
A GENERAL GRAPH DECOMPOSITION AND MINIMUM CUTS
COMPOSITION FRAMEWORK FOR MIN-CUT PROBLEM∗

WENBING TAO† AND XUE-CHENG TAI‡

Abstract. A general graph decomposition and minimum cuts composition framework is pro-
posed in this paper. We first present a graph decomposition method. We prove that the minimum
cuts of the original graph can be obtained by finding the minimum cuts of a sequence of subgraphs.
Based on the graph decomposition method and minimum cuts composition theorem, we develop a
general framework, recursive minimum cuts (RMC) framework, where any existing minimum cuts
algorithm can be used to solve minimum cuts problem over the sub-graphs. The computational

complexity of the proposed approach is O(N
log 3
log 2) . We also design a parallel algorithm and run in

approximate O(N) time. Some preliminary experiments are provided on some synthetic graphs from
images to test the proposed RMC framework.

Key words. Minimum cuts problem, graph decomposition, composition, recursive framework

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Graph cuts have emerged as an increasingly powerful tool for
exact or approximate energy minimization for various discrete pixel labeling problems
in computer vision such as image segmentation[21, 26, 24], video segmentation[23], im-
age restoration[16], stereo[28], shape reconstruction[1], object recognition[3], texture
synthesis[22], and others. One of the primary reasons behind their growing popularity
is the availability of efficient algorithm with low computational complexity to solve
the min-cut/max-flow problem in graphs [5], which in turn allows for the computation
of globally optimal solutions for certain important energy functions in vision. In [16]
Greig et al. applied graph cuts to optimize this kind of energy function and gived
a globally optimal binary labeling in computer vision. Previously, exact minimiza-
tion of energy functions in [16] was impossible and such energies were approached
by mainly using iterative algorithms like simulated annealing, whose results usually
were far from the global minimum. Boykov et al. [6] then presented two algorithms
based on graph cuts that efficiently find a local minimum with respect to two types of
large moves, namely expansion moves and swap moves for the optimization problem
of multi-labeling. The graphs corresponding to these applications are usually huge
2D or 3D grids and the efficiency of the min-cut/max-flow algorithms is an issue that
need to be considered. Recently, graph-cut algorithms have been extended to solve
some minimization problems from PDE-based image processing and these problems
have been traditionally solved through Euler-Lagrangian minimization approaches. In
[9, 10, 11], graph-cut method was used to get fast solutions for some TV (total varia-
tion) minimization problems. In some new attempts, continuous max-flow approaches
[30, 29, 2] have been proposed. These approaches is extending the max-flow problem
from discrete settings to continuous settings and some primal-dual algorithms can be

∗This work was supported supported by the National Natural Science Foundation of China
(Grant 61073093), the Fundamental Research Funds for the Central Universities of China (HUST:
2010MS025).

† Institute for Pattern Recognition and Artificial Intelligence and State Key Laboratory for
Multi-spectral Information Processing Technologies, Huazhong University of Science and Technology,
Wuhan 430074, China (wenbingtao@hust.edu.cn).

‡Department of Mathematics, University of Bergen, 5007 Bergen, Norway, and Division of Math-
ematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University
637616, Singapore(tai@cma.uio.no).

1

2 Wenging Tao and Xue-Cheng Tai

used to get fast numerical schemes.
The goal of this paper is to develop a recursive graph cuts method which can

solve the min-cut/max-flow problem more efficiently than the existing methods. The
proposed method is essentially a generic framework into which any existing min-
cut/max-flow algorithm can be integrated to produce a recursive method with lower
time complexity than the original one. Especially, the solution by the recursive frame-
work is exactly the same with the original minimum cuts algorithm, not an approxi-
mation. If the time complexity of the integrated min-cut algorithms can be denoted
as O(Np), we can prove the total time complexity of the proposed RMC algorithm is

O(N
log 3
log 2). This is implemented based on the proposed graph decomposition method

and minimum cuts composition theorem.The primary conclusions of the proposed
method are as follows.

1) Given an arbitrary cut C0 of G, we construct subgraphs G1 and G2 as in Sec.
2. Presume that the min-cuts of G1, G2 and G are c1(S1, T1), c2(S2, T2) and c(S, T)
respectively. We prove that

S1 ⊆ S and T2 ⊆ T.

This justifies that the min-cut Cmin of G lies in the gray zone in Fig.1 (row 1) as was
pointed out in [17].

2) We further construct subgraph G3 according to the min-cuts c1(S1, T1) and
c2(S2, T2) of subgraphs G1 and G2. Details will be given in Sec. 2. Presume that the
min-cut of G3 is c3(S3, T3). We prove that

S3 ⊆ S and T3 ⊆ T.

This means that the min-cut of G3 is a subset of min-cut of G. This argument directly
leads to the conclusion that

S = S1 + S3 − s and T = T2 + T3 − t.

Therefore, we can obtain c(S, T) by computing c1(S1, T1), c2(S2, T2) and c3(S3, T3).
3) Our proof and the recursive cut method are independent of the minimum

cut algorithms. We don’t need to convert between the excess or the deficit and t-
links as in [17] which is just suitable to Push- Relabel algorithms. We can apply any
min-cut/max-flow algorithm, including ”augmenting paths” style algorithms [13] and
”push-relabel” style algorithms [15] to our general graph decomposition and minimum
cuts composition framework.

4) Since our proposed method is independent of the min-cut/max-flow algorithm,
we can further apply this method to the sub-graphs G1, G2 and G3 of G. Therefore,
a recursive frame can be designed to solve the min-cut/max-flow problems. Theoreti-
cally, the recursive process can be continued until the constructed sub-graphs include
only one node in addition to the source and sink nodes. We develop a new recursive
minimum cut (RMC) framework to solve max-flow/min-cut problem. We show that

the mean time complexity is O(N
log 3
log 2).

5) Based on the graph decomposition method and minimum cuts composition
theorem, a parallel algorithm can be developed to solve the min-cut problem with
time complexity of order O(N) using N processors.

The rest of the paper is organized as follows. Section 2 outlines the basic min-
cut/max-flow problems and algorithm and the motivation and overview of the pro-
posed method in this paper. Section 3 provides the graph decomposition method to

Wenging Tao and Xue-Cheng Tai 3

decompose the original graph G into three subgraphs G1, G2 and G3 of G given an
arbitrary initial cut c0(S0, T0) of G. In Section 4 we will provide the minimum cuts
composition theorems and their proofs based on graph theory. The recursive mini-
mum cuts framework based on the proposed graph decomposition and minimum cuts
composition method is developed in Section 5. In Section 6 the time complexity of
the recursive minimum cuts framework is analyzed. The parallel algorithm design
and analysis is given in Section 7. Some experiments are shown in Section 8, followed
by a brief conclusion section in section 9.

2. Related Works.

2.1. Min-Cut and Max-flow Problems. A flow network G = (V, E) is a
directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.
Two vertices are distinguished in a flow network: a source s and a sink t. We assume
that every vertex lies on some path from the source to the sink. That is, for every
vertex v ∈ E, there is a path s ∼ v ∼ t. We now define flows more formally. Let
G = (V, E) be a flow network with a capacity function c. Let s be the source of the
network, and let t be the sink. A flow in G is a real-valued function f : V × V → R
that satisfies the following three properties:

Capacity constraint: For all u, v ∈ V , f(u, v) ≤ c(u, v)
Skew symmetry: For all u, v ∈ V , f(u, v) = −f(v, u)
Flow conservation: For all u ∈ V − {s, t},

∑
u∈V

f(u, v) = 0

The quantity f(u, v), which can be positive, zero, or negative, is called the flow
from vertex u to vertex v. In the maximum flow problem, given a flow network G
with source s and sink t we wish to find a flow of maximum value.

For simplicity, we use an implicit summation notation in which every argument,
or both, may be a set of vertices. For example, if X and Y are sets of vertices, then

f(X, Y) =
∑

x∈X

∑

y∈Y

f(x, y)

Thus, the flow-conservation constraint can be expressed as the condition that
f(u, V) = 0 for all u ∈ V − {s, t}. Also, for convenience, we shall typically omit set
braces when they would otherwise be used in the implicit summation notation. For
example, in the equation f(s, V −s) = f(s, V), the term V −s means the set V −{s}.
For capacity, we also give the similar expression:

c(X, Y) =
∑

x∈X

∑

y∈Y

c(x, y)

A cut (S, T) of flow network G = (V, E) is a partition of V into S and T = V −S
such that s ∈ S and t ∈ T . If f is a flow, then the network flow across the cut (S, T)
is defined to be f(S, T). The capacity of the cut (S, T) is c(S, T). Notice that, if
T /∈ V − S, c(S, T) isn’t a cut of flow network G = (V, E). A minimum cut of a
flow network is a cut whose capacity is minimum over all cuts of the network. By
the max-flow min-cut theorem, the value of the maximum flow in a flow network G
equals to the capacity of the minimum cut of G.

2.2. Review of max-flow/min-cut algorithms. Finding a maximum flow in
a directed graph with edge capacities arises in many applications, and efficient algo-
rithms for the problem have received a great deal of attention. There are polynomial

4 Wenging Tao and Xue-Cheng Tai

algorithms for max-flow problems on directed weighted graphs with two terminals.
Most of these algorithms belong to one of the two groups: Ford-Fulkerson style ”aug-
menting paths” algorithms [13] and Goldberg-Tarjan style ”push-relabel” algorithms
[15].

Standard augmenting paths-based algorithm works by pushing flow along non-
saturated paths, named augmenting paths, in residual network Gf , from the source
to the sink until no augmenting path in the residual network Gf can be found. The
residual network has the identical topology to G but the capacity of an edge in Gf

reflects the residual capacity of the same edge in G given the amount of flow already
in the edge. The max-flow min-cut theorem shows that: if the residual network Gf

contains no augmenting paths, the flow f in G is a maximum flow and the maximum
flow equals to the minimum cut of G. The basic augmenting paths-based algorithm
begin with an initialization there is no flow from the source to sink and edge capacities
in the residual network Gf are equal to the original capacities in G. Then in each
iteration, we find some augmenting path p and increase the flow f on each edge of p by
the residual capacity cf (p), which contains the minimum capacity of all the edges in
path p. The iteration stops and the maximum flow are obtained when no augmenting
path can be found.

The Dinic algorithm [12] is one of the fastest implementation among the aug-
menting paths-based algorithms. It uses breadth-first search to find the shortest paths
from s to t on the residual graph Gf . After all shortest paths of a fixed length k are
saturated, the algorithm starts the breadth-first search paths of length k + 1. The
time complexity of the Dinic algorithm is O(MN2), where M is the number of edges
and N is the number of nodes in G. Note that the use of the shortest paths is an
important factor that improves theoretical running time complexities for algorithms
based on augmenting paths.

Boykov and Kolmogorov [5] propose an augmenting path algorithm whose worst
case time complexity O(MN2 |C|) is not polynomial, where |C| is the minimum cut
or maximum flow found by the algorithm. The complexity is worse than Dinic’s algo-
rithm, but in practice [5] significantly outperforms it and other polynomial algorithms
, and can work well in the context of relatively sparse grids widely used on computer
vision. But, as [5] notes, empirical performance of the algorithm deteriorates on
denser (larger neighborhood) grids and when moving from 2D to 3D applications. In
fact, 3D grids are widely used in vision and larger neighborhoods are known to reduce
geometric artifacts [4]. In [19] Juan and Boykov use capacity scaling approach to
accelerate the algorithm in [5] suited to 3D applications with denser neighborhoods.
In [25], Liu and Sun propose a novel adaptive bottom-up approach to parallelize the
algorithm in [5].

Push-relabel algorithms [14] work in a more localized manner than the Ford-
Fulkerson methods. Push-relabel algorithms work on one vertex at a time, looking
only at the vertex’s neighbors in the residual network, rather than examine the en-
tire residual network G to find an augmenting path. Furthermore, unlike the Ford-
Fulkerson method, push-relabel algorithms do not maintain the flow-conservation
property throughout their execution. They maintain a preflow, which satisfies skew
symmetry, capacity constraints, and the relaxation of flow conservation such that
there is an excess flow at each vertex other than the source is nonnegative. The algo-
rithms give every vertex a height. The excess flow is only pushed from a higher vertex
to a lower vertex. When there aren’t vertices which are lower than vertex u with
some excess flows, we must increase its height more than the height of the lowest of

Wenging Tao and Xue-Cheng Tai 5

its neighbors to which it has an unsaturated edge. The operation is called relabeling
vertex u. Eventually, all the flow that can possibly get through to the sink has ar-
rived there, and the residual excess flows are sent back to the source by continuing to
relabel vertices to above the fixed height n of the source. Thus, the preflow becomes
a legal flow, and is also a maximum flow. The generic push-relabel algorithm has a
simple implementation that runs in O(MN2) time, and the relabel-to-front algorithm
[15, 8] refines to obtain another push-relabel algorithm that run in O(N3) time.

2.3. The Motivation and Method Overview. Besides developing st -mincut
algorithms with lower time complexity, many useful strategies have been presented to
increase the efficiency of the st -mincut algorithms in vision applications.
Dynamically reusing flow Boykov and Jolly [7] use a partially dynamic st -mincut
algorithm in a vision application by proposing a technique with which they could
update capacities of t -link [7] of certain graph edges and recomputed the st -mincut
dynamically. They used this method for performing interactive image segmentation,
where the user could improve segmentation results by giving additional segmentation
cues (seeds) in an online fashion. Specially, they described a method for updating
the cost of t -link in the graph. Comparably, Kohli and Torr [20] presented a fully
dynamic algorithm for the st -mincut problem, which allows for arbitrary changes in
the graph. Specifically, given the solution of the max-flow problem on a graph, the
dynamic algorithm efficiently computes the maximum flow in a modified version of
the graph, and the time taken by it is roughly proportional to the total amount of
change in the edge weighs of the graph.
Dynamically reusing cut In [18, 17], Juan et al. proposed an active graph cuts
algorithm in which they reused the st-mincut solution corresponding to the previous
instance to generate an initialization. Specially, in video segmentation, the active
cuts algorithm can use the st -mincut solution of previous frames for accelerating to
compute the st -mincut of the current frame, and the running time is proportional to
the amount of motion between two consecutive frames.

Active cuts initialized the algorithm with any arbitrary cut C0 and use the trick
in [20] to saturate every edges going from source part to the sink part. The notion of
pseudoflow is introduced to develop a symmetric Push-Pull-Relabel framework and the
new t -links produced by the saturated edges of the initialized cut can be transformed
into excess and deficit nodes. Then the original graph G was split in two sub-graphs:
the source graph G1 which lie the deficit nodes and the sink graph G2 which lie the
excess nodes. The push-relabel algorithm was applied to G2 to process the excess to
get the min-cut C+ of G2 and the pull-relabel was applied to G1 to process the deficit
to get the min-cut C− of G1, as shown in Fig.1. Juan [17] illustrated the min-cut
Cmin of G lies in the gray zone in Fig. 2.1 (row 1). Therefore, the remaining work
will focus only on the gray part G3, and the next step of the active cuts algorithm
consists into alternatively converting back every excesses or every deficits into t -links
and relaunching the algorithm until convergence (see Fig. 2.1 (row 2)). Finally, the
min-cut Cmin of G can be obtained, as shown in Fig. 2.1 (row 3). More detail can be
found in [17].

It should be noticed that, although [17] proposes a good idea to decompose the
original graph G into two subgraphs G1 and G2 and respectively compute their min-
cuts, and illustrates the min-cut Cmin of G lies in the gray zone in Fig. 2.1 (row 1),
they don’t provide one strict proof and just give some descriptive notes. That is to
say, in [17] Juan doesn’t strictly prove that the source part of G1 (the red part shown
in Fig. 2.1 (row 1)) belongs to the source part of G, and the sink part of G2 (the

6 Wenging Tao and Xue-Cheng Tai

Fig. 2.1. Active cuts method illustrations comes from [17].

blue part shown in Fig. 2.1 (row 1)) belongs to the sink part of G from the point
of view of graph theory. And converting back all the remaining excesses and deficits
into t -links to compute the last min-cut of G also hasn’t theoretic support. Since the
source code in [17] is unavailable, we have implemented this algorithm by ourselves
and conducted a number experiment to test it. We found in some cases the solution
by the algorithm in [17] is just a good approximation of the original push-relabel
algorithm despite that the approximate error is very small, just several nodes, from
that we infer that the construction of the subgraphs G1, G2 and G3 in [18, 17] isn’t
equivalent to the original graph. We will develop an improved subgraph construction
method to solve the problem in [17] and provide strict proof that the min-cuts of the
decomposed subgraphs are equivalent to the min-cuts of the original graph.
Method Overview In this paper, we will propose a general recursive minimum cuts
(RMC) framework. Any min-cut algorithms can be used for the subgraph problems.
Especially, the solution by the recursive framework is exactly the same as the orig-
inal minimum cuts algorithm, not an approximation. If the time complexity of the
integrated min-cut algorithms is O(Np), we can prove that the total time complex-

ity of the proposed RMC algorithm is O(N
log 3
log 2). This is implemented based on the

proposed graph decomposition method and minimum cuts composition theorem. We
use Fig. 2.2 to illustrate the basic ideas of our general framework.

Wenging Tao and Xue-Cheng Tai 7

Give a graph G and an arbitrary initial cut c0(S0, T0), shown in row 1 of Fig. 2.2, we
can construct two subgraphs G1 and G2, shown in row 2 of Fig. 2.2. The nodes in G1

are S0 + t, where t is the sink node of G1 and the nodes in G2 are as T0 + s, where s
is the source node of G2. We can use one min-cut algorithm to respectively compute
the minimum cuts c1(S1, T1) and c2(S2, T2) of G1 and G2. We then construct G3

according to c1(S1, T1) and c2(S2, T2). The nodes in G3 are T1 + S2. The selected
min-cut algorithm is used to compute the minimum cut c3(S3, T3) of G3. Based on
our constructing method of the subgraphs G1, G2 and G3, we can prove that the
minimum cut c(S, T) of G is c(S1 +S3−s, T2+T3− t). Using this observation, we can
compute the minimum cut c(S, T) of G by respectively computing the minimum cuts
c1(S1, T1), c2(S2, T2) and c3(S3, T3) of G1, G2 and G3 given an initial cut c0(S0, T0) of
G. Assume that we use a min-cut algorithms with time complexity O(N3), then the
mean computational time using this graph decomposition method is decreased to 3/8
of the computation time of original algorithm. The graph decomposition procedure
can be recursively continued until the subgraphs can’t be decomposed any more and

the time complexity of this recursive minimum cuts algorithm is O(N
log 3
log 2). A detailed

analysis will be given in section 5. Based on the graph decomposition and minimum
cuts composition framework, we can also construct a parallel algorithm with the time
complexity on the order of O(N) time using N processors.

3. Graph Decomposition. Given a flow network G = (V, E), let cut (S, T) be
the minimum cut of G, named c(S, T). Given (S0, T0) be one arbitrary cut of G, we
call it initial cut c(S0, T0).

We construct flow network G1 = (V1, E1) by G and c(S0, T0) as follows:

V1 = S0 + t, , E1 = E1a + E1b. (3.1)

where

E1a = {(u, v)|(u, v) ∈ E, u, v ∈ S0},

E1b = {(u, t)|(u, v) ∈ E, u ∈ S0, v ∈ T0}.
(3.2)

From equations (3.2), the following relation holds

c1(u, v) = c(u, v) u, v ∈ S0, c1(u, t) =
∑

v∈T0

c(u, v) = c(u, T0) u ∈ S0. (3.3)

Therefore,

c1(S0, t) = c(S0, T0). (3.4)

Let cut (S1, T1) be the minimum cut of G1, named c1(S1, T1). We also construct
flow network G2 = (V2, E2) from G and c(S0, T0), where

V2 = T0 + s, E2 = E2a + E2b. (3.5)

and

E2a = {(u, v)|(u, v) ∈ E, u, v ∈ T0},

E2b = {(s, v)|(u, v) ∈ E, u ∈ S0, v ∈ T0}.
(3.6)

8 Wenging Tao and Xue-Cheng Tai

c0(S0, T0)

c1(S1, T1)S1 T1 c2(S2, T2)S2 T2

G

G1

G2

G3

c3(S3, T3)S3 T3

c(S, T)= c(S1+S3-s, T2+T3-t)S T

Fig. 2.2. Graph decomposition and minimum cuts composition illustration.

From equations (3.6), we see that

c2(u, v) = c(u, v) u, v ∈ T0,

c2(s, v) =
∑

u∈S0

c(u, v) = c(S0, v) v ∈ T0.
(3.7)

Therefore,

c2(s, T0) = c(S0, T0). (3.8)

Let cut (S2, T2) be the minimum cut of G2, named c2(S2, T2). We further con-
struct G3 = (V3, E3) from G1 and G2 as

V3 = T1 + S2, E3 = E3a + E3b + E3c. (3.9)

Wenging Tao and Xue-Cheng Tai 9

with

E3a = {(u, v)|(u, v) ∈ E, u, v ∈ V3 − s − t},

E3b = {(s, v)|(u, v) ∈ E, u ∈ S1, v ∈ V3 − s − t},

E3c = {(u, t)|(u, v) ∈ E, u ∈ V3 − s − t, v ∈ T2}.

(3.10)

Obviously, the following relation holds using (3.10),

c3(u, v) = c(u, v) u, v ∈ V3 − s − t,

c3(s, v) =
∑

u∈S1

c(u, v) = c(S1, v) v ∈ V3 − s − t,

c3(u, t) =
∑

v∈T2

c(u, v) = c(u, T2) u ∈ V3 − s − t,

c3(s, t) = 0.

(3.11)

We denote (S3, T3) the minimum cut of G3, named c3(S3, T3).

4. Minmum Cuts Composition . Lemma 4.1. Give a flow network G =
(V, E) and let c(S, T) be the minimum cut of G. Let c(S0, T0) be one arbitrary ini-
tial cut of G. Assume that the flow network G1 = (V1, E1) and G2 = (V2, E2) are
constructed according to (3.1), (3.2), (3.5) and (3.6) respectively, and their minimum
cuts are respectively c1(S1, T1) and c2(S2, T2). The following inequalities hold.

c1(S1, T1) ≤ c(S0, T0), c2(S2, T2) ≤ c(S0, T0),
c(S, T) ≤ c1(S1, T1), c(S, T) ≤ c2(S2, T2).

Proof. Based on the construction of G1 and (3.4), we have c1(S1, T1) ≤ c1(V1 −
t, t) = c(S0, T0). Here we have also used the fact that c1(V1 − t, t) is one cut of G1

and c1(S1, T1) that is the minimum cut of G1. Similarly, according to (3.8), we have
c2(S2, T2) ≤ c2(s, V2 − s) = c(S0, T0) thanks to the fact that c2(s, V2 − s) is one cut
of G2 and c2(S2, T2) that is the minimum cut of G2.

Using (3.1) and (3.3), we get

c1(S1, T1) = c1(S1, T1 − t) + c1(S1, t) = c(S1, T1 − t) + c(S1, T0)
= c(S1, T1 + T0 − t) = c(S1, S0 + T0 − S1) = c(S1, V − S1).

Because c(S1, V −S1) is a cut of flow network G and c(S, T) is the minimum cut
of G, we have

c1(S1, T1) = c(S1, V − S1) ≥ c(S, T).

By Formulas (3.5) and (3.7), we have

c2(S2, T2) = c2(S2 − s, T2) + c2(s, T2) = c(S2 − s, T2) + c(S0, T2)
= c(S2 + S0 − s, T2) = c(T0 + S0 − T2, T2) = c(V − T2, T2).

Because c(V − T2, T2) is a cut of flow network G and c(S, T) is the minimum cut
of G, we have

c2(S2, T2) = c(V − T2, T2) ≥ c(S, T).

10 Wenging Tao and Xue-Cheng Tai

This proves the result.
Corollary 4.2. For a given flow network G = (V, E), assume c(S, T) is the

minimum cut of G. Let c(S0, T0) be one arbitrary initial cut of G. The flow network
G1 = (V1, E1) and G2 = (V2, E2) are constructed according to Equations (3.1), (3.2),
(3.5) and (3.6) respectively. Let their minimum cuts be c1(S1, T1) and c2(S2, T2) re-
spectively. If S ⊆ S0, then we have S = S1. If T ⊆ T0, then we have T = T2.

Proof. Since S ⊆ S0, let S0 = S + W , then T0 = T − W . From (3.3), we get

c(S, T) = c(S, T0 + W) = c(S, T0) + c(S, W)
= c1(S, t) + c1(S, W) = c1(S, W + t).

From Lemma 4.1, we have c1(S, W + t) = c(S, T) ≤ c1(S1, T1). Using (3.1), we get
that V1 = S0 + t = S + W + t, thus c1(S, W + t) is a cut of G1. Since c1(S1, T1) is
the minimum cut of G1, then we have

c1(S, W + t) ≥ c1(S1, T1).

Therefore, it is true that c1(S, W + t) = c1(S1, T1) , thus S = S1 holds.
Similarly, we can prove that if T ⊆ T0, then T = T2 holds.

Theorem 4.3. For a given flow network G = (V, E), assume that c(S, T) is the
minimum cut of G. Let c(S0, T0) be one arbitrary initial cut of G. The flow network
G1 = (V1, E1) and G2 = (V2, E2) are constructed according to Equations (3.1), (3.2),
(3.5) and (3.6) respectively. Let their minimum cuts be c1(S1, T1) and c2(S2, T2) re-
spectively. Then, we have S1 ⊆ S and T2 ⊆ T.

Proof. Let W1 = {(u, v)|(u, v) ∈ S1 and (u, v) ∈ S}, W2 = {(u, v)|(u, v) ∈
S1 and (u, v) /∈ S}, W3 = {(u, v)|(u, v) /∈ S1 and (u, v) ∈ S}. Then we have s ∈ W1.
In addition, W1, W2 and W3 aren’t intersectant. Therefore we have

S = W1 + W3, S1 = W1 + W2, T = V − W1 − W3, T1 = V1 − W1 − W2,

c1(S1, T1) = c1(W1 +W2, V1−W1−W2) = c1(W1, V1−W1)−c1(W1, W2)+c1(W2, T1).

As c1(W1, V1 −W1) is one cut of G1 and c1(S1, T1) is the minimum cut of G1, we see
that

c1(W1, V1 − W1) − c1(S1, T1) = c1(W1, W2) − c1(W2, T1) ≥ 0.

Using (3.3), we get

c1(W1, W2) = c(W1, W2),

c1(W2, T1) = c1(W2, T1 − t) + c1(W2, t)
= c(W2, T1 − t) + c(W2, T0) = c(W2, V − S1).

Therefore. we can deduce that

c(W1, W2) − c(W2, V − S1) ≥ 0. (4.1)

Wenging Tao and Xue-Cheng Tai 11

We know that c(W1 + W2 + W3, V − W1 − W2 − W3) is a cut of G = (V, E), then

c(W1 + W2 + W3, V −W1 −W2 −W3) ≥ c(S, T) = c(W1 + W3, V −W1 −W3). (4.2)

Observe that

c(W1 + W2 + W3, V − W1 − W2 − W3)
= c(W1 + W3, V − W1 − W3) − c(W1 + W3, W2) + c(W2, V − W1 − W2 − W3)
= c(S, T) − c(W1 + W3, W2) + c(W2, V − S1 − W3)
= c(S, T) − c(W1, W2) − c(W3, W2) + c(W2, V − S1) − c(W2, W3).

By Equation (4.2), it is true that

c(W1, W2) − c(W2, V − S1) + c(W3, W2) + c(W2, W3) ≤ 0.

Using (4.1), we get

c(W1, W2) − c(W2, V − S1) + c(W3, W2) + c(W2, W3) ≥ 0.

Thus, we have

c(W1, W2) − c(W2, V − S1) + c(W3, W2) + c(W2, W3) = 0.

Accordingly,

c(W1 + W2 + W3, V − W1 − W2 − W3) = c(S, T) = c(W1 + W3, V − W1 − W3).

Therefore we have W2 = Φ. Thus S1 ⊆ S holds.
Similarly, we can prove T2 ⊆ T as follows. Let W1 = {(u, v)|(u, v) ∈ T2 and (u, v) ∈

T }, W2 = {(u, v)|(u, v) ∈ T2 and (u, v) /∈ T }, W3 = {(u, v)|(u, v) /∈ T2 and (u, v) ∈
T }. Then we have t ∈ W1. In addition, W1, W2 and W3 aren’t intersectant. Therefore
we have

T2 = W1 + W2, T = W1 + W3, S2 = V2 − W1 − W2, S = V − W1 − W3,

c2(S2, T2) = c2(V2−W1−W2, W1+W2) = c2(V2−W1, W1)−c2(W2, W1)+c2(S2, W2).

Since c2(V2 −W1, W1) is one cut of G2 and c2(S2, T2) is the minimum cut of G2, then

c2(V2 − W1, W1) − c2(S2, T2) = c2(W2, W1) − c2(S2, W2) ≥ 0.

By Equation (3.7), we have

c2(W2, W1) = c(W2, W1),

c2(S2, W2) = c2(S2 − s, W2) + c2(s, W2) = c(S2 − s, W2) + c(S0, W2) = c(V −T2, W2).

Then we have

c(W2, W1) − c(V − T2, W2) ≥ 0. (4.3)

We know that c(V − W1 − W2 − W3, W1 + W2 + W3) is a cut of G = (V, E), then

c(V −W1 −W2 −W3, W1 + W2 + W3) ≥ c(S, T) = c(V −W1 −W3, W1 + W3). (4.4)

12 Wenging Tao and Xue-Cheng Tai

We also have

c(V − W1 − W2 − W3, W1 + W2 + W3)
= c(V − W1 − W3, W1 + W3) − c(W2, W1 + W3) + c(V − W1 − W2 − W3, W2)
= c(S, T) − c(W2, W1 + W3) + c(V − T2 − W3, W2)
= c(S, T) − c(W2, W1) − c(W2, W3) + c(V − T2, W2) − c(W3, W2).

By Equation (4.4),

c(W2, W1) − c(V − T2, W2) + c(W2, W3) + c(W3, W2) ≤ 0.

By Equation (4.3),

c(W2, W1) − c(V − T2, W2) + c(W2, W3) + c(W3, W2) ≥ 0.

Then we have

c(W2, W1) − c(V − T2, W2) + c(W2, W3) + c(W3, W2) = 0,

c(V − W1 − W2 − W3, W1 + W2 + W3) = c(S, T) = c(V − W1 − W3, W1 + W3).

Therefore we have W2 = Φ. Thus T2 ⊆ T holds.

Theorem 4.4. For a give flow network G = (V, E) assume that c(S, T) is the
minimum cut of G. Let c(S0, T0) be one arbitrary initial cut of G. The flow network
G1 = (V1, E1), G2 = (V2, E2) and G3 = (V3, E3) are constructed according to Equa-
tions (3.1), (3.2), (3.5), (3.6), (3.9) and (3.10) respectively. Let minimum cuts be
c1(S1, T1), c2(S2, T2) and c3(S3, T3) respectively. Then, we have S = S1 + S3 − s and
T = T2 + T3 − t.

Proof. Let c3(S
′

3, T
′

3) is an arbitrary cut of G3 = (V3, E3), then

c3(S
′

3, T
′

3) = c3(S
′

3 − s, T
′

3 − t) + c3(S
′

3 − s, t) + c3(s, T
′

3 − t) + c3(s, t).

By Equation (3.11),

c3(S
′

3 − s, T
′

3 − t) = c(S
′

3 − s, T
′

3 − t),

c3(S
′

3 − s, t) + c3(s, T
′

3 − t) = c(S
′

3 − s, T2) + c(S1, T
′

3 − t),

c3(s, t) = 0.

Then, we have

c3(S
′

3, T
′

3) = c(S
′

3 − s, T
′

3 − t) + c(S
′

3 − s, T2) + c(S1, T
′

3 − t)

= c(S1 + S
′

3 − s, T2 + T
′

3 − t) − c(S1, T2).

Accordingly, we have

c(S1 + S
′

3 − s, T2 + T
′

3 − t) = c3(S
′

3, T
′

3) + c(S1, T2). (4.5)

Wenging Tao and Xue-Cheng Tai 13

By Lemma 3.3, S1 ⊆ S and T2 ⊆ T , we let S = S1 + S
′′

3 − s and T = T2 + T
′′

3 − t.
Then we have S

′′

3 + T
′′

3 = S + T − S1 − T2 + s + t = S0 + T0 − S1 − T2 + s + t =
V1 −S1 + V2 −T2 = T1 + S2 = V3. Therefore c3(S

′′

3 , T
′′

3) is a cut of G3 = (V3, E3). By
Equation (4.5), we have the following two equalities:

c(S1 + S
′′

3 − s, T2 + T
′′

3 − t) = c3(S
′′

3 , T
′′

3) + c(S1, T2),

c(S1 + S3 − s, T2 + T3 − t) = c3(S3, T3) + c(S1, T2).

Since c3(S3, T3) is the minimum cut of G3, we have

c(S, T) = c(S1 + S
′′

3 − s, T2 + T
′′

3 − t) = c3(S
′′

3 , T
′′

3) + c(S1, T2)
≥ c3(S3, T3) + c(S1, T2) = c(S1 + S3 − s, T2 + T3 − t).

But c(S, T) is the minimum cut of G = (V, E) and c(S1 + S3 − s, T2 + T3 − t) is one
cut of G by Equation (3.1), (3.5) and (3.9), thus we have

c(S, T) ≤ c(S1 + S3 − s, T2 + T3 − t).

Therefore, c(S, T) = c(S1 + S3 − s, T2 + T3 − t). This gives us the conclusion that
S = S1 + S3 − s, T = T2 + T3 − t.

5. Recursive Minimum Cuts(RMC) Algorithm. Now we shall design our
recursive minimum cuts algorithm by the graph construction method in Section 2
and the graph cuts composition theorems in Section 3. By theorem 3.4, we know that
c(S, T) of G = (V, E) can be computed from c1(S1, T1) of G1 = (V1, E1), c2(S2, T2) of
G2 = (V2, E2), and c3(S3, T3) of G3 = (V3, E3) given an arbitrary initial cut c(S0, T0)
of G, where G1, G2 and G3 are constructed according to Equations (3.1), (3.2), (3.5),
(3.6), (3.9) and (3.10) respectively. Since most of the present min-cuts algorithms
have approximate O(N3) time complexity, the graph decomposition and minimum
cuts composition method can accelerate the min-cuts algorithm. It should be noticed
when G is decomposed to G1 and G2 with the same number of nodes, the method is
possible to obtain the ”best” acceleration.

The graphs G1, G2 and G3 can be recursively decomposed and we can use Theo-
rem 3.4 to obtain the minimum cuts for the subgrapghs. Before we go to the details
of the Recursive Minimum Cuts (RMC), let us first supply an algorithms for the
construction of the three subgraphs.

Assumes that the input graph G = (V, E) and the output graphs G1 = (V1, E1),
G2 = (V2, E2) and G3 = (V3, E3) are represented using adjacency lists. Let N , N1,
N2, N3 be respectively the number of nodes of G, G1, G2 and G3 in addition to the
source and sink nodes. Let c(S, T), c1(S1, T1), c2(S2, T2) and c3(S3, T3) be respectively
the minimum cuts of G, G1, G2 and G3. The algorithm need to maintain several data
structures with each vertex in the graph. The color of each vertex u ∈ {V − s − t}
is stored in the variable color[u], which denotes the attribute of vertex u, i.e., which
subgraph of G1, G2 and G3 vertex u belongs to. Assume that color[u] = RED means
u ∈ V1, color[u] = GREEN means u ∈ V2, color[u] = BLUE means u ∈ V3. Let
map[u] be the corresponding node number in G1, G2 and G3 of the node u in G. Then
color[u] and map[u] can decide the attribute of the node u belonging to G1, G2 and
G3. For example, color[u] = RED and map[u] = k, means node u in G corresponds
to the kth node in G1. Assume that map1[u] is the corresponding node number in G
of node u from G1, map2[u] is the corresponding node number in G of node u from

14 Wenging Tao and Xue-Cheng Tai
ConstructSubgraph12(G, G1, G2)

///

1 get one arbitrary vertex r Adj[s]

2 for each vertex u V-s-t -r

3 do color[u] WHITE

4 color[r] GRAY

5 ENQUEUE (Q, r)

6 i=1

7 while Q

8 do u DEQUEUE (Q)

9 for each v Adj[u]

10 do if color[v]=WHITE

11 then color[v] GRAY

12 ENQUEUE (Q, v)

13 color[u] RED

14 i i+1

15 map[u] i

16 map1[i] u

17 if i>N/2

18 then break while

19 N1 i+2, V1={u| color[u]=RED}+s+t

20 i=0

21 for each vertex u V-s-t

22 do if color[u] RED

23 then color[u] GREEN

24 i i+1

25 map[u] i

26 map2[i] u

27 N2 i+2, V2={u| color[u]=GREEN}+s+t

///

28 color[s] RED color[t] GREEN

29 for each vertex u V1-t

30 c1(u,t)=0

31 for each vertex u V2-s

32 c2(s,u)=0

33 for each vertex u V

34 for each v Adj[u]

35 do if color[u]= color[v]=RED

36 then c1(map[u],map[v])= c(u,v)

37 if color[u]= color[v]=GREEN

38 then c2(map[u],map[v])= c(u,v)

39 if color[u]= RED and color[v]=GREEN

40 then c1(map[u],t)= c1(map[u],t)+c(u,v)

41 c2(s,map[v])= c2(s, map[v])+c(u,v)

∈
∈

∈

∈

∈

∈

∈

≠

≠

∈

Φ

Fig. 5.1. The construction algorithm of subgraphs G1 = (V1, E1) and G2 = (V2, E2) according
to Equations (3.1), (3.2), (3.5) and (3.6) from graph G = (V, E).

G2 and map3[u] is the corresponding node number in G of node u from G3. With this
notation, map1[u1] = k1 indicates that node u1 from G1 corresponds to the kth

1 node
in G, map2[u2] = k2 indicates that node u2 from G2 corresponds to the kth

2 node in
G and map3[u3] = k3 indicates that node u3 from G3 corresponds to the kth

3 node in
G.

The label of each vertex u ∈ {V − s − t} is stored in the variable label[u], which
denotes which part of G, source part or sink part, vertex u belongs to. Assume

Wenging Tao and Xue-Cheng Tai 15ConstructSubgraph3(G, G3, S1, T1, S2, T2);

///

1 for each vertex u S1
2 do color[u] RED

3 for each vertex u T1-t

4 do color[u] BLUE

5 for each vertex u S2-s

6 do color[u] BLUE

7 for each vertex u T2
8 do color[u] GREEN

9 i=0

10 for each vertex u V-s-t

11 do if color[u] = BLUE

12 then i i+1

13 map[u] i

14 map3[i] u

15 N3 i+2, V3={u| color [u]= BLUE }+s+t

16 for each vertex u V3-s-t

17 c1(u,t)= c1(s,u)=0

18 for each vertex u V

19 for each v Adj[u]

20 do if color[u]= color[v]= BLUE

21 then c3(map[u],map[v])= c(u,v)

22 if color[u]=RED and color[v]= BLUE

23 then c3(s,map[v])= c3(s,map[v])+c(u,v)

24 if color[u]= BLUE and color[v]=GREEN

25 then c3(map[u],t)= c3(map[u],t)+c(u,v)

∈

∈

∈

∈

∈

∈

∈
∈

Fig. 5.2. The construction algorithm of subgraph G3 = (V3, E3) based on the min-cuts
c1(S1, T1) and c2(S2, T2) of G1 and G2 according to Equations (3.9)and (3.10)from graph G =
(V, E).

that label[u] = SOURCE means u ∈ S and label[u] = SINK means u ∈ T . The
algorithm for the construction of G1, G2 is similar to breadth−first−search(BFS).
The number of nodes in G1 is stored in the variable i. Let r ∈ Adj[s]. The algorithm
also uses a first-in, first-out queue Q to manage the set of gray vertices.

The construction procedure of G1 and G2 is shown in Fig. 5.1. In Line 1 an
arbitrary adjacent node r of source node s is chosen. Line 2-18 is a BFS procedure
whose root is node r in G. But the BFS process terminates when the number of
nodes in the produced BFT is beyond N/2. The nodes in the BFT belong to G1 and
the other nodes in G belong to G2. Line 2-18 and Line 19-27 determine the nodes in
G1 and G2. Line 28-41 determines the edges in G1 and G2 and their weights by the
construction method in Section 2.

Note that the construction of G3 depends on the minimum cuts c1(S1, T1) and
c2(S2, T2) of G1 and G2. The construction procedure of G3 is shown in Fig. 5.2.
Line 1-15 determines the nodes in G3 and labels the three different color regions in
G, where the nodes in RED region belong to S part, the nodes in GREEN region
belong to T part and the nodes in BLUE region belong to G3, the undecided region.
Line 16-25 determines the edges in G3 and their weights by the construction method
in Section 2.

The RMC procedure is shown in Fig. 5.3, where BasicMinCut(G) is the selected
basic max-flow/min-cut algorithm, which can be ”augmenting paths” style algorithms
or ”push-relabel” style algorithms. Parameter i is the recursive time. In line 1, the

16 Wenging Tao and Xue-Cheng Tai

RMC (G, N, S, T)

///

1 i=[logN/log2]

2 if i=0

3 do BasicMinCut(G, S, T)

4 else

5 do i=i-1

6 ConstructSubgraph12(G, G1, G2)

7 RMC(G1, N1, S1, T1)

8 RMC (G2, N2, S2, T2)

9 ConstructSubgraph3(G, G3, S1, T1, S2, T2)

10 RMC (G3, N3, S3, T3)

11 c(S, T)=c(S1+ S3-s, T2 +T3-t)

Fig. 5.3. The RMC algorithm to compute the min-cut c(S, T) of G = (V, E), where parameter
i is determined by the number of nodes in graph.

RMC (G, N, i, S, T)

//

1 if i>[logN/log2]

2 do i=[logN/log2]

3 if i=0

4 do BasicMinCut(G)

5 else

6 do ConstructSubgraph12(G, G1, G2)

7 RMC (G1, N1, i-1, S1, T1)

8 RMC (G2, N2, i-1, S2, T2)

9 ConstructSubgraph3(G, G3, S1, T1, S2, T2)

10 RMC (G3, N3, i-1, S3, T3)

11 c(S, T)=c(S1+ S3-s, T2 +T3-t)

Fig. 5.4. The RMC algorithm to compute the min-cut c(S, T) of G = (V, E), where parameter
i is set in advance.

recursive time is set to [logN/log2], where x − 1 < [x] ≤ x, x is a positive real value
and [x] is a positive integer. If i = 0, the basic min-cut algorithm is executed to
G. If i > 0, in line 6 the graph G should be split into G1 and G2 and the recursion
is applied to G1 and G2 in line 7 and 8. After get c1(S1, T1) and c2(S2, T2), G3 is
constructed by c1(S1, T1) and c2(S2, T2) and the recursion is applied to G3 in line 10.
In line 11 the min-cut c(S, T) of G is computed.

In Fig. 5.3, parameter i is determined by the number of nodes in the graph
being processed by RMC, which can assure that the processed graph can achieve
the maximum recursive time. It means in the last recursion of RMC, the produced
subgraphs will include only one or two nodes in addition to the source and sink nodes.
In practical applications, if the graph isn’t very large just several recursions can lead
to high computational efficiency. Therefore, we can input the parameter i in advance.

Wenging Tao and Xue-Cheng Tai 17

The procedure is shown in Fig. 5.4. The number of recursion of G is i and the number
of recursions of their subgraphs decreases to i−1. When the current recursion number
decreases to 0, the basic min-cut algorithm will be applied to the current graphs.

6. Complexity Analysis of RMC Algorithm. Now we analyze the time com-
plexity of the proposed recursive minimum cuts framework. The time complexity of
constructing subgraphs G1, G2 and G3 is linear according to the algorithms presented
in Fig. 5.1 and Fig. 5.2 because BFS algorithm is linear. Therefore, the time com-
plexity of our recursive framework algorithm mainly depends on the selected basic
min-cut algorithm and our recursive scheme. We first give the following definition.

Definition 6.1. If G1 = (V1, E1), G2 = (V2, E2) and G3 = (V3, E3) are
constructed according to Equations (3.1), (3.2), (3.5), (3.6), (3.9) and (3.10) from
G = (V, E) given an initial cut c(S0, T0) of G. G is called the parent graph of G1,
G2 and G3, and G1, G2 and G3 are the child graphs of G. Moreover, G1, G2 are the
direct child graphs of G and G3 is the indirect child graph of G.

We select the typical min-cut/max-flow algorithm with O(n3) time complexity
as an example to analyze the performance of the recursive framework. Obviously,
the construction of the indirect child graph depends on the minimum cuts of the
two direct child graph of its parent graph. We first simply discuss the complexity of
the recursive minimum cuts method when this recursive time is one. Let the time
of directly computing the minimum cuts c(S, T) of G = (V, E) be t(|V |), the time
of computing by the recursive framework is t1(|V |). The initial cut splits the graph
into two parts with the same number of nodes. Then |S0| = |T0| = |V |/2, we have
t(|V1|) = t(|V2|) = t(|V/2|) = t(|V |)/8. Concerning the time of computing c3(S3, T3)
of G3 = (V3, E3), where V3 = T1 +S2, |V3| changes from 0 to |V |, then t(|V3|) changes
from 0 to t(|V |). Since the G = (V, E) has arbitrary topology, it is reasonable to
presume that V3 obey uniform distribution in [0, |V |], whose mean is |V |/2. Thus,
the mean time of t1(|V |) is t(|V |) × 3/8. If we extend to the basic min-cut/max-
flow algorithm with O(np) time complexity, we can get t1(|V |) = t(|V |) × 3/2p. This
means only when p > log3/log2, we have t1(|V |) < t(|V |) and the RMC framework
can accelerate.

Next, we discuss the complexity of the proposed recursive framework versus the
recursion number. As direct child graphs can be directly constructed from its parent
graph and their number of nodes is a half of the number of nodes of their parent graph.
The indirect child graph relies on the direct child graphs of its parent graph, and
the number of nodes of indirect child graph changes from 0 to the number of nodes
of its parent graph, we can’t precisely estimate the computational time of indirect
child graph within the recursive framework. As we previously said, it is reasonable to
presume that the number of nodes of indirect child graph obey uniform distribution
from 0 to the number of nodes of its parent graph. Therefore, in the next part, the
number of nodes of indirect child graph is presumed same as the number of nodes of
direct child graph, i.e., half of the number of nodes of their parent graph. Therefore,
the time complexity that we discuss in this paper is the mean complexity of the
proposed recursive framework.

Let N = |V | = 2n be the number of the nodes of G = (V, E). If n is positive
integer, the complexity analysis is easier than that n isn’t positive integer. We first
discuss the case when n is positive integer, based on which we further discuss the case
where n is positive real number.

18 Wenging Tao and Xue-Cheng Tai

6.1. N = |V | = 2n, where n is integer. Let N = |V | = 2n be the number of
the nodes of G = (V, E), where n is integer. The recursive minimum cuts framework
is applied to compute the minimum cuts c(S, T) of G and the selected basic min-
cut/max-flow algorithm has O(Np) time complexity. Let the total recursive time be
k, where k is integer, and the recursive time variable be i, where i is integer.

Let the node number of direct child graphs and indirect child graphs be the half
of the node number of its parent graph. Therefore, in the ith recursion, the number
of the nodes in direct child graphs and indirect child graphs is Ni = N

2i and the num-
ber of the child graphs is 3i. Let ti(N) be the computational time of the recursive
framework with recursive time i, and especially let t0(N) be the computational time
using the selected basic min-cut algorithm.

Lemma 6.2. Let k the total number of recursions. Then we have the following
estimate of the mean computational times:

ti+1(N)

ti(N)
=

3

2p
, i = 1, 2, · · ·k.

The mean ratio between the computational time of the recursive framework and the
time of directly computing the minmun cut by the selected basic min-cut algorithm is:

rk(N) =
tk(N)

t0(N)
= (

3

2p
)k.

Proof. Since the number of nodes of child graphs in the ith recursion is N
2i and

the number of child graphs is 3i, thus the number of nodes of child graphs in the
(i + 1)th recursion is N

2i+1 and the number of child graphs is 3i+1. Moreover, the time
complexity t0(N) is O(Np). Accordingly, we have

ti+1(N)

ti(N)
=

t0(
N

2i+1) × 3i+1

t0(
N
2i) × 3i

=
t0(

N
2i+1) × 3i+1

t0(2 × N
2i+1) × 3i

=
3

2p
.

Therefore,

rk(N) =
tk(N)

t0(N)
=

k−1∏

i=0

ti+1(N)

ti(N)
= (

3

2p
)k.

From Lemma 6.2, we can get the following theorem.

Theorem 6.3. The mean time complexity of the RMC algorithm is O(N
log 3
log 2).

Proof. Since N = 2n, the maximum recursive time is n, where every child graph
includes only one node in addition to the source and sink nodes. When k = n, the
recursive framework get the best time complexity. Let k = n, we have

tn(N) = rn(N)t(N) =
3n

2pn
t(N) = 3n ×

t(N)

Np
= N

log 3
log 2 ×

t(N)

Np
.

Since the time complexity of t(N) is O(Np), then the time complexity of tn(N) is

O(N
log 3
log 2).

Wenging Tao and Xue-Cheng Tai 19

Note that the above analysis is approximate because we ignore the influence of
the source and sink nodes. By the construction method of the subgraphs in Section
2, if the number of nodes of parent graph is N which is even, the numbers of nodes
of the corresponding two direct child graphs are not N/2, but N/2 + 1 because every
produced child graph must be added a source node or sink node in addition to the
inherited nodes from its parent graph.

Assume that the graph G has 2n nodes in addition to the source and sink nodes,
where n is an integer, then N = 2n + 2. If we decompose the parent graph without
considering the source and sink nodes, in the ith recursion the produced child graphs
have 2n−i + 2 nodes. Then we have

ti+1(N)

ti(N)
=

t0(2
n−i−1 + 2) × 3

t0(2n−i + 2)
= 3(

2n−i−1 + 2

2n−i + 2
)p,

rn(N) =
tn(N)

t0(N)
=

n−1∏

i=0

ti+1(N)

ti(N)
= 3n(

2n−n + 2

N
)p = 3p ×

3n

Np
.

Thus, the time complexity of tn(N) is O(3pN
log 3
log 2). Since 3p is a constant that isn’t

related to the Graph G, the time complexity of the RMC algorithm can still be ap-

proximately considered as O(N
log 3
log 2). As ignoring the source and sink nodes has no

evident effect on the time complexity of the RMC framework, for the simplicity, we
will continue to adopt the approximation in the following analysis.

6.2. N = |V | = 2n, where n is positive real value. It should be noticed that,
for the above complexity analysis, the number of nodes of G = (V, E) is N = |V | = 2n,
where n is integer. But in most applications, if N is denoted as 2n, n may not be an
integer. We will extend the result to this case now.

If N = 2n, where n is positive real number, then the ”number” of nodes of each
direct child graph N

2i in the ith recursion may not be positive integer (i is an integer),

which has no practical sense. Assume that N
2j is a positive integer and N

2j+1 isn’t a
positive integer, where 0 ≤ j < j +1 ≤ n and j is an integer. Therefore, Lemma 5.2 is
still valid when the total recursive time k ≤ j. We analyze the case when j < k ≤ n
in the following.

Let M be the number of nodes of Gm. If M is even, then we let M = 2m and m
is a positive integer. Then the corresponding node number of two direct child graphs
is both the half of the node number of its parent graph, i.e., m, and the corresponding
node number of one indirect child graph is set to its mean m. If M is odd, then we
let M = 2m + 1 for a given positive integer m. The corresponding node number of
two direct child graphs is respectively m + 1 and m. The corresponding mean node
number of indirect child graphs will be m + 1 or m. The following Lemma 5.4 tells
us, if N = 2n for a positive real n, then the difference between the maximum node
number and the minimum node number of the child graphs in the ith recursion is one.

Lemma 6.4. Assume N = 2n with a positive real n. Let the child graphs in the
ith recursion be Gm

i , (1 ≤ m ≤ 3i, 0 ≤ i ≤ n), where m, i are integers. Let the number
of nodes in Gm

i is Nm
i . Assume that N

2j is an integer and N
2j+1 isn’t an integer, where

0 ≤ j < j + 1 ≤ n, j is an integer. Let Nmax
i and Nmin

i be respectively the maximum

20 Wenging Tao and Xue-Cheng Tai

and the minimum of Nm
i , (1 ≤ m ≤ 3i, 0 ≤ i ≤ n). Then, we have

Nmax
i = Nmin

i =
N

2i
, 0 ≤ i ≤ j.

Nmax
i = [

N

2i
] + 1, dj < i ≤ n

Nmin
i = [

N

2i
],

where [N
2i] is the largest integer that is no more than N

2i .

Proof. When 0 ≤ i ≤ j, by the above analysis, Nmax
i = Nmin

i = N
2i holds.We shall

prove when j < i ≤ n, Nmax
i = [N

2i] + 1 and Nmin
i = [N

2i] hold.

The proof is by induction. When i = j +1, because N
2j is an integer and N

2j+1 isn’t

an integer, N
2j is odd. Let N

2j = 2M + 1, where M is an integer, then N
2j+1 = M + 1

2 .

Therefore,we have Nmin
1 = M = [N

2j+1] and Nmax
j+1 = M + 1 = [N

2j+1] + 1 hold.
In the induction step, the induction hypothesis is that when i = j +k and j +1 <

i ≤ n−1, Nmax
j+k = [N

2j+k]+1 and Nmin
j+k = [N

2j+k] hold. We must prove when i = j+k+1

and j + 1 < i ≤ n, Nmax
j+k+1 = [N

2j+k+1] + 1 and Nmin
j+k+1 = [N

2j+k+1] hold.

Let Nmax
j+k = [N

2j+k] + 1 = M + 1 and Nmin
j+k = [N

2j+k] = M . Then every Nm
j+k =

M or M +1 (1 ≤ m ≤ 3j+k). Since it is impossible that M and M +1 are even or odd
at the same time, we assume M = 2K and M + 1 = 2K + 1. For every Gm

j+k with

Nm
j+k = 2K nodes, we can produce three corresponding child graphs Gml

j+k+1(1 ≤

l ≤ 3) with Nml
j+k+1 = K(1 ≤ l ≤ 3) nodes. For every Gm

j+k with Nm
j+k = 2K + 1

nodes, we can produce three corresponding child graphs Gml
j+k+1(1 ≤ l ≤ 3) with

Nml
j+k+1 = K or K + 1 (1 ≤ l ≤ 3), nodes. Thus, we have Nml

j+k+1 = K or K + 1

(1 ≤ l ≤ 3, 1 ≤ m ≤ 3j+k+1). Then, Nmax
j+k+1 = K + 1 and Nmin

j+k+1 = K. Thus,

Nmax
j+k+1 = K + 1 = M

2 + 1 =
[N

2j+k]

2 + 1 = [N
2j+k+1] + 1 and Nmin

j+k+1 = K = M
2 =

[N

2j+k]

2 = [N
2j+k+1]. The induction step holds.

Corollary 6.5. Assume that N = 2n, where n is positive real number. The

mean time complexity using the recursive minimum cuts framework is still O(N
log 3
log 2).

Proof. Let k − 1 < n ≤ k, then 2k−1 < 2n ≤ 2k. When n = k, by Corollary 5.3,

The mean time complexity is O(N
log 3
log 2). When k − 1 < n < k, 2k−1 < N < 2k, then

we have t0(2
k−1) < t0(N) < t0(2

k), t0(N)
t0(2k−1)

= Np

2(k−1)p , and t0(N)
t0(2k)

= Np

2kp hold.

Let Gk−1, Gk and Gn be graphs that respectively include 2k−1 nodes, 2k nodes
and N nodes. For Gn, the maximum recursive time is k − 1. When the recursive
time is k − 1, the produced child graphs of Gk−1, Gk and Gn will be the same, 3k−1,
every child graph of Gk−1 includes one node in addition to the source and sink nodes,
every child graph of Gk includes two nodes in addition to the source and sink nodes,
but for Gn, every child graph include one or two nodes in addition to the source and
sink nodes by Lemma 5.4. Therefore, we have tk−1(2

k−1) < tk−1(N) < tk−1(2
k),

tk−1(2
k−1) = 3k−1

2(k−1)p t0(2
k−1), and tk−1(2

k) = 3k−1

2(k−1)p t0(2
k). Then by Theorem 5.4 we

have

tk−1(N) < tk−1(2
k) =

3k−1

2(k−1)p
t0(2

k) = 2p × 3k−1 ×
t0(2

k)

2kp
= 2p × 3k−1 ×

t0(N)

Np
.

Wenging Tao and Xue-Cheng Tai 21

tk−1(N) > tk−1(2
k−1) =

3k−1

2(k−1)p
t(2k−1) = 3k−1 ×

t(2k−1)

2(k−1)p
= 3k−1 ×

t0(N)

Np
.

As k − 1 < n < k we have log N

log 2 − 1 < k − 1 < log N

log 2 , thus

1

3
N

log 3
log 2

t0(N)

Np
< tk−1(N) < 2pN

log 3
log 2

t0(N)

Np
.

Since the time complexity of t0(N) is O(Np), then the time complexity of tk−1(N) is

O(N
log 3
log 2).

7. Parallel Implementation and Analysis. Based on our graph decomposi-
tion method in section 3 and minimum cut composition theorems in section 4, we can
design a parallel algorithm to solve the min-cut problem.

We first give the definition of triple tree. The triple tree is recursively defined
similar to binary tree. A triple tree T is a structure defined on a finite set of nodes
that either 1) contains no nodes, or 2)is composed of four disjoint sets of nodes: a root
node, a left subtree, a right subtree, and a middle subtree. Similar to the complete
binary tree, we can define the complete triple tree. A complete triple tree is a triple
tree in which all leaves have the same depth and all the internal nodes have the same
degree 3. Thus, a triple tree is a k-ary tree with k = 3 and a complete triple tree is a
complete k-ary tree with k = 3 [27].

Considering the original graph as root node and all the child graphs as child
nodes, and connecting the parent graph with its child graphs using edges, we can get
a complete triple tree T. Notice that every node in T corresponds to a graph. Fig.
7.1 shows a complete triple tree T which indicates the original graph is recursively
decomposed to 3 layers.

Lemma 7.1. If the original graph is recursively decomposed to k layers (k > 0),
the depth of every leaf in the corresponding complete triple tree T is k and the number
of the leaves and the paths from the root to the leaves are both 3k.

Every node except for the root in the complete triple tree T has an attribute value
to indicate that the node corresponds to a direct child graph or indirect child graph.
We define the attribute of node is 0 if the node corresponds to a direct child graph
and 1 if the node corresponds to an indirect child graph. Especially, the attribute of
root is 0.

In the complete triple tree T we can find a path from the root node to any node
v. The path to node v is also called the path of node v.

We define the attribute of path is the binary sequence of the attributes of the
nodes that are included in the path, where the higher bit is the attribute of root.
Let xq ∈ {0, 1}, q = 0, · · · , k be a binary variable. Then the attribute of the path of
node v can be written as x0, x1 · · ·xk , where x0 is the attribute of root and xk is the
attribute of node v. Since the attribute of root is always 0 we can ignore the attribute
of root in the attribute of path and the attribute of the path of node v can be written
as x1, x2 · · ·xk. We define the label of node v as the attribute of its path.

We decompose the original graph into many subgraphs so that the subgraphs
can be computed in parallel. Fig. 7.1 shows the case where the original graph is
recursively decomposed for three layers and the complete triple tree T is used to
describe the decomposition, where the red nodes with attribute 0 correspond to the
direct child graphs and the blue nodes with attribute 1 correspond to the indirect child

22 Wenging Tao and Xue-Cheng Tai

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 1 0

0 1 0

0 1 0 0 1 0

0

Fig. 7.1. the parallel algorithm illustration.

graphs. For example, the attribute of the path from the root to the 5th leaf from left
is x1x2x3 = 011.

All the leaves in T correspond to the subgraphs whose minimum cuts will be
computed to compose the minimum cuts of the original graph. However, it should
be noticed that not all the corresponding subgraphs of the leaves can be computed
in parallel. Some subgraphs should be constructed depending on the other subgraphs
because the construction of the indirect child graph depends on the minimum cuts of
the direct child graphs of its parent graph. Therefore, in our parallel algorithm, we
must decide the subgraphs that can be computed in parallel and the sequence of the
computation.

Theorem 7.2. If the original graph is recursively decomposed to k layers (k > 0),
in the corresponding complete triple tree T all the leaves can be classified into 2k cat-
egories according to their labels and each category includes 2i leaves with the same

label, where i =
k∑

q=1
(1 − xq) and x1x2 · · ·xk is the attributes of the paths.

Proof. The proof is by induction method. We first prove the lemma holds when
k = 1, which is the induction basis. From Fig. 7.1, we can see that when k = 1 the
number of the leaves is 3 and are classified into 2 categories. The number of the leaves
with label 0 is 2 and the number of the leaf with label 1 is 1. Then the induction
basis holds.

In the induction step, by the induction hypothesis, when k = j, the labels of the
leaves, i.e., x1x2 · · ·xj , has 2j values, and for a given label x1x2 · · ·xj , we can find 2i

leaves, where i =
k∑

q=1
(1 − xq).

When k = j+1, the labels of the leaves is x1x2 · · ·xjxj+1. Every child graph in the
jth layer will be decomposed to two direct child graphs and one indirect child graph
in the (j+1)th layer. The attribute xj+1 of the corresponding nodes of the direct child
graphs is 0 and the attribute xj+1 of the corresponding node of the indirect child graph
is 1. Therefore, x1x2 · · ·xjxj+1 has 2j+1 values, and for a given label x1x2 · · ·xjxj+1,

we can find 2i leaves, where i =
k∑

q=1
(1 − xq) + 1 − xk+1 =

k+1∑
q=1

(1 − xq) hold. The

Theorem is proved.

Wenging Tao and Xue-Cheng Tai 23

Theorem 7.3. If the original graph is recursively decomposed to k layers (k > 0),
in the corresponding complete triple tree T, the corresponding subgraphs of any two
leaves with the same label can be constructed independently and their minimum cuts
can be computed in parallel.

Proof. The proof is by induction method. When k = 1, the induction basis holds.

In the induction step, the induction hypothesis is that when k = j, the correspond-
ing subgraphs of any two leaves with the same label can be constructed independently.

When k = j +1, if the corresponding subgraphs of two leaves with the same label
have the same parent graph, the two subgraphs must be the two direct child graphs,
and then they just depend on their parent graph and can be constructed indepen-
dently and their minimum cuts can be computed in parallel. If the corresponding
subgraphs of two leaves with the same label have the different parent graphs, they
can be constructed independently and their minimum cuts can be computed in paral-
lel since their parent graphs are constructed independently by induction hypothesis.
The induction step holds.

Theorem 7.4. If the original graph is recursively decomposed to k layers (k > 0),
in the corresponding complete triple tree T, the corresponding subgraphs of any two
leaves with the different label can not be constructed independently and the construc-
tion of the one subgraph must depend on the minimum cut of the other subgraph. Then
their minimum cuts must be computed sequentially.

Proof. The proof is by induction method. When k=1, the induction basis holds.

In the induction step, the induction hypothesis is that when k = j, the corre-
sponding subgraphs of any two leaves with the different label can not be constructed
independently and the construction of the one subgraph must depend on the minimum
cut of the other subgraph.

When k = j + 1, if the parent of two leaves with the different label have different
label, the corresponding subgraphs of any two leaves can not be constructed inde-
pendently by induction hypothesis. If their parents have same label, obviously the
attributes of the two leaves are different and one is 1 and the other is 0. The leaf
with attribute 1 is constructed depending on its parent but the other isn’t. There-
fore, the two leaves can’t be constructed independently although their parents can be
constructed independently. The induction step holds.

By Theorem 7.2,7.3 and 7.4, when the original graph is recursively decomposed
for k layers (k > 0), the subgraphs that can be computed in parallel in one time
can be decided. Since in all the 3k subgraphs, only the ones with the same labels
can be computed in parallel in one time and there are 2k different labels for all the
subgraphs. Therefore we need to do 2k parallel computation and the number of the

needed processor in one parallel is 2i , where i =
k∑

q=1
(1 − xq) and x1x2 · · ·xk is the

label of the currently processed leaves.

Theorem 7.5. If the minimum cuts of the corresponding subgraphs of the leaves
in T with the same label are computed in parallel and the corresponding subgraphs of
the leaves in T with the different label are computed sequentially, then the sequence of
the computation will be from the leaves with small label value to the leaves with large

24 Wenging Tao and Xue-Cheng Tai

label value.

Proof. The theorem is equivalent to that given any two leaves, the corresponding
subgraph of the leaf with smaller label must be computed before the subgraph of the
leaf with larger label.

The proof is by induction method. When k = 1, the induction basis holds.

In the induction step, the induction hypothesis is that when k = j, the sequence
of the computation is from the leaves with small label to the leaves with large label.

When k = j + 1, if the corresponding subgraphs of two leaves with different label
x1x2 · · ·xjxj+1 have the same parent graph with label x1x2 · · ·xj = a1a2 · · · aj, the
subgraphs are respectively one direct child graphs and one indirect child graph of this
parent graph. Obviously the direct child graphs with label x1x2 · · ·xjxj+1 = a1 · · · ak0
is computed before the indirect child graph with label x1x2 · · ·xjxj+1 = a1 · · · ak1 is
computed.

If the corresponding subgraphs of two leaves with different label x1x2 · · ·xjxj+1

have the different parent graphs. Let the labels x1x2 · · ·xj of their parent graphs are
respectively a1a2 · · · aj and b1b2 · · · bj, and the labels x1x2 · · ·xjxj+1 of the two leaves
are respectively a1a2 · · · ajc and b1b2 · · · bjd. Let us presume a1a2 · · · aj < b1b2 · · · bj ,
then a1a2 · · ·ajc < b1b2 · · · bjd. By the induction hypothesis the parent graph with
label a1a2 · · · aj is computed before the parent graph with label b1b2 · · · bj. There-
fore, the subgraph with label a1a2 · · · ajc is computed before the subgraph with label
b1b2 · · · bjd, which is consistent with a1a2 · · · ajc < b1b2 · · · bjd. Thus the induction
step holds.

Theorem 6.5 gives the sequence of the parallel computation for the corresponding
subgraphs of all the leaves in T. For example, in Fig. 7.1, the sequence of the parallel
computation for the corresponding subgraphs of all the leaves in T is as: 000 →
001 → 010 → 011 → 100 → 101 → 110 → 111.

By this theorem we can design our parallel algorithm using at most N processor,
where N is the number of the nodes in the original graph.

We now analyze the time complexity of the proposed parallel algorithm. For sim-
plicity, we just analyze the complexity when N = 2n, where n is positive integer. We
can get the approximate conclusion when n is positive real number like section 5 does.

Lemma 7.6. The original graph is recursively decomposed to k layers (k > 0)
and all the corresponding subgraphs of the leaves with the same label are computed
in parallel. If the minimum cuts of every subgraph is computed by the selected basic
min-cuts algorithm with O(Np) time, the mean ratio between the computational time
of the parallel algorithm and directly computing the original graph by the selected basic
min-cut algorithm is sk(N) = (1

2p−1)k.

Proof. The computational time of every subgraph that the leaf in T corresponds to
is (1

2p)kt0(N), and the total times is 2k (Theorem 6.2). Therefore, sk(N) = (1
2p)k2k =

(1
2p−1)k.

Corollary 7.7. If the minimum cuts of every subgraph is computed by the
RMC algorithm, the mean ratio between the computational time of the parallel algo-
rithm and directly computing the original graph by the selected basic min-cut algorithm
with O(Np) is sk(N) = (2

3)k(3
2p)n.

Wenging Tao and Xue-Cheng Tai 25

Fig. 8.1. Left: Cameraman image; Right: Lena image

Proof. If the minimum cut of every subgraph is computed by the RMC algorithm,
we have sk(N) = (1

2p−1)k(3
2p)n−k = (2

3)k(3
2p)n.

Theorem 7.8. The time complexity of the proposed parallel algorithm is O(N).

Proof. Since sk(N) = (2
3)k(3

2p)n monotonously decreases as parameter k, sk(N)
get the smallest value when k = n. Therefore, sn(N) = (2

3)n(3
2p)n = 1

2n(p−1) = 1
Np−1 .

Then the computational time of the parallel algorithm is tn(N) = sn(N)t0(N) = t0(N)
Np−1

and the time complexity is O(N) because t(N) has O(Np) time complexity.

8. Experiment. Our main contribution of this work is to: design a graph de-
composition method, prove min-cut composition theorems, and analyze the compu-
tational complexity of the constructed algorithms. Thorough experiments validation
for the RMC framework and its parallelization is a difficult task since our proposed
framework and algorithm is suitable to graphs with any topological construction and
any minimum cuts algorithms, including ”augmenting paths” style algorithms [13]
and ”push-relabel” style algorithms [15]. Therefore, we should prepare and design
all kinds of graph data sets of different topological construction to test the proposed
methods, which is extremely difficult since there aren’t available graph data sets for
open usage.

Another reason is that it is rather difficult to test the computational complexity
of one algorithm because the complexity of the algorithm is a theoretical worst bound.
We choose the push-relabel algorithm with O(N3) time complexity as an example to
analyze.Let the computational time of the original graph be t. When the number of the
nodes in the graph decreases to the half of the original, the theoretical computational
time will decrease to t/8. This is just a theoretical bound. However, in most cases the
computational time of the decreased graph will change between t and t/8, depending
on the number of the edges and their capacities in the graph. Therefore, it is possible
that one graph with less nodes may cost more computational time than the other graph
with more nodes. This leads to the difficulty of the accurate experiment evaluation.
Therefore, we plan to systematically carry out and report the experiment evaluation
in another work. In this paper we will just conduct some preliminary experiment to
demonstrate the performance of the proposed RMC framework with the push-relabel

26 Wenging Tao and Xue-Cheng Tai

algorithm. The parallel implementation isn’t tested in this paper.
We construct graphs from some images to test the RMC framework described in

section 4. We have proved that the RMC algorithm can obtain the same solution as
the original push-relabel-type algorithms or argument path-type algorithms in solving
the min-cut problem, not an approximate solution. Our experimental results validate
this conclusion.

In the following, we give two flow network graphs constructed from two images
”Cameraman” and ”Lena” with size 800 × 800 which are shown in Fig. 8.1 to test
the performance of the RMC algorithm. Given an image, each pixel corresponds to a
node of graph. There are edges connecting the neighboring pixel nodes, called n-links.
There are two specially designated terminal nodes source node and sink node. There
are edges connecting source node and sink node with each pixel node, called t-links.
We also set gray values to the source node and sink node respectively. Therefore, all
the n-links and t-links are computed as e−β|G(p)−G(q)| according to the gray values of
the neighboring two nodes, where G(p) and G(q) are the gray values of the neighboring
two nodes p and q, β is a fixed constant. Minimizing the cut of the constructed flow
network graph we can get a segmentation of the image. Changing the gray values of
source node and sink node and the value of parameter β, we can get a new graph and
new segmentation. Therefore, with the constructed graph we can test the efficiency
of the RMC algorithm.

The computing time for the ”Cameraman” image and ”Lena” image are respec-
tively shown in Table 8.1 and 8.2, including the original push-relabel algorithm, RMC
algorithm with recursive time 1 and 2. In Table 8.1, when the recursive time is 1
we can see that the number of the nodes and edges in G1 and G2 are the same, the
computational time of G1 is much more than G2. This reveals the instability of the
push-relabel algorithm, extremely depending on the capacities of the graph.

In Table 8.1 and 8.2, Gij (i, j =1, 2, 3) indicates the jth subgraph of the ith

subgraph of the original graph. When the recursive time is 2, from Table 1 and 2,
we can see that the number of the nodes of Gij (i, j=1, 2) is the same, 160000, but
in Gij (i = 3 or j = 3), the number of the nodes is changed, sometime more than
160000, sometime less than 160000. From Table 8.1 and 8.2, we can see that the total
time gradually decreases as the recursion number increases.

9. Conclusion. We have proposed one general graph decomposition and mini-
mum cuts composition framework. One advantage of the approach is that any mini-
mum cuts algorithm can be used for the subgraphs. We first present a graph decom-
position method to split the original graph into three subgrpahs with less nodes, and
prove the minimum cuts of the original graph can be composed of those of its three
subgraphs. Based on the graph decomposition method and minimum cuts composi-
tion theorems, we design a recursive minimum cuts algorithm and prove the algorithm

runs with a time complexity O(N
log 3
log 2). The second approach is a parallel algorithm

that run with time complexity O(N). We have presented preliminary experiment to
verify the RMC algorithm.

REFERENCES

[1] S. ASinha, P. Mordohai, and M. Pollefeys. Multi-view stereo via graph cuts on the dual of an
adaptive tetrahedral meshn. ICCV, 2007.

[2] E. BAE, J. YUAN, XC TAI, and Y. BOYKOV. A fast continuous max-flow approach to non-
convex multilabeling problems. Technical report, Technical report CAM-10-62, UCLA,
2010.

Wenging Tao and Xue-Cheng Tai 27

Table 8.1

The computational time of the RMC algorithm with recursive time for Camera image

The recursive time is 0 (The original push-relabel algorithm)
Comp. Time(s) The number of the nodes The numberof the edges

G 21.088944 640000 5110404
The recursive time is 1

Comp. Time (s) The number of the nodes The number of the edges
G1 13.961657 320000 2517760
G2 1.325443 320000 2516476
G3 1.410852 116891 891902
Total 16.697953

The recursive time is 2
Comp. Time (s) The number of the nodes The number of the edges

G11 1.963990 160000 1234152
G12 2.740732 160000 1197942
G13 6.088850 242016 1896188
G21 0.888230 160000 1237080
G22 0.343907 160000 1269472
G23 0.357132 144774 1125782
G31 0.272420 58446 407060
G32 0.828222 58445 403582
G33 1.095820 96881 733524
Total 14.579302

Table 8.2

The computational time of the RMC algorithm with recursive time for the ”Lena” image

The recursive time is 0 (The original push-relabel algorithm)
Comp. Time(s) The number of the nodes The numberof the edges

G 9.848429 640000 5110404
The recursive time is 1

Comp. Time (s) The number of the nodes The number of the edges
G1 4.107710 320000 2552804
G2 1.605400 320000 2552804
G3 2.132148 267098 2101068
Total 7.845259

The recursive time is 2
Comp. Time (s) The number of the nodes The number of the edges

G11 0.445473 160000 1274004
G12 1.424457 160000 1275676
G13 0.751997 154967 1216324
G21 0.628157 160000 1276754
G22 0.815949 160000 1274004
G23 0.403161 181827 1437616
G31 0.495870 133549 1007548
G32 1.286056 133549 1020694
G33 0.624665 79983 593264
Total 6.875785

28 Wenging Tao and Xue-Cheng Tai

[3] Y. Boykov and D. Huttenlocher. A new bayesian framework for object recognition. CVPR,
1999.

[4] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal surfaces via graph cuts.
ICCV, 2003.

[5] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124–
1137, 2004.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approaximate energy minimization via graph cuts.
ICCV, 1999.

[7] Y.Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary & region segmentation
of objects in nd images. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, volume 1, pages 105–112. IEEE, 2001.

[8] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the
maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[9] J. Darbon. Global optimization for first order markov random fields with submodular priors.
Discrete Applied Mathematics, 157(16):3412–3423, 2009.

[10] J. Darbon and M. Sigelle. Image restoration with discrete constrained total variation part i:
Fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3):261–276,
2006.

[11] J. Darbon and M. Sigelle. Image restoration with discrete constrained total variation part ii:
Levelable functions, convex priors and non-convex cases. Journal of Mathematical Imaging
and Vision, 26(3):277–291, 2006.

[12] E.A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Dokl, 14(11):1277–1280, 1970.

[13] L. Ford and D. Fulkerson. Flows in networks. Princeton Univ. Press, 1962.
[14] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Proceedings

of the Eighteenth Annual ACM Symposium on Theory of Computing, 1986.
[15] A.V. Goldberg and R.E. Tarja. A new approach to the maximum-flow proble. J. ACM,

35(4):921–940, 1988.
[16] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary

images. Journal of the Royal Statistical Society, 51(2):271–279, 1989.
[17] O. Juan. On some extensions of level sets and graph cuts towards their applications to image

and video segmentation. PhD thesis, 2006.
[18] O. Juan and Y. Boykov. Active graph cuts. CVPR, 2006.
[19] O. Juan and Y. Boykov. Capacity scaling for graph cuts in visio. CVPR, 2007.
[20] P. Kohli and P.H.S. Torr. Dynamic graph cuts for efficient inference in markov random fields.

IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007.
[21] M.P. Kumar, P.H.S. Torr, and A. Zisserman. Obj cut. CVPR, 2007.
[22] V. Kwatra, A. Schodl, and I. Essa. Graphcut textures: Image and video synthesis using graph

cuts. SIGGRAPH, 2003.
[23] Y. Li, J. Sun, and H. Y. Shum. Video object cut and paste. SIGGRAPH, 2005.
[24] Y. Li, J. Sun, and C. K. Tang. Lazy snapping. SIGGRAPH, 2004.
[25] J. Liu, J. Sun, and Blake A. Parallel graph-cuts by adaptive bottom-up merging. CVPR, 2010.
[26] C. Rother, V. Kolmogorov, and Blake A. ’grabcut’: Interactive foreground extraction using

iterated graph cuts. ACM Trans. Graphic, 23(3):309–314, 2004.
[27] R.L. Rivest T.H. Cormen, C.E. Leiserson and C. Stein. Introduction to algorithms. The MIT

Press, 2001.
[28] G. Vogiatzis, P.H.S. Torr, and R. Cippola. Multi-view stereo via volumetric graph-cuts. CVPR,

2005.
[29] J. Yuan, E. Bae, and X.C. Tai. A study on continuous max-flow and min-cut approaches.

CVPR2010, IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 2217–2224, 2010.

[30] J. Yuan, E. Bae, X.C. Tai, and Y. Boykov. A continuous max-flow approach to potts model.
Computer Vision–ECCV 2010, pages 379–392, 2010.

