (2.7).

In view of Remark 2.1, we adopt the MBO-type projection (see, e.g. [20, 30])

P
B
(t) :=

{

1, if t ≥ 0,

−1, if t < 0,
(2.14)

to obtain the binary value u.

We summarize the algorithm as follows, where the involved differential operators can be

discretized as in [7].



6 Y. GU, L.L. WANG & X.C. TAI

Algorithm 1

1. Initialization: set p0 = 0 and choose β, τ > 0;

2. For n = 0, 1, · · ·

(i) Compute

un := −
divpn + λg

|divpn + λg|β
;

(ii) Update p by the Chambolle-type algorithm:

pn+1 =
pn − τ∇un

1 + τ |∇un|
;

3. Endfor till some stopping rule meets;

4. Set

u = P
B
(un).

2.2. Multi-phase case. With the insights from two-phase model, we now consider the full

primal-dual model (1.9). Observe that for any ~u ∈ A, we have

m
∑

i=1

ui

(

divpi + λfi

)

≥ min
1≤i≤m

{

divpi + λfi

}

m
∑

i=1

ui

= min
1≤i≤m

{

divpi + λfi

}

, ∀x ∈ Ω,

(2.15)

which implies

E(~u, ~p) ≥

∫

Ω

min
1≤i≤m

{

divpi + λfi

}

dx, (2.16)

for all (~u, ~p) ∈ A×S, where the energy functional E(·, ·) is given in (1.9). Hence, we deduce

from (2.15) that

max
~p∈S

E(~u, ~p) ≥ max
~p∈S

{

E
D

(~p) :=

∫

Ω

min
1≤i≤m

{

divpi + λfi

}

dx
}

, ∀~u ∈ A. (2.17)

Accordingly, the global optimum (~u∗, ~p∗) of the primal-dual model (1.9) is a pair in A × S

such that the identity of (2.16) holds, and the global minimizer ~u∗ of the original model

(1.3) is in A such that the identity (2.17) holds.

Similar to Theorem 1 in [1], we have the following result on the characterization of the

global optimum (~u∗, ~p∗).

Theorem 2.2. Let

~p∗ = argmax
~p∈S

E
D

(~p). (2.18)

• Suppose that min1≤i≤m

{

divp∗
i + λfi

}

has a unique minimum value for all x ∈ Ω.

Then ~u∗ must take the form

u∗
k =

{

1, k = arg min1≤i≤m

{

divp∗
i + λfi

}

,

0, otherwise,
(2.19)

for 1 ≤ k ≤ m and x ∈ Ω.
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• Suppose that min1≤i≤m

{

divp∗
i + λfi

}

has more than one minimum values at some

x ∈ Ω, say, k values: divp∗
j + λfj , j ∈ {j1, j2, · · · , jk}. Then ~u∗ must satisfy

k
∑

i=1

u∗
ji

= 1 and u∗
j = 0, j 6∈ {j1, · · · , jk}. (2.20)

Proof. Since the first claim is a special case of the second one, so it suffices to prove the

second statement. By (2.16), we have E(~u, ~p∗) ≥ ED(~p∗) for any ~u ∈ A. Thus it is enough

to show that E(~u∗, ~p∗) = ED(~p∗). It is clear that if ~u∗ defined by (2.20), then

m
∑

i=1

u∗
i (divp∗

i + λfi) =

k
∑

i=1

u∗
ji

(divp∗
ji

+ λfji
)

=
k

∑

i=1

u∗
ji

min
1≤i≤m

{

divp∗
i + λfi

}

= min
1≤i≤m

{

divp∗
i + λfi

}

,

for x ∈ Ω and the corresponding 1 ≤ k ≤ m. Integrating over Ω leads to the identity

E(~u∗, ~p∗) = ED(~p∗).

Next, we prove that (2.20) is necessary. If there is a u∗
l with l ∈ {j1, j2, · · · , jk}, which

does not correspond to a minimum value, i.e., divp∗
l + λfl > min1≤i≤m

{

divp∗
i + λfi

}

, then

m
∑

i=1

u∗
i (divp∗

i + λfi) =

k
∑

i=1

u∗
ji

(divp∗
ji

+ λfji
)

= (1 − u∗
l ) min

1≤i≤m

{

divp∗
i + λfi

}

+ u∗
l

(

divp∗
l + λfl

)

= min
1≤i≤m

{

divp∗
i + λfi

}

+ u∗
l

(

divp∗
l + λfl − min

1≤i≤m

{

divp∗
i + λfi

})

.

Therefore, the optimum value can be obtained if and only if u∗
l = 0. �

Remark 2.3. It is worthwhile to point out that the necessity of (2.19) and (2.20) is under

the distributional sense. Indeed, we are free to change the value of ~u∗ at a measure zero set

of Ω without affecting the integral value. �

Remark 2.4. Similar analysis was conducted in [1] (see Theorem 1) based on convex re-

laxation. Here, we provided a direct concise proof, which did not require to switch the

min-max using Karush-Kuhn-Tucher (KKT) conditions [10] and thresholding techniques.

On the other hand, we showed that (2.20) is also necessary. �

We find from (2.18) that it is essential to solve the dual problem defined in (2.15).

However, it is nonsmooth, so it appears very challenging to work directly on this dual

model. The following smoothed-dual model was used in [1]:

max
~p∈S

{

ED,ε(~p) := −ε

∫

Ω

log

m
∑

i=1

exp
(−divpi − λfi

ε

)

dx
}

, (2.21)

where 0 < ε ≪ 1. It is important to note that (2.21) turns out to be the dual model of (1.7).

Hereafter, we shall take a different approach and derive the algorithm based on the

augmented Lagrangian formulation. It is worthwhile to point out the augmented Lagrangian

method has been recently widely used for solving minimization problems in image processing

(see, e.g., [34, 31, 35] and the references therein). Here, we use the technique as a tool to

derive the equations of the primal and dual variables so as to obtain an algorithm that
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involves a minimum number of parameters and can be implemented as efficient as that in

[7].

2.3. Description of the algorithm. We start with (1.9) and reformulate it into the fol-

lowing constrained problem:

min
~q,~u

{

m
∑

i=1

∫

Ω

|qi|dx + λ

m
∑

i=1

〈fi, ui〉
}

,

subject to qi = ∇ui, u2
i = ui,

m
∑

i=1

ui = 1.

Using the notion of augmented Lagrangian method yields the unconstrained problem:

min
~u,~q

max
~p,~λ1,λ2

{

L(~u,~q, ~p, ~λ1, λ2) :=

m
∑

i=1

(

〈1, |qi|〉 + λ〈fi, ui〉 + 〈pi, qi −∇ui〉

+
r1

2
〈qi −∇ui, qi −∇ui〉 + 〈λ1i, u

2
i − ui〉 +

r2

2
〈u2

i − ui, u
2
i − ui〉

)

+
〈

λ2,
m

∑

i=1

ui − 1
〉

+
r3

2

〈

m
∑

i=1

ui − 1,
m

∑

i=1

ui − 1
〉}

,

where r1, r2, r3 > 0 are penalization constants and the vector-valued functions ~p = (p1, · · · , pm),
~λ1 = (λ11, · · · , λ1m) (with λ1i ≥ 0) and the scalar function λ2 are Lagrange multipliers. The

optimality conditions leads to the system:

∂L

∂ui
= λfi + divpi + r1div(qi −∇ui) + λ1i(2ui − 1)

+r2(u
2
i − ui)(2ui − 1) + λ2 + r3

(

m
∑

i=1

ui − 1
)

= 0, (2.22a)

∂L

∂qi

=
qi

|qi|
+ pi + r1(qi −∇ui) = 0, (2.22b)

∂L

∂pi

= qi −∇ui = 0, (2.22c)

∂L

∂λ1i
= u2

i − ui = 0, (2.22d)

∂L

∂λ2
=

m
∑

i=1

ui − 1 = 0. (2.22e)

Thus, it follows from (2.22b) and (2.22c) that

pi = −
∇ui

|∇ui|
, 1 ≤ i ≤ m. (2.23)

In fact, ~p turns out to be the dual variable. To develop an efficient algorithm, it is essential

to express the primal variable ~u in terms of the dual variable ~p. We obtain from (2.22a),

(2.22c), (2.22d) and (2.22e) that

(2ui − 1)|hi + λ2| + (hi + λ2) = 0, (2.24)

where hi := divpi +λfi. It is seen that the use of the augment Lagrangian method allows us

to derive the (simplified) primal-dual system (2.23)-(2.24) with a free variable λ2. In contrast
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with the usual Uzawa algorithm, this system involves a minimum number of parameters and

variables and the iterative algorithm is easy to initialize, as to be shown shortly.

An essential step is to choose λ2 and express the dual variables {ui} in terms of the

primal variables {pi}. For this purpose, let hk (resp. hj) be (one of) the smallest (resp. the

second smallest) value of {hi}m
i=1 (note: if all {hi}m

i=1 are equal, then hj = hk). By choosing

− λ2 = hk +
hj − hk

2
, (2.25)

we find from (2.24) that uk = 1 and ui = 0 for all the i such that hi ≤ hj . It is worthwhile to

point out that (2.24) can not identify ui when hi +λ2 = 0, i.e., hj = hk. In the computation,

we regularize (2.24) and find

ui =
1

2
−

hi + λ2

2|hi + λ2|β
, (2.26)

where λ2 is defined in (2.25), and |hi + λ2|β = |divpi + λfi + λ2| + β for sufficiently small

β > 0 as in (2.12).

Next, for fixed ~u, the equation (2.23) can be solved by applying the iterative algorithm

in [7] to

∇ui + |∇ui|pi = 0, 1 ≤ i ≤ m, (2.27)

with ~p ∈ S, as described in (2.10)-(2.13).

Remark 2.5. As predicted by Theorem 2.2, if ~p∗ solves (2.18), then by defining ~u∗ as

u∗
k =

{

1, k = min
{

arg min1≤i≤m{divp∗
i + λfi}

}

,

0, otherwise,

for all 1 ≤ k ≤ m and x ∈ Ω, we have the following properties.

(i) ~u∗ satisfies the optimality equation (2.24) with λ2 = −(divp∗
k + λfk).

(ii) Under the assumption of (2.19), that is, min1≤i≤m{divp∗
i + λfi} has a unique min-

imum value for all x ∈ Ω, we find from Theorem 2.2 that ~u∗ is expected to be the

unique global minimizer.

(iii) Only one component of ~u∗ takes the value 1, while the other m− 1 components are

all zero. According to Theorem 2.2, the so-defined ~u∗ is expected to be a global

minimizer, since ~u∗ satisfies (2.20).

Now, we are ready to present the full algorithm as follows.

Algorithm 2

1. Initialization: set ~p0 = 0 and choose β, τ > 0;

2. For n = 0, 1, · · ·

(i) Compute λ2 by (2.25);

(ii) Compute ~un by (2.26);

(iii) Compute ~pn+1 by the Chambolle-type algorithm:

pn+1
i =

pn
i − τ∇un

i

1 + τ |∇un
i |

, 1 ≤ i ≤ m;

3. Endfor till some stopping rule meets;
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4. Set ~p∗ = ~pn+1 and define

u∗
k =

{

1, k = min
{

argmin1≤i≤m{divp∗
i + λfi}

}

,

0, otherwise,

for all 1 ≤ k ≤ m.

3. A comparison study and numerical results

In this section, we demonstrate the performance of the proposed algorithms by testing

them on some typical images and comparing with some relevant methods.

3.1. A comparison study. To provide some more insights, we compare the model and pro-

posed algorithms with the global smoothed-dual algorithm in [1], and examine the approach

from the perspective of level set methodology.

3.1.1. Global Smoothed-dual algorithm. The dual approach in [1] is essentially based on the

model (1.7), which approximates the original non-convex problem (1.3) when 0 < ε ≪ 1. The

optimum of the dual variable is obtained by solving the model (2.21), which is a smoothed

version of the non-smooth dual problem (2.18). This leads to the representation of the

primal variables {ui} in terms of the dual variables {pi} :

uε
i =

exp
(

− divpi+λfi

ε

)

∑m
j=1 exp

(

−
divpj+λfj

ε

) =
1

∑m
j=1 exp

(

−
(divpj+λfj)−(divpi+λfi)

ε

) , (3.1)

for 1 ≤ i ≤ m and x ∈ Ω. Apparently, the vector ~uε with components {uε
i} is in the

convex simplex ∆+ in (1.6). Suppose that divpi + λfi is the unique minimum value of

{divpj + λfj}m
j=1. Then we observe from (3.1) that uε

i → 1 and uε
j → 0 (for all j 6= i) as

ε → 0+. Under this assumption, it is expected to obtain the global minimizer in the limiting

process. Note that the expression (3.1) can be viewed as the counterpart of (2.24)-(2.26).

For comparison purpose, we recall the global smoothed-dual algorithm in [1].

Global Smoothed-Dual (GSD) Algorithm

1. Initialization: set ~p0 = 0 and choose ε, δ > 0;

2. For n = 0, 1, · · ·

(i) Compute ~un by (3.1) with pn
i in place of pi;

(ii) Compute ~pn+1 by the projection method:

pn+1
i = ProjS(pn

i + δ∇un
i ), 1 ≤ i ≤ m;

3. Endfor till some stopping rule meets;

4. Set ~p∗ = ~pn+1 and define

u∗
k =

{

1, k = min
{

argmin1≤i≤m{divp∗
i + λfi}

}

,

0, otherwise,

for all 1 ≤ k ≤ m.
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3.1.2. A perspective from the level set method. It is interesting to interpret (1.3) from the

perspective of level set method, where {ui} can be regarded as a piecewise constant inter-

polation of the phases (or subregions {Ωi}), that is, ui takes binary values, and ui = 1 for

x ∈ Ωi, and ui = 0 elsewhere. This should be in contrast to the level set method [23] and

its important variant [17] for image segmentation.

The multiphase level set framework in [32] labels the phases by the combinations of the

signs of the level set functions (usually taken as the signed distance functions). Therefore,

n level set functions {uj}n
j=1 can label m = 2n phases, and the corresponding indicator

functions can be expressed as the Heaviside functions H(uj). Notice that the level set func-

tions should satisfy the Ekiron equation: |∇uj | = 1, and this constraint should be taken

into account in the implementation. To avoid such a re-initialization, one may penalize this

constraint as in [13, 18].

The piecewise constant level set method proposed in [17] uses one level set function to

label multiple phases. It can be viewed as a global polynomial interpolation of the phases,

as opposed to the piecewise constant interpolation in (1.3). More precisely, it labels the

phases by

u = i if x ∈ Ωi, 1 ≤ i ≤ m, (3.2)

and express the indicator function of Ωi by the Lagrange basis polynomial:

ϕi =
∏

1≤j≤m;j 6=i

u − j

i − j
=

Km(u)

K ′
m(i)(u − i)

, (3.3)

i.e., ϕi(i) = 1 and ϕi(j) = 0 for i 6= j, where Km(u) =
∏m

j=1(u− j). Under this setting, the

model (1.3) is translated to

min
u∈{1,··· ,m}

{

EP

(

u
)

:= λ
m

∑

i=1

∫

Ω

fiϕi dx +
m

∑

i=1

TV (ϕi)
}

. (3.4)

By imposing the constraint Km(u) = 0, we obtain the primal-dual model (cf. [5]):

min
Km=0

max
~p∈S

{

FP

(

u, ~p
)

:=

m
∑

i=1

〈ϕi, divpi + λfi〉
}

. (3.5)

We see the resemblance between the primal-dual models (1.9) and (3.5). Notice that ϕi is

a polynomial of u of degree m. As a result, the reduction using the augmented Lagrangian

method similar to the procedure in Subsection 2.3 leads to the coupled system, where it

is not possible to derive the expression of u in terms of the dual variables. Hence, the

algorithm becomes extremely complicated.

3.2. Numerical results. In what follows, we present various numerical results to show

the performance of the proposed algorithm, and compare it with the global smoothed-

dual algorithm. The recent work [1] conducted a comprehensive comparison of the global

smoothed-dual algorithm with several popular methods including the Alpha expansion and

Alpha-Beta swap [2, 3], the method of Pock et al. [26], and the algorithm in Lellmann et al.

[11]. The global smoothed-dual algorithm outperformed these algorithms in almost all the

comparison tests in terms of quality of classification/segmentation, decay rate of numerical

energy, efficiency of computation and ease of implementation. Hence, it somehow suffices

for us to compare our method with the global smoothed-dual algorithm in [1] (see the GSD

algorithm).
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To set up a relatively fair criterion for comparison, we choose some typical images used

in those papers for testing the algorithms, unify the choice of the parameters of the model

and compare the numerical energy associated with the original model (1.3). Moreover, we

use the relative dynamic error:

El1(p
n+1, pn) :=

‖pn+1 − pn‖l1

‖pn+1‖l1
≤ η, (3.6)

where ‖p‖l1 =
∑

|p| and the summation is over all the pixels, for a prescribed tolerance

η > 0 as the stopping rule, for all the comparisons below.

3.2.1. Two-class/phase case. As opposed to the global smoothed-dual and Algorithm 2 with

m = 2, Algorithm 1 only requires to evolve one pair of primal and dual variables. Accord-

ingly, the computational cost can be halved and the algorithm is expected to be more stable.

Moreover, it can be viewed as a very analogy of the Chambolle’s dual algorithm [7]. Indeed,

we shall show that for the time step size τ ≤ 1/8 (the theoretical prediction by [7]), the

method works well, while the global smooth-dual algorithm is relatively restrictive with the

time step.

We first assume that the intensity values c1 and c2 are given and fi = |ci − I|2(i = 1, 2),

where I is the input image. The parameters, time step sizes and noise levels for three sets

of tests are listed as follows. Recall that λ is the parameter in the continuous Potts model

(1.3), and τ, β (resp. δ, ε) are involved in the Algorithms 1-2 (resp. the global smoothed-dual

algorithm). We first test the input “UOL” image of size 256 × 256 with noise level from

low to high. Notice that in all tests, the noise is of “Gaussian” type with zero mean and

different variance d. We adopt the following setup:

• Set 1. Take λ = 10−4, τ = δ = 10−1, β = 10−5, ε = 10−2, and noise level: d = 0.05.

• Set 2. Take λ = 7 × 10−5, τ = 0.1, δ = 0.05, β = 10−5, ε = 10−2, and noise level:

d = 0.3.

• Set 3. Take λ = 5 × 10−5, τ = 0.1, δ = 0.01, β = 10−5, ε = 0.05, and noise level:

d = 0.5.

We present in Figure 3.1 the input images with noise and segmented edge sets by three

algorithms at the iteration terminated by (3.6) with η = 10−2. We observe from Figure

3.1 (a)-(d) that when the noise level is low, three algorithms exhibit a similar performance,

and converge quite fast. However, when we increase the noise level, see Figure 3.1 (e)-(h),

Algorithm 1 yields much accurate segmentation (or classification) and converges relatively

faster. However, the time step size δ in the global smoothed-dual algorithm should be chosen

much smaller than τ in Algorithm 1 and Algorithm 2. We also point out the algorithm is

not sensitive to the parameter β.

We plot the decay of numerical energy corresponding to the original energy functional

(1.3), i.e., E(~un) in Figure 3.2 for the comparison tests: Sets 1-2. Observe that Algorithms

1-2 enjoy a faster decay of energy than that of global smoothed-dual algorithm. It is also

consistent with the results in Figure 3.1.

3.2.2. Multiphase case. We now turn to the comparison of Algorithm 2 and the global

smoothed-dual algorithm for multiphase images. In this case, we take fi = |ci − I| with

1 ≤ i ≤ 4 with given {ci}, and test the four-phase image (cf. Figure 3.3 (a)) of size 90× 90
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(a) Input image (b) GSD: n = 56 (c) Alg. 1: n = 30 (d) Alg. 2: n = 44

(e) Input image (f) GSD: n = 119 (g) Alg. 1: n = 52 (h) Alg. 2: n = 55

(i) Input image (j) GSD: n = 124 (k) Alg. 1: n = 105 (l) Alg. 2: n = 116

Figure 3.1. Comparison of Algorithms 1-2 and the global smooth-dual
(GSD) method for two-phase case. Row 1 ((a)-(d)) for Set 1; Row 2 ((e)-
(h)) for Set 2, and Row 3 ((g)-(l)) for Set 3. The iteration is stopped
by (3.6) with η = 10−2. The Algorithms 1-2 converge faster, allow to use
larger time step size, and are not sensitive to the choice of the parameter
β.

with three typical geometric objects and different noise levels. We consider two sets of tests

with the following setup:

• Set 4. Take λ = 0.2, β = 10−5, τ = 0.1, δ = 0.05, and ε = 0.1.

• Set 5. Take λ = 0.05, β = 0.01, τ = 0.1, δ = 0.05 and ε = 0.1.

In Figure 3.3, we plot the segmented edge sets by the two algorithms with stopping rule

η = 5 × 10−3. Once again, we observe the advantages of Algorithm 2. The comparison

of numerical energy decay is depicted in Figure 3.4, and we see a faster decay rate for the

proposed algorithm. Indeed, we find that Algorithm 2 is robust for noise (in general, we

choose the parameter β bigger if the noise level is high), and works for large time step size

as the Chambolle’s algorithm. In Table 3.1, we tabulate the number of iterations (to meet

the stopping rule (3.6) with η = 5 × 10−3), the computational time and numerical energy

at the last step of iteration, for two algorithms. In fact, the cost for per iteration of two

algorithms is almost the same, but Algorithm 2 allows to use a large time step size, so it

saves some computational time.
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Figure 3.2. Comparison of decay of numerical energy for Set 1 and Set 2.

(a) Input image (b) GSD: n = 72 (c) Alg. 2: n = 55

(d) Input image (e) GSD: n = 103 (f) Alg. 2: n = 75

Figure 3.3. Comparison of Algorithms 2 and the global smooth-dual al-
gorithm (GSD) for four-phase case. Row 1 ((a)-(d)) for Set 4 and Row 2
((e)-(h)) for Set 5. The iteration is terminated by (3.6) with η = 5× 10−3.
Both algorithms work for large noise level. As before, the Algorithm 2
converges faster, and produces slightly better results with larger time step.

Table 3.1. Comparison of Algorithm 2 and GSD.

iterations time (second) energy
GSD Alg. 2 GSD Alg. 2 GSD Alg. 2

Set 4 72 55 2.3 1.8 1.093 × 104 1.094 × 104

Set 5 103 75 3.6 2.6 7.177 × 103 7.163 × 103
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(b) Decay of energy (Set 5)

Figure 3.4. Comparison of decay of numerical energy for test Set 4 and
Set 5.

We next test some more images which are used as examples in most of the papers that we

mentioned before. We refer to the caption of Figure 3.5 for the choices of the parameters in

Algorithm 2 with stopping rule η = 5 × 10−3. In [1] (see Figures 5-8), the comparison with

several methods is conducted for the same images to demonstrate that the global smoothed-

dual algorithm outperforms the other methods. As with the previous tests, we find that the

proposed Algorithm 2 has an even better performance in terms of quality of classification,

ease of implementation, computational efficiency and robustness to noise.

3.2.3. Triple-junction experiments. Next, we test a very typical example relative to triple-

junctions, which was considered by many authors, see, e.g., [36, 24, 11, 8, 1, 19]. The task

is to inpaint the edges (or boundaries) of the subregion covered by the disk in Figure 3.6

(a) and (c) of size 290 × 290, which are expected to generate a triple-junction, that is, the

completed three edges suppose to form three 1200 angles at the junction. The data terms fi

inside the disk are taken to be zero, and fi = |ci − I| outside the disk, and the parameters

in Algorithm 2 are chosen as λ = 10−4, β = 0.5 and τ = 0.1. In this case, the non-smooth

problem min1≤i≤m{divp∗
i +λfi} may not have a unique minimum value (see the second case

of Theorem 2.2) in the covered subregion, so in theory the algorithm may fail to find the

global optimum. However, by slightly increasing the diffusion effect tuned by the parameter

β, we are able to obtain very satisfactory completion of the edges inside the disk, even with

large portions of incomplete (or missing) edges (see Figure 3.6 (b) and (d)), namely, achieve

the global optimum. This also indicates that the total variation of the labeling functions

(or level-set functions) provides a good characterization of the edge set, and the algorithm

produces very accurate approximation.

3.2.4. Applications to image segmentation. Finally, we apply the methods to the piecewise

constant Mumford-Shah model (1.1) where {ci} are unknowns, and can be computed from

the mean values:

ci =

∫

Ω
Iuidx

∫

Ω
uidx

, 1 ≤ i ≤ m. (3.7)
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(a) Input (b) n = 69 (c) Original (d) Input (e) n = 98

(f) Input (g) n = 89 (h) Original (i) Input (j) n = 507

Figure 3.5. More tests on Algorithm 2, where in all tests, τ = 0.1, fi = |ci−I |2

with fixed ci, and other parameters: (a)-(b) (three phases): λ = 10−4, β = 0.05,

size: 168 × 168 ; (c)-(e) (four phases): λ = 10−4, β = 10−3, size: 33 × 33; (f)-(g)
(four phases): λ = 5 × 10−4, β = 10−2, size: 100 × 100 and (h)-(j) (four phases):
λ = 3 × 10−4, β = 0.05, size: 100 × 100. The iteration is terminated by (3.6)
with η = 5 × 10−3. Algorithm 2 can produce satisfactory results with large time
step size. Also the value of β should be relatively larger for the image with larger
noise. We also refer to [1] for similar tests on GSD.

(a) Input (b) n = 300 (c) Input (d) n = 600

Figure 3.6. Completion of edges by Algorithm 2. It shows that the
proposed algorithm can find the global optimum.

For fixed ci, the model (1.1) is special case of (1.2) with fi = |ci − I|2. Therefore, with a

slight modification of Algorithm 2, we are able to obtain the following algorithm for the

multiphase piecewise constant image segmentation.

Algorithm 3

1. Initialization: set ~p0 = 0 and choose β, τ > 0, and ~c0;

2. For n = 0, 1, · · ·

(i) Compute λn
2 by (2.25) with fn

i = |cn
i − I|2 in place of fi;

(ii) Compute ~un by (2.26) with hi = divpn
i + λfn

i and λ2 = λn
2 ;
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(iii) Compute ~pn+1 by

pn+1
i =

pn
i − τ∇un

i

1 + τ |∇un
i |

, 1 ≤ i ≤ m;

(iv) Compute ~cn+1 by

cn+1
i =

∫

Ω
Iun

i dx
∫

Ω un
i dx

, 1 ≤ i ≤ m.

3. Endfor till some stopping rule meets;

4. Set ~p∗ = ~pn+1,~c∗ = ~cn+1 and define

u∗
k =

{

1, k = min
{

argmin1≤i≤m{divp∗
i + λf∗

i }
}

,

0, otherwise,

for all 1 ≤ k ≤ m, where f∗
i = |c∗i − I|2.

Similarly, the global smoothed-dual algorithm can be modified for the segmentation prob-

lem (see Algorithm 2 in [1]), and for clarity, we term it as GSD-Seg in short.

We first compare Algorithm 3 with GSD-Seg for segmenting the “desk” image in Figure

3.7 (a) of size 205 × 255 containing three typical geometric objects with three phases. For

this example, it is not an easy task to segment the faces of the objects, for instance, the

two faces of the tetrahedron. In the test, both algorithms are terminated by (3.6) with

η = 5×10−3 (refer to the caption of Figure 3.7 for the selection of parameters and time step

size). We observe similar performances as before. Both of them produce quite satisfactory

and accurate segmentation, while Algorithm 3 is relatively faster. It is faster than most of

the approaches in e.g., [32, 17, 16, 28, 3, 11].

We also tabulate in Table 3.2, the number of iterations (to meet the stopping rule (3.6)

with η = 5×10−3), the computational time and numerical energy at the last step of iteration,

for two algorithms. Once again, the cost for per iteration of two algorithms is almost the

same, but Algorithm 3 allows to use a large time step size.

(a) Input image (b) GSD-Seg: n = 115 (c) Alg. 3: n = 87

Figure 3.7. Comparison of Algorithm 3 and GSD-Seg, where τ = 0.1, δ = 0.02,
fi = |ci − I |2 and other parameters: (a)-(c) (three phases of size 205 × 255):
λ = 5×10−4, β = 10−2, ε = 0.1. Given this noise input image, it is challenging to
segment the faces of the objects. The iteration of both algorithms is terminated
by (3.6) with η = 5 × 10−3. Algorithm 3 slightly outperforms GSD-Seg.
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Table 3.2. Comparison of Algorithm 3 and GSD-Seg.

iterations time (second) energy
GSD-Seg Alg. 3 GSD-Seg Alg. 3 GSD-Seg Alg. 3

115 87 15 11 1.320 × 104 1.314 × 104

We next test some more images which are used as examples in most of the papers that

we mentioned before. We refer to the caption of Figure 3.8 for the choice of the parameters

in Algorithm 3. In all cases, the algorithm is terminated by (3.6) with η = 5×10−3 . We see

that in all tests, Algorithm 3 provides quite satisfactory segmentation and converges fast.

(a) Input image (b) Alg. 3: n = 79 (c) Input image (d) Alg. 3: n = 91

(e) Input image (f) Alg. 3: n = 88 (g) Input image (h) Alg. 3: n = 90

(i) Input image (j) Alg. 3: n = 76 (k) Input image (l) Alg. 3: n = 89

Figure 3.8. More tests on Algorithm 3, where τ = 0.1, fi = |ci − I |2 and
other parameters: (a)-(b) (five phases): λ = 10−4, β = 10−3, size: 150 × 150;
(c)-(d) (five phases): λ = 10−3, β = 10−2, size: 90 × 90; (e)-(f) (four phases):
λ = 10−3, β = 10−5, size: 90 × 90; (g)-(h) (three phases): λ = 10−3, β = 10−2,

size 321×481; (i)-(j) (three phases): λ = 10−3, β = 10−2, size: 167×250 and (k)-
(l) (five phases): λ = 10−3, β = 10−2, size: 512×512. The iteration is terminated
by (3.6) with η = 5 × 10−3. Algorithm 3 can produce satisfactory results with
large time step size.
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4. Concluding remarks

In this paper, we proposed a direct primal-dual approach towards a global minimiza-

tion of the continuous Potts model for multiclass labeling problems with applications to

multiphase image segmentation. Different from the existing works, the underlying analysis

and algorithms were based on a binary setting which did not require the convex relaxation.

Using the augmented Lagrangian technique, we were able to find the relations of the primal

and dual variables that involve almost the minimum number of parameters. The proposed

algorithms could be viewed as the counterparts of the Chambolle’s algorithm in the context

of labeling and segmentation. Indeed, the time step size could be taken as large as that in

the Chambolle’s algorithm, and the computational cost turned out to be almost of the same

amount. Moreover, the second smoothing parameter involved in the algorithm was quite

loose to choose. Various numerical results demonstrated the advantages of the methods over

the existing approaches.
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