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Abstract

This thesis deals with the reconstruction of images where the measured data are cor-

rupted by Poisson noise and a specific signal-dependent speckle noise, which occurs e.g.

in medical ultrasound images. Since both noise types fundamentally differ from the

frequently studied additive Gaussian noise in mathematical image processing, adapted

variational models are required to handle these types of noise accurately.

The first part of this thesis introduces variational regularization frameworks for inverse

problems with data corrupted by Poisson and ultrasound speckle noise. Due to the

strong nonlinearity of both data fidelity terms, a forward-backward splitting approach

is used to provide efficient numerical schemes allowing the use of arbitrary convex regu-

larization energies, in particular singular ones. Moreover, analytical results such as the

well-posedness of the variational problems as well as the positivity preservation and con-

vergence of the proposed iteration methods are proved. Finally, an iterative extension

of both frameworks is proposed in order to refine the systematic errors of variational

regularization techniques, using inverse scale space methods and Bregman distance iter-

ations.

The second part of this thesis considers the use of the (nonlocal) total variation func-

tional as regularization energy in both previously developed frameworks. In particular,

a modified version of the projected gradient descent algorithm of Chambolle and an aug-

mented Lagrangian method are presented to solve the weighted (nonlocal) ROF model

arising in both previously developed frameworks. In the case of the total variation regu-

larization strategy, analytical results obtained previous in the general context of a convex

regularization functional are carried over to the TV seminorm. In the case of the non-

local regularization approach, a continuous framework of nonlocal derivative operators

on directed graphs is introduced. This framework generalizes the nonlocal operators on

undirected graphs in continuous and discrete setting and is consistent to the discrete

local derivative operators.

Finally, the performance of the proposed algorithms is illustrated by 2D and 3D synthetic

and real data reconstructions. To validate the method proposed for inverse problems

with data corupted by Poisson noise, simulated PET data (2D) and real cardiac H2
15O

(2D) and 18F-FDG (3D) PET measurements with low count rates are used. Additionally,

a denoising and reconstruction comparison between TV and nonlocal TV regularization

is presented using 2D synthetic Poisson data. In the case of denoising problems in

medical US imaging, results on real patient data (2D) are illustrated.
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1
Introduction

This thesis deals with variational regularization techniques for inverse problems with

non-standard noise models, with a particular focus on image reconstruction problems.

The field of inverse problems is a wide and important area in applied mathematics

and its related scientific disciplines, which arises in a wide variety of application areas,

such as in medical imaging, biophysics, remote sensing, ocean acoustic tomography,

geophysics, non-destructive testing, astronomy, and many others. The main part of this

work concentrates on inverse problems arising in the field of medical imaging.

In the following we give an overview of the contents of this work. We start with the basic

motivations of this thesis and give an outline of its contributions. Finally, we provide a

sketch of how this thesis is organized.

1.1 Motivation

The main task of inverse problems consists in the reconstruction of desired parameters

in mathematical models (in this thesis images) from indirectly observed data. Mathe-

matically, this reconstruction process can be often modeled as computing a function u

from an operator equation of the form

f = Ku (1.1)

with measured data f . In this thesis, the operator K represents a model for the

imaging device and is assumed to be linear. The difficulty of such a modeling is that

the computation of u by direct inversion of K is not reasonable, since in practice the

data f are corrupted by noise induced in the process of physical measurements and the

problem (1.1) is usually ill-posed in the sense of Hadamard, i.e. it is in particular highly
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sensitive with respect to errors in f . Hence, some type of regularization is required to

enforce stability during the inversion process and to compute useful reconstructions.

A frequently used class of regularization techniques are variational methods based on

the minimization of functionals of the form

1

p
‖Ku − f‖pLp(Σ) + αJ(u) , α > 0 , p ∈ [1,∞) , (1.2)

where the first term penalizes the deviation from the operator equation (1.1) and the

second term introduces a-priori information about the expected solution. However, from

the viewpoint of statistical modeling, the functionals in (1.2) result from the assumption

that the raw data f are perturbed in the form f = Kū + η , where ū denotes the

desired exact image and η is an exponentially distributed random variable. Typical

examples are that η is Laplace distributed or Gaussian and results in p = 1 and

p = 2 in (1.2), respectively.

Most works in the area deal with the case of additive Gaussian noise so far. However,

in real life there are several applications in which different types of noise occur. For

instance, so-called Poisson or photon counting noise appears in positron emission to-

mography in medical imaging [148, 160, 167], fluorescence microscopy [87, 57], CCD

cameras [152], or astronomical images [108, 102]. Other non-Gaussian noise models are

salt and pepper noise or the different types of multiplicative noise, for example appear-

ing in synthetic aperture radar (SAR) or speckle noise in medical ultrasound imaging

[158, 92]. These types of noise fundamentally differ from the common studied expo-

nentially distributed noise in (1.2) and, consequently, adapted variational regularization

models are required in order to handle these kinds of noise accurately.

A commonly used idea to realize variational regularization techniques with statistical

motivation is the Bayesian model. Using a Gibbs a-priori density, the maximum a-

posteriori probability (MAP) estimation via the negative log-likelihood function leads to

a more general form of optimization problems in image processing and inverse problems,

namely

min
u

Hf (Ku− f) + αJ(u) , (1.3)

where Hf and J are usually convex. The functional Hf denotes a general data fidelity

term and has the task to penalize the deviation from the operator equality (1.1). The

functional J is a regularization functional and penalizes the deviation from a certain

ideal structure (smoothness) of the solution u . The regularization parameter α is a

relative weight for both terms and controls the influence of the data fidelity and the

regularization term on the solution.
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The form of the data fidelity term Hf in (1.3) is solely dependent on the kind of noise,

which occurs in the considered inverse problem, and should be adapted to the underlying

statement of the problem. Another important aspect in the variational regularization

technique is the specific choice of the regularization functional J in (1.3), since this

choice decides on the way a-priori information about the expected solution is incor-

porated into the reconstruction process. In the past, smooth, in particular quadratic,

regularizations have attracted most attention. However, such regularization approaches

lead to blurring of reconstructions, in particular they cannot yield image reconstructions

with sharp edges. Recently, singular regularization energies, in particular those of `1 - or

L1 -type, have attracted strong attention in inverse problems. However, such functionals

are not differentiable in the common sense and other concepts are required to deal with

these problems.

The wide variety of different types of noise in inverse problems combined with the stable

inversion of such problems using variational techniques with singular regularization ener-

gies are the main motivation of this thesis. Based on the statements above we summarize

the contributions of this work in the following section.

1.2 Contributions

In this thesis we address the task to reconstruct images in inverse problems in which

the measured data are corrupted by Poisson noise, which occurs in various real life

applications as e.g. in positron emission tomography in medical imaging or fluorescence

microscopy. Another noise model considered in this thesis is a specific speckle noise

which occurs in medical ultrasound (US) imaging. In both cases, the resulting variational

regularization problems differ siginificantly from the usually studied models in (1.2) and

have the following form using the MAP estimation model in (1.3),

min
u≥ 0

∫
Σ

(Ku − f logKu) dµ + αJ(u) , (Poisson)

min
u≥ 0

∫
Σ

(f − Ku)2

Ku
dµ + αJ(u) . (US Speckle)

(1.4)

A particular complication of these minimization problems compared to (1.2) is the strong

nonlinearity in the data fidelity terms which leads to issues in the computation of mini-

mizers. A further challenge is the positivity constraint on the solution u in (1.4) which

is absolutely necessary, since in typical applications these functions represent densities

or intensity information. Hence, one of the main contributions of this thesis is the
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development of efficient and stable numerical schemes to compute the solution of mini-

mization problems in (1.4), which may in addition guarantee the positivity of a solution

and can also handle singular regularization energies. A future contribution of this work

is to provide a theoretical framework for the variational problems (1.4) and the resulting

numerical schemes using quite general convex regularization functional.

Besides the development of numerical schemes for variational problems in (1.4), we

discuss the use of total variation (TV) regularization and its nonlocal (NL) extension in

the Poisson and US speckle noise frameworks. In the case of the NL-TV functional, the

high complexity of the nonlocal weighted graph requires suitable approaches to reduce

this complexity. However, some strategies lead to a directed structure of the weighted

graph such that the essential symmetry assumption of the nonlocal derivative operators

proposed so far is violated. Hence, another contribution of this thesis is the generalization

of nonlocal derivative operators on directed graphs in a continuous setting.

Finally, as a future contribution in this thesis, computational realization of the proposed

algorithms is illustrated on 2D and 3D synthetic and real data reconstructions in positron

emission tomography and medical ultrasound imaging.

1.3 Organization of this Work

In Chapter 2 we provide a general introduction of variational regularization methods.

In particular, we consider the mathematical modeling of inverse problems and image

reconstruction problems. Moreover, we recall a commonly used idea to realize variational

regularization techniques with statistical motivation via the Bayesian model.

In Chapter 3 we provide an overview on the basic concepts of functional analysis, convex

analysis, and calculus of variations, which will be needed in the course of this work.

In Chapters 4 and 5 the main contribution of this thesis follows, namely the development

of efficient and stable numerical schemes for inverse problems with data corrupted by

Poisson and US speckle noise. Moreover, a theoretical framework for the corresponding

variational regularization problems and computational methods is proposed. The results

in Chapter 4 are based on joint work with C. Brune and M. Burger [140, 141, 30, 31, 32].

In Chapters 6 and 7 the use of the total variation functional and its nonlocal extension as

regularization energies in both variational regularization frameworks of Chapters 4 and

5 is discussed. Additionally, a further contribution of this work can be found in Chapter

7, namely the generalization of nonlocal derivative operators to directed graphs.
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Finally, the performance of the numerical methods proposed in Chapters 4 - 7 is pre-

sented in Chapter 8 using 2D and 3D reconstructions on synthetic and real data in

positron emission tomography and medical ultrasound imaging.
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2
Basics : Variational Methods

2.1 Inverse Problems

The field of inverse problems is a wide and important area in applied mathematics and

other sciences that has been rapidly growing over the last decades. The reason for the

increasing interest is a wide variety of applications in sciences and engineering, such as

in medical imaging, biophysics, geophysics, remote sensing, ocean acoustic tomography,

nondestructive testing, astronomy, and many other areas.

The main task of inverse problems consists in the reconstruction of desired parameters

in mathematical models, such as signals or images, from indirectly observed data. In

this work, we will focus our attention in particular on image reconstruction problems.

Hence, we first introduce a mathematical representation of an image in a discrete and

continuous setting.

Definition 2.1.1 (Continuous Image Representation [117, Def. 3.1]). Let Ω ⊂ Rd ,

d ∈ N , be the image spatial domain. A function u : Ω → R is called a d-dimensional

image if the following conditions are fulfilled,

(1) u has a compact support, if Ω is not bounded,

(2) 0 ≤ u(x) < ∞ for all x ∈ Ω , (intensity boundedness)

(3)

∫
Ω

u(x) dx < ∞ . (energy boundedness)

As we will see later, such a representation of images is an elegant way to deliver a simple

basis for the analysis and construction of mathematical methods. However, this kind

of image description is actually only an idealization, which cannot be realized on any

computer and does not correspond to the reality of applications. Therefore, we are also
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interested in digital images, which arise as a naturally result from the discrete output of

an imaging device.

Definition 2.1.2 (Discrete Image Representation). Let Ω := (0, 1)d ⊂ Rd , d ∈ N ,

be the image spatial domain with a regular grid of N1 × · · · × Nd points. A grid matrix

u ∈ RN1× ···×Nd is called a d-dimensional image if the following conditions are fulfilled,

(1) 0 ≤ ui1,...,id < ∞ for 1 ≤ ik ≤ Nk , k = 1, . . . , d ,

(2)

N1∑
i1 = 1

· · ·
Nd∑
id = 1

ui1,...,id < ∞ .

Additionaly, we denote with hk = 1
Nk

, k = 1, . . . , d , the stepsizes of the image grid in

the k -th direction.

Remark.

• If u is not only an one-channeled gray value image but also a color image, the

Definitions 2.1.1 and 2.1.2 extend for each channel in a straight-forward way.

• In this thesis, we work mainly with 2D (d = 2) or 3D (d = 3) images.

• The connection between the definition of the continuous and the discrete image

representation is the usual interpretation of a grid matrix as locally constant gray

values in a cell around respective grid point. In this manner, we construct to

each discrete also a continuous description of an image using a piecewise constant

approximation.

Next, in order to model a mathematical representation of image reconstruction problems,

we have to consider a suitable mathematical description of a physical imaging system.

In the following, we discuss only the relevant aspects of such a model construction and

refer to the work of Bertero et al. [23] for a detailed discussion. An imaging system

consists in general of two structural elements:

• A collection of different physical components generating signals that contain useful

information about spatial properties of an object.

• A detector system that provides measurements of occurring signals, which also

causes the undesirable sampling and noise effects in many cases.

Hence, we assume in the following that the raw data have the following properties:

• The data are discrete and the discretization is specified by the physical configura-

tion of the detectors. In addition, we assume that the data are given in form of a

vector f ∈ RN .
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• The data are realizations of random variables, since the noise is a random process

caused by the detector system or the forward process of an imaging device, as

for instance the random decay of weak radioactively marked pharmaceuticals in

positron emission tomography (PET). Hence, we consider the detected value fi

as a realization of a random variable Fi .

After the consideration of the raw data, it is necessary to model the imaging device which

describes the generation and expansion of signals during the data acquisition process.

Mathematically, the aim is to find a transformation that maps the spatial distribution

of an object to the signals arriving at the detectors. In this work, we focus on problems

where such a transformation is a linear operator and the data acquisition process can

be described by a linear operator equation of the form

f̄ = K̄ū . (2.1)

Here, K̄ : U(Ω) → V (Σ) denotes a linear and compact operator (thus with a nonclosed

range), where U(Ω) and V (Σ) are Banach spaces of functions on bounded and compact

sets Ω respectively Σ . A typical example of (2.1) is a Fredholm integral equation of

the first kind with

(K̄u)(x) =

∫
Ω

k̄(x, y)u(y) dy , x ∈ Σ = Ω ,

where k̄ is the kernel of the operator K̄ . In (2.1), the function ū describes the desired

exact properties of an object and f̄ denotes the exact signals before detection. Problems

of the type above can be found in numerous real life applications, such as positron

emission tomography in medical imaging [123, 148, 167], fluorescence microscopy [87, 57],

astronomy [23], geophysics [103] or radar imaging [88, 123].

Consequently, the modeling of data acquisition in the manner described above, leads to

problem of object reconstruction as the solution of a linear operator equation of the form

(2.1). However, as mentioned above, in practice only noisy (and discrete) versions f

and K of the exact data f̄ and operator K̄ are available so that only an approximate

solution u of ū can be computed from the equation

f = Ku . (2.2)

The operator K : U(Ω) → RN in (2.2) is a semi-discrete operator based on K̄ ,

which transforms the desired properties u , in contrary to K̄ , to the discrete raw data.

Note that in the special case of the identity operator K , i.e. K = I , interpreted

furthermore as a discretization (projection) operator, we call the image reconstruction
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problem (2.2) as an image denoising problem, where the observed image f = u is a

certain noisy version of the exact image property ū . Finally, for the completeness of the

modeling of the image reconstruction problem, we additionally need due to the noise in

the measurements f a model for the probability density of the noise. This aspect of the

modeling process will be discussed in detail in the following Section 2.2.

Concluding, we see now in (2.1) and (2.2) that the inverse problems are often modeled

as certain operator equations. However, the difficulty of such a modeling is that the

computation of u by a direct inversion of K in (2.2) is not reasonable, since (2.1) is

an ill-posed problem (due to the compactness of the forward operator K̄ ) [67, 84]. But

note that the problem (2.2) is not ill-posed in usual sense, because the operator K has a

finite range. Nevertheless, the problem is highly ill-conditioned, since K approximates

K̄ . For the sake of completeness, we recall that a problem

g = K̄u (2.3)

is called ill-posed (sometimes also called incorrect), if one of the following conditions is

not fulfilled (cf. e.g. [83] or [103]),

• for each g ∈ V (Σ) there is a solution u ∈ U(Ω) (existence condition),

• the solution u is unique in U(Ω) (uniqueness condition),

• the dependence of u upon g is continuous (stability condition).

In general, the stability condition above is responsible for the ill-posedness of the operator

equation (2.3) and hence some type of regularization is required to enforce stability

during the inversion process and to compute useful reconstructions, see Section 2.2.

Some further examples of ill-posed operator equations can be found e.g. in [67, Chapt.

1] or [103, Chapt. 1].

2.2 Bayesian Modeling

As already suggested in Section 2.1, a complete mathematical modeling of an image

reconstruction problem requires a model for the probability density of the noise that

occurs in the measurements f . We denote this density with pF (f |u) and mean with this

a conditional probability density of data f given an image u with respect to random

variables Fi , 1 ≤ i ≤ N . For the following observations, we make additionally

the assumption that the random variables Fi are pairwise independent and identically
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distributed, i.e. we can write

pF (f |u) =
N∏
i=1

pF (fi|u) .

This assumption is in general reasonable since each random variable can be assigned to a

specific detector element which is usually independent of all the other detector elements.

Typical examples for probability densities pF (f |u) are exponentially distributed raw

data f . A canonical choice in most works are data of the form f = Kū + η , i.e.

perturbed by additive noise, where η denotes a vector valued Gaussian distributed

random variable with expected value 0 and variance σ2 . In this case, (2.4) shows

the corresponding probability density pF (f |u) [23]. In (2.4), we see also a relatively

similar although more complicated structure of the data, where the measurements are

corrupted with a signal-dependent noise of the form f = Kū +
√
Kū η with a Gaussian

distributed random variable η as just now. Such a type of noise can be found for instance

in medical ultrasound (US) imaging [101] and corresponds to an experimental derived

model of multiplicative speckle noise [158] in ultrasound images. Other typical models

are also Poisson distributed data [23] or Gamma distributed data [5] that corresponds

to multiplicative noise in f , i.e.

pF (f |u) ∼ e
− 1

2σ2 ‖Ku− f‖2L2
µ(Σ) , (Gaussian)

pF (f |u) ∼ e
− 1

2σ2

∥∥∥Ku− f√
Ku

∥∥∥2

L2
µ(Σ) , (US Speckle)

pF (f |u) =
N∏
i=1

(Ku)fii
fi !

e−(Ku)i , (Poisson)

pF (f |u) =
N∏
i=1

nn

(Ku)ni Γ(n)
fn−1
i e

−n fi
(Ku)i . (Gamma)

(2.4)

Here, Γ denotes the Gamma function and we suppose for the multiplicative Gamma

distributed noise that each fi is the mean over n measurements. Additionally, in order

to avoid the differentiation between the (semi-) discrete and continuous form of raw data

and operators discussed above, we use in (2.4) and later in (2.5) a measure µ , which is

a Lebesque measure in continuous setting and a point measure in discrete setting.

To illustrate the different characteristics of the noise forms in (2.4), we show in Fig. 2.1

and Fig. 2.2 a simple one dimensional (1D) noise free signal and a two dimensional (2D)

noise free image corrupted with the corresponding noise types presented in (2.4). In this

results, we can in particular observe that all noise forms are usually stronger than the
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classical additive Gaussian noise. Interesting is also the fact, that the Poisson noise in

Fig. 2.1d is practically almost ever stronger than the additive Gaussian noise in Fig.

2.1b, excepting the results on the right-hand side of both figures. However, the issue of

the similarity of both results on the right-hand side of Fig. 2.1b and Fig. 2.1d is not

really surprising, since the Poisson distribution is asymptotically normal with mean λ

and standard deviation
√
λ (cf. e.g. [53, Sections 16.5 and 20.2]), where λ denotes the

positive parameter of a Poisson distribution. Finally, notice also that due to the signal-

dependent Gaussian degradation, the ultrasound speckle noisy objects in Fig. 2.1c can

also be negative although the original object is always positive.

Now, as we already suggested in Section 2.1, a direct inversion of K in (2.2) is not

reasonable for computing u , since the operator K is ill-conditioned. Therefore, if the

probability density pF (f |u) of the noise is known, the desired object u appears in this

formulation via the noise density function as a set of unknown parameters and the image

reconstruction problem corresponds to the classical problem of parameter estimation. In

such problems, a classical approach is the so-called maximum likelihood (ML) estimator

that computes a solution by maximizing the likelihood respectively by minimizing the

negative log-likelihood function, i.e.

uML ∈ arg min
u
{− log pF (f |u)} .

In case of the probability densities given in (2.4), the maximum likelihood estimation

leads to minimizing of functionals of the form [23, 5],

uML ∈ arg min
u

{
1

2
‖Ku − f‖2

L2
µ(Σ)

}
, (Gaussian)

uML ∈ arg min
u

{
1

2

∥∥∥∥Ku − f√
Ku

∥∥∥∥2

L2
µ(Σ)

}
, (US Speckle)

uML ∈ arg min
u

{ ∫
Σ

(Ku − f logKu) dµ

}
, (Poisson)

uML ∈ arg min
u

{ ∫
Σ

(
logKu +

f

Ku

)
dµ

}
, (Gamma)

(2.5)

in which we neglect additive terms independent of u . In case of Poisson distributed

data, we discuss the corresponding functional in more detail in Section 4.2.

However, the image recontruction problems formulated as maximum likelihood (ML)

estimation remain ill-posed respectively ill-conditioned, because the ML approach uses

only information about the noise. It is generally well known that if the modeling of
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(a) Noise free signal

(b) Additive Gaussian noise with σ = 1 (left), σ = 5 (middle) and σ = 10 (right)

(c) Ultrasound speckle noise with σ = 1 (left), σ = 5 (middle) and σ = 10 (right)

(d) Poisson noise with scaling factor 10 (left), 5 (middle) and 1 (right)

Fig. 2.1. Illustration of in (2.4) presented noise forms in one dimension (notice

that the vertical scales are different in the signals). (a) Noise free 1D signal ū . (b)

ū degraded by additive Gaussian noise with different standard deviations σ . (c)

ū degraded by ultrasound specific speckle noise with different standard deviations

σ . (d) ū degraded by Poisson noise in the form that ū is first scaled down by

a factor, subsequently degraded by Poisson noise and finally scaled back with the

same factor.
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(e) Multiplicative Gamma noise with mean 1 (left), mean 10 (middle) and mean 15 (right)

Fig. 2.1. Continued illustration of in (2.4) presented noise forms in one dimension

(notice that the vertical scales are different in the signals). (e) ū degraded by

multiplicative Gamma noise with different assumptions of measurement means.

the problem does not use some additional information about the desired object, the

ill-posedness spreads from the operator equation (2.2) to the new model, what happens

also in the case of ML approach. Therefore, a commonly used idea to realize stable

inversion methods with statistical motivation is the Bayesian model, where the additional

information are given in the form of statistical properties of desired object. In this model,

one assumes that the desired solution u is a realization of a random variable U , i.e.

pF (f |u) = pF (f |U = u)

and we use simply p(f |u) . With this notation, the Bayes formula delivers the a-

posteriori probability density of u for a given value f of F ,

p(u|f) =
p(f |u) p(u)

p(f)
. (2.6)

Inserting the given measurements f , the density p(u|f) is denoted as the a-posteriori

likelihood function, which depends on u only. To determine an approximation to the

unknown object u , we use the maximum a-posteriori probability (MAP) estimator which

maximizes the likelihood respectively minimizes the negative log-likelihood function, i.e.

uMAP ∈ arg min
u
{ − log p(u|f) } (2.6)

= arg min
u
{ − log p(f |u) − log p(u) } , (2.7)

where we neglect the additive term log p(f) , which is independent of u .

The main advantage of the Bayesian approach (2.6) is that it allows to incorporate

additional prior information in form of statistical properties of the desired object u

via the a-priori probability density p(u) into the reconstruction process. The most

frequently used a-priori densities are Gibbs functions [75, 76], in analogy to statistical
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(a) Noise free image

(b) Additive Gaussian noise (c) Ultrasound speckle noise

(d) Poisson noise (e) Multiplicative Gamma noise

Fig. 2.2. Illustration of in (2.4) presented noise forms in two dimensions (notice

that the gray level values are different in the images). (a) Noise free 2D image ū .

(b) ū is degraded by additive Gaussian noise with standard deviation σ = 10 . (c)

ū is degraded by ultrasound specific speckle noise with standard deviation σ = 1 .

(d) ū is degraded by Poisson noise. (e) ū is degraded by multiplicative Gamma

noise with assumption of 20 measurement means.
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mechanics,

p(u) ∼ e−αJ(u) , (2.8)

where α is a positive parameter and J : W (Ω) → R≥ 0 an energy functional, usually

convex, on a Banach space W (Ω) ⊂ U(Ω) .

Now, if we plug the Gibbs a-priori density (2.8) in the maximum a-posteriori approch

(2.7), we obtain subsequently minimization problems of the form

uMAP ∈ arg min
u
{ − log p(f |u) + αJ(u) } , (2.9)

where we can use suitable probability densities p(f |u) depending on the model of the

noise in the given data f . In the case of Gaussian, ultrasound speckle, Poisson, and

multiplicative Gamma noise, the negative log-likelihood function − log p(f |u) has the

forms as in (2.5). We note that in context of inverse problems, the functional J in the

Gibbs a-priori density (2.8) is related to a regularization functional and the resulting

functional from the negative log probability density of the noise − log p(f |u) to a data

fidelity term, cf. (2.10) below.

2.3 General Form of Image Reconstruction Problems

In Section 2.2 before, we have seen that the modeling of image reconstruction problems

via the Bayesian approach and maximum a-posteriori probability estimation led us to

minimization problems of the form (2.9). Such problems are related to the calculus of

variations if the kind of the noise and thereby the probability density of the noise p(f |u)

in the given data f is known, as for example in case of Gaussian, ultrasound speckle,

Poisson, or multiplicative Gamma noise given in (2.5). A more general form of all such

optimization problems in image reconstruction and inverse problems is given by

min
u ∈W (Ω)

Hf (Ku− f) + αJ(u) , (2.10)

where

Hf : V (Σ) → R ∪ {+∞}

denotes a general data fidelity term dependent on the given data f and a linear and

compact operator

K : U(Ω) → V (Σ)

with Banach spaces of functions U(Ω) and V (Σ) on bounded and compact sets Ω

and Σ . The task of the functional Hf is to penalize the deviation from the operator
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equality f = Ku . In order to guarantee that the data fidelity is centered at zero, we

use Ku − f as argument, i.e.

Hf (Ku− f) = 0 if Ku = f . (2.11)

The second term in (2.10) is defined in the same way as the Gibbs functions in (2.8),

where

J : W (Ω) → R≥ 0 , W (Ω) ⊂ U(Ω) ,

denotes a general regularization functional and penalized the deviation from a certain

ideal structure (smoothness) of the solution u . The regularization parameter α in

(2.10) is a relative weight for both terms and controls the influence of the data fidelity

and the regularization term on the solution. For the sake of completeness, note that if

we choose K as the identity operator, i.e. K = I and V (Σ) = U(Ω) , the variational

problem (2.10) becomes a denoising model where f is the known noisy image.

Finally, we discuss briefly the importance of the energy functional J in (2.8) respectively

(2.9) and (2.10). The specific choice of the regularization functional J is important for

the way as a-priori information about the expected solution u are incorporated into the

reconstuction process. Smooth, in particular quadratic regularizations have attracted

most attention in the past, mainly due to the simplicity in analysis and computation.

However, such regularization approaches always lead to blurring of reconstructions, in

particular they cannot yield image reconstructions with sharp edges, what is highly

unnatural for the human eye.

Recently, singular regularization energies, in particular those of `1 - or L1 -type, have

attracted strong attention in inverse problems. In this work, we will concentrate mainly

on the total variation (TV) regularization functional and its nonlocal extension, which

we will discuss in Chapters 6 and 7 in detail. But yet briefly, TV regularization has

been derived as a denoising technique in [138] and has been generalized to various other

imaging tasks subsequently. The exact definition of TV [2], also used in this work, is

|u|BV (Ω) = sup
g ∈ C∞0 (Ω,Rd)
‖g‖∞ ≤ 1

∫
Ω

u divg ,

which is formally (true if u is sufficiently regular) given by |u|BV (Ω) =
∫

Ω
|∇u| dx .

The motivation for using TV is the effective suppression of noise and the realization of

homogeneous regions with mostly sharp edges. These features are attractive for almost

all image reconstruction problems where the goal is to identify object shapes that are

separated by sharp edges and shall be analyzed quantitatively.
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3
Basics : Mathematical Foundations

In the previous Section 2.2, we have seen that the mathematical modeling of the image

reconstruction problems via statistical formulations lead to minimization problems of

the form (2.9), where the precise form of the probability density p(f |u) is dependent

on the underlying imaging problem, in particular on the present noise in the given data,

cf. (2.5). Such a minimization of functionals is a problem of variational calculus with a

more general form of optimization problems shown in (2.10). In the following Chapter

4, we assume also that the regularization energies J in (2.9) are convex functionals.

Hence, we give in this chapter an overview on the basic concepts of functional analysis,

convex analysis, and calculus of variations that will be needed in the course of the work.

The following results are mainly taken from [143, 64, 66, 114].

3.1 Functional Analysis

The functionals examined in this work will be functionals on Banach spaces associated

with various topologies, which can be also weaker as the usually used norm topologies.

Thus, we recall here some basic results and concepts of topology and functional analysis.

3.1.1 General Topology

In this section, we introduce shortly some topological notions and concepts, which will

be essential in the course of the work. We recall the definition of a topological space and

introduce the required expression in order to define a Banach space and to characterize

a locally convex space, which represents a generalization of a normed linear space.
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Definition 3.1.1 (Topology and Topological Space). Let X be a set. A topology τ on

X is a family of subsets of X , called open sets, such that

(O1) The empty set and the whole space are open, i.e. ∅ ∈ τ and X ∈ τ .

(O2) If O1, O2 ∈ τ , then O1 ∩O2 ∈ τ , i.e. the intersection of two open sets is open.

(O3) If {Oi}i ∈ I is a family of sets Oi ∈ τ , then
⋃
iOi ∈ τ , i.e. the union of arbitrary

many open sets is open.

A pair (X, τ) consisting of a set X and a topology τ is called a topological space.

Remark. Let (X, τ) be a topological space. A set K ⊂ X is called closed, if its

complement X \K is open, i.e. X \K ∈ τ . It is also easy to show that the family τC

of closed sets fulfills the following properties dual to (O1)-(O3) [66, p. 13]:

(C1) The empty set and the whole space are closed, i.e. ∅ ∈ τC and X ∈ τC .

(C2) If C1, C2 ∈ τC , then C1 ∪ C2 ∈ τC , i.e. the union of two closed sets is closed.

(C3) If {Ci}i ∈ I is a family of sets Ci ∈ τC , then
⋂
iCi ∈ τC , i.e. the intersection of

arbitrary many closed sets is closed.

Definition 3.1.2 (Interior and Closure of a Set). Let (X, τ) be a topological space and

A ⊂ X . The interior int(A) of A is the largest open set contained in A or equivalently

the union of all open sets contained in A , i.e.

int(A) =
⋃

O ⊂A open

O .

The closure cl(A) of A is the smallest closed set containing A or equivalently the

intersection of all closed sets containing A , i.e.

cl(A) =
⋂

C ⊃A closed

C .

Definition 3.1.3 (Sequence). A sequence in a set X is a mapping φ : N → X , where

N denotes the set of natural numbers. We will write xn := φ(n) for the elements in the

sequence and denote the sequence as a whole by (xn) . A subsequence of a sequence (xn)

is itself a sequence (xnj) such that there exists a strictly increasing mapping N : N → N
with xnj = xN(n) .

Definition 3.1.4 (Convergent Sequence in Topological Space). A sequence (xn) in a

topological space (X, τ) is called convergent to some x ∈ X , if for every open set O

containing x there exists n0 ∈ N such that xn ∈ O for all n ≥ n0 .
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Definition 3.1.5 (Continuous Mapping in Topological Spaces, [114, Def. 2.1.7]). Let

(X, τX) and (Y, τY ) be topological spaces. A mapping M : (X, τX) → (Y, τY ) is

• continuous, if M−1(O) ∈ τX for any O ∈ τY , i.e. if the inverse image of any

open subset of Y is open in X ,

• sequentially continuous, if for every sequence (xn) in X converging to x ∈ X ,

the sequence
(
M(xn)

)
in Y converges to M(x) ∈ Y .

Remark. Continuity always implies the sequential continuity. However, the converse, i.e.

that continuity is equivalent to sequential continuity, only holds if the topological space

(X, τX) satisfies the first countability axiom [120, p. 190], in particular if X is a metric

space [95, Thm. 4.11].

Definition 3.1.6 (Metric Space). A metric on a set X is a function d : X ×X → R≥ 0

satisfying

(M1) d(x, y) = 0 , if and only if x = y ,

(M2) d(x, y) = d(y, x) for all x, y ∈ X , (symmetry)

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X . (triangle inequality)

A metric space is a pair (X, d) consisting of a set X and a metric d , the number

d(x, y) is called the distance between x and y .

Remark. A metric space (X, d) always defines a topological space (X, τ) in the following

manner: A set O ⊂ X is open, if and only if for every x ∈ O there exists ε > 0 such

that { y ∈ X : d(x, y) < ε } ⊂ O . A proof that this generates actually a topology

τ on the set X can be found e.g. in [66, pp. 248 - 249]. Hence, we always consider a

metric space as a topological space equipped with the topology induced by the metric.

Note also that various metrics can well induce the same topology.

Example 3.1.7 (Metric Space).

• Let X be an arbitrary set, then the following distance for x, y ∈ X ,

d(x, y) =

 1 , if x 6= y ,

0 , if x = y ,

defines a metric on X .

• The set of real numbers R and the closed unit interval [0, 1] are metric spaces with

the distance between two points defined by the absolute value of their difference.
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Definition 3.1.8 (Convergent Sequence in Metric Space). A sequence (xn) in a metric

space (X, d) is called convergent to some x ∈ X , if for every ε > 0 there exists

n0 ∈ N such that d(xn, x) < ε for all n ≥ n0 or equivalently, if the sequence of real

numbers
(
d(xn, x)

)
converges to zero.

Definition 3.1.9 (Cauchy Sequence and Complete Space). A sequence (xn) in a metric

space (X, d) is called Cauchy sequence, if for every ε > 0 there exists n0 ∈ N such

that d(xn, xm) < ε for all n, m ≥ n0 . A metric space (X, d) is complete, if every

Cauchy sequence (xn) in X converges to some element x ∈ X .

Definition 3.1.10 (Compact Set). Let (X, τ) be a topological space and K ⊂ X . The

set K is

• compact, if every family {Oi : i ∈ I} of open sets Oi satisfying K ⊂
⋃
iOi

has a finite subfamily O1, . . . , Ok such that K ⊂
⋃k
i= 1 Oi ,

• precompact, if its closure is compact,

• sequentially compact, if every sequence (xn) ⊂ K has a subsequence (xnj) con-

verging to some x ∈ K ,

• sequentially precompact, if every sequence (xn) ⊂ K has a subsequence (xnj)

converging to some x ∈ X , but the limit needs not to be in K .

Theorem 3.1.11. Let (X, d) be a metric space and K ⊂ X . Then K is compact, if

and only if K is sequentially compact.

Proof. See [95, Thm. 5.5].

Theorem 3.1.12. Let (X, d) be a complete, metric space and K ⊂ X . Then K is

precompact, if and only if K is sequentially precompact.

Proof. See [115, Cor. 4.10].

Definition 3.1.13 (Semi-Norm and Normed Linear Space). Let X be a linear space

(also called vector space) over the real numbers R . A semi-norm on X is a function

p : X → R≥ 0 such that

(N1) p(λx) = |λ| p(x) for all x ∈ X and λ ∈ R , (positively homogeneous)

(N2) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X . (subadditivity)

If p additionally satisfies

(N3) p(x) = 0 , if and only if x = 0 ,
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then p is called a norm on X . In this case, the norm of x ∈ X is denoted by

‖x‖X := p(x) and a pair (X, ‖ · ‖X) consisting of a linear space X and a norm ‖ · ‖X
is called a normed linear space.

Remark. A normed linear space (X, ‖ · ‖X) is always a metric space with the distance

d(x, y) := ‖x − y‖X .

Example 3.1.14 (Normed Linear Space).

• For each p such that 1 ≤ p ≤ ∞ , the Lebesque space Lp(Ω) on an open subset

Ω of Rd is a normed linear space with the norm ‖ · ‖p given by

‖g‖p =


(∫

Ω

|g|p dλ
)1/p

, if 1 ≤ p < ∞ ,

inf
t ∈ R
{ λ ( {x ∈ Ω : g(x) > t } ) = 0 } , if p = ∞ ,

where λ denotes the Lebesque measure.

• Many other examples of normed linear spaces can be found e.g. in [114, pp. 11-13].

Definition 3.1.15 (Banach Space). A Banach space is a complete, normed linear space.

Example 3.1.16 (Banach Space).

• Spaces of continuous functions on compact sets equipped with the supremum norm.

• The space of Lebesque measurable functions Lp(Ω) for each 1 ≤ p ≤ ∞ , as in

Example 3.1.14 above.

Finally, we introduce the notion of a locally convex, linear topological space, or shortly

locally convex space, which generalizes the notion of a normed linear space. Here, we use

only a special characterization of such spaces via a family of semi-norms given in [169,

p. 26, Thm.]. For a more general definition of locally convex spaces, we refer to [114,

Def. 2.2.1] or [169, Def. I.1.3].

Definition 3.1.17 (Locally Convex Space). Let X be a linear space and (pi)i ∈ I a (not

necessarily countable) family of semi-norms on X . The family of semi-norms is called

separating if

x = 0 if and only if pi(x) = 0 for all i ∈ I .

A pair (X, (pi)i ∈ I) consisting of a linear space X and a separating family of semi-norms

(pi)i ∈ I is called a locally convex space.
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Remark 3.1.18.

(1) Locally convex spaces generalize the notion of normed linear spaces. Therefore,

every normed linear space is locally convex (cf. [114, Thm. 2.2.3]), where the

family of semi-norms consists of a single element, namely of the norm.

(2) A family of semi-norms (pi)i ∈ I defines a (strong) topology on a locally convex

space X in the following manner: A set O ⊂ X is open, if for every x ∈ O

there exist ε > 0 and a finite non-empty set I ′ ⊂ I of indices such that⋂
i ∈ I′

{ y ∈ X : pi(y − x) < ε } ⊂ O .

Example 3.1.19 (Locally Convex Space).

• Every normed linear space is locally convex, cf. Remark 3.1.18, Item (1).

• Every normed space equipped with a weaker topology than the strong norm topology,

such as the weak or weak* topology (cf. Section 3.1.3), is locally convex.

Definition 3.1.20 (Convergent Sequence in Locally Convex Space). A sequence (xn)

in a locally convex space (X, (pi)i ∈ I) is called convergent to some x ∈ X , if and only

if pi(xn − x) → 0 for all i ∈ I .

3.1.2 Bounded Linear Operators and Functionals

Definition 3.1.21 (Linear Operator and Functional). Let X and Y be linear spaces.

A mapping L : X → Y is a linear operator, if

L(x+ y) = Lx + Ly , L(λx) = λLx for all x, y ∈ X , λ ∈ R .

If Y = R , then we denote L as a linear functional.

Theorem 3.1.22 (Continuous and Bounded Linear Operator). Let X and Y be locally

convex spaces and L : X → Y a linear operator. The operator L is continuous, if and

only if L is bounded, i.e. if for every semi-norm q on Y there exist a semi-norm p

on X and C ≥ 0 such that

q(Lx) ≤ C p(x) for all x ∈ X . (3.1)

If X and Y are normed linear spaces, the condition (3.1) is equivalent to

‖Lx‖Y ≤ C ‖x‖X for all x ∈ X .
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Proof. See [169, Thm. I.6.1] in case of locally convex spaces and [169, Cor. I.6.2], [114,

Thm. 1.4.2] or [133, Lem. 6.44] in case of normed linear spaces.

Remark. Some examples with (bounded) linear operators can be found e.g. in [114, p.

26] or [133, Sect. 8.1.4].

The space of bounded linear operators from X to Y is denoted by L(X, Y ) and is a

linear space with pointwise addition and scalar multiplication,

(L1 + λL2)(x) = L1x + λL2x , L1, L2 ∈ L(X, Y ) , x ∈ X , λ ∈ R .

If X and Y are normed linear spaces, a norm on L(X, Y ) is defined by

‖L‖L(X,Y ) := sup { ‖Lx‖Y : ‖x‖X ≤ 1 } = sup

{
‖Lx‖Y
‖x‖X

: x 6= 0

}
.

If Y is a Banach space, then so is L(X, Y ) [114, Thm. 1.4.8], independent of the

completeness of the normed linear space X .

Definition 3.1.23 (Continuous Embedding). Let X and Y be locally convex spaces.

We say X is continuously embedded in Y and write X ↪→ Y , if X ⊂ Y and for

every semi-norm q on Y there exist a semi-norm p on X and a constant C ≥ 0

such that

q(x) ≤ C p(x) for all x ∈ X .

That means, there exists a well defined identity operator from X to Y which is bounded.

Definition 3.1.24 (Compact Operator [114, Prop. 3.4.4]). A linear operator L between

Banach spaces X and Y is compact, if and only if for every bounded sequence (xn)

in X , the sequence (Lxn) is precompact in Y , i.e. (cf. Definition 3.1.10) there exists

a subsequence (xnj) such that (Lxnj) converges in Y .

Remark. Every compact linear operator from a Banach space into a Banach space is

bounded [114, Prop. 3.4.2].

Definition 3.1.25 (Compact Embedding [133, Def. 7.25]). Let X and Y be Banach

spaces such that X is continuously embedded in Y (see Definition 3.1.23). We say that

X is compactly embedded in Y and write X
c
↪→ Y , if every bounded sequence in X

has a subsequence which converges in Y , i.e. the identity operator from X to Y is

compact.
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Definition 3.1.26 (Dual Space). Let X be a locally convex space. The dual space

X∗ := L(X,R) of X is the collection of all bounded linear functionals x∗ : X → R .

If x∗ ∈ X∗ , we write its evaluation at x ∈ X as

〈x∗, x〉 := 〈x∗, x〉X∗, X := x∗x

and denote 〈·, ·〉 as the standard duality product.

If X is a locally convex space, then its dual X∗ is locally convex again with the strong

topology on X∗ induced by the family of semi-norms [169, Def. IV.7.2],

p(x∗) = p(x∗; B) = sup
x ∈B
|〈x∗, x〉X∗, X | , B ⊂ X bounded , x∗ ∈ X∗ .

If X is a normed linear space, then its dual X∗ is a Banach space, in particular locally

convex space, with the norm [169, Thm. IV.7.1],

‖x∗‖X∗ := sup
‖x‖X ≤ 1

|〈x∗, x〉X∗, X | = sup

{ |〈x∗, x〉X∗, X |
‖x‖X

: x 6= 0

}
.

Hence, in both cases we can define the dual space X∗∗ := (X∗)∗ of X∗ , called the

bidual of X . In this context, the space X is called reflexive if X∗∗ = X .

Example 3.1.27 (Dual and Reflexive Spaces). Let Ω be an open subset of Rd . Then

the space of Lebesgue measurable functions

• X = Lp(Ω) is reflexive for 1 < p < ∞ . The dual space of Lp(Ω) is Lp∗(Ω)

for 1 ≤ p < ∞ with p−1 + p−1
∗ = 1 , using the convention that 1∗ = ∞ .

• X = L1(Ω) is nonreflexive and X∗ = L∞(Ω) .

Theorem 3.1.28 (Adjoint Operator). Let X and Y be normed linear spaces. Then,

for each L ∈ L(X, Y ) exists a unique bounded linear operator L∗ ∈ L(Y ∗, X∗) given

by the formula L∗y∗ := y∗ ◦ L with y∗ ∈ Y ∗ , i.e. the operator is defined by

〈L∗y∗, x〉X∗, X = 〈y∗, Lx〉Y ∗, Y , y∗ ∈ Y ∗ , x ∈ X .

The operator L∗ is called the adjoint of L and satisfies

‖L∗‖L(Y ∗,X∗) = ‖L‖L(X,Y ) .

Proof. See [139, Thm. 4.10].
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3.1.3 Weak and Weak* Topologies

The most frequently used topology in functional analysis is the strong topology, which

is induced by a norm. However, as the name already implies, such topologies are strong

in the sense that they contain many open sets. This characteristic has of course some

advantages, as for instance that functionals in such topological spaces appear simpler

to fulfill the continuity property, but contains also some disadvantages and hence is not

always suitable. The most crucial weakness of strong topologies is the fact that in an

infinite dimensional normed space the topology contains so many open sets such that

its closed unit ball cannot be compact. Therefore, many facts which are well known for

finite dimensional normed spaces, as for instance that all closed bounded subsets are

compact, cannot be generalized in a straight-forward way to the infinite dimensional

case. Hence, in this section we introduce the weak and the weak* topology in order

to allow such a transfer. Both topologies are in general weaker than the strong norm

topology in the sense that they have fewer open sets, but are strong enough to allow for

instance the compactness of closed unit balls in the infinite dimensional case.

In the following, we recall the definitions of the weak and weak* topologies only for a

normed linear space X , since we will be more interested later in this case. However,

we notice that the both notions can be also generalized to a locally convex space X ,

where the definitions of the respective families of semi-norms can be found for instance

in [169, Sect. IV.7] and [143, Def. 8.46].

Throughout this section, let X be a normed linear space, X∗ the dual space and

X∗∗ = (X∗)∗ the bidual space of X . The following results are taken from [169, Sect.

V.1] and [6, Sect. 2.1.1].

Definition 3.1.29 (Topologies on X ). Let (xn) be a sequence in X . Then

• the strong topology, denoted by xn → x , is defined by

‖xn − x‖X → 0 .

• the weak topology, denoted by xn ⇀ x , is defined by

〈x∗, xn〉X∗, X → 〈x∗, x〉X∗, X for every x∗ ∈ X∗ .

Remark.

• The weak topology on X is the smallest topology on X such that every member

of the dual space X∗ is continuous with respect to that topology, see [114, p. 212].
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• One can simply show from the definition of the weak topology that the strong

convergence implies weak convergence [169, Thm. V.1.1], but the converse is in

general false, see e.g. [6, p. 25].

Definition 3.1.30 (Topologies on X∗ ). Let (x∗n) be a sequence in X∗ . Then

• the strong topology, denoted by x∗n → x∗ , is defined by

‖x∗n − x∗‖X∗ → 0 .

• the weak topology, denoted by x∗n ⇀ x∗ , is defined by

〈x∗∗, x∗n〉X∗∗, X∗ → 〈x∗∗, x∗〉X∗∗, X∗ for every x∗∗ ∈ X∗∗ .

• the weak* topology, denoted by x∗n ⇀∗ x∗ , is defined by

〈x∗n, x〉X∗, X → 〈x∗, x〉X∗, X for every x ∈ X .

Remark.

• The weak* topology on X∗ is the smallest topology on X∗ such that, for each

x ∈ X , the linear functional x∗ 7→ 〈x∗, x〉X∗, X on X∗ is continuous with respect

to that topology, see [114, p. 223].

• The weak* topology on X∗ is in general weaker than the weak topology on X∗

[114, Thm. 2.6.2], since it holds X ⊂ X∗∗ .

• If X is reflexive, i.e. X = X∗∗ , then the weak and weak* topology coincide, cf.

e.g. [114, Thm. 2.6.2]. This easily follows from the definition of the weak topology

on X∗ , as it uses the same convergence as the weak* topology on X∗ , and from

the definition of the weak* topology on X∗∗ , as it uses the same convergence as

the weak topology on X .

The following Theorem of Banach-Alaoglu demonstrates now why the weak* topology on

X∗ is notably different from the strong and weak topology on X . As already mentioned

at the beginning of this section, the main difficulty in the transfer of results from the finite

dimensional normed space to the infinite dimensional case is the loss of the Heine-Borel

property, which means for a finite dimensional X that all closed bounded subsets of the

space are compact. Fortunately, such results can be obtained for the infinite dimensional

case, if one uses weaker topologies than the strong one. Actually, due to the fact that

the weak topology on X is a proper subtopology of the strong one allows a closed unit
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ball to be weakly compact than compact. However, this property is unfortunately true

if and only if X is reflexive, see [114, Thm. 2.8.2]. For a general normed linear space

X , we will see in the next theorem, that all closed bounded subspaces of X∗ are always

compact if we use the weak* topology on X∗ .

Theorem 3.1.31 (Banach-Alaoglu Theorem). The set

{x∗ ∈ X∗ : ‖x∗‖X∗ ≤ C } , C > 0 ,

is compact in the weak* topology.

Proof. See [55, Sect. 4.1, Thm. 1] or [114, Thm. 2.6.18].

3.2 Convex Analysis and Calculus of Variations

The minimization of functionals is a classical problem of variational calculus, which deals

with general optimization problems in mathematics. As usual in optimization problems,

we are primarily interested in optimality conditions based on derivatives. However, the

classical notions of derivatives, as Gâteaux or Fréchet differentiability, will be insufficient

in this work since we will study convex singular regularization energies, i.e. especially

that they are non differentiable in the classical sense, and hence essential results from

the convex analysis are necessary to handle such problems. Therefore, we review in

the following the basic concepts of convex analysis and calculus of variations. Some

standard reference works dealing with these topics are e.g. [64] and [137].

3.2.1 Convex and Lower Semicontinuous Functionals

In this thesis, we study convex functionals in the context of variational methods. Thus,

we recall here some basic concepts of convexity, which are also crucial for the uniqueness

of a solution in minimization problems. Furthermore, since the continuity of a convex

functional is not so simple to characterize due to nonlinearity, we introduce an essentially

weaker property, namely the lower semicontinuity of a functional.

Definition 3.2.1 (Convex Set). Let U be a linear space and C ⊂ U . The set C is

convex, if

λu + (1 − λ) v ∈ C for all u, v ∈ C, λ ∈ (0, 1) .
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Definition 3.2.2. Let U be a linear space and F : U → R ∪ {+∞} a functional.

• The effective domain of F is the set

D(F ) := { u ∈ U : F (u) < +∞ } .

• The functional F is proper, if D(F ) 6= ∅ , i.e. F is not identically equal to

+∞ .

• The functional F is convex if it satisfies

F (λu + (1− λ) v) ≤ λF (u) + (1− λ)F (v) , u, v ∈ U, λ ∈ [0, 1] . (3.2)

• The functional F is strictly convex, if the inequality in (3.2) is strict whenever

u 6= v ∈ D(F ) and λ ∈ (0, 1) .

Remark 3.2.3.

(1) It is easy to show that, if F : U → R ∪ {+∞} is a convex functional on a linear

space U , then the sub-level sets of F defined by

{ u ∈ U : F (u) ≤ a } and { u ∈ U : F (u) < a }

are convex for every a ∈ R ∪ {+∞} .

(2) Note also that with the property in the first item, the effective domain of a convex

functional is a convex set of U .

(3) We also shortly clarify why we allow the value +∞ . If U is a linear space and

F : A ⊂ U → R a functional, we can extend F to a functional F̃ on the whole

space U by

F̃ (u) =

 F (u) , if u ∈ A ,

+∞ , if u ∈ U \ A .

Thus, F̃ is convex if and only if A ⊂ U is convex and F : A → R is convex.

Therefore, the extension by +∞ allows to deal only with such convex functionals,

which are always defined everywhere, in the theory of convex analysis. In addition,

in the context of minimization problems, we can extend convex functionals on

larger function spaces without changing the stationary points of the minimization

problem. In many cases, such an approach allows a simpler mathematical handling

of the problem without manipulation of admissible sets.
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Now, we pass over to the topological properties of general convex functionals, which are

not as simple as in the case of linear functionals. In Theorem 3.1.22, the continuity

of a linear functional is a simple consequence of boundedness. In the case of a convex

functional, this property is in general not ensured such that we need another concepts

from the convex analysis.

Definition 3.2.4 (Lower Semicontinuous Functional [64, pp. 9 - 10]). Let U be a locally

convex space and F : U → R ∪ {+∞} a functional (not necessarily convex). Then,

F is lower semicontinuous, if it satisfies the following equivalent conditions:

(i) The sub-level sets

{ u ∈ U : F (u) ≤ a }

are closed for every a ∈ R .

(ii) For any u ∈ U and for every converging sequence (un) with limit u it holds

F (u) ≤ lim inf
n→∞

F (un) .

This condition is also known as the sequential lower semicontinuity of F .

Remark. In particular, Definition 3.2.4 is applicable for a Banach space U equipped

with the strong or weak topology, since every normed space is locally convex (cf. Remark

3.1.18) and is naturally equipped with a strong norm topology. Moreover, we can also

additionally introduce a weak topology on a locally convex space, cf. Section 3.1.3.

Lemma 3.2.5 (Continuous Convex Functional). Every lower semicontinuous convex

functional over a Banach space is continuous over the interior of its effective domain.

Proof. See [64, p. 13, Cor. 2.5].

3.2.2 Subdifferentiability

The singular regularization energies that we will study in the course of the work are non-

differentiable functionals in the classical sense, i.e. not Gâteaux or Fréchet differentiable,

and thus other methods are needed. Fortunately, convex analysis delivers a powerful

concept of generalized derivatives for convex functionals called subdifferential, which we

introduce in this section.

Definition 3.2.6 (Subdifferential). Let U be a locally convex space, U∗ the dual space

of U and F : U → R ∪ {+∞} a functional (not necessarily convex). A subgradient
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of F at u ∈ U is an element u∗ ∈ U∗ such that

F (v) − F (u) − 〈u∗, v − u〉 ≥ 0 for all v ∈ U . (3.3)

For each u ∈ U , the set of all subgradients of F at u is called the subdifferential at

u and is denoted by ∂F (u) , i.e.

∂F (u) = {u∗ ∈ U∗ : F (v) − F (u) − 〈u∗, v − u〉 ≥ 0 for all v ∈ U } .

If ∂F (u) 6= ∅ , F is said to be subdifferentiable at u .

Remark 3.2.7.

(1) A subgradient u∗ ∈ ∂F (u) ⊂ U∗ can be identified with the slope of a hyperplane

in U × R through (u, F (u)) , that lies under the graph of F , as illustrated in

Fig. 3.1.

(2) The subdifferential of F is a multivalued mapping ∂F which assigns the set

∂F (u) ⊂ U∗ (possibly empty or singleton) to each u ∈ U , cf. e.g. Example

3.2.8 or Fig. 3.1.

(3) In Lemma 3.2.17, we will see at least in the context of convex functionals that the

subdifferentiability is actually a generalization of the classical notion of Gâteaux

differentiability. I.e., if F is convex and Gâteaux differentiable at u then ∂F (u)

is singleton and coincides with the Gâteaux derivative at u , cf. also Fig. 3.1.

Example 3.2.8 (Subdifferential of the Absolute Value Function). Let U = R and

F : U → R≥ 0 , u 7→ |u| , be the absolute value function. For u < 0 the subgradient is

unique, namely ∂F (u) = {−1} . It is also similar for u > 0 , we have ∂F (u) = {1} .

For u = 0 , the subdifferential is defined by the inequality

|v| ≥ u∗v for all v ∈ U ,

which is satisfied if and only if u∗ ∈ [−1, 1] . I.e., the subdifferential of F at u is given

by

∂F (u) =


{−1} , for u < 0 ,

[−1, 1] , for u = 0 ,

{1} , for u > 0 .

In general, it is not easy to decide whether a functional is subdifferentiable or not. How-

ever, in case of a convex functional there is a simple criterion for the subdifferentiability.
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Lemma 3.2.9. Let U be a locally convex space and F : U → R ∪ {+∞} a convex

functional. Then ∂F (v) 6= ∅ for all v ∈ int
(
D(F )

)
, where int

(
D(F )

)
denoted the

interior of the effective domain D(F ) of F . In particular, ∂F (u) 6= ∅ if F is finite

and continuous at u ∈ U .

Proof. See [64, p. 22, Prop. 5.2].

Remark 3.2.10. In [64, p. 23, Remark 5.1], the authors remark that a proper lower

semicontinuous convex functional F defined on a complete normed linear space is subd-

ifferentiable “almost everywhere” (more precisely, over a dense subset) inside the effective

domain D(F ) of F , cf. to Lemma 3.2.5.

Fig. 3.1. The convex functional F is differentiable at ũ ∈ U and has therefore

an unique subgradient at ũ (see Lemma 3.2.17), namely the Gâteaux derivative

ũ∗ ∈ U∗ . At point u ∈ U , the functional F is not differentiable and has hence at

this point multiple subgradients, where we shown here only u∗1 ∈ U∗ and u∗2 ∈ U∗ .

Next, we introduce now a characterization of the subdifferentials in the special case of

one-homogeneous functionals, which will be required during the theoretical analysis of

numerical schemes proposed in Section 4.6.

Lemma 3.2.11 (Characterization of Subdifferentials for one-homogeneous Functional).

Let U be a locally convex space and F : U → R ∪ {+∞} a convex one-homogeneous
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functional, i.e. F satisfies F (λu) = λF (u) for all λ > 0 . Then, the subdifferential

of F at u ∈ U is given by

∂F (u) = {u∗ ∈ U∗ : 〈u∗, u〉 = F (u) and 〈u∗, v〉 ≤ F (v) for all v ∈ U } .

Proof. Let u∗ be a subgradient of F at u ∈ U . Then, the definition of subgradient in

(3.3) yields

〈u∗, v − u〉 ≤ F (v) − F (u) for all v ∈ U . (3.4)

Using the one-homogeneity of F and the fact that U is a linear space, we obtain

consequently for v = 0 the inequality

〈u∗, u〉 ≥ F (u)

and for v = 2u the upper bound

〈u∗, u〉 ≤ F (2u) − F (u) = 2F (u) − F (u) = F (u) .

Hence, we have altogether that 〈u∗, u〉 = F (u) and (3.4) delivers then 〈u∗, v〉 ≤ F (v)

for all v ∈ U .

As already noticed repeatedly, we deal in this work with minimization of functionals and

hence we are also interested particularly in the role of the subdifferential in optimization

problems.

Lemma 3.2.12 (Subdifferential and Optimality). Let U be a locally convex space and

F : U → R ∪ {+∞} a convex functional. Then, u ∈ U is a minimizer of F if and

only if F is subdifferentiable at u and

0 ∈ ∂F (u) . (3.5)

Due to the convexity of F , this condition is not only necessary, but also sufficient.

Proof. Let 0 ∈ ∂F (u) , then the definition of ∂F (u) (3.3) implies that F (u) ≤ F (v)

for all v ∈ U , which is equivalent to stating that u minimizes F . Vice versa, let u

be a minimizer of F , then the inequality

0 ≤ F (v) − F (u) = F (v) − F (u) − 〈0, v − u〉 for all v ∈ U

holds, which implies that 0 ∈ ∂F (u) .

Finally, the following lemma provides an important property of the subdifferential, which

will be necessary later.
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Lemma 3.2.13 (Subdifferential Calculus). Let F , S : U → R ∪ {+∞} be convex and

assume that there exists v ∈ D(F ) ∩ D(S) such that F is continuous in v . Then

∂(F + S)(u) = ∂F (u) + ∂S(u) for all u ∈ U .

Proof. See [64, p. 26, Prop. 5.6].

3.2.3 Differentiability of Functionals

Finally, we recall the definition of directional derivatives of functionals and see, in the

context of convex functionals, that subdifferentiability is actually a generalization of

classical differentiability. The definitions here are taken from [64, p. 23, Def. 5.2].

Definition 3.2.14 (Directional Derivative). Let F : U → R ∪ {+∞} be a functional

(not necessarily convex) on a locally convex space U . The directional derivative of F

at u ∈ U in the direction v ∈ U , denoted by F ′(u; v) , is defined as

F ′(u; v) = lim
t→ 0+

F (u + t v) − F (u)

t
, (3.6)

if that limit exists.

Remark 3.2.15.

(1) If the functional F is convex, then the expression (3.6) always has a limit, which

however can be ±∞ .

(2) In practice, a useful strategy to compute a directional derivative is to define a

function φv : R≥ 0 → R ∪ {±∞} , t 7→ F (u + t v) , for a direction v ∈ U .

Then, the expression (3.6) for F ′(u; v) can be computed by

F ′(u; v) = lim
t→ 0+

φv(t) − φv(0)

t
= φ′v(t) | t= 0 .

Definition 3.2.16 (Gâteaux Differential). Let F : U → R ∪ {+∞} be a functional on

a locally convex space U and assume that the directional derivatives F ′(u; v) of F at

u ∈ U exist for all directions v ∈ U . Then, if there exists a bounded linear operator

F ′(u) ∈ U∗ such that

F ′(u; v) = 〈F ′(u), v〉U∗, U = F ′(u) v for all v ∈ U ,

we say that F is Gâteaux differentiable at u and call F ′(u) the Gâteaux derivative of

F at u .
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Finally, we see that for convex functionals subdifferentiability is actually a generalization

of Gâteaux differentiability, i.e. Gâteaux differentiability is the same as the uniqueness

of the subgradient.

Lemma 3.2.17. Let U be a locally convex space, F : U → R ∪ {+∞} a convex

functional and u ∈ U . If F is Gâteaux differentiable at u , then the subdifferential

∂F (u) of F at u is singleton and it holds ∂F (u) = {F ′(u)} . Conversely, if F is

continuous and finite at u and the subdifferential ∂F (u) of F at u is singleton, then

F is Gâteaux differentiable at u and it holds ∂F (u) = {F ′(u)} .

Proof. See [64, p. 23, Prop. 5.3].

Remark. Let F : U → R ∪ {+∞} be a functional on a locally convex space U . If

u ∈ U is a minimizer of F , then by definition

F (u + t v) − F (u) ≥ 0 for all v ∈ U and t > 0 .

Consequently, it holds for the directional derivatives F ′(u; v) that

F ′(u; v) ≥ 0 for all v ∈ U . (3.7)

Additionally, if F is Gâteaux differentiable at u , then (3.7) is equivalent to

F ′(u) = 0 , (3.8)

since F ′(u; −v) = −F ′(u; v) . The conditions (3.7) and (3.8) are called (first order)

optimality conditions for a minimizer of F . Here, we see also that the optimality

condition (3.5) in Lemma 3.2.12 is actually a generalization of (3.8) for non differentiable

convex functionals.
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4
Imaging : Poisson Framework

In this chapter, we introduce a variational regularization framework for inverse problems

with data corrupted by Poisson noise. This kind of noise, also called photon counting

noise, occurs in several real life applications, such as medical imaging, light microscopy,

or astronomy, and differentiates crucial from the common studied additive Gaussian noise

in image processing. Consequently, an adapted variational model is required in order

to handle this type of noise accurate. Hence, we study in the following the regularized

Poisson likelihood estimation problem obtaining via a Bayesian model and maximum a-

posteriori probability estimation. However, the Poisson likelihood reconstruction model

leads to issues in the computation of minimizers, caused by the strong nonlinearity in the

data fidelity term. Hence, we propose a robust forward-backward splitting approach to

provide an efficient numerical scheme, based on the expectation-maximization algorithm.

4.1 Introduction

Image reconstruction is a fundamental problem in several areas of applied sciences, such

as medical imaging, biophysics, geophysics, or astronomy, with an enormous number of

applications. Mathematically, all these image reconstruction problems can in general be

formulated as an inverse and ill-posed problem, cf. the discussion in Section 2.1,

f̄ = K̄ū ,

with a linear and compact operator K̄ : U(Ω) → V (Σ) , exact data f̄ and the desired

exact image ū . Unfortunately, in practice only noisy versions f and K of f̄ and K̄

are available and an approximation u of ū from the operator equation (2.2),

f = Ku (4.1)
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is wanted, where the operator K : U(Ω) → RN here is a semi-discrete operator based

on K̄ , which transforms the desired properties of u to the discrete raw data f . As we

already discussed at the end of Section 2.1, the computation of u by a direct inversion

of K is not reasonable since the problem (4.1) is highly ill-conditioned due to the

compactness of the operator K̄ . Hence, some type of regularization is required to

enforce stability during the inversion process and to compute useful reconstructions.

A frequently used class of regularization techniques are variational methods based on

the minimization of functionals of the form

1

p
‖Ku − f‖pLp(Σ) + αJ(u) , α > 0 , p ∈ [1,∞) . (4.2)

The first term, so-called data fidelity term, penalizes the deviation from the operator

equality (4.1). The second term is a regularization functional, typically convex, which

introduces a-priori information about the expected solution. Finally, the regularization

parameter α acts as a relative weight for both terms. However, from the viewpoint

of statistical modeling in Section 2.2, it is important to notice that the functionals in

(4.2) result from the additive assumption of exponentially distributed raw data, i.e. we

have f = Kū + η , where η is a vector valued random variable with statistically

independent and identically distributed components. Typical examples are that η is

Laplace distributed (p = 1) or Gaussian distributed (p = 2) , cf. Section 2.2. We notice

also that in case of p = 2 , the minimization strategy (4.2) corresponds to the classical

Tikhonov regularization methods, cf. e.g. [83].

Most works in the area deal with the case of additive Gaussian noise so far. However,

in real life there are several applications in which different types of noise occur. For in-

stance, so-called Poisson or photon counting noise appears in positron emission tomog-

raphy in medical imaging [148, 160, 167], fluorescence microscopy [87, 57], CCD cameras

[152] or astronomical images [108, 102]. Other non-Gaussian noise models are salt and

pepper noise or the different types of multiplicative noise, for example appearing in syn-

thetic aperture radar (SAR) or speckle noise in medical ultrasonic imaging [158, 92].

For such cases, different variational models, i.e. different data fidelity terms related to

the negative log-likelihood of the noise distribution, can be derived in the framework

of maximum a-posteriori probability (MAP) estimation, see Section 2.2. Consequently,

dependent on the chosen variational model, we need an analysis different from that in

the case of additive exponentially distributed noise as in (4.2).

In this thesis, we mainly address the task to reconstruct images where the data are

corrupted by Poisson noise, which is important in various applications. An example for

such an application is positron emission tomography (PET), a biomedical imaging tech-
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nique in nuclear medicine that generates images of living organisms by visualizing weak

radioactively marked pharmaceuticals, so-called tracers. Due to the crucial possibility of

measuring temporal tracer uptake from list-mode data, this imaging modality is partic-

ularly suitable for investigating biochemical and physiological processes, such as glucose

metabolism, blood flow or receptor concentrations, see e.g. [167, 12]. Another appli-

cation of image reconstruction problems with Poisson distributed data is fluorescence

microscopy [87]. It represents an important technique for investigating living biological

cells at nanoscales. In this type of applications, image reconstruction arises in terms of

deconvolution problems, where the undesired blurring effects are caused by diffraction

of light.

In the both applications that we just mentioned, the measured data are of stochastic

nature due to the radioactive decay of tracers in PET and laser scanning techniques in

fluorescence microscopy. Furthermore, the random variables of the measured data are

not Gaussian but rather Poisson distributed [148, 160]. As already briefly discussed in

Section 2.2 and will deduced in more detail in Section 4.2, the MAP estimation via the

negative log-likelihood function leads in this kind of noise to the following variational

problem,

min
u≥ 0

∫
Σ

(Ku − f logKu) dµ + αJ(u) . (4.3)

Up to additive terms independent of u , the data fidelity term here is the so-called

Kullback-Leibler divergence (also known as cross entropy or I-divergence) between two

probability measures f and Ku . A particular complication of (4.3) compared to (4.2)

is the strong nonlinearity in the data fidelity term, leading to issues in the computation of

minimizers. A further challenge in this work is the positivity constraint on the solution

u in (4.3), which is absolutely necessary since in typical applications these functions

represent densities or intensity information. In the absence of regularization, i.e. J ≡ 0

in (4.3), the expectation-maximization (EM) [56, 148], or Richardson-Lucy [136, 111],

algorithm has become a standard reconstruction scheme, which is however difficult to

generalize to the regularized case. The robust and accurate solution of this problem for

appropriate models of J , as well as its analysis are the main contributions of this thesis.

As usual in regularization theory of ill-posed problems, the specific choice of the reg-

ularization functional J in (4.3) is crucial to the way a-priori information about the

expected solution is incorporated into the reconstruction process. Smooth, in particular

quadratic regularizations, have attracted most attention in the past, mainly due to the

simplicity in analysis and computation. However, such regularization approaches always

lead to blurring in the reconstructions, in particular, they cannot yield reconstructions

with sharp edges. Hence, singular regularization energies, especially those of `1 - or L1 -
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type, have recently attracted strong attention in variational problems, but are difficult

to handle due to their non differentiable nature. Nevertheless, we will focus our atten-

tion on the total variation (TV) regularization functional in Chapter 6 and its nonlocal

extension in Chapter 7. As anticipated here, TV regularization has been derived as a

denoising technique in [138] and has been generalized to various other imaging tasks

subsequently. The exact definition of TV [2], used in this work, is

|u|BV (Ω) = sup
g ∈ C∞0 (Ω,Rd)
‖g‖∞ ≤ 1

∫
Ω

u divg , (4.4)

which is formally (true if u is sufficiently regular)

|u|BV (Ω) =

∫
Ω

|∇u| dx . (4.5)

The motivation for using TV is the effective suppression of noise and the realization of

homogeneous regions with mostly sharp edges. These features are attractive for almost

all image reconstruction problems where the goal is to identify object shapes that are

separated by sharp edges and shall be analyzed quantitatively.

In the past, various methods have been suggested for the regularized Poisson likelihood

estimation problem (4.3), for instance in case of Tikhonov regularization [17], diffusion

regularization [18] or L1 regularization functional [112]. However, most works deal

with TV regularization functionals (4.4) or (4.5), e.g. in application to PET [93, 127],

deconvolution problems [19, 57, 72, 147], or denoising problems with identity operator

K [104], but still with some restrictions. These limitations can be traced back to the

strong computational difficulties in the minimization of (4.3) with TV regularization

and can be separated in two main problems:

• The methods use the exact definition of total variation in (4.4), but require an

inversion of the operator K∗K , where K∗ is the adjoint operator of K . For

example, the authors in [72] and [147] proposed two algorithms, called PIDAL

and PIDSplit+, using an augmented Lagrangian approach and the equivalent split

Bregman method, respectively. Both algorithms require an inversion of the opera-

tor I + K∗K , where I is the identity operator, with the result that such methods

are efficient only if K∗K is diagonalizable and can be inverted efficiently, as for

instance a convolution operator via fast Fourier transform (FFT) or discrete cosine

transform (DCT). Additionally, in contrast to the PIDSplit+ algorithm in [147],

the PIDAL algorithm in [72] ensures that Ku is nonnegative and not that the

final solution u is nonnegative, which however is essential in (4.3).
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• To overcome the non differentiability of the TV regularization functional, the other

class of methods uses an approximation of (4.5) by differentiable functionals,

|u|εBV (Ω) =

∫
Ω

√
|∇u|2 + ε dx , ε > 0 , (4.6)

and creates blurring effects in reconstructed images. In [14], Bardsley proposed an

efficient computational method based on gradient projection and lagged-diffusivity,

where the nonnegativity constraint is guaranteed via a simple projection on the

feasible set. On the other hand, the schemes in [57], [93] and [127] are realized as

elementary modifications of the EM algorithm (see Section 4.3) with a fully explicit

or semi-implicit treatment of TV in the iteration. A major disadvantage of these

approaches is that the regularization parameter α need to be chosen very small,

since otherwise the positivity of solutions is not guaranteed and the EM based

algorithm cannot be continued. Due to the additional parameter dependence on

ε these algorithms are even less robust.

In this chapter, we propose a robust framework for the regularized Poisson likelihood

estimation problem (4.3) using arbitrary convex regularization energy J , which can be

even singular (i.e. non differentiable in the usual sense and not strictly convex). In

Section 4.4, we use a forward-backward (FB) splitting approach [107, 128, 157] for this

framework, that can be realized by alternating a classical EM reconstruction step and

solving a convex variational problem which is just a simple modification of the well-

known version of the regularized L2 problem with a weight in the data fidelity term.

The first advantage of this approach is that the EM algorithm does not needed any

inversion of the operator K and is hence applicable for an arbitrary operator, as e.g.

the Radon or X-ray transform [123]. Additionally, if the implementation of the EM

algorithm already exists, one can use it without any modifications. Furthermore, due

to the decoupling of reconstruction and smoothing done by the FB splitting approach,

one can use standard numerical schemes known from the regularized L2 problem in

the smoothing step, depending on the chosen regularization functional J , with some

simple modifications caused by the weight in the data fidelity term, e.g. even for the

exact TV regularization functional (4.4). Hence, this approach enables a high flexibility,

can be performed equally well for large regularization parameters and is also favourably

applicable for problems with a low signal-to-noise ratio.

In Section 4.5, we then propose a regularized variational model to denoise an image

corrupted by Poisson noise. Of course, this model corresponds to the reconstruction

problem (4.3) with the identity operator K and we can reduce the FB splitting approach

for K = I . This procedure leads to an iterative strategy where in each step a weighted
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L2 regularization model is to be solved. Due to the iterative nature of this approach, we

investigate additionally a second order Taylor approximation of the Poisson data fidelity

term in (4.3) with K = I , which yields a more straight-forward numerical solution.

In Section 4.6, we additionally study the FB splitting model from an analytical point

of view. We investigate the well-posedness of the minimization problem (4.3) with a

convex regularization functional J in terms of existence, uniqueness and stability, prove

the positivity preservation of the FB splitting algorithm and provide a convergence

analysis for a damped FB splitting strategy.

Finally, in image processing it is well known that regularization techniques lead in almost

all cases to so-called systematic errors in the reconstructions. Hence, we present in

Section 4.7 an iterative refinement strategy in order to improve the reconstruction results

obtained with the FB splitting approach using inverse scale space methods based on

Bregman distance regularization. We shall also repeat the main aspects of the (inverse)

scale space methods and clarify the connection to the Bregman distance iteration.

4.2 Statistical Modeling

In Section 2.2, we already discussed the basic concepts of the statistical problem for-

mulation of image reconstruction, which we would like to consider here more exactly in

case of Poisson distributed raw data. To recall, the problem of image reconstruction can

be formulated as a solution of a linear and highly ill-conditioned operator equation

f = Ku , (4.7)

where f are given raw data in form of a vector f ∈ RN and K : U(Ω) → RN is

an operator that transforms the spatial distribution of the desired object into sampled

signals f on the detectors. Since in practice the given raw data contain noise caused

by the detector system with the noise being a random process, we consider the detected

value fi as a realization of a random variable Fi . Hence, in order to obtain a complete

mathematical modeling of the image reconstruction problem, we need a model for the

probability density of the noise.

In this work, we concentrate on a specific non-Gaussian noise, namely so-called Poisson

or photon counting noise. This type of noise appears for example in positron emission

tomography (PET) due to the radioactive decay of tracers and counting of photon co-

incidences [148, 167], or in optical nanoscopy due to photon counts by laser sampling of

an object [122, 57]. For this kind of noise, every Fi corresponds to a Poisson random
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variable with an expectation value given by (Ku)i , i.e.

Fi is Poisson distributed with parameter (Ku)i .

Hence, we obtain the following conditional probability density p(f |u) of noisy data f

given an image u with respect to the random variables Fi (cf. (2.4)),

p(f |u) =
N∏
i=1

(Ku)fii
fi !

e−(Ku)i . (4.8)

Now, to determine an approximation to the unknown object u , the Bayesian model and

the maximum a-posteriori probability (MAP) estimation via the negative log-likelihood

function − log p(u|f) and a Gibbs a-priori density p(u) of the form (2.8) lead to a

minimization problem of the form (cf. (2.7) and (2.9)),

uMAP ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{ − log p(u|f) } = arg min
u ∈W (Ω)
u≥ 0 a.e.

{ − log p(f |u) + αJ(u) } , (4.9)

where J : W (Ω) → R≥ 0 is an energy functional, usually convex, on a Banach space

W (Ω) ⊂ U(Ω) . Note that an additional positivity constraint on the solution is taken

into account, which is important in typical applications with Poisson distributed raw

data, since in such cases the functions in general represent densities or intensity infor-

mation.

Now, for a detailed specification of the likelihood function p(u|f) in (4.9), we take the

probability density p(f |u) of the Poisson noise (4.8) and obtain the following negative

log-likelihood function,

− log p(u|f) =
N∑
i=1

(
(Ku)i − fi log(Ku)i

)
+ αJ(u) , (4.10)

in which the additive terms independent of u are neglected. At this point, in order to

have a simpler basis for the construction and the later analysis of the methods, we will

pass over from a discrete to a continuous representation of the data. For this sake, we

assume that any element g in the discrete data space RN can be interpreted as samples

of a function in V (Σ) , which we denote for the sake of convenience with g again. Then,

with the indicator function

χMi
(x) =

 1 , if x ∈ Mi ,

0 , else ,
(4.11)
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where Mi is the region of the i -th detector, we can interpret the discrete data as mean

values,

fi =

∫
Mi

f dx =

∫
Σ

χMi
f dx .

Thus, with the negative log-likelihood function in (4.10), we can rewrite the MAP esti-

mate in (4.9) as following continuous variational problem,

uMAP ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{ ∫
Σ

(Ku − f logKu) dµ + αJ(u)

}
, (4.12)

with dµ =
∑N

i=1 χMi
dλ , where λ denotes the Lebesque measure.

4.3 Reconstruction Method : EM Algorithm

In the literature there are in general two classes of reconstruction methods that are

used. On the one hand analytical (direct) methods and on the other hand algebraic

(iterative) strategies. A classical representative for a direct method is the Fourier-based

filtered backprojection (FBP). Although FBP is well understood and can be computed

efficiently, iterative type methods obtain more and more attention in practice. The

major reason is the high noise level, i.e. low signal-to-noise ratio, and the special type

of statistics found in measurements of various applications, such as positron emission

tomography or fluorescence microscopy, which cannot be taken into account by direct

methods. Thus, we shall use in this work the expectation-maximization (EM) algorithm

[56], which is a popular iterative method to maximize the likelihood function p(f |u) in

problems with incomplete data.

In the previous section, we presented a statistical problem formulation for inverse prob-

lems with measured data drawn from Poisson statistics and could observe that the

Bayesian MAP approach leads to a constrained minimization problem (4.12). In this

section, we will give a review on a currently standard iterative reconstruction method for

this problem, namely the so-called expectation-maximization (EM) algorithm [56, 123,

148], which finds numerous applications, for instance in medical imaging, microscopy

or astronomy. In the two latter ones, the algorithm is also known as Richardson-Lucy

algorithm [136, 111]. The EM algorithm is an iterative procedure to maximize the like-

lihood function p(f |u) in problems with incomplete data and will form a basis for our

algorithms introduced later. Here, we neglect the prior knowledge and assume that

any object u has the same relevance, i.e. the Gibbs a-priori density p(u) in (2.8) is

constant. For simplicity, we normalize p(u) such that J ≡ 0 . Hence, the problem in
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(4.12) reduces to the following variational problem with a positivity constraint,

min
u ∈ U(Ω)
u≥ 0 a.e.

∫
Σ

(Ku − f logKu) dµ . (4.13)

To derive the algorithm, we consider the first order optimality condition of the con-

strained minimization problem (4.13). Formally, the Karush-Kuhn-Tucker (KKT) con-

ditions [89, Thm. 2.1.4] provide the existence of a Lagrange multiplier λ ≥ 0 , such

that the stationary points of the functional in (4.13) need to fulfill the equations,

0 = K∗1Σ − K∗
(
f

Ku

)
− λ ,

0 = λu ,

(4.14)

where K∗ is the adjoint operator of K and 1Σ ∈ (V (Σ))∗ is the characteristic function

on Σ . Since the optimization problem (4.13) is convex (cf. the comments to equation

(4.17)), every function u fulfilling the equations in (4.14) is a global minimum of (4.13).

Now, multiplying the first equation in (4.14) by u , the Lagrange multiplier λ can be

eliminated by the second equation and the subsequent division by K∗1Σ leads to a

simple iteration scheme

uk+1 =
uk

K∗1Σ

K∗
(

f

Kuk

)
, (4.15)

which preserves positivity if the operator K preserves positivity and the initialization u0

is positive. This iteration scheme is the well-known EM or Richardson-Lucy algorithm.

In [148], Shepp und Vardi showed that this iteration is actually a closed example of

the EM algorithm proposed by Dempster, Laird and Rubin in [56], who presented the

algorithm in a more general setup.

In the case of noise-free data f = f̄ , several convergence proofs of the EM algorithm

to the maximum likelihood estimate (4.9), i.e. the solution of (4.13), can be found

in literature [123, 135, 160, 91]. Besides, it is known that the speed of convergence

of iteration (4.15) is slow. A further property of the iteration is a lack of smoothing,

whereby the so-called “checkerboard effect” arises, i.e. single pixels become visible in

the iterates.

For noisy data f , the convergence issue requires a distinction between the discrete and

continuous setting. In the fully discrete case, i.e. if K is a matrix und u a vector,

the existence of a minimizer can be guaranteed since the smallest singular value is

bounded away from zero by a positive value. Hence, the iterates are bounded during the

iteration and convergence is ensured. However, if K is a general continuous operator,

the convergence is not only difficult to prove, but even a divergence of the EM algorithm
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is possible due to the underlying ill-posedness of the image reconstruction problems.

This aspect can be seen as a lack of additional a-priori knowledge about the unknown

u resulting from J ≡ 0 and is not really surprising according to the discussion in

Section 2.2. Since, the variational problem (4.13) corresponds to the clasical approach

of maximum likelihood (ML) estimation, cf. (2.5). More precisely, the ML approach

remains ill-posed because it uses only information about the noise and not additional

information about the desired object, for what reason the ill-posedness spreads from the

operator equation (4.7) to the ML approach (4.13).

As described in [135], the EM iterates show the following typical behavior for ill-posed

problems. Namely, the (metric) distance between the iterates and the exact solution

decreases initially before it increases as the noise is amplified during the iteration process.

This issue might be regulated by using appropriate stopping rules to obtain reasonable

results. In [135], the authors have shown that certain stopping rules indeed allow stable

approximations. Another possibility to improve reconstruction results considerably are

regularization techniques, which we shall discuss in the following sections.

4.4 Reconstruction Method : Regularized EM Algorithm

4.4.1 FB-EM-REG Algorithm

The EM or Richardson-Lucy algorithm, that we discussed in Section 4.3, is currently

the standard iterative reconstruction method for most inverse problems with incomplete

Poisson data based on the linear equation (4.7). However, by setting J ≡ 0 , no a-priori

knowledge about the expected solution is taken into account, i.e. different images have

the same a-priori probability. Especially in case of measurements with low signal-to-noise

ratio (SNR), as they occur in positron emission tomography examinations with lower

dose rate or tracers with short radioactive half life, the multiplicative fixed point iteration

(4.15) delivers unsatisfactory and noisy results even with early termination. Therefore,

we propose to integrate nonlinear variational methods into the reconstruction process

to make an efficient use of a-priori information and to obtain improved results.

An attractive approach to improve the reconstructions from the EM algorithm is to

use a regularization approach. In the classical EM algorithm, the negative log-likelihood

functional (4.13) is minimized. In the regularized EM approach, we modify the functional

by adding a weighted regularization term J(u) ,

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Σ

(Ku − f logKu) dµ + αJ(u) , α > 0 . (4.16)
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The specific choice of J(u) is important for the way a-priori information about the

expected solution is incorporated into the reconstruction process. In the recent past,

singular regularization energies, especially those of `1 - or L1 -type, have attracted strong

attention in variational problems, but are difficult to handle due to their non differen-

tiable nature.

In the following, we consider a general Poisson framework where the regularization

energy J is any convex functional that can be also singular, i.e. in particular non

differentiable in the classical sense. Subsequently, we discuss especially in Chapters 6

and 7 a popular regularization technique in mathematical image processing, namely the

TV regularization and its nonlocal extension. For the solution of (4.16), we propose

here a forward-backward splitting algorithm, which can be realized by alternating classi-

cal EM steps with almost standard denoising steps as encountered in image denoising.

For designing the proposed algorithm, we consider the first order optimality condition

of (4.16). However, due to the assumptions on the regularization functional J , this

variational problem can be non differentiable in the usual sense and other concepts are

required to deal with such problems.

Fortunately, there are powerful methods from convex analysis which are available for

general convex variational problems, see Section 3.2. As described in [134], the data

fidelity term in (4.16) can be extended to a convex functional without changing the

stationary points of the minimization problem, namely

min
u ∈W (Ω)
u≥ 0 a.e.

DKL(f,Ku) + αJ(u) (4.17)

with the Kullback-Leibler (KL) functional DKL defined by

DKL(v, u) =

∫
Σ

(
v log

v

u
− v + u

)
dµ .

For further comments and properties regarding the KL functional see Remark 4.6.2 and

Section 4.6.1. Now, due to the assumption of convexity of the regularization functional

J , the minimization problem (4.17) is convex and we can use the methods from convex

analysis, which we summarized in Section 3.2.

In order to compute the first order optimality condition of the minimization problem

(4.17), we use a generalized derivative for convex functionals called subdifferential (see

Definition 3.2.6), that we denote with ∂ . Generally, the subdifferential is a multi-valued

set and a single element is called subgradient. For the use of the subdifferential calculus

on the functional in (4.17), note that due to the definition of functional DKL(f,K · )
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on U(Ω) , its subgradients are elements in (U(Ω))∗ , while the subgradients of J are

elements in a larger function space (W (Ω))∗ , since W (Ω) ⊂ U(Ω) . However, we can

extend J to a convex functional on U(Ω) (see Remark 3.2.3, Item (3)) by setting

J(u) := ∞ if u ∈ U(Ω) \W (Ω) , (4.18)

such that during the minimization process in (4.17) solutions from the smaller space

W (Ω) will still be preferred. Hence, due to the continuity of the KL functional and the

subdifferential calculus in Lemma 3.2.13, we obtain the following identity

∂
(
DKL(f,Ku) + αJ(u)

)
= ∂uDKL(f,Ku) + α ∂J(u)

in (U(Ω))∗ ⊂ (W (Ω))∗ for any f ∈ V (Σ) . Finally, since the subdifferentials ∂u of the

KL functional DKL are singletons, the first optimality condition of (4.17) for a positive

solution u is given by

K∗1Σ − K∗
(
f

Ku

)
+ α p = 0 , p ∈ ∂J(u) , (4.19)

where K∗ denotes the adjoint operator of K and 1Σ the characteristic function on Σ .

The simplest iteration scheme to compute a solution of the variational problem (4.16)

is a gradient-type method. However, such an approach is not robust in case of singular

regularization energies, such that severe step size restrictions are needed, since the sub-

gradient p of J is treated explicitely. A better idea is to use an iteration scheme which

evaluates the nonlocal term (including the operator K ) in (4.19) at the last iterate uk

and the local term (including the subgradient of J ) at the new iterate uk+1 , i.e.

1Ω −
1

K∗1Σ

K∗
(

f

Kuk

)
+ α

1

K∗1Σ

pk+1 = 0 , pk+1 ∈ ∂J(uk+1) , (4.20)

with an additional division of (4.19) by K∗1Σ . However, in this iteration the new

iterate uk+1 appears only as a point of reference for the subdifferential of J . That is a

considerable drawback, since uk+1 cannot be determined from (4.20) due to the missing

of one-to-one relation between subgradients (dual variables) and the primal variable u .

In addition, such iteration schemes cannot guarantee preservation of positivity. Hence,

we obtain an improved method if we approximate the constant term 1Ω in (4.20) by
uk+1

uk
, where such an approximation seems of course reasonable in case of convergence of

iterates, so that uk+1 appears directly, i.e.

uk+1 −
uk

K∗1Σ

K∗
(

f

Kuk

)
+ α

uk
K∗1Σ

pk+1 = 0 , pk+1 ∈ ∂J(uk+1) . (4.21)
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In order to verify that this iteration scheme actually preserves positivity, we proceed in

an analogous way to the EM algorithm in Section 4.3. Namely, due to the nonnegativity

constraint in (4.16), the Karush-Kuhn-Tucker (KKT) conditions [89, Thm. 2.1.4] provide

the existence of a Lagrange multiplier λ ≥ 0 , such that the stationary points of the

functional in (4.17) need to fulfill

0 ∈ K∗1Σ − K∗
(
f

Ku

)
+ α ∂J(u) − λ ,

0 = λu .

(4.22)

By multiplying the first equation in (4.22) by u , the Lagrange multiplier λ can be

eliminated by the second equation and the subsequent division by K∗1Σ leads to a

fixed point equation of the form

u − u

K∗1Σ

K∗
(
f

Ku

)
+ α

u

K∗1Σ

p = 0 , p ∈ ∂J(u) , (4.23)

which is just the optimality condition (4.19) multiplied by u , i.e. this multiplication

corresponds to the nonnegativity constraint in (4.16). Furthemore, the iteration (4.21)

is just a semi-implicit approach to the fixed point equation (4.23). In Section 4.6.4,

we will then prove that the iteration method (4.21) actually preserves positivity if the

operator K preserves positivity and the initialization u0 is positive.

It is remarkable that the second term in the iteration (4.21) is just a single EM step

from (4.15). Therefore, the method (4.21) solving the variational problem (4.16) and

(4.17), respectively, can be realized as a nested two step iteration of the form

uk+ 1
2

=
uk

K∗1Σ

K∗
(

f

Kuk

)
, (EM step)

uk+1 = uk+ 1
2
− α

uk
K∗1Σ

pk+1 , pk+1 ∈ ∂J(uk+1) . (REG step)

(4.24)

Thus, we alternate an EM reconstruction step with a suitable regularization (REG) step

to compute a solution of (4.16), respectively (4.17). In Section 4.4.3, we will especially

see that this iteration scheme can be interpreted as a modified forward-backward (FB)

splitting strategy and denote it thus as FB-EM-REG algorithm. The complex second

half step from uk+ 1
2

to uk+1 in (4.24) can be realized by solving the convex variational

problem

uk+1 ∈ arg min
u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u − uk+ 1

2

)2

uk
+ αJ(u)

 . (4.25)
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Inspecting the first order optimality condition of (4.25) confirms the equivalence of

this minimization problem with the regularization step in (4.24) due to convexity. The

solution approach of (4.25) is now dependent on the corresponding choice of the regu-

larization functional J . It is however interesting to note that the problem (4.25) is just

a modified version of the frequently used variational model in image denoising problems

based on Gaussian assumed noise in the data, i.e. usual L2 data deviation, with the dif-

ference of a weight K∗1Σ

uk
in the data fidelity term. Hence, dependent on J , one can use

standard numerical schemes known for these regularization strategies with some simple

modifications, cf. e.g. the numerical realizations of (4.25) in the case of (nonlocal) total

variation regularization in Sections 6.3.3, 6.3.4, 7.4.1 and 7.4.2.

4.4.2 Damped FB-EM-REG Algorithm

The alternating structure of the proposed iteration (4.24) has a particular advantage that

we might control the interaction between reconstruction and regularization via a simple

adaption of the second half step. A possibility is a damped version of the regularization

step, namely

uk+1 = (1− ωk)uk + ωk uk+ 1
2
− ωk α

uk
K∗1Σ

pk+1 , ωk ∈ (0, 1] , (4.26)

which relates the current EM iterate uk+ 1
2

to the previous regularized iterate uk in a

way of a convex combination by using a damping parameter ωk . The damped half step

(4.26) can also be realized in an analogous way to (4.25), namely by minimizing the

variational problem

uk+1 ∈ arg min
u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u −

(
ωk uk+ 1

2
+ (1− ωk)uk

))2

uk
+ ωk αJ(u)

 . (4.27)

This aspect is required to attain a monotone descent of the objective functional in

(4.16) and (4.17) during the minimization process (see (4.65)). Finally, for ωk = 1 ,

the iteration (4.26) simplifies to the original regularization step in (4.24). For a small

ωk , the iterations stay close to regularized solutions uk . For an adequate choice of

ωk ∈ (0, 1] , we can prove in Theorem 4.6.14 the convergence of the proposed two step

iteration with respect to the damped regularization step (4.26), additionally with an

explicit bound on ωk in the special case of denoising problems (see Corollary 4.6.15),

i.e. K being the identity operator.
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4.4.3 Forward-Backward Splitting

In the previous Sections 4.4.1 and 4.4.2, we introduced the FB-EM-REG reconstruction

method as a two step algorithm (4.24) with an additional damping modification (4.26).

This two step strategy can be interpreted as an operator splitting algorithm. In convex

optimization such splitting methods arise in the context of decomposition problems.

Recently, some works in literature picked up these splitting ideas, providing efficient

algorithms in image processing, see e.g. [146, 27, 51, 52]. Most of the papers dealing

with convex splitting strategies go back to early works of Douglas and Rachford [61] and

other authors in [107] and [157].

The optimality condition (4.19) of our underlying variational problem (4.16) can be

interpreted as a decomposition problem (C = A + B) , regarding the convex Kullback-

Leibler functional and the convex regularization term, respectively their subdifferentials.

Hence, we consider the stationary equation

0 ∈ C(u) := K∗1Σ − K∗
(
f

Ku

)
︸ ︷︷ ︸

=: A(u)

+ α ∂J(u)︸ ︷︷ ︸
=: B(u)

,

with two maximal monotone operators A and B . Hence, the damped two step iteration

(4.24) with the modified regularization step (4.26) and ωk ∈ (0, 1] reads as follows,

K∗1Σ

(
uk+ 1

2
− uk

)
uk

+ Auk = 0

K∗1Σ

(
uk+1 − ωk uk+ 1

2
− (1− ωk)uk

)
uk

+ ωk B uk+1 = 0

(4.28)

and can easily be formulated as a forward-backward splitting algorithm of the form

K∗1Σ

(
ũk+ 1

2
− uk

)
ωk uk

+ Auk = 0 (forward step on A )

K∗1Σ

(
uk+1 − ũk+ 1

2

)
ωk uk

+ B uk+1 = 0 (backward step on B )

with

ũk+ 1
2

= ωk uk+ 1
2

+ (1− ωk)uk .

Compared to the undamped iteration strategy (4.24), in case of damped iteration scheme

(4.26), the artificial time step size is not only given by uk , but can also be controlled

via the additional damping parameter ωk . In a more compact form, the whole iteration
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can be formulated as

uk+1 =

(
I +

ωk uk
K∗1Σ

B

)−1(
I − ωk uk

K∗1Σ

A

)
uk (4.29)

= (Lk + B)−1 (Lk − A) uk

with a multiplication operator Lk defined by K∗1Σ

ωk uk
.

The forward-backward splitting approach for maximal monotone operators has been

suggested independently by Lions and Mercier [107] and Passty [128]. In our case, we

will see in Theorem 4.6.14 that the key to proving the convergence of the FB-EM-REG

splitting algorithm lies in the incorporation of damping parameters ωk .

Finally, notice that there are alternatives to the forward-backward splitting strategy

such as the Peaceman-Rachford or Douglas-Rachford splitting schemes, see e.g. [107]

or [146], which are indeed unconditionally stable. However, these approaches have the

numerical drawback that also an additional backward step on A has to be performed,

which would mean an inversion of the operator K∗K , cf. e.g. [72] or [147]. There, the

authors use an augmented Lagrangian approach and a split Bregman method in case of

total variation regularization, which are equivalent [69] and correspond to the Douglas-

Rachford splitting strategy applied to the dual problem of (4.16) [146]. However, these

methods require an inversion of the operator K∗K and hence are only efficient if K∗K is

diagonalizable and can be inverted efficiently, for example in the case of the convolution

operator K using the fast Fourier transform or the discrete cosine transform.

4.4.4 Stopping Rules

After the description of the damped FB-EM-REG algorithm in Sections 4.4.1 and 4.4.2,

it is useful to define appropriate stopping rules in order to guarantee the accuracy of the

proposed algorithm. In addition to a maximum number of iterations, the error in the

optimality condition (4.19) can be taken as a basic stopping criterion in a suitable norm.

For this purpose, we define a weighted norm deduced from a weighted scalar product,

〈u, v〉w :=

∫
Ω

u v w dλ and ‖u‖2,w :=
√
〈u, u〉w , (4.30)

with a positive weight function w and the standard Lebesque measure λ on Ω . Hence,

the error in the optimality condition can be measured reasonably in the following norm,

optk+1 :=

∥∥∥∥K∗1Σ − K∗
(

f

Kuk+1

)
+ α pk+1

∥∥∥∥2

2,uk+1

. (4.31)
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Furthermore, due to the fact that we use a damped two step iteration, we are not only

interested in the improvement of the whole optimality condition (4.19), but also in the

convergence of the sequence of primal functions (uk) and the sequence of subgradients

(pk) with pk ∈ ∂J(uk) . Hence, in order to establish appropriate stopping rules for these

sequences, we consider the damped regularization step (4.26) with the EM reconstruction

step in (4.24),

uk+1 − ωk
uk

K∗1Σ

K∗
(

f

Kuk

)
− (1− ωk)uk + ωk α

uk
K∗1Σ

pk+1 = 0 .

By combining this iteration scheme with the optimality condition (4.23) evaluated at

uk , which must be fulfilled in the case of convergence, we obtain an optimality statement

for the sequences (pk) and (uk) ,

α (pk+1 − pk) +
K∗1Σ (uk+1 − uk)

ωk uk
= 0 . (4.32)

With the aid of the weighted norm (4.30), we now have additional stopping criteria for

the FB-EM-REG algorithm, which guarantee the accuracy of the primal functions (uk)

and the subgradients (pk) , namely

uoptk+1
:=

∥∥∥∥ K∗1Σ (uk+1 − uk)

ωk uk

∥∥∥∥2

2,uk+1

,

poptk+1
:= ‖ α (pk+1 − pk) ‖2

2,uk+1
.

(4.33)

We finally mention that the stopping criteria (4.31) and (4.33) are well defined, since we

can prove that each iterate uk of the damped FB-EM-REG splitting strategy is strictly

positive, see Lemma 4.6.12.

4.4.5 Pseudocode and Some Remarks

If we summarize the observations in the Sections 4.4.1, 4.4.2 and 4.4.4, we can now use

Algorithm 4.1 to solve the regularized Poisson likelihood estimation problem (4.16).

Remark. Selecting a reasonable regularization parameter α in our model is a common

problem. In the case of additive Gaussian noise, there exist several works in litera-

ture dealing with this problem in the case of the total variation regularization, see e.g.

[106, 155, 162]. Finding an “optimal” regularization parameter is, in general, more

complicated for non-Gaussian noise models. Nevertheless, there exist a few works in

literature addressing this issue, see e.g. [16] and the references therein or [22].
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Algorithm 4.1 (Damped) FB-EM-REG Algorithm

1. Parameters: f , α > 0 , ω ∈ (0, 1] , maxEMIts ∈ N , tol > 0

2. Initialization: k = 0 , u0 := c > 0

3. Iteration:

while ( ( k < maxEMIts ) and

( optk ≥ tol or uoptk ≥ tol or poptk ≥ tol ) ) do . (4.31), (4.33)

i) Compute uk+ 1
2

via EM step in (4.24).

ii) Set ωk = ω.

iii) Compute uk+1 via convex variational problem (4.27).

iv) k ← k + 1

end while

4. Return uk

4.5 Image Denoising

In this section, we are interested in the problem of image denoising, which is a widely

studied problem in applied mathematics and has a wide application in fields ranging

from computer vision to medical imaging. For an overview of the subject and various

methods, we refer e.g. to [6, 49] and references therein. However, most works deal with

additive white Gaussian noise, i.e. given an original image ū , it is assumed that the

observed image f is corrupted by some additive white Gaussian noise η . The denoising

problem is then to recover ū from the data f = ū+ η . In the literature, there are many

effective methods to tackle this problem, like wavelet approaches [60], [44], stochastic

approaches [75] and variational approaches [138]. In the case of Gaussian noise, the

variational methods can be written as minimization problems for an energy functional

of the form [49, 143],

min
u ∈W (Ω)

1

2

∫
Ω

(u − f)2 dµ + αJ(u) ,

in order to obtain a denoised version u of a given image f , which is certainly only an

approximation to the original ū . One of the most popular approaches is the Rudin-

Osher-Fatemi (ROF) model (6.6) [138], which used total variation as regularization

functional J (cf. Section 6.1) and realized results preserving edges. However, the

Poisson noise in the images has not yet obtained wide attention in the literature, some

methods are to find in [104, 46] and references therein.
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In [104], Le, Chartrand and Asaki proposed a total variation based variational model to

denoise an image corrupted by Poisson noise, which can be generalized to the following

minimization problem with an arbitrary convex regularization functional J ,

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Ω

(u − f log u) dµ + αJ(u) . (4.34)

The optimality condition of this problem is given via the Karush-Kuhn-Tucker (KKT)

conditions [89, Thm. 2.1.4], similar to (4.22) with identity operator K ,

u ( 1 − f

u
+ α p ) = 0 , p ∈ ∂J(u) . (4.35)

To solve the minimization problem (4.34) with the total variation regularization J ,

the authors in [104] suggest to use a gradient descent algorithm based on the Euler-

Lagrange equation. However, such an approach requires always an approximation of

TV by differentiable functionals (4.6) and needs a severe step size restriction. Here,

we propose an approach which is based on the FB-EM-REG strategy introduced in the

previous Sections 4.4.1 and 4.4.2.

4.5.1 Exact Denoising Model

To establish the problem formulation (4.34), the authors in [104] use Bayes’ theorem and

the maximum a-posteriori probability estimation via the negative log-likelihood function

such that it is not surprising that the problem (4.34) coincides in the case of identity

operator K with the Poisson likelihood reconstruction model (4.16). Hence, to propose

a numerical iteration scheme for the Poisson denoising problem, we can use the FB-EM-

REG splitting strategy (4.24) with the damped modification (4.26), which simply results

in the following iteration scheme (note that the EM reconstruction step vanishes in the

denoising case, i.e. it holds uk+ 1
2

= f ),

uk+1 = (1− ωk)uk + ωk f − ωk αuk pk+1 , pk+1 ∈ ∂J(uk+1) , (4.36)

with ωk ∈ (0, 1] . Analogous to the FB-EM-REG algorithm, this iteration step can be

realized by solving the convex variational problem of the form (cf. (4.25) and (4.27)),

uk+1 ∈ arg min
u ∈W (Ω)

{
1

2

∫
Ω

(
u −

(
ωk f + (1− ωk)uk

))2

uk
+ ωk αJ(u)

}
. (4.37)

Note in particular that in the undamped case (i.e. ωk = 1 ), the algorithm (4.36) is

just a semi-implicit iteration scheme with respect to the optimality condition (4.35) and

thus actually computes a denoised image in the Poisson case.
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4.5.2 Approximated Denoising Model

As we have seen, the iteration scheme (4.36) solves the Poisson denoising problem (4.34)

by a sequence of modified L2 variational models of the form (4.37). The advantage

is that, in this way, we obtain a maximum a-posteriori probability (MAP) estimate,

but at the price of high computational effort, which is comparable to the incorporated

FB-EM-REG reconstruction strategy (4.24).

Hence, to reduce the computational complexity in the case of Poisson image denoising, we

introduce an approximation of the denoising problem, based on the second order Taylor

approximation of the data fidelity term in (4.34). To justify the usage of the Taylor

approximation, note that as usual for variational methods, we expect that the solution

u fulfills a certain regularity or smoothness (caused by the regularization functional J )

but yet approximates moderately well the given image f (caused by the data fidelity

term). Hence, we can expect a certain closeness of u to f such that it is formally

possible to perform the Taylor expansion of the data fidelity term in (4.34) at f . For

this purpose, we define an auxiliary functional Gf as the data fidelity term in (4.34),

Gf (v) :=

∫
Ω

(v − f log v) dµ ,

and obtain the following linearization

Gf (u) = Gf (f) + G′f (f ; u − f) +
1

2
G′′f (f ; u − f, u − f) + O

(
(u − f)3

)
, (4.38)

using the terminology of directional derivatives in Definition 3.2.14. Now, to compute

these derivatives, we use the strategy proposed in Remark 3.2.15, Item (2), and consider

first the directional derivative G′f . To do this, let φw1 : R≥ 0 → R ∪ {±∞} be a

function defined by φw1(t) := Gf (v + t w1) for any w1 ∈ U(Ω) , then the directional

derivative G′f (v; w1) of Gf at v in the direction w1 is given by

G′f (v; w1) = φ′w1
(t)
∣∣
t= 0

=

∫
Ω

∂

∂t

(
(v + t w1) − f log(v + t w1)

)
dµ

∣∣∣∣
t= 0

=

∫
Ω

(
1 − f

v

)
w1 dµ .

(4.39)

Next, let φw2 be defined by φw2(t) := G′f (v + t w2; w1) for any w2 ∈ U(Ω) , then the

second directional derivative G′′f (v; w1, w2) of Gf at v in directions w1 and w2

G′′f (v; w1, w2) = φ′w2
(t)
∣∣
t= 0

=

∫
Ω

∂

∂t

((
1 − f

v + t w2

)
w1

)
dµ

∣∣∣∣
t= 0

=

∫
Ω

(
f w2w1

v2

)
dµ .

(4.40)
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Now, combining the results from (4.39) and (4.40), the Taylor expansion (4.38) delivers

the following linearization of the data fidelity term in (4.34),∫
Ω

(u − f log u) dµ =

∫
Ω

(f − f log f) dµ +
1

2

∫
Ω

(u − f)2

f
dµ + O

(
(u − f)3

)
.

Thus, neglecting terms of higher order and additive terms independent of u , we can

approximate the denoising problem (4.34) by

min
u ∈W (Ω)
u≥ 0 a.e.

1

2

∫
Ω

(u − f)2

f
dµ + αJ(u) . (4.41)

The efficiency of this linearization in comparison to the scheme in (4.36), where we have

to solve a sequence of variational models (4.37), is that we can compute a denoised image

by solving just a single modified L2 variational problem (4.41).

4.6 Analysis

In this section, we carry out a mathematical analysis of the regularized Poisson based

variational model (4.16) of the form

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Σ

(Ku − f logKu) dµ + αJ(u) , α > 0 . (4.42)

In the recent past, some authors proposed already several theoretical frameworks for the

regularized Poisson likelihood estimation problem (4.42), using different regularization

energies J(u) . For instance, Bardsley proposed in [15] a theoretical framework for the

Tikhonov regularization, regularization by diffusion, and total variation regularization

functional, referring to earlier joint works with Laobeul [17], [18] and Luttman [19].

Moreover, Resmerita and Anderssen studied in [134] the Kullback-Leibler functional as

regularization entropy J(u) in order to approximate solutions of inverse problems with

Poisson distributed data. In this thesis, we concentrate on the following aspects in the

mathematical analysis of (4.42):

• In contrast to the mentioned works of Bardsley [15] and Resmerita [134], we pro-

pose here a theoretical framework for an arbitrary convex regularization functional

J(u) , in particular for those which can be also non differentiable in the classical

sense, as the total variation or general `1 - or L1 -type functionals. For such ener-

gies, we prove the well-posedness, i.e. the existence, uniqueness, and stability of a

solution, with respect to the variational regularization methods in (4.42).
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• Moreover, we study the damped FB-EM-REG algorithm proposed in Sections

4.4.1 and 4.4.2 with respect to preservation of positivity of a solution and a stable

convergence behavior of this iteration scheme.

4.6.1 Kullback-Leibler Functional

In order to simplify the analysis of the regularized Poisson likelihood estimation problem

(4.42), we give in this section the definition of the Kullback-Leibler (KL) functional and

recall from [134] a collection of basic results about the KL functional, which will be

necessary in the following analysis. For further information on the KL functional, we

refer to [63] and [134].

Definition 4.6.1 (Kullback-Leibler Functional). The Kullback-Leibler (KL) functional

is a function DKL : L1(Σ) × L1(Σ) → R≥ 0 ∪ {+∞} given by

DKL(ϕ, ψ) =

∫
Σ

(
ϕ log

(
ϕ

ψ

)
− ϕ + ψ

)
dν for all ϕ, ψ ≥ 0 a.e. , (4.43)

where ν is a measure. Note that, using the convention 0 log 0 = 0 , the integrand in

(4.43) is nonnegative and vanishes if and only if ϕ = ψ .

Remark 4.6.2. In the literature, there are further notations for the KL functional, like

cross-entropy, information for discrimination or Kullback’s I-divergence (cf. e.g. [54],

[63] or [134]). The functional (4.43) generalizes the well known Kullback-Leibler entropy,

EKL(ϕ, ψ) =

∫
Σ

ϕ log

(
ϕ

ψ

)
dν ,

for functions which are not necessarily probability densities. In the definition above,

you get the extension by adding (linear) terms, which are chosen so that (4.43) is a

Bregman distance or divergence (see Definition 4.7.1) with respect to the Boltzman-

Shannon entropy [134, Sect. 3.1] given by

EBS(ϑ) =


∫

Σ
ϑ log ϑ dν , if ϑ ≥ 0 a.e. and ϑ log ϑ ∈ L1(Σ) ,

+∞ , else .

Lemma 4.6.3 (Properties of KL Functional). Let A : U(Ω) → V (Σ) be a linear

operator between locally convex spaces U(Ω) and V (Σ) (see Definition 3.1.17), such that

U(Ω) and V (Σ) are associated with topologies τU and τV . Additionally, we assume
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that the operator A is sequentially continuous (see Definition 3.1.5) with respect to the

topologies τU and τV and that V (Σ) is continuously embedded in L1(Σ) (see Definition

3.1.23). Moreover, we suppose that the operator A preserves positivity, i.e. it satisfies

Au ≥ 0 a.e. for any u ≥ 0 a.e. . Then, the following statements hold:

(i) The function (ϕ, ψ) 7→ DKL(ϕ, ψ) is convex and thus, due to the linearity of the

operator A , the function (ϕ, u) 7→ DKL(ϕ,Au) is also convex.

(ii) For any fixed nonnegative ϕ ∈ L1(Σ) , the function u 7→ DKL(ϕ,Au) is lower

semicontinuous with respect to the topology τU .

(iii) For any nonnegative functions ϕ and ψ in L1(Σ) , one has

‖ϕ − ψ‖2
L1(Σ) ≤

(
2

3
‖ϕ‖L1(Σ) +

4

3
‖ψ‖L1(Σ)

)
DKL(ϕ, ψ) .

Proof. (i) See [134, Lemma 3.4]. (iii) See [134, Lemma 3.3] and [24, Lemma 2.2].

(ii) The proof is almost identical with the one in [134, Lemma 3.4 (iii)], only a few

modifications are incorporated. Fix a nonnegative function ϕ ∈ L1(Σ) . Let (un) be

a sequence in the domain of the function v 7→ DKL(ϕ,Av) , which converges in the

topology τU to some u ∈ { v ∈ U(Ω) : v ≥ 0 a.e. } . Then, due to the sequential

continuity of the operator A with respect to the topologies τU and τV , as well as the

continuous embedding of V (Σ) in L1(Σ) , we also obtain the convergence of the sequence

(Aun) to Au in the norm topology on L1(Σ) , as well as the pointwise convergence

almost everywhere on Σ . Thus, the sequence
(
ϕ log(ϕ/Aun) − ϕ + Aun

)
converges

almost everywhere to ϕ log(ϕ/Au) − ϕ + Au and by applying Fatou’s Lemma, we

obtain∫
Σ

(
ϕ log

( ϕ

Au

)
− ϕ + Au

)
dν ≤ lim inf

n→∞

∫
Σ

(
ϕ log

(
ϕ

Aun

)
− ϕ + Aun

)
dν .

Now, this inequality means that the function v 7→ DKL(ϕ,Av) is lower semicontinuous

with respect to the topology τU .

Corollary 4.6.4. If (ϕn) and (ψn) are bounded sequences in L1(Σ) , then

lim
n→∞

DKL(ϕn, ψn) = 0 ⇒ lim
n→∞

‖ϕn − ψn‖L1(Σ) = 0 .

Proof. The statement follows directly from Lemma 4.6.3 (iii).
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4.6.2 Assumptions

In this section, we introduce the necessary foundations for the following analysis of

the regularized Poisson likelihood estimation problem (4.42), in particular we state the

required assumptions on the forward operator K and the regularization functional J .

However, to simplify the analysis of (4.42), we begin here with an extension of the data

fidelity term in (4.42), such that we can take advantage of already known results and

properties of the Kullback-Leibler (KL) functional introduced in Section 4.6.1. We see

that the data fidelity term in (4.42) has almost the form of the KL functional presented

in Definition 4.6.1. Hence, if we add the expression f log f − f to the data fidelity

term, which is independent from the desired function u , the stationary points of the

minimization problem are not influenced (if they exist) and (4.42) is equivalent to

min
u ∈W (Ω)
u≥ 0 a.e.

DKL(f,Ku) + αJ(u) , α > 0 , (4.44)

where DKL is the Kullback-Leibler functional as in Definition 4.6.1. Subsequently, we

can also extend the regularization functional J . To recall, we assumed in Sections 2.2

and 4.4 that the regularization functional

J : W (Ω) → R≥ 0

is convex on a Banach space W (Ω) ⊂ U(Ω) , where U(Ω) is a Banach space itself and

denotes the domain of the forward operator K . Hence, to have a simpler basis for the

analysis of (4.44), we can use a helpful extension of J to the whole space U(Ω) by

J(u) := +∞ if u ∈ U(Ω) \W (Ω) . (4.45)

Despite this extension, notice in the following that the extended functional J is convex

on U(Ω) (see Remark 3.2.3, Item (3)) and, furthermore, that solutions from the smaller

space W (Ω) are preferred during the minimization of J . Consequently, we can also

extend the admissible solution set of the minimization problem (4.44) from W (Ω) to

U(Ω) and denote for the following analysis the objective functional with F (u) ,

min
u ∈ U(Ω)
u≥ 0 a.e.

F (u) := DKL(f,Ku) + αJ(u) , α > 0 . (4.46)

Next, for the following assumptions, we recall the basic characteristics of the forward

operator K . As introduced in Section 2.1, we consider in this work the operator K as

a semi-discrete operator based on

K̄ : U(Ω) → V (Σ) ,
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where U(Ω) and V (Σ) are Banach spaces of functions on bounded and compact sets Ω

and Σ . The operator K̄ was claimed to be linear and compact. The difference between

both operators K and K̄ is that K transforms the desired functions from U(Ω) to

the discrete data space RN . Nevertheless, to be able to present a unified theory with

respect to the continuous problem formulation (4.42), we passed over from a discrete

to a continuous representation of the raw data using a point measure µ in Section 4.2.

There, we assumed that any element in the discrete data space RN can be interpreted

as samples of a function in Vµ(Σ) , where Vµ(Σ) denotes a Banach space of functions

with respect to the measure µ . Note that in the case of a fully continuous formulation

of the forward operator, the measure µ has to be set to the Lebesque measure and we

have Vµ(Σ) = V (Σ) . Hence, we consider K : U(Ω) → Vµ(Σ) below.

Now, based on the observations in this section, we make the following assumptions.

Assumption 4.6.5.

(i) The Banach spaces U(Ω) and Vµ(Σ) are associated with topologies τU and τV ,

where τU can also be weaker than the strong norm topology.

(ii) The Banach space Vµ(Σ) is continuously embedded in L1
µ(Σ) (Definition 3.1.23),

where L1
µ(Σ) is the Lebesque space L1(Σ) with respect to the measure µ .

(iii) The operator K : U(Ω) → Vµ(Σ) is linear and sequentially continuous with respect

to the topologies τU and τV (Definition 3.1.5).

(iv) The operator K preserves positivity, i.e. it satisfies Ku ≥ 0 a.e. for any u ≥ 0

a.e. and the equality is fulfilled if and only if u = 0 .

(v) If u ∈ U(Ω) satisfies c1 ≤ u ≤ c2 a.e. for some positive constants c1, c2 , then

there exist c3, c4 > 0 such that c3 ≤ Ku ≤ c4 a.e. on Σ .

(vi) The functional J : U(Ω) → R≥ 0 ∪ {+∞} is convex, lower semicontinuous with

respect to the topology τU (Definition 3.2.4) and can also be singular, i.e. it is not

differentiable in the classical sense.

(vii) For any nonnegative function f ∈ Vµ(Σ) ,

D(F ) := D(DKL(f,K · )) ∩ D(J) 6= ∅

holds, where D denotes the effective domain of a functional (see Definition 3.2.2).

In particular, this implies that the functional J is proper (see Definition 3.2.2).
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(viii) For every a > 0 , the sub-level sets SJ(a) of the functional J , defined by

SJ(a) := { u ∈ U(Ω) : J(u) ≤ a } ,

are sequentially precompact with respect to the topology τU (Definition 3.1.10).

Remark 4.6.6.

(1) The Assumptions 4.6.5 (ii) and (iv) are mainly necessary due to the fact that we

use a positivity constraint on the solution u in the minimization problem (4.46)

and that the domain of the KL functional as data fidelity term in (4.44) is strictly

included in the set {ϕ ∈ L1(Σ) : ϕ ≥ 0 a.e. } × {ψ ∈ L1(Σ) : ψ ≥ 0 a.e. } ,

see [134, Lemma 3.3].

(2) The Assumption 4.6.5 (v) is more of technical nature, but nevertheless it is not

significantly restrictive in most practical situations, since there are many classes of

linear ill-posed problems for which the required condition is fulfilled. An example

are integral equations of the first kind, which have smooth, bounded and positive

kernels. Such integral equations appear in numerous fields of applications, e.g. in

geophysics and potential theory or in deconvolution problems such as fluorescence

microscopy or astronomy. Another interesting example of operators, which fulfill

the Assumption 4.6.5 (v), is the X-ray transform which assigns the integral values

along all straight lines to a function. This transform coincides in two dimensions

with the well-known Radon transform and is strongly applied in medical imaging.

The Assumption 4.6.5 (v) is fulfilled in this example, if the length of the lines is

bounded and bounded away from zero, a condition which is obviously satisfied in

practice.

(3) The Assumptions 4.6.5 (vi)-(viii) are standard assumptions on the regularization

functional J , which are necessary to ensure the existence of a regularized solution

and to obtain the stability and convergence of the regularization method.

(4) Due to the definition of the effective domain (Definition 3.2.2) and the extension

property (4.45), it is easy to see that Assumption 4.6.5 (vii) implies D(F ) ⊂
W (Ω) . Of course, this means that solutions from the smaller space W (Ω) ⊂ U(Ω)

are preferred during the minimization of the functional F in (4.46).

(5) On order to verify the validity of the Assumption 4.6.5 (viii) for a specific reg-

ularization energy J , it suffices in general to show that the functional J on a

Banach space U(Ω) is W (Ω) -coercive (see Definition 4.6.7), where the Banach

space W (Ω) is compactly embedded in U(Ω) (see Definition 3.1.25).
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Definition 4.6.7 (Coercivity). Let U(Ω) and W (Ω) be Banach spaces such that W (Ω) ⊂
U(Ω) . A functional G defined on U(Ω) is called W (Ω) -coercive (cf. [89, Def. IV.3.2.6]),

if the sub-level sets of G are bounded in the ‖ · ‖W (Ω) norm, i.e. for all a ∈ R≥ 0 the set

{ u ∈ U(Ω) : G(u) ≤ a } is uniformly bounded in the W (Ω) -norm; or equivalently

G(u) → +∞ whenever ‖u‖W (Ω) → +∞ .

4.6.3 Well-Posedness of Minimization Problem

In this section, we verify the existence, uniqueness, and stability of the regularized

Poisson likelihood estimation problem consisting in the minimization of (4.46).

Theorem 4.6.8 (Existence of Minimizers). Let U(Ω) , Vµ(Σ) , K , J , and F satisfy

Assumption 4.6.5. Assume that α > 0 and f ∈ Vµ(Σ) is nonnegative. Then, the

functional F defined in (4.46) has a minimizer.

Proof. We use the direct method of the calculus of variations, see e.g. [6, Sect. 2.1.2]:

Since D(F ) 6= ∅ , there exists at least one v ∈ U(Ω) such that F (v) < ∞ . Thus, let

(un) ⊂ D(F ) , un ≥ 0 a.e., be a minimizing sequence of the functional F , i.e.

lim
n→∞

F (un) = inf
u ∈ D(F )

F (u) =: Fmin < ∞ . (4.47)

Then, we obtain that for every ε > 0 there exists n0 ∈ N such that for all n ≥ n0 ,

a := Fmin + ε ≥ F (un)
(4.46)
= DKL(f,Kun) + αJ(un) ≥ J(un) , (4.48)

due to the positivity of the KL functional DKL and α > 0 . Thus (un)n≥ n0 ⊂ SJ(a)

and it follows from Assumption 4.6.5 (viii) that (un) has a τU -convergent subsequence

(unj) , which converges to some ũ ∈ U(Ω) . Because J is lower semicontinuous with

respect to the topology τU , we have

J(ũ)
Def. 3.2.4

≤ lim inf
j→∞

J(unj)
(4.48)

≤ a

and with it that ũ ∈ SJ(a) . Simultaneously, caused by Lemma 4.6.3 (ii), also the

objective functional F in (4.46) is lower semicontinuous with respect to the topology

τU and implies the inequality

F (ũ)
Def. 3.2.4

≤ lim inf
j→∞

F (unj)
(4.47)
= Fmin ,

which means that ũ is a minimizer of F .
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Next, we consider the uniqueness of the minimizers, for which it suffices to verify the

strict convexity of the objective functional F . For this purpose, it is straight-forward

to see that the negative logarithm function is strictly convex and consequently also the

function u 7→ DKL(f,Ku) , if f ∈ Vµ(Σ) fulfills infΣ f > 0 and the operator K

is injective, i.e. the null space of K is trivial since K is linear (cf. Assumption 4.6.5

(iii)). Therefore, we can immediately conclude the following result.

Theorem 4.6.9 (Uniqueness of Minimizers). Let U(Ω) , Vµ(Σ) , K , J , and F satisfy

Assumption 4.6.5. Assume that K is an injective operator and f ∈ Vµ(Σ) fulfills

infΣ f > 0 . Then, the function u 7→ DKL(f,Ku) and also the functional F from

(4.46) is strictly convex. In particular, the minimizer of F is unique.

After existence and uniqueness of minimizers, we show in the following the stability of

the regularized Poisson estimation problem (4.46) with respect to a certain kind of data

perturbations. In Section 4.2, we already described that the given measurements in

practice are discrete and can be interpreted in our framework as averages of a function

f ∈ V (Σ) . The open question is certainly the suitable choice of the function f .

Moreover, the physically limited discrete construction of the detector leads to a natural

loss of information, because not all signals can be acquired. Consequently, a stability

result is required guaranteeing that the regularized approximations converge to a solution

u , if e.g. the approximated data converge to a preferably smooth function f . Because

the measurements are still a realization of Poisson distributed random variables, it is

natural to assess the convergence in terms of the KL functional, as shown in (4.49).

Theorem 4.6.10 (Stability with Respect to Perturbations in Measurements). Let U(Ω) ,

Vµ(Σ) , K , J , and F satisfy Assumption 4.6.5. Fix α > 0 and assume that the

functions fn ∈ Vµ(Σ) , n ∈ N , are nonnegative approximations of a data function

f ∈ Vµ(Σ) in the form that

lim
n→∞

DKL(fn, f) = 0 . (4.49)

Moreover, let

un ∈ arg min
v ∈ U(Ω)
v ≥ 0 a.e.

{
Fn(v) := DKL(fn, Kv) + αJ(v)

}
, n ∈ N , (4.50)

and u a solution of the regularized problem (4.46) corresponding to the data function

f . Additionally, we assume that log f and logKu belong to the function space L∞µ (Σ)

and there exist positive constants c1, . . . , c4 such that

0 < c1 ≤ f ≤ c2 and 0 < c3 ≤ Ku ≤ c4 a.e. on Σ . (4.51)
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Moreover, we suppose that the sequence (fn) is uniformly bounded in the Vµ(Σ) -norm,

i.e. it exists a positive constant c5 such that

‖fn‖Vµ(Σ) ≤ c5 , ∀n ∈ N . (4.52)

Then, the problem (4.46) is stable with respect to perturbations in the data, i.e. the

sequence (un) has a τU -convergent subsequence and every τU -convergent subsequence

converges to a minimizer of the functional F in (4.46).

Proof. For the existence of a τU -convergent subsequence of (un) , we will use the pre-

compactness property of the sub-level sets SJ from Assumption 4.6.5 (viii). Hence, we

have to show the uniform boundedness of the sequence
(
J(un)

)
. Let α > 0 be a fixed

regularization parameter. For any n ∈ N , the positivity of the KL functional and the

definition of un as a minimizer of the objective functional Fn in (4.50) implies that

J(un) ≤ DKL(fn, Kun) + αJ(un)︸ ︷︷ ︸
= Fn(un)

≤ DKL(fn, Ku) + αJ(u)︸ ︷︷ ︸
= Fn(u)

. (4.53)

Hence, the sequence
(
J(un)

)
is bounded, if the sequence

(
DKL(fn, Ku)

)
on the right-

hand side of (4.53) is bounded. To show this, we use condition (4.52) and obtain the

uniform boundedness of sequence (fn) in the L1
µ(Σ) -norm, due to continuous embedding

of Vµ(Σ) in Assumption 4.6.5 (ii). Hence, condition (4.49) and the result in Corollary

4.6.4 yield the strong convergence of (fn) to f in L1
µ(Σ) , i.e. we have

lim
n→∞

‖f − fn‖L1
µ(Σ) = 0 . (4.54)

Thus, the condition (4.51) implies together with the inequality∣∣∣DKL(fn, Ku) − DKL(f,Ku) − DKL(fn, f)
∣∣∣

=

∣∣∣∣ ∫
Σ

(logKu − log f) (f − fn) dµ

∣∣∣∣
≤ ‖logKu − log f‖L∞µ (Σ)︸ ︷︷ ︸

<∞

‖f − fn‖L1
µ(Σ)︸ ︷︷ ︸

(4.54)→ 0

,

the following convergence,

lim
n→∞

DKL(fn, Ku) = DKL(f,Ku) . (4.55)

Because u is a minimizer of the regularized problem (4.46) corresponding to the data

function f , the expressions DKL(f,Ku) and J(u) are bounded and thus also the se-

quence
(
DKL(fn, Ku)

)
is bounded, since convergent to DKL(f,Ku) . This fact delivers,

together with the boundedness of J(u) and the property (4.53), the uniform bounded-

ness of the sequence
(
J(un)

)
.
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The uniform boundedness of the sequence
(
J(un)

)
means that there exists a ∈ R≥ 0

such that
(
J(un)

)
is contained in the sub-level set SJ(a) . Thus, the precompactness

Assumption 4.6.5 (viii) ensures the existence of a τU -convergent subsequence (unj) ,

which converges to some ũ ∈ U(Ω) . Actually, the function ũ lies in SJ(a) , since J is

lower semicontinuous with respect to the topology τU and therefore SJ(a) is τU -closed

(see Definition 3.2.4).

Now, let (unj) be an arbitrary subsequence of (un) , which converges to some ũ ∈ U(Ω)

with respect to the topology τU . Due to the sequential continuity of the operator

K with respect to the topologies τU and τV , as well as the continuous embedding

of Vµ(Σ) in L1
µ(Σ) (see Assumptions 4.6.5 (ii)-(iii)), we have also the convergence

of (Kunj) to Kũ in the strong norm topology on L1
µ(Σ) , as well as the pointwise

convergence almost everywhere on Σ . Additionally, a similar behavior holds also for

the sequence (fn) , which converges strongly to f in L1
µ(Σ) (4.54). Thus, since the

functions fn and un are nonnegative for all n ∈ N and K is an operator that preserves

positivity (see Assumption 4.6.5 (iv)), we can apply Fatou’s Lemma to the sequence(
fnj log

(
fnj /Kunj

)
− fnj + Kunj

)
and obtain

DKL(f,Kũ) ≤ lim inf
j→∞

DKL(fnj , Kunj) . (4.56)

Due to the lower semicontinuity of the regularization energy J (see Assumption 4.6.5

(vi)) and due to (4.53), (4.55) and (4.56), we obtain now the following inequality,

DKL(f,Kũ) + αJ(ũ)
(4.56)

≤ lim inf
j→∞

DKL(fnj , Kunj) + α lim inf
j→∞

J(unj)

≤ lim inf
j→∞

(
DKL(fnj , Kunj) + αJ(unj)

)
≤ lim sup

j→∞

(
DKL(fnj , Kunj) + αJ(unj)

)
(4.53)

≤ lim sup
j→∞

(
DKL(fnj , Ku) + αJ(u)

)
(4.55)
= DKL(f,Ku) + αJ(u) ,

which means that ũ is a minimizer of the functional F in (4.46).

Remark.

• For the proof of stability, condition (4.51) is required, which assumes that the func-

tions log f and logKu belong to L∞µ (Σ) , where u is a regularized solution of

the minimization problem (4.46). In the case of the data function f , this assump-
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tion is not significantly restrictive in most practical situations. The boundedness

from above is fulfilled naturally due to the finite acquisition time of the data. The

almost everywhere boundedness on Σ away from zero is reasonable, when a suffi-

cient amount of measurements has been collected. In addition, in most practical

applications a certain level of background noise is present, which causes the posi-

tivity of the data. In the case of the function Ku , condition (4.51) is not simple

to justify and requires a more precise analysis of the variational problem (4.46).

Due to Assumption 4.6.5 (v), it suffices to prove that u is bounded and bounded

away from zero. For instance, the authors in [134] show that this condition on u

is available, if we use the KL functional DKL( · , u∗) as regularization energy J ,

where u∗ denotes the a-priori estimation of the solution and satifies the bounded-

ness condition from above and away from zero. Roughly speaking, this is possible

because, during the minimization, the linear part of the KL functional in u tries

to keep the function bounded and the log part tries to push the function away from

zero. However, every other choice of the regularization energy J needs a particular

study of this property depending on the specific form of this functional. Never-

theless, note that in Section 4.6.4 we can show at least that the iterate sequence

(uk) of the FB-EM-REG splitting algorithm (4.24) has the boundedness and the

boundedness away from zero property, assuming that the data function f belongs

to L∞µ (Σ) with infΣ f > 0 and the initialization function u0 is strictly positive.

For this reason, we think that condition (4.51) is an acceptable assumption.

• As in Theorem 4.6.10, it is also possible to consider perturbations of the operator

K . The proof is similar to the one above and only slight modifications are nec-

essary. However, several assumptions on the perturbed operators Kn are needed,

like the boundedness of operators for each n ∈ N and pointwise convergence to

K . Unfortunately, it is also essential that the operators Kn fulfill the assumption

(4.51), i.e. that Knu is bounded and bounded away from zero for any n ∈ N ,

where u is a solution of the minimization problem (4.46). Therefore, this condition

is severely restrictive for the possible perturbations of the operator K .

• We finally mention that some stability estimates for the regularized Poisson like-

lihood estimation problem (4.46) have been also derived in [15] and [112] in case

of Tikhonov, diffusion, total variation, and L1 regularization functionals, but in

a different setting. There, the assumptions on the possible data perturbations are

more restrictive (convergence in the supremum norm), while the assumptions on

the operator perturbations are relaxed.
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4.6.4 Positivity Preservation of FB-EM-REG Algorithm

In this section, we consider a particular property of the iteration sequence (uk) ob-

tained by the FB-EM-REG splitting approach (4.24) and its damped modification (4.26),

namely the positivity preservation of this iteration scheme. Given a strictly positive

uk ∈ U(Ω) for some k ≥ 0 , it is straight-forward to see that the result uk+ 1
2

of the

reconstruction half step is well defined and strictly positive due to the form of the EM

iteration step in (4.24), if the data function f is strictly positive and the operator K

fulfills the positivity preservation property in Assumption 4.6.5 (v). Consequently, an

existence and uniqueness proof for the regularization half step (4.25) and its damped

variant (4.27), analogous to the classical results for the unweighted L2 model depending

on the special choice of the regularization functional J , delivers also the existence of

uk+1 ∈ U(Ω) . Now, in order to show inductively the well-definedness of the complete

iteration sequence (uk) , it remains to verify that uk+1 is again strictly positive.

However, note that if any uk is negative during the iteration, the objective functional in

the regularization half step (4.25) and its damped modification (4.27) is in general not

convex anymore. Moreover, the minimization problem becomes a maximization problem

and the existence and uniqueness of uk+1 cannot be guaranteed. Thus, the non nega-

tivity of a solution in the regularization half step, and with it also the positivity of the

whole iteration sequence, is strongly desired, in particular since in typical applications

the functions represent densities or intensity information. The latter aspect is con-

sidered explicitly by using the positivity constraint in the Poisson based log-likelihood

optimization problem (4.16).

Now, to clarify the positivity preservation of the (damped) FB-EM-REG iteration scheme,

we present a maximum principle for the following weighted L2 regularization problem,

min
u ∈ U(Ω)

S(u) :=
1

2

∫
Ω

(u − q)2

h
dx + β J(u) , β > 0 , (4.57)

which represents the more general form of the regularization half step (4.25) and its

damped modification (4.27) in the forward-backward splitting strategy.

Lemma 4.6.11 (Maximum Principle for the Weighted L2 Regularization Problem).

Let ũ ∈ U(Ω) be a minimizer of the variational problem (4.57), where the function q

belongs to L∞(Ω) with infΩ q > 0 and the weighting function h is strictly positive.

Additionally, we assume that for any positive constants a and b with a < b , the

regularization functional J fulfills

J(v) ≤ J(ũ) for v = min{max{ũ, a}, b} . (4.58)
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Then, the following maximum principle holds

0 < inf
Ω
q ≤ inf

Ω
ũ ≤ sup

Ω
ũ ≤ sup

Ω
q . (4.59)

Proof. Let ũ be a minimizer of the functional S defined in (4.57). For the proof of the

maximum principle, we show that there exists a function v with

0 < inf
Ω
q ≤ inf

Ω
v ≤ sup

Ω
v ≤ sup

Ω
q (4.60)

and

S(v) ≤ S(ũ) . (4.61)

Then, the desired boundedness property (4.59) follows directly from the strict convexity

of the functional S in (4.57), i.e. from the uniqueness of the solution.

Now, we define the function v as a version of ũ cut off at infΩ q and supΩ q , i.e.

v := min{max{ũ, inf q}, sup q} .

With this definition, property (4.60) is directly guaranteed and we observe that, due to

assumption (4.58), also J(v) ≤ J(ũ) holds. To show (4.61), it remains now to estimate

the weighted L2 fidelity term in (4.57). To do this, we use the set

M := {x ∈ Ω : v(x) = ũ(x) } ⊆ Ω

and see that the data fidelity terms with respect to v and ũ agree on M , due to the

definition of the function v . In case of x ∈ Ω \M , we distinguish two cases:

Case 1: If ũ(x) ≥ sup q then v(x) = sup q and

0 ≤ v(x) − q(x) = sup q − q(x) ≤ ũ(x) − q(x)

⇒ (v(x) − q(x))2 ≤ (ũ(x) − q(x))2 .

Case 2: If ũ(x) ≤ inf q then v(x) = inf q and

0 ≤ − v(x) + q(x) = − inf q + q(x) ≤ − ũ(x) + q(x)

⇒ (v(x) − q(x))2 ≤ (ũ(x) − q(x))2 .
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Finally, we obtain

(v − q)2 ≤ (ũ − q)2 , ∀x ∈ Ω ,

and property (4.61) is fulfilled due to the strict positivity of the weighting function h

and assumption (4.58).

Lemma 4.6.12 (Positivity of (damped) FB-EM-REG Algorithm). Let (ωk) be a given

sequence of damping parameters with ωk ∈ (0, 1] for all k ≥ 0 and the initialization

function u0 be strictly positive. Additionally, we assume that the data function f lies in

L∞µ (Σ) with infΣ f > 0 , the operator K satisfies the positivity preservation property in

Assumption 4.6.5 (v) and that the regularization functional J fulfills the condition (4.58)

for the maximum principle above. Then, each half step of the (damped) FB-EM-REG

splitting method and therewith also the solution is strictly positive.

Proof. Since u0 > 0 , f > 0 and the operator K and therewith also the adjoint

operator K∗ does not affect the strict positivity, the first EM reconstruction step u 1
2

in

(4.24) is strictly positive. Because the regularization step in (4.24) can be realized via

the convex variational problem (4.25), the maximum principle in Lemma 4.6.11 using

q := u 1
2
> 0 and h := u0

K∗1Σ
> 0 yields u1 > 0 . With the same argument, we also

obtain u1 > 0 , if we take the damped regularization step (4.26) via the variational

problem (4.27), using the maximum principle with q := ω0 u 1
2

+ (1 − ω0)u0 > 0 for

ω0 ∈ (0, 1] and h := u0

K∗1Σ
> 0 . Inductively, the strict positivity of the whole nested

iteration sequence (uk) and with it the strict positivity of the solution is obtained by

the same arguments using Lemma 4.6.11.

Finally, we consider also the positivity preservation of the Poisson denoising strategy,

which we proposed in Sections 4.5.1 and 4.5.2. Although the denoising iteration in

Section 4.5.1 is a special case of the damped FB-EM-REG algorithm with identity

operator K , we study its properties here explicitly, because it will later simplify the

convergence criteria of the Poisson denoising method. In the following lemma, we study

directly the damped form of the Poisson denoising scheme (4.37) with damping param-

eters ωk ∈ (0, 1] . However, note that we obtain the original denoising strategy, if we

choose ωk = 1 for all k ≥ 0 .

Lemma 4.6.13 (Maximum Principle and Positivity of the Poisson Denoising Scheme).

Let (ωk) be a sequence of damping parameters with ωk ∈ (0, 1] for all k ≥ 0 , the data

function f lie in L∞µ (Ω) with infΩ f > 0 and the initialization function u0 fulfill

0 < inf
Ω
f ≤ inf

Ω
u0 ≤ sup

Ω
u0 ≤ sup

Ω
f . (4.62)
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Moreover, let (uk) be a sequence of iterates generated by the damped Poisson denoising

scheme (4.37) and the regularization functional J satisfy the condition (4.58) for the

maximum principle in Lemma 4.6.11. Then, the following maximum principle holds,

0 < inf
Ω
f ≤ inf

Ω
uk ≤ sup

Ω
uk ≤ sup

Ω
f , ∀k ≥ 0 . (4.63)

Simultaneously, this result guarantees also that each step of the damped Poisson denoising

method (4.36) and with it also the solution is strictly positive.

Proof. We prove the assertion by induction. For k = 0 , the condition (4.63) is fulfilled

due to (4.62). For a general k ≥ 0 , Lemma 4.6.11 offers a maximum principle for the

Poisson denoising model (4.37) using q := ωk f + (1 − ωk)uk and h := uk , i.e. we

have

0 < inf
Ω
{ωk f + (1− ωk)uk } ≤ inf

Ω
uk+1

≤ sup
Ω

uk+1 ≤ sup
Ω
{ωk f + (1− ωk)uk } .

(4.64)

Due to the fact that ωk ∈ (0, 1] for all k ≥ 0 and the inequalities

inf
Ω
{ωk f + (1− ωk)uk } ≥ ωk inf

Ω
f + (1− ωk) inf

Ω
uk

and

sup
Ω
{ωk f + (1− ωk)uk } ≤ ωk sup

Ω
f + (1− ωk) sup

Ω
uk ,

we obtain from (4.64) and the induction hypothesis the desired maximum principle

(4.63).

Remark.

• The assumption (4.62) on the initialization function u0 is in general fulfilled, since

u0 will be usually chosen as a positive and constant function or as the given noisy

image f itself.

• In Section 4.5.2, we also proposed an approximation of the denoising problem

(4.34) in the form that we reduced the sequence of the variational models (4.37)

to a single modified L2 variational problem (4.41). Therefore, this approximated

denoising model also preserves positivity according to the maximum principle in

Lemma 4.6.11 with q = h = f , if the given noisy image f ∈ L∞µ (Ω) is strictly

positive.
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4.6.5 Convergence of Damped FB-EM-REG Algorithm

In Section 4.4.3, we interpreted the (damped) FB-EM-REG reconstruction method, pro-

posed in Sections 4.4.1 and 4.4.2, as a forward-backward operator splitting algorithm.

In the past, several works in convex analysis have been proposed dealing with the con-

vergence of such splitting strategies for solving decomposition problems, see e.g. Tseng

[157] and Gabay [74]. For the proposed algorithm (4.29),

uk+1 =

(
I +

ωk uk
K∗1Σ

B

)−1(
I − ωk uk

K∗1Σ

A

)
uk ,

Gabay provided in [74] a proof of a weak convergence of the forward-backward splitting

approach under the assumption of a fixed damping parameter ω strictly less than twice

the modulus of A−1 . On the other hand, Tseng gave later in [157] a convergence proof,

where in our case, the damping values ωk uk
K∗1Σ

need to be bounded in the following way,

ε ≤ ωk uk
K∗1Σ

≤ 4m − ε , ε ∈ (0, 2m] ,

where the Kullback-Leibler data fidelity functional needs to be strictly convex with

modulus m . Unfortunately, the results above cannot be used in our case, since we

cannot verify the modulus assumption on the data fidelity and in particular, we cannot

provide the upper bounds for the iterates uk .

For these reasons, we prove the necessity of a damping strategy manually, in order to

guarantee a monotone descent of the objective functional F in (4.46) with respect to

the iterates uk of the FB-EM-REG algorithm. In the following theorem, we will estab-

lish the convergence of the damped FB-EM-REG splitting algorithm under appropriate

assumptions on the damping parameters ωk .

Theorem 4.6.14 (Convergence of Damped FB-EM-REG Algorithm). Let U(Ω) , Vµ(Σ) ,

K , J , and F satisfy Assumption 4.6.5. Moreover, let (uk) be a sequence of iterates

obtained by the damped FB-EM-REG algorithm (4.28), i.e. with the iteration scheme

(4.24) and the damped regularization step (4.26). Regarding this sequence of iterates, we

make additional assumptions:

• The data function f lies in L∞µ (Σ) and fulfills infΣ f > 0 .

• The regularization functional J fulfills the condition (4.58) for the maximum prin-

ciple in Lemma 4.6.11.
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Now, if there exists a sequence of corresponding damping parameters (ωk) , ωk ∈ (0, 1] ,

satisfying the inequality

ωk ≤

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

sup
v ∈ [uk,uk+1]

1

2

∫
Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ

(1 − ε) , ε ∈ (0, 1) , (4.65)

then the objective functional F defined in (4.46) is decreasing during the iteration. If,

in addition, we assume that the following assumptions are fulfilled,

• the function K∗1Σ , the damping parameters and the iterates are bounded away

from zero by positive constants c1 , c2 and c3 such that for all k ≥ 0 ,

0 < c1 ≤ K∗1Σ , 0 < c2 ≤ ωk , 0 < c3 ≤ uk , (4.66)

• the regularization functional J is homogeneous of degree one, i.e. it satisfies

J(λu) = λ J(u) for all λ > 0 , and there exists a constant c4 > 0 such that

sup
‖v‖W (Ω) ≤ 1

J(v) ≤ c4 , (4.67)

• the functional F defined in (4.46) is U(Ω) -coercive (see Definition 4.6.7) and the

Banach space U(Ω) is continuously embedded in L1(Ω) (see Definition 3.1.23),

• there exists a locally convex space (X, τX) such that the topology spaces (U(Ω), τU)

and (L1(Ω), ‖·‖L1(Ω)) are continuously embedded in (X, τX) (see Definition 3.1.23),

i.e. we have

(U(Ω), τU) ↪→ (X, τX) and (L1(Ω), ‖·‖L1(Ω)) ↪→ (X, τX) , (4.68)

then the sequence of iterates (uk) has a τU -convergent subsequence and every τU -

convergent subsequence converges to a minimizer of the functional F defined in (4.46).

Proof. This proof is divided into several steps. First, we show the monotone descent of

the objective functional F . In the following steps, we prove the existence of convergent

subsequences of the primal iterates (uk) and of the subgradients (pk) corresponding

to (uk) . Subsequently, we verify that the limit p of the dual iterates (pk) is actually

a subgradient of the regularization functional J at the limit u of the primal iterates

(uk) , i.e. p ∈ ∂J(u) . In the last step, we show that the found limit u is a minimizer

of the objective functional F .
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First step: Monotone descent of the objective functional

To get a descent of the objective functional F using an adequate damping strategy, we

look for a condition on the damping parameters (ωk) , which guarantees for all k ≥ 0

a descent of the form

F (uk+1) +
ε

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ︸ ︷︷ ︸

≥ 0

≤ F (uk) , ε > 0 . (4.69)

This condition ensures actually a descent of F , since the second term on the left-hand

side of (4.69) is positive due to ωk > 0 and due to the strict positivity of the iterates

uk (see Lemma 4.6.12). To show (4.69), we start with the damped regularization step

(4.26), multiply it with uk+1 − uk and integrate the result over the domain Ω . Thus,

for pk+1 ∈ ∂J(uk+1) ⊂ (U(Ω))∗ , we obtain

0 =

∫
Ω

K∗1Σ (uk+1 − ωk uk+ 1
2
− (1 − ωk)uk) (uk+1 − uk)

uk
dλ

+ ωk α 〈pk+1, uk+1 − uk〉

=

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
+ ωk

K∗1Σ (uk − uk+ 1
2
) (uk+1 − uk)

uk
dλ

+ ωk α 〈pk+1, uk+1 − uk〉 .

Due to the definition of subgradients (see Definition 3.2.6), we now have that

〈pk+1, uk+1 − uk〉 ≥ J(uk+1) − J(uk)

and thus

αJ(uk+1) − αJ(uk) +
1

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

≤ −
∫

Ω

K∗1Σ (uk − uk+ 1
2
) (uk+1 − uk)

uk
dλ .

(4.70)

Adding the difference DKL(f,Kuk+1) − DKL(f,Kuk) on both sides of this inequality

and considering the definitions of the KL functional in (4.43) and the objective functional
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F in (4.46) yields

F (uk+1) − F (uk) +
1

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

≤
∫

Σ

(
f log

(
f

Kuk+1

)
+ Kuk+1 − f log

(
f

Kuk

)
− Kuk

)
dµ

−
∫

Ω

(
K∗1Σ (uk+1 − uk) −

K∗1Σ uk+ 1
2

uk
(uk+1 − uk)

)
dλ

=

∫
Σ

(
f log

(
f

Kuk+1

)
− f log

(
f

Kuk

))
dµ

+

∫
Ω

(
K∗
(

f

Kuk

)
(uk+1 − uk)

)
dλ .

(4.71)

The last equality in (4.71) holds, since uk+ 1
2

is given by the EM reconstruction step in

(4.24) and K∗ is the adjoint operator of K , i.e. we have, according to Theorem 3.1.28,∫
Ω

K∗1Σ u dλ = 〈K∗1Σ, u〉(U(Ω))∗, U(Ω) = 〈1Σ, Ku〉(Vµ(Σ))∗, Vµ(Σ) =

∫
Σ

Ku dµ . (4.72)

Now, we try to characterize the right-hand side of inequality (4.71). For this sake, we

define an auxiliary functional G : U(Ω) → R ∪ {+∞} as

G(u) :=

∫
Σ

f log

(
f

Ku

)
dµ

and consider the directional derivatives of G using the proposed strategy in Remark

3.2.15, Item (2). That is, we define for u ∈ U(Ω) and any w1 ∈ U(Ω) a function

φw1(t) := G(u + t w1) and see that the directional derivative G′(u; w1) of G at u in

the direction w1 is given by

G′(u; w1) = φ′w1
(t)
∣∣
t= 0

=

∫
Σ

∂

∂t

(
f log

(
f

Ku + tKw1

))
dµ

∣∣∣∣
t= 0

=

〈
− f

Ku
, Kw1

〉
(Vµ(Σ))∗, Vµ(Σ)

Thm. 3.1.28
=

〈
−K∗

(
f

Ku

)
, w1

〉
(U(Ω))∗, U(Ω)

.
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Interpreting the right-hand side of inequality (4.71) formally as a Taylor linearization of

G yields

F (uk+1) − F (uk) +
1

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

≤ G(uk+1) − G(uk) − G′(uk; uk+1 − uk)

=
1

2
G′′(v; uk+1 − uk, uk+1 − uk) , v ∈ [uk, uk+1] ,

≤ sup
v ∈ [uk,uk+1]

1

2
G′′(v; uk+1 − uk, uk+1 − uk) .

(4.73)

Now, analogous to the first directional derivative G′(u; w1) , we can compute the second

directional derivative G′′(u; w1, w2) using the function φw2(t) := G′(u + t w2; w1) for

any w2 ∈ U(Ω) ,

G′′(u; w1, w2) = φ′w2
(t)
∣∣
t= 0

= −
∫

Σ

∂

∂t

(
f

Ku + tKw2

Kw1

)
dµ

∣∣∣∣
t= 0

=

∫
Σ

f Kw2Kw1

(Ku)2
dµ .

Plugging the computed derivative G′′(u; w1, w2) in the inequality (4.73), we obtain

F (uk+1) − F (uk) +
1

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

≤ sup
v ∈ [uk,uk+1]

1

2

∫
Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ .

(4.74)

Finally, we split the third term on the left-hand side of (4.74) with ε ∈ (0, 1) ,

F (uk+1) +
ε

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ +

1 − ε

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

≤ sup
v ∈ [uk,uk+1]

1

2

∫
Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ + F (uk) ,

and obtain the desired condition (4.69), and therewith the descent of the objective

functional F , if

sup
v ∈ [uk,uk+1]

1

2

∫
Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ ≤ 1 − ε

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ . (4.75)

By solving inequality (4.75) for ωk , we obtain the required condition (4.65) for the

damping parameters (ωk) in order to have a descent of the objective functional F .
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Additionally, by a suitable choice of ε in (4.65), we can guarantee that ωk ≤ 1 for all

k ≥ 0 .

Second step: Convergence of the primal iterates

Next, to show that the iteration method converges to a minimizer of F , we need a

convergent subsequence of the primal iterates (uk) . For this purpose, we can use the

precompactness requirement on the sub-level sets SJ of the regularization function J in

Assumption 4.6.5 (viii). Since the functional F is positive, we set a := F (u0) ≥ 0 and

can always obtain a < ∞ for a suitable choice of the nonnegative initialization function

u0 . Due to the monotone decrease of the sequence
(
F (uk)

)
with the corresponding

choice of the damping parameters (ωk) in (4.65), it is now simple to see that for all

k ≥ 0 ,

a := F (u0) ≥ F (uk) = DKL(f,Kuk) + αJ(uk) ≥ J(uk) , (4.76)

due to the positivity of the KL functional DKL and α > 0 . Thus, uk ∈ SJ(a) for

all k ≥ 0 and it follows from Assumption 4.6.5 (viii) that (uk) has a τU -convergent

subsequence (ukl) , which converges to some u ∈ U(Ω) .

Subsequently, we can also consider the sequence of the primal iterates (uk+1) and obtain

with the same argumentation that there exists a τU -convergent subsequence (ukl+1)

which converges to some ũ ∈ U(Ω) . Now, we show that the limits of the subsequences

(ukl) and (ukl+1) coincide, i.e. that it holds u = ũ . For this purpose, we apply

inequality (4.69) recursively and obtain the following estimate,

F (uk+1) + ε
k∑

j = 0

∫
Ω

K∗1Σ (uj+1 − uj)
2

ωj uj
dλ ≤ F (u0) < ∞ , ∀k ≥ 0 . (4.77)

Thus, the series of functional descent values on the left-hand side of (4.77) is summable

and the Cauchy criterion for convergence delivers

lim
k→∞

∫
Ω

K∗1Σ (uk+1 − uk)
2

ωk uk
dλ = 0 . (4.78)

Additionally, the Cauchy-Schwarz inequality yields the following estimate,

‖uk+1 − uk‖2
L1(Ω) ≤

∫
Ω

ωk uk
K∗1Σ

dλ︸ ︷︷ ︸
(4.66)

≤ c1 ‖uk‖L1(Ω)

∫
Ω

K∗1Σ (uk+1 − uk)
2

ωk uk
dλ︸ ︷︷ ︸

(4.78)→ 0

. (4.79)
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The first term on the right-hand side of (4.79) is uniformly bounded for all k ≥ 0 , since

ωk ∈ (0, 1] , the function K∗1Σ is bounded away from zero (4.66) and the sequence (uk)

is uniformly bounded in the L1(Ω) -norm. The latter holds, because according to (4.76)

we have that uk ∈ { v ∈ U(Ω) : F (v) ≤ F (u0) } for all k ≥ 0 , we additionally

assumed that the functional F is U(Ω) -coercive (see Definition 4.6.7) and that the

space U(Ω) is continuously embedded in L1(Ω) . To conclude, since the second term on

the right-hand side of (4.79) converges to zero (cf. (4.78)), we obtain from (4.79) that

uk+1 − uk → 0 in L1(Ω) . (4.80)

Hence, due to the assumption (4.68) that the topology spaces (L1(Ω), ‖·‖L1(Ω)) and

(U(Ω), τU) are continuously embedded in a locally convex space (X, τX) , the uniqueness

of the limit in the locally convex space (X, τX) implies u = ũ .

Third step: Convergence of the dual iterates

In addition to the second step, we also need a convergent subsequence of the subgradients

(pk) corresponding to the sequence (uk) , i.e. pk ∈ ∂J(uk) for all k ≥ 0 . Since

the subgradients exist only in the effective domain of a functional (see Lemma 3.2.9

and Remark 3.2.10), we obtain that pk ∈ (W (Ω))∗ for all k ≥ 0 , due to extension

property (4.45). Moreover, we assumed that the regularization functional J is convex

and one-homogeneous. Hence, we can use the general property from Lemma 3.2.11, in

order to characterize the subdifferentials of such a functional by

∂J(u) = { p ∈ (W (Ω))∗ : 〈p, u〉 = J(u) and 〈p, v〉 ≤ J(v) for all v ∈ W (Ω) } .

Then, we can see with assumption (4.67) that for each subgradient pk the dual norm is

bounded by

‖pk‖(W (Ω))∗ = sup
‖v‖W (Ω) ≤ 1

〈pk, v〉 ≤ sup
‖v‖W (Ω) ≤ 1

J(v)
(4.67)

≤ c4 .

Hence, the sequence (pk) is uniformly bounded in the (W (Ω))∗ -norm and the Banach-

Alaoglu Theorem 3.1.31 delivers the compactness in the weak* topology on (W (Ω))∗ ,

which implies the existence of a subsequence, again denoted by index kl , such that

pkl+1 ⇀∗ p in (W (Ω))∗ .
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Fourth step: Show that p ∈ ∂J(u)

We have now the τU -convergence of sequences (ukl) and (ukl+1) in U(Ω) and the

weak* convergence of (pkl+1) in (W (Ω))∗ . Next, we will show that the limit p of the

dual iterates is a subgradient of J at the limit u of the primal iterates, i.e. p ∈ ∂J(u) .

Hence, we have to prove that (see the definition of the subgradient in Definition 3.2.6),

J(u) + 〈p, v − u〉 ≤ J(v) , ∀v ∈ W (Ω) . (4.81)

For this purpose, let pkl+1 ∈ ∂J(ukl+1) , then the definition of the subgradient of J

yields

J(ukl+1) + 〈pkl+1, v − ukl+1〉 ≤ J(v) , ∀v ∈ W (Ω) . (4.82)

Since we assumed that J is lower semicontinuous with respect to the topology τU in

Assumption 4.6.5 (vi), we can estimate the functional J at u from above,

J(u) ≤ lim inf
l→∞

J(ukl+1) ≤ J(ukl+1) ,

and (4.82) delivers

J(u) + 〈pkl+1, v − ukl+1〉 ≤ J(v) , ∀v ∈ W (Ω) . (4.83)

In addition, in the third step we verified the weak* convergence of (pkl+1) in (W (Ω))∗ ,

i.e. it holds corresponding to Definition 3.1.30 that

〈pkl+1, v〉 → 〈p, v〉 , ∀v ∈ W (Ω) .

Hence, to prove p ∈ ∂J(u) , it remains to show with respect to (4.83) and (4.81) that

〈pkl+1, ukl+1〉 → 〈p, u〉 . (4.84)

For this purpose, we consider the complete iteration scheme of the damped FB-EM-REG

algorithm (4.26) with uk+ 1
2

in (4.24),

ukl+1 − (1− ωkl)ukl − ωkl

(
ukl
K∗1Σ

K∗
(

f

Kukl

))
+ ωkl α

ukl
K∗1Σ

pkl+1 = 0 , (4.85)

which is equivalent to

−α pkl+1 =
K∗1Σ (ukl+1 − ukl)

ωkl ukl
+ K∗1Σ − K∗

(
f

Kukl

)
.
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Multiplying this formulation of the iteration scheme with ukl+1 and integrating over the

domain Ω yields

−α 〈pkl+1, ukl+1〉 =

∫
Ω

K∗1Σ (ukl+1 − ukl)ukl+1

ωkl ukl
dλ

+

〈
1Σ −

f

Kukl
, Kukl+1

〉
=

∫
Ω

K∗1Σ (ukl+1 − ukl)
2

ωkl ukl
dλ︸ ︷︷ ︸

(4.78)→ 0

+

∫
Ω

K∗1Σ (ukl+1 − ukl)ukl
ωkl ukl

dλ︸ ︷︷ ︸
(4.80)→ 0

+

〈
1Σ −

f

Kukl
, Kukl+1

〉
.

(4.86)

The second term on the right-hand side of (4.86) vanishes in the limit, since the term
K∗1Σ

ωkl
is uniformly bounded in the supremum norm (caused by the boundedness away

from zero of the damping parameters ωk (4.66) and the boundedness preservation of

the operator K in Assumption 4.6.5 (v)) and due to the L1(Ω) -norm convergence of

the primal iterates in (4.80). Now, using the sequentially continuity of the operator K

in Assumption 4.6.5 (iii), we obtain〈
1Σ −

f

Kukl
, Kukl+1

〉
→

〈
1Σ −

f

Ku
,Ku

〉
and thus can deduce from (4.86) that

−α 〈pkl+1, ukl+1〉 →
∫

Ω

(
K∗1Σ − K∗

(
f

Ku

))
u dλ

(4.88)
= −α 〈p, u〉 .

Hence, we can conclude (4.84) and therewith p ∈ ∂J(u) .

Fifth step: Convergence to a minimizer of the objective functional

Now, let (ukl) and (ukl+1) be arbitrary τU -convergent subsequences of the primal

iteration sequence (uk) , which converge to some u ∈ U(Ω) . Then, as seen in the

third and fourth step, there exists a weak* convergent subsequence (pkl+1) of the dual

iteration sequence (pk) , which converges to some p ∈ (W (Ω))∗ such that p ∈ ∂J(u) .

To verify the convergence of the damped FB-EM-REG splitting algorithm, it remains

to show that u is a minimizer of the functional F defined in (4.46). For this purpose,

we consider the complete iteration scheme of the damped FB-EM-REG algorithm (4.85)
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with reference to the convergent subsequences and show their weak* convergence to

the optimality condition (4.19) of the variational problem (4.17). Note that it actually

suffices to prove only the convergence to (4.19) and not to (4.23), since the function u

is positive due to the strict positivity assumption on the iterates uk for all k ≥ 0 in

(4.66).

An equivalent formulation of equation (4.85) reads as follows

ukl+1 − ukl
ωkl ukl

+ 1Ω −
1

K∗1Σ

K∗
(

f

Kukl

)
+

α

K∗1Σ

pkl+1 = 0 . (4.87)

The convergence can be verified in the following way. Due to the boundedness away

from zero assumptions in (4.66), we can use the result (4.78) in order to deduce the

following convergence,

c1 c2 c3

∫
Ω

(uk+1 − uk)
2

ω2
k u

2
k

dλ ≤
∫

Ω

K∗1Σ (uk+1 − uk)
2

ω2
k u

2
k

ωk uk dλ
(4.78)→ 0 .

Since the integrand on the left-hand side is positive, we obtain with the uniqueness of

the limit, that
lim
l→∞

ukl+1 − ukl
ωkl ukl

= 0 .

Therefore, if we pass over to the weak* limit of the subsequences in (4.87) using the

sequential continuity of the operator K in Assumption 4.6.5 (iii) for the convergence of

the term f
Kukl

, we obtain that both limit functions u and p of the subsequences (ukl)

and (pkl+1) fulfill the optimality condition (4.19) of the variational problem (4.17),

1Ω −
1

K∗1Σ

K∗
(
f

Ku

)
+

α

K∗1Σ

p = 0 . (4.88)

This means that the subsequence (ukl) converges in the topology τU to a minimizer of

the functional F defined in (4.46).

Remark.

• We note here that inequality (4.75) in the proof above motivates at the same time

the mathematical necessity of a damping in the FB-EM-REG splitting strategy.

In the undamped case, i.e. ωk = 1 , the term on the right-hand side of (4.75)

is maximal for ε → 0+ , due to the strict positivity of K∗1Σ and uk for all

k ≥ 0 in (4.66). In general, one cannot say whether this term is greater than the

supremum on the left-hand side of (4.66) or not and with it whether the objective

functional F is decreasing during the iteration or not. Hence, we need a parameter

ωk ∈ (0, 1) , which increases the term on the right-hand side of (4.75) in order to

guarantee a descent of the objective functional F .
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• The assumptions on boundedness away from zero in (4.66) are reasonable from our

point of view. In case of the function K∗1Σ , the assumption is practical since if

there exists a point x ∈ Ω with (K∗1Σ)(x) = 0 , then it is a-priori impossible to

reconstruct the information in this point. Moreover, the assertion on the damping

parameters ωk makes sense because a strong damping is certainly undesirable. The

boundedness away from zero of the iterates uk can be absolutely guaranteed, if

the regularization functional J fulfills the condition (4.58), such that from Lemma

4.6.12 each half step of the (damped) FB-EM-REG method is strictly positive.

• Inspired by the relaxed EM reconstruction step in [123, Chap. 5.3.2], another

possibility to influence convergence arises in the FB-EM-REG strategy by adding

a relaxation parameter ν > 0 to the EM fixed point iteration in the form,

uk+ 1
2

= uk

(
1

K∗1Σ

K∗
(

f

Kuk

))ν
(relaxed EM step) .

Correspondingly, one can obtain a reasonable regularization step in the FB-EM-

REG splitting idea via

uk+1 =
(
u

1
ν

k+ 1
2

− αu
1
ν
k pk+1

)ν
, pk+1 ∈ ∂J(uk+1) , (relaxed REG step) ,

with the relaxed EM step uk+ 1
2

above. The relaxed terms in the regularization

step are necessary to fit the basic variational problem (4.16) and its optimality

condition (4.19). Due to the computational challenge of the relaxed regularization

step, which would require novel methods, a comparison of this strategy with our

damping strategy proposed in Section 4.4.2 would go beyond the scope of this

thesis.

In practice, determining the damping parameters ωk via the general condition in (4.65)

is not straight-forward and one would be interested in an explicit bound for all damping

parameters ωk . Unfortunately, this is not possible in the case of a general operator K ,

but we can provide such an explicit bound on ωk in the case of the Poisson denoising

strategy (4.36), i.e. for the identity operator K .

Corollary 4.6.15 (Convergence of the Damped Poisson Denoising Scheme). Let (uk)

be a sequence of iterates generated by the damped Poisson denoising scheme (4.37) and

the given noisy function f ∈ L∞µ (Ω) satisfy infΩ f > 0 . In order to guarantee the

convergence in the case of the identity operator K , the condition (4.65) in Theorem

4.6.14 on the damping parameters simplifies to

ωk ≤
2 (infΩ f)2

(supΩ f)2
(1 − ε) , ε ∈ (0, 1) . (4.89)
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Proof. In the special case of the identity operator K , the maximum principle of the

damped Poisson denoising scheme from Lemma 4.6.13 is the main idea for simplifying the

desired condition (4.65). For this sake, we consider inequality (4.75), which guarantees

a monotone descent of the objective functional if

1

2

∫
Ω

f uk
v2

(uk+1 − uk)
2

uk
dλ ≤ 1 − ε

ωk

∫
Ω

(uk+1 − uk)
2

uk
dλ , ∀v ∈ [uk, uk+1] .

Our goal is now to find an estimate for the coefficients f uk
2 v2 . Due to the fact that

v ∈ [uk, uk+1] and that (uk) are iterates generated by the damped Poisson denoising

scheme (4.37), we can apply the maximum principle from Lemma 4.6.13 and obtain an

estimate for the coefficients,

f uk
2 v2

≤ (supΩ f) (supΩ uk)

2 (infΩ {uk, uk+1})2
≤ (supΩ f)2

2 (infΩ f)2
, ∀k ≥ 0 ,

which should be less or equal 1− ε
ωk

. Thus, choosing ωk according to the estimate (4.89)

guarantees a monotone descent of the objective functional.

4.7 Iterative Refinement via Bregman Distance Iteration

In Sections 4.4.1 and 4.4.2, we presented the (damped) FB-EM-REG algorithm in order

to solve the regularized Poisson likelihood estimation problem (4.16). However, in image

processing it is well known that variational regularization techniques lead in almost all

cases to so-called systematic errors, causing an oversmoothing effect in the reconstruc-

tions. One of the typical examples is the loss of contrast, which has been analyzed in

the case of total variation minimization by Meyer [116]. Therefore, we propose in this

section to extend the regularized Poisson likelihood estimation problem (4.16), and with

it also the (damped) FB-EM-REG algorithm, by introducing an iterative regularization

strategy in order to refine the reconstruction results. More precisely, we perform a refine-

ment approach using inverse scale space methods based on Bregman distance iteration.

These techniques have been derived by Osher et al. in [125], with a detailed analysis for

Gaussian-type problems (4.2) (p = 2) , and have been generalized to time-continuity

[38], Lp -norm data fitting terms [37] and nonlinear inverse problems [11]. Following

these methods, an iterative refinement in our case is realized by a sequence of modified

Poisson likelihood estimation problems based on (4.16).

4.7.1 Bregman Distances

Since the just mentioned iterative refinement approach is based on a Bregman distance

iteration, we begin here with a short review of (generalized) Bregman distances related
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to a convex functional F . The Bregman distance is named after L. M. Bregman, who

introduced this concept in [28] using Gâteaux differentiable functionals F . In [100],

Kiwiel generalized the concept of Bregman distances to nonsmooth functionals which are

strictly convex. However, since in image processing singular regularization functionals,

i.e. neither continuously differentiable nor strictly convex, play an important role, Burger

and Osher introduced in [39] a further generalization of Bregman distances based on

subgradients. In this case, the subdifferential of a functional can also be multi-valued

and one obtains a family of distances.

Definition 4.7.1 (Generalized Bregman Distance [143, Def. 3.15]). Let U be a Banach

space and F : U → R ∪ {+∞} a convex and proper functional (see Definition 3.2.2)

with subdifferential ∂F (see Definition 3.2.6). Then, the Bregman distance of F at

u ∈ U and p ∈ ∂F (u) ⊂ U∗ is defined by

Dp
F (v, u) := F (v) − F (u) − 〈p, v − u〉U∗, U , v ∈ U , (4.90)

where 〈·, ·〉U∗, U denotes the standard duality product between the dual space U∗ and U

(see Definition 3.1.26).

Remark.

• For a Gâteaux differentiable functional F (Definition 3.2.16), the subdifferential

∂F of F contains a unique element p (see Lemma 3.2.17) and consequently a

unique Bregman distance. In this case, one actually obtains Dp
F (u, u) = 0 , and

the convexity of F implies that Dp
F is really a distance, i.e. it holds Dp

F (v, u) ≥ 0

for any v, u ∈ U .

• If the functional F is not Gâteaux differentiable, then the subdifferential ∂F of

F is in general multivalued (cf. Remark 3.2.7, Item (2)), such that each element

d ∈ Dp
F (v, u) represents a distance between the elements v and u . Additionally,

for not strictly convex functionals, it is also possible that 0 ∈ Dp
F (v, u) for v 6= u .

Moreover, it is not guaranteed that Dp
F (v, u) is nonempty, since ∂F (u) can also

be nonempty.

• The Bregman distance can be visualized as the difference between the tangent and

the convex functional, cf. Fig. 4.1, or to be more precise, as the difference between

the value of F at v and the value of the tangent at u evaluated at v (cf. here

also the interpretation of the subgradients in Remark 3.2.7, Item (1)). In other

words, the Bregman distance can be seen as a part of the Taylor linearization.

• Some examples of Bregman distances and their underlying functions are presented

in Table 4.1.
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Fig. 4.1. Bregman distance.

The following lemma shows that the Bregman distance can in fact be viewed as a measure

of similarity of two elements of U , since it is nonnegative. The proof of these properties

is a direct consequence of the definitions of the Bregman distance and the subgradients

in Definition 3.2.6.

Lemma 4.7.2 (Properties of the Bregman Distance). Let F : U → R ∪ {+∞} be

a convex and proper functional on a Banach space U . Then, for u ∈ U with a non-

empty subdifferential ∂F (u) and p ∈ ∂F (u) , the mapping v 7→ Dp
F (v, u) is convex

and nonnegative due to the convexity of F and hence defines a distance in the sense

that

Dp
F (v, u)

 = 0 , if v = u ,

≥ 0 , else .

Additionally, if F is strictly convex, then Dp
F (v, u) = 0 if and only if v = u .

In general, the Bregman distance is not a metric (see Definition 3.1.6), since neither the

triangular inequality nor the symmetry property is fulfilled. However, the symmetry can

be achieved by introducing the so-called symmetric Bregman distance.
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Function name F (u) DF (v, u)

Squared norm 1
2
u2 1

2
(v − u)2

Shannon entropy u log u − u v log
v

u
− v + u

Bit entropy u log u + (1 − u) log(1 − u) v log
v

u
+ (1 − v) log

1 − v

1 − u

Burg entropy − log u
v

u
− log

v

u
− 1

Hellinger −
√

1 − u2
1 − v u√

1 − u2
−
√

1 − v2

`p quasi-norm −up (0 < p < 1) − vp + p v up−1 − (p − 1)up

`p norm |u|p (1 < p < ∞) |v|p − p v sgnu |u|p−1 + (p − 1) |u|p

Exponential eu ev − (v − u + 1) eu

Inverse
1

u

1

v
+

v

u2
− 2

u

Table 4.1. Overview of Bregman distances and their underlying functions, see [58].

Definition 4.7.3 (Symmetric Bregman Distance). Let F : U → R∪ {+∞} be a convex

and proper functional with subdifferential ∂F on a Banach space U . The symmetric

Bregman distance is defined by

Dsymm
F (v, u) := Dpu

F (v, u) + Dpv
F (u, v)

= 〈pv − pu, v − u〉U∗, U

with pv ∈ ∂F (v) and pu ∈ ∂F (u) .

4.7.2 (Inverse) Scale Space Methods and Bregman Iteration

As already mentioned, we will present in Section 4.7.3 an iterative refinement strategy in

order to improve the reconstruction results obtained with the FB-EM-REG algorithm,

using inverse scale space methods based on Bregman distance iteration. Hence, we

briefly repeat here the main aspects of the (inverse) scale space methods and clarify the

connection to the iterative Bregman distance regularization technique. The following

statements are based on [38, 37, 40, 85, 125, 144, 143].
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In mathematical processing of noisy images there are at least two evolutionary concepts

based on partial differential equations, namely the scale space and inverse scale space

methods. Both approaches base on the concept of multiscale analysis caused by the

assumption that the noise in images is usually expected to be a small scale feature.

Therefore, a separation of small scales from larger ones allows to compute a smooth

approximation of the noisy image.

Scale Space Methods

The main characteristics of scale space methods are that they use parabolic partial

differential equations and smooth small scale features of an image faster than larger

scale ones. The most important scale space methods in image processing are nonlinear

diffusion filters, see e.g. [129] or [165], of the form

∂u

∂t
= div

(
g ( |∇u|2 )∇u

)
u(0) = f

in Ω × R≥ 0 , (4.91)

where f denotes the observed noisy image and the diffusion coefficient involves a positive

and monotone function g . For given t0 > 0 , u(t0) is considered to be an approximation

and filtered version of f and t0 controls the amount of the filtering. Especially, it can

be shown that such methods smooth small scales faster than large ones. Hence, if we

stop the method at a suitable time, we can expect that the noise is smoothed, while

large scale features are preserved to some degree.

However, in context of inverse problems and variational regularization theory, we are

more interested in minimization problems of the form (cf. (2.10)),

min
u ∈W (Ω)

Hf (Ku− f) + αJ(u) . (4.92)

In this setup, the scale space methods are only applicable for denoising problems, i.e.

for the identity operator K . For instance, in the case of additive Gaussian noise in the

images, the data fidelity term is given by

Hf (Ku− f) = Hf (u− f) =
1

2
‖u − f‖2

L2(Ω)

and the scale space methods base on the following gradient flow equation,

∂u

∂t
= −p(t) ∈ ∂J(u(t))

u(0) = f
in Ω × R≥ 0 , (4.93)
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where ∂J denotes the subdifferential of the regularization functional J (see Definition

3.2.6). The smoothing effect happens by stopping the flow after a certain timespan,

which should be short since the long time limit corresponds to a minimizer of J . In

particular, the total variation regularization functional J has attracted strong attention

in image processing, due to the possibility to realize discontinuous solutions (cf. Section

6.2), where the resulting scale space flow (4.93) is called TV flow equation.

Inverse Scale Space Methods

Inverse scale space methods have been introduced by Groetsch and Scherzer in [85] and

[144], and are based on a reverse characteristic comparing to the scale space methods.

The naming of the inverse scale space methods is motivated by the fact that those have

the following evolution properties in case of denoising problems,

lim
t→∞

u(t) = f and lim
t→ 0+

u(t) = u0 , (4.94)

where f is the observed noisy image and u0 denotes an arbitrary initialization function

for the filtering process. Thus, the properties in (4.94) mean that the inverse scale space

methods “invert” the axiom of fidelity in the scale space theory, which asserts that (cf.

(4.91) and (4.93)),

lim
t→ 0+

u(t) = f . (4.95)

The difference between (4.94) and (4.95) is that instead of starting the smoothing process

with the noisy image in (4.95) and gradually smoothing it, inverse scale space methods

(4.94) start with an arbitrary image u0 and adapt the noisy image f with increasing

time, where the large scale features convergence faster than the small ones. Hence, if we

stop the method at a suitable time, we can expect that large scale features are already

incorporated into the reconstruction, while small scale features (including the noise part)

are still missing.

Iterative Regularization with Bregman Distances

The inverse scale space methods have a close relation to regularization theory, in par-

ticular to iterative Tikhonov regularization as it has been introduced in [85] and [144].

However, the construction of such methods in [144] worked only well for quadratic reg-

ularization functionals, which lead to interesting but linear evolution equations. Hence,

this approach is less applicable for other important functionals, such as total variation

or other singular regularization energies of `1 - or L1 -type (cf. e.g. [37]).
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In [38] and [37], Burger et al. proposed a novel approach to construct inverse scale space

methods, namely as the limit of an iterated refinement procedure previously introduced

by Osher et al. in [125], which can also be used for singular regularization energies like

total variation. In the general setup of variational regularization problems (4.92), the

iterative refinement procedure starts with u0 = 0 and p0 = 0 ∈ ∂J(u0) , and delivers

a sequence of reconstructions via

ul+1 ∈ arg min
u ∈W (Ω)

{
Hf (Ku− f) + α

(
J(u) −

〈
pl, u

〉 ) }
, pl ∈ ∂J(ul) , (4.96)

for l = 0, 1, . . . , where 〈·, ·〉 is the standard duality product and ∂J the subdiffer-

ential of the functional J . Clearly, this procedure can be generalized to an arbitrary

initial value u0 as long as there exists a subgradient p0 ∈ ∂J(u0) ∩ R(K∗) , where

R(K∗) is the range of the operator K∗ . By adding the term α
(
−J(ul) +

〈
pl, ul

〉 )
,

which is independent of the minimization variable u , the iterative procedure (4.96) can

equivalently be rewritten as

ul+1 ∈ arg min
u ∈W (Ω)

{
Hf (Ku− f) + αDpl

J (u, ul)
}
,

pl+1 = pl − 1

α
K∗
(
∂Hf (Ku

l+1 − f)
)
∈ ∂J(ul+1) ,

(4.97)

with the generalized Bregman distance Dpl

J (u, ul) defined in Definition 4.7.1. In the

case of K being the identity operator and using data fidelity term

Hf (Ku− f) = Hf (u− f) =
1

p
‖u − f‖pLp(Ω) , p ∈ (1,∞) ,

the authors in [37] have shown that the procedure (4.97) fulfills the discrete inverse

fidelity property, which means that the sequence ul+1 approaches the original given

(noisy) image f as l→∞ .

Now, in order to connect the iterated refinement procedure (4.96) to the inverse scale

space methods, we consider in (4.97) the limit 1
α
→ 0+ . In this case, the first order

optimality condition of (4.96), which corresponds to the update rule for pl in (4.97),

can be interpreted as a forward Euler discretization of the flow equation

∂p

∂t
= −K∗ ( ∂Hf (Ku(t)− f) ) , p(t) ∈ ∂J(u(t)) ,

which has been termed nonlinear inverse scale space method (cf. [38] and [37]) in analogy

to the previous work on inverse scale space methods by Scherzer and Groetsch [144].

Finally, we consider a further interpretation of the iterated refinement strategy (4.96),

which motivates us in particular to use this approach in the context of the regularized
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Poisson likelihood estimation problem (4.16). Namely, in image processing it is well

known that the variational regularization techniques lead in almost all cases to the so-

called systematic errors in the reconstructions. This effect can be easily illustrated by

the fact that for noise free data f = f̄ = Kū , which are generated by the exact image

ū , a minimizer u of the general variational regularization problem (4.92) satisfies

Hf (Ku− f̄) + αJ(u) ≤ Hf (Kū− f̄)︸ ︷︷ ︸
(2.11)

= 0

+ αJ(ū) .

This implies the inequality,

J(u) − J(ū) ≤ − 1

α
Hf (Ku− f̄) < 0 ,

which means that the regularization functional J is smaller for the minimizer u than for

the exact image ū . This is the so-called systematic error of a regularization strategy and

causes an oversmoothing (also in case of noisy data f ) of the reconstructions. One of

the typical examples of systematic errors is the loss of contrast, which has been analyzed

intensively in the case of the Rudin, Osher and Fatemi model (6.6) [138] by Meyer [116]

(cf. Section 6.2). This loss of contrast can be interpreted as a deficiency of the scheme

at larger scales, since usually in denoising one likes to eliminate only noise modeled as

small scale features. Therefore, motivated by the systematic error of total variation

regularization, Osher et al. proposed in [125] a new iterative regularization procedure

for inverse problems based on Bregman distances, which has in general case the form

(4.96) (4.97), respectively. Simultaneously, in the case of an L2 data fidelity term the

authors provided another equivalent formulation of the strategy (4.97), which enables

a nice interpretation, why the iterative regularization procedure (4.96) actually leads

to a refinement of systematic errors. In [32], Brune et al. generalized this equivalent

formulation for arbitrary convex data fidelity terms and obtained the following form,

ul+1 ∈ arg min
u ∈W (Ω)

{
Hf (Ku + rl − f) + αJ(u)

}
,

rl+1 = rl + Kul+1 − f ∈ ∂H∗f (−α (K∗)−1 pl+1) ,

(4.98)

where H∗f denotes the convex conjugate of the data fidelity term Hf . The recursion

formula with respect to the “noise” function r delivers now an interesting decomposition

of the data function f involving “noise” at levels l and l+ 1 and signal at level l+ 1 .

Remarkably, the formulation (4.98) leads to the concept that the original given noisy

data f should be modified by the current “noise” function rl and the sum of both should

then be processed by the regularization procedure. Therefore, the iterative regularization

strategy (4.96) actually leads to a stepwise refinement of reconstructions compensating

the systematic errors of regularization methods.
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4.7.3 Bregman-FB-EM-REG Algorithm

To perform an iterative refinement of the reconstructions resulting from the (damped)

FB-EM-REG algorithm, proposed in Sections 4.4.1 and 4.4.2, we use the approach of

inverse scale space methods based on Bregman distance iteration, discussed in Section

4.7.2. There, following the procedure (4.96), an iterative refinement is realized by a

sequence of modified FB-EM-REG problems based on (4.16). In our case, the desired

method initially starts with a simple FB-EM-REG algorithm, i.e. it consists of comput-

ing a minimizer u1 from (4.16) and (4.17), respectively. Subsequently, the results will

be refined step by step by considering variational problems with a shifted regularization

term, namely

ul+1 ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{
DKL(f,Ku) + α

(
J(u) −

〈
pl, u

〉 ) }
, pl ∈ ∂J(ul) . (4.99)

Using the Bregman distance considered in Definition 4.7.1, the shifted regularization

term can be extended to a convex functional (see Lemma 4.7.2) without changing the

stationary points of the minimization problem, such that we obtain

ul+1 ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{
DKL(f,Ku) + αDpl

J (u, ul)
}
, pl ∈ ∂J(ul) . (4.100)

Note that the first iterate u1 can also be realized by the variational problem (4.99)

respectively (4.100), if the initialization function u0 will be chosen constant and we set

p0 := 0 ∈ ∂J(u0) .

From the point of view of the statistical problem formulation in Section 2.2, the Bregman

distance regularized variational problem (4.100) uses an adapted a-priori probability

density p(u) (2.8) in the Bayesian model formulation (2.6). Namely, instead of a zero

centered a-priori probability J(u) as in the case of the FB-EM-REG algorithm (4.16),

we consider in every Bregman refinement step a new a-priori probability, which is related

to a shifted regularization functional, i.e. we use the following Gibbs function (2.8),

p(u) ∼ e−αD
pl

J (u,ul) .

This a-priori probability density means that images with smaller regularity, where the

type of regularity is depends on the chosen functional J , and with a close distance to the

maximum likelihood estimator ul of the previous FB-EM-REG problem are preferred

in the minimization of (4.100).
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To design a suitable two step iteration strategy analogous to the FB-EM-REG algorithm

in Section 4.4.1, we consider the first order optimality condition for the variational

problem (4.100). Due to the convexity of the Bregman distance in the first argument

(see Lemma 4.7.2), we can determine the subdifferential of (4.100). To this aspect, due

to the continuity of the Kullback-Leibler (KL) functional and the subdifferential calculus

in Lemma 3.2.13, we obtain the following identity

∂
(
DKL(f,Ku) + α

(
J(u) −

〈
pl, u

〉 ))
= ∂uDKL(f,Ku) + α

(
∂J(u) − ∂

( 〈
pl, u

〉 ))
.

Now, the subdifferentials of the KL functional and of the shift in the regularization

functional are singletons of the form

∂uDKL(f,Ku) =

{
K∗1Σ − K∗

(
f

Ku

)}
and ∂

( 〈
pl, u

〉 )
=
{
pl
}
.

Therefore, due to the nonnegativity constraint in (4.99), the Karush-Kuhn-Tucker (KKT)

conditions [89, Thm. 2.1.4] provide the existence of a Lagrange multiplier λ ≥ 0 , such

that the stationary points of the functional in (4.100) need to fulfill

0 ∈ K∗1Σ − K∗
(

f

Kul+1

)
+ α

(
∂J(ul+1) − pl

)
− λ ,

0 = λul+1 ,

(4.101)

with pl ∈ ∂J(ul) . By multiplying the first equation in (4.101) by ul+1 , the Lagrange

multiplier λ can be eliminated by the second equation and a subsequent division by

K∗1Σ leads to a fixed point equation of the form

0 ∈ ul+1 − ul+1

K∗1Σ

K∗
(

f

Kul+1

)
+ α

ul+1

K∗1Σ

(
∂J(ul+1) − pl

)
(4.102)

with pl ∈ ∂J(ul) . Particular advantageous is that this condition delivers a well defined

update formula for the iterates pl , namely

pl+1 := pl − 1

α

(
K∗1Σ −K∗

(
f

Kul+1

))
∈ ∂J(ul+1) (4.103)

with u0 constant and p0 := 0 ∈ ∂J(u0) . Now, analogous to the fixed point equation

(4.23) and (4.21) in the case of FB-EM-REG algorithm, we can apply the idea of the

nested two step iteration (4.24) in every refinement step l = 0, 1, . . . . Then, the
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condition (4.102) yields a strategy consisting of an EM step for the solution of (4.100),

ul+1
k+ 1

2

=
ul+1
k

K∗1Σ

K∗
(

f

Kul+1
k

)
, (4.104)

followed by solving an adapted variational regularization problem

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u − ul+1

k+ 1
2

)2

ul+1
k

+ α
(
J(u) −

〈
pl, u

〉 )  . (4.105)

Following [125], we transfer now the shift term
〈
pl, u

〉
to the data fidelity term. This

approach facilitates the implementation of the iterated refinement with the Bregman

distance via a slight modification of the FB-EM-REG algorithm. For this purpose, we

use the scaling

vl :=
α

K∗1Σ

pl (4.106)

and obtain from (4.103) the following update formula for the iterates vl ,

vl+1 = vl −
(

1Ω −
1

K∗1Σ

K∗
(

f

Kul+1

))
, v0 = 0 . (4.107)

Using this scaled update, we can rewrite the second step (4.105) to

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

((
u − ul+1

k+ 1
2

)2 − 2uul+1
k vl

)
ul+1
k

+ αJ(u)

 .

Note that in the equation

(
u − ul+1

k+ 1
2

)2 − 2uul+1
k vl =

(
u −

(
ul+1
k+ 1

2

+ ul+1
k vl

))2

− 2ul+1
k+ 1

2

ul+1
k vl + (ul+1

k )2 (vl)2 ,

the last two terms on the right-hand side are independent of u and hence (4.105)

simplifies to

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u −

(
ul+1
k+ 1

2

+ ul+1
k vl

))2

ul+1
k

+ αJ(u)

 , (4.108)

i.e. that the second half step (4.105) can be realized by a minor modification of the

regularization step introduced in (4.25).

In Section 4.4.2, we additionally introduced a damped variant of the FB-EM-REG al-

gorithm. This damping strategy can be also realized in each Bregman refinement step,
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namely the reconstruction step (4.108) simply needs to be adapted to

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u − ũl+1

k+ 1
2

)2

ul+1
k

+ ωl+1
k αJ(u)

 (4.109)

with

ũl+1
k+ 1

2

= ωl+1
k ul+1

k+ 1
2

+ ωl+1
k ul+1

k vl + (1− ωl+1
k )ul+1

k .

4.7.4 Stopping Rules

As usual for iterative methods, the refinement strategy via the iterative Bregman dis-

tance regularization, described in Section 4.7.3, needs a suitable stopping criterion.

Optimally, this rule should stop the method at an iteration, which offers a solution that

approximates the desired true image as good as possible. This is essential in order to

prevent that too many small scales, in particular the noise, are incorporated into the

reconstruction results (cf. Section 4.7.2). In the case of Gaussian noise, the authors in

[125] and [38] suggested to use the so-called generalized discrepancy principle (cf. [67]

and [131] for a detailed discussion). This strategy consists in stopping the iteration at

the index l∗ = l∗(δ, f) , where the residual ‖Kul∗ − f‖L2(Σ) reaches the noise level δ

or an estimate of the noise level, i.e.

l∗ = max{ l ∈ N : ‖Kul − f‖L2(Σ) ≥ τδ } , τ > 1 .

However, in the case of raw data corrupted by Poisson noise, it makes more sense to

stop the Bregman iteration, when the Kullback-Leibler (KL) distance between the given

data f and the signal Kul reaches the noise level. For synthetic data, the noise level

δ is naturally given by the KL distance between f and Kū , i.e.

δ = DKL(f,Kū) ,

where ū denotes the exact and noise free image. For experimental data, it is necessary

to find a suitable estimate of the noise level δ from the data counts.

In addition to a stopping criterion for the outer Bregman iteration, we also need suitable

stopping rules for the inner FB-EM-REG iteration loop. For this purpose, we can

proceed analogous to the discussion of stopping rules in the case of the FB-EM-REG

algorithm in Section 4.4.4. In addition to a maximum number of iterations, we consider

the error in the optimality condition (4.102) as a basic stopping criterion using the

weighted norm ‖ · ‖2,w (4.30), i.e.
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optl+1
k+1 :=

∥∥∥∥∥K∗1Σ − K∗

(
f

Kul+1
k+1

)
+ α pl+1

k+1 − α pl

∥∥∥∥∥
2

2,ul+1
k+1

(4.106)
=

∥∥∥∥∥K∗1Σ − K∗

(
f

Kul+1
k+1

)
−K∗1Σ v

l + α pl+1
k+1

∥∥∥∥∥
2

2,ul+1
k+1

.

(4.110)

Furthermore, we are also interested in the convergence of the primal function sequence

(ul+1
k ) and subgradient sequence (pl+1

k ) with pl+1
k ∈ ∂J(ul+1

k ) . To establish appropriate

rules for these sequences, we consider the damped regularization step (4.109) with the

EM reconstruction step (4.104),

ul+1
k+1 − ωl+1

k

ul+1
k

K∗1Σ

K∗
(

f

Kul+1
k

)
− ωl+1

k ul+1
k vl − (1− ωl+1

k )ul+1
k

+ ωl+1
k α

ul+1
k

K∗1Σ

pl+1
k+1 = 0 .

By combining this iteration scheme with the optimality condition (4.102) evaluated at

ul+1
k , which must be fulfilled in the case of convergence, and applying the scaling (4.106),

we obtain the following optimality statement for the sequences (ul+1
k ) and (pl+1

k ) ,

α (pl+1
k+1 − pl+1

k ) +
K∗1Σ (ul+1

k+1 − ul+1
k )

ωl+1
k ul+1

k

= 0 .

With the aid of the weighted norm (4.30), we now have additional stopping criteria

for the inner FB-EM-REG iteration loop, which guarantee the accuracy of the primal

functions (ul+1
k ) and the subgradients (pl+1

k ) , namely

uoptl+1
k+1

:=

∥∥∥∥∥ K∗1Σ (ul+1
k+1 − ul+1

k )

ωl+1
k ul+1

k

∥∥∥∥∥
2

2,ul+1
k+1

,

poptl+1
k+1

:=
∥∥ α (pl+1

k+1 − pl+1
k )

∥∥2

2,ul+1
k+1

.

(4.111)

We finally mention that the stopping criteria (4.110) and (4.111) are well defined, since

we proved in Lemma 4.6.12 that each iterate ul+1
k of the inner FB-EM-REG iteration

loop is strictly positive.

4.7.5 Pseudocode and Some Remarks

Summarizing the observations in Sections 4.7.3 and 4.7.4, we now can make use of

Algorithm 4.2 to solve the stepwise refinement (4.99) of the regularized Poisson likelihood

estimation problem (4.16).
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Algorithm 4.2 (Damped) Bregman-FB-EM-REG Algorithm

1. Parameters: f , α > 0 , ω ∈ (0, 1] , maxBregIts ∈ N , δ > 0 , τ > 1 ,

maxEMIts ∈ N , tol > 0

2. Initialization: l = 0 , u1
0 = u0 := c > 0 , v0 := 0

3. Iteration:

while ( DKL(f,Kul+1
0 ) ≥ τδ and l < maxBregIts ) do

a) Set k = 0.

while ( ( k < maxEMIts ) and

( optl+1
k ≥ tol or uoptl+1

k
≥ tol or

poptl+1
k
≥ tol ) ) do . (4.110), (4.111)

i) Compute ul+1
k+ 1

2

via EM step in (4.104).

ii) Set ωl+1
k = ω.

iii) Compute ul+1
k+1 via convex variational problem (4.109).

iv) k ← k + 1

end while

b) Compute update vl+1 via (4.107).

c) Set ul+2
0 = ul+1

k .

d) l ← l + 1

end while

4. Return ul+1
0

Remark.

• Note that the update variable v in (4.107) has an interesting interpretation as

an error function with reference to the optimality condition of the unregularized

Poisson log-likelihood functional (4.13). That means that in every refinement step

of the Bregman iteration the function vl+1 differs from vl by the current error in

the optimality condition of (4.13),

K∗1Σ − K∗
(
f

Ku

)
= 0 .

Hence, caused by the regularization step (4.108), we can expect that the iterative

regularization based on the Bregman distance leads to a stepwise refinement. The
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reason is, that instead of fitting the new regularized solution ul+1
k+1 to the EM

result ul+1
k+ 1

2

in the weighted L2 norm, as it occurs in the case of the FB-EM-REG

step (4.25), the Bregman refinement strategy (4.108) uses an adapted “noisy”

function in the data fidelity term, where the intensities of the EM solution ul+1
k+ 1

2

are increased by a weighted error function vl .

• Motivated by the work in [125], one may also consider the modeling of an iterative

reconstruction refinement inside the FB-EM-REG algorithm. On the basis of the

two step iteration proposed in (4.24) and (4.25), this strategy would lead to a

regularization step which can be realized by a sequence of modified variational

problems based on (4.25). More precisely, for any fixed index k , the iterate uk+1

is determined via a sequence of the following minimization problem,

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u − uk+ 1

2

)2

uk
+ α

(
J(u) −

〈
pl, u

〉 )  (4.112)

with pl ∈ ∂J(ulk+1) , a constant initialization u0
k+1 and p0 := 0 ∈ ∂J(u0

k+1) .

Analogous to Section 4.7.3, the scaling K∗1Σ v
l := αuk p

l transfers the shift term〈
pl, u

〉
to the data fidelity term in such a way that (4.112) can be rewritten similar

to (4.108), namely

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u −

(
uk+ 1

2
+ vl

))2

uk
+ αJ(u)


with the update formula

vl+1 = vl + (uk+ 1
2
− ul+1

k+1) , v0 = 0 .

However, this iteration scheme with the update formula seems rather related to an

additive than a multiplicative setting and hence is less promising for our Poisson

framework. Additionally, computational experiments indeed confirm that the inner

refinement leads to worse reconstructions than the outer one, presented in Section

4.7.3.

4.7.6 A Further Refinement Approach

Finally, we briefly present an alternative refinement strategy, which iteratively improves

the reconstruction results obtained by the (damped) FB-EM-REG algorithm, namely

a dual inverse scale space strategy introduced by Brune et al. in [32]. As the name
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of the approach already implies, this strategy is based on a dual representation of the

variational problem (4.16) and represent the dual counterpart of the primal inverse

scale space strategy presented in Section 4.7.3. Analogous to the primal case, we apply

the approach of the iterative Bregman distance regularization, here, however, to the

dual formulation of (4.16). Subsequently, a further dual formulation of the shifted

regularization strategy is computed such that we again obtain a simple primal (equal to

bidual) iterative regularization technique, namely

ul+1 ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{ ∫
Σ

(
Ku + rl − f log(Ku + rl)

)
dµ + αJ(u)

}
, (4.113)

with the following update formula for the residual function rl ,

rl+1 = rl + Kul+1 − f , r0 = 0 .

Fortunately, the minimization problem (4.113) has a simple structure, which is very

similar to the initial variational problem (4.16) and (4.17). The crucial difference is that

the objective functional in (4.113) has DKL(f,Ku + rl) as data fidelity term and not

DKL(f,Ku) as in the case of (4.16) and (4.17). Nevertheless, we can use the idea of

the FB-EM-REG splitting strategy in Section 4.4.1 and obtain in each refinement step

l = 0, 1, . . . a strategy consisting of an modified EM step

ul+1
k+ 1

2

=
ul+1
k

K∗1Σ

K∗
(

f

Kul+1
k + rl

)
,

which is followed by solving a variational problem

ul+1
k+1 ∈ arg min

u ∈W (Ω)

 1

2

∫
Ω

K∗1Σ

(
u − ul+1

k+ 1
2

)2

ul+1
k

+ αJ(u)

 .

In comparison to the primal inverse scale space strategy proposed in Section 4.7.3, the

dual approach (4.113) has an interesting interpretation with respect to a dynamical

change of the background model based on the residual function rl , which ensures the

stepwise refinement of the reconstruction results.

However, the numerical results in [32] show that both inverse scale space methods com-

pute very similar iterates and we could not recognize a difference in the performance

so far. But in the case of the dual approach, we can provide error estimates and con-

vergence rates for exact and noisy data (see [32]), which are not possible for the primal

approach so far.
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5
Imaging : Ultrasound (US) Speckle Framework

Based on ideas in Chapter 4, we introduce in this chapter a variational regularization

framework for restoration problems in medical ultrasound (US) imaging. In this type

of application, the measurements are corrupted with a signal-dependent noise, called

speckle noise, which is fundamentally different as the commonly used additive Gaussian

noise and the Poisson noise studied in the previous chapter. Hence, we consider here

an adapted variational regularization model, which we derive using a Bayesian model

and maximum a-posteriori probability estimation. Based on this model, which is highly

nonlinear in the data fidelity term, we propose a robust and efficient numerical realization

of this variational regularization problem, using a forward-backward splitting approach.

Moreover, we also present a mathematical analysis of the US speckle based variational

model and the proposed numerical algorithm.

5.1 Introduction

Over the last decades, ultrasound imaging has developed to one of the most important

techniques in the field of medical diagnostic. This success can be traced back to its ability

to be a non-invasive, low cost, and real-time application, which can be used in almost

all medical fields. In particular, since ultrasound imaging is a low-risk and painless

application, it can be used in sensible areas, such as in prenatal care or examination

of kidneys and heart. However, the ultrasound images suffer from an acoustic noise

called speckle [36], which causes the main degradation of the image quality and with it

possibly the success of an ultrasound examination. These degradations are unavoidable

interference effects, which will be caused by scattering of the ultrasound beam from

tissue inhomogeneities [1]. These effects yield certain granular patterns, which distort

the actual tissue structure. Hence, the interpretation of ultrasound images requires

highly trained knowledge to derive essential information for diagnosis from an image.
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In addition, the degradation by speckle noise reduces the success of an automatic image

postprocessing, such as a segmentation of different anatomical structures in an image.

Due to the random scattering of the ultrasound beam, the measured data are of stochas-

tic nature. In [163], the authors showed that the US speckle noise follows in many cases

a Rayleigh distribution with mean proportional to the standard deviation. Hence, the

speckle noise in this application can be modeled as multiplicative noise [158]. However,

the noise in the displayed ultrasound images does not follow the Rayleigh distribution

[159, 110] due to the modification of the original signal statistic by the ultrasound device,

e.g. by logarithmic compression [94], low-pass filtering or interpolation of the signal. In

[110], Loupas et al. showed that the typical linear relation between mean and stan-

dard deviation for Rayleigh distribution no longer holds for displayed ultrasound images

and derived experimentally that the process of image degradation can be modeled as a

signal-dependent noise of the form

f = ū +
√
ū η , (5.1)

where ū is the original signal and f the observed signal as introduced in Section 2.1,

as well as η is a vector valued Gaussian distributed random variable with expectation

value 0 and variance σ2 . However, deconvolution of ultrasound images (cf. e.g. [149]

and the references therein) is also an relevant approach in this area, for instance to

estimate the speed of sound in a media. Hence, we can generalize the data model (5.1)

to a reconstruction model

f = Kū +
√
Kū η , (5.2)

where K is a forward operator (e.g. convolution operator) as introduced in Section 2.1.

We can see in (5.2) that the model of the raw data in ultrasound imaging fundamentally

differs from the commonly studied case of additive exponentially distributed raw data of

the form f = Kū + η , where η is a Gaussian distributed random variable as in (5.1).

Hence, from the viewpoint of statistical modeling of image reconstruction problems in

Section 2.2, the ultrasound data model (5.2) leads to a more complicated form of the

variational regularization problem. To derive an adapted minimization problem to (5.2),

we use the general form of the negative log-likelihood function (2.9), obtained with the

Bayesian model and the maximum a-posteriori probability estimation, as well as using

a Gibbs a-priori density of the form (2.8). In this case, we have to characterize the

probability p(f |u) for the ultrasound data f in (5.2). Although the noise η in (5.2) is

unknown, the distribution of η is assumed to be normal with mean 0 and variance σ2

and we obtain

p(f |u) ∼ e−
1

2σ2

∑N
i = 1 η

2
i = e

− 1
2σ2

∑N
i = 1

(fi − (Ku)i)
2

(Ku)i .
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With this characterization, we obtain now the following negative log probability density

of the noise,

− log p(f |u) =
N∑
i= 1

(fi − (Ku)i)
2

(Ku)i
, (5.3)

where additive terms independent of u are neglected. At this point, we proceed analo-

gously to Section 4.2 and pass over from a discrete to a continuous representation of the

data in order to have a simpler basis for the construction and analysis of the methods.

In Section 4.2, we assumed that any element in the discrete data space RN can be

interpreted as samples of a function in V (Σ) . Then, using the negative log probability

density of the noise in (5.3) and the Gibbs a-priori density in (2.8), the MAP estimate

in (2.7) can be rewritten as the following continuous variational problem,

uMAP ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{ ∫
Σ

(f − Ku)2

Ku
dµ + αJ(u)

}
, (5.4)

where µ is a point measure and dµ =
∑N

i=1 χMi
dλ with Lebesque measure λ and

indicator function χMi
as defined in (4.11).

5.2 Reconstruction Method

In this section, we consider a variational regularization framework adapted to the speckle

noise occuring in medical ultrasound (US) imaging. In this framework, we use a convex

regularization functional J , which can be singular as in the Poisson framework discussed

in Section 4.4. The specific choice of the total variation regularization and its nonlocal

extension will then be discussed in Sections 6.3 and 7.4. Due to the nondifferentiability

of singular regularization energies in the common sense and the strong nonlinearity of the

data fidelity term, we propose a robust numerical scheme to solve the US speckle noise

based variational regularization problem (5.4). The algorithm is based on a forward-

backward splitting approach and can be realized by alternating a reconstruction step

with an almost standard denoising step as encountered in image processing.

5.2.1 (Damped) US-FB-REC-REG Algorithm

In the following, we develop a numerical algorithm for the US speckle noise adapted

variational regularization problem (5.4),

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Σ

(f − Ku)2

Ku
dµ︸ ︷︷ ︸

=:DUS(f,Ku)

+ αJ(u) , α > 0 , (5.5)
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where J is a convex regularization functional. We proceed analogously to Section 4.4.1,

where we proposed an alternating iteration strategy to solve the Poisson likelihood esti-

mation problem (4.16). To compute the first order optimality condition of the minimiza-

tion problem (5.5), we extend the functional J : W (Ω)→ R≥ 0 to a convex functional

on U(Ω) , W (Ω) ⊂ U(Ω) , analogous to (4.18) and compute the subdifferential of the

objective functional in (5.5) (see Definition 3.2.6), denoted by ∂ . Due to the conti-

nuity and convexity (cf. Lemma 5.4.1) of the data fidelity term DUS in (5.5), the

subdifferential calculus in Lemma 3.2.13 yields the following identity

∂
(
DUS(f,Ku) + αJ(u)

)
= ∂uDUS(f,Ku) + α ∂J(u) ,

where the subdifferentials ∂uDUS(f,Ku) of DUS are singletons given by

∂uDUS(f,Ku) =

{
K∗1Σ − K∗

(
f

Ku

)2
}

. (5.6)

Hence, the first order optimality condition of (5.5) for a positive solution u is given by

K∗1Σ − K∗
(
f

Ku

)2

+ α p = 0 , p ∈ ∂J(u) . (5.7)

However, we additionally have to regard the positivity constraint in (5.5). Hence, the

Karush-Kuhn-Tucker conditions [89, Thm. 2.1.4] provide the existence of a Lagrange

multiplier λ ≥ 0 , such that the stationary points of the functional in (5.5) need to

fulfill

0 ∈ K∗1Σ − K∗
(
f

Ku

)2

+ α ∂J(u) − λ ,

0 = λu .

(5.8)

By multiplying the first equation in (5.8) by u , the Lagrange multiplier λ can be

eliminated by the second equation and the subsequent division by K∗1Σ leads to a

fixed point equation of the form

u − u

K∗1Σ

K∗
(
f

Ku

)2

+ α
u

K∗1Σ

p = 0 , p ∈ ∂J(u) . (5.9)

To design an iteration scheme, we use a semi-implicit approach based on (5.9) and obtain

a sequence of iteration steps of the form

uk+1 −
uk

K∗1Σ

K∗
(

f

Kuk

)2

+ α
uk

K∗1Σ

pk+1 = 0 , pk+1 ∈ ∂J(uk+1) . (5.10)
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This iteration approach has almost the same form as the numerical scheme proposed in

the case of Poisson noisy data in (4.21), so that we can utilize the iteration strategy in-

troduced in (4.24). According to this, the method (5.10) solving the variational problem

(5.5) can be realized as a nested two step iteration of the form

uk+ 1
2

=
uk

K∗1Σ

K∗
(

f

Kuk

)2

, (REC step)

uk+1 = uk+ 1
2
− α

uk
K∗1Σ

pk+1 , pk+1 ∈ ∂J(uk+1) , (REG step)

(5.11)

in which we alternate a reconstruction (REC) step with a suitable regularization (REG)

step. In this iteration scheme, we can observe that the reconstruction half step in

(5.11) has a light modified form of the EM algorithm presented in (4.15), where only a

modification of the backprojected function f
Kuk

is required. Moreover, the nesting in

the present form leads to the fact that the regularization step in (5.11) coincides with

the regularization step of the FB-EM-REG algorithm (4.24). Hence, the second half step

from uk+ 1
2

to uk+1 in (5.11) can be realized by solving the convex variational problem

(4.25). In addition, a damping strategy in this regularization step can be introduced

analogously to (4.26), which can be solved by minimizing the variational problem (4.27).

Finally, we note that the two step strategy (5.11) with its damping variant in (4.26)

can be interpreted as an operator splitting algorithm. This is not surprising due to the

analogy of this iteration scheme to the (damped) FB-EM-REG algorithm proposed in

Sections 4.4.1 and 4.4.2. Hence, the nested iteration sequence (5.11) with the modified

regularization step (4.26) can be formulated as a forward-backward (FB) splitting algo-

rithm (see Section 4.4.3) using the following decomposition of the optimality condition

(5.7),

0 ∈ C(u) := K∗1Σ − K∗
(
f

Ku

)2

︸ ︷︷ ︸
=: A(u)

+ α ∂J(u)︸ ︷︷ ︸
=: B(u)

.

For that reason, we denote the iteration scheme (5.11), which solved the regularized US

speckle likelihood estimation problem (5.5), as US-FB-REC-REG algorithm.

5.2.2 Stopping Rules and Pseudocode

In order to derive appropriate stopping rules to guarantee the accuracy of the proposed

US-FB-REC-REG algorithm, we again proceed analogously to the FB-EM-REG algo-

rithm in Section 4.4.4. According to this, we consider the maximum number of iterations

and the error in the optimality condition (5.7) as basic stopping criteria. The latter one
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will be measured in a weighted norm ‖ · ‖2,w defined in (4.30) and has the form (cf.

(4.31))

optk+1 :=

∥∥∥∥∥K∗1Σ − K∗
(

f

Kuk+1

)2

+ α pk+1

∥∥∥∥∥
2

2,uk+1

. (5.12)

In addition, we are also interested in the convergence of the sequence of primal functions

(uk) and the sequence of subgradients (pk) with pk ∈ ∂J(uk) . Hence, we consider the

damped regularization step (4.26) with the reconstruction step in (5.11),

uk+1 − ωk
uk

K∗1Σ

K∗
(

f

Kuk

)2

− (1− ωk)uk + ωk α
uk

K∗1Σ

pk+1 = 0 .

By combining this iteration scheme with the optimality condition (5.9) evaluated at uk ,

which must be fulfilled in the case of convergence, we obtain the optimality statement

(4.32) for the sequences (uk) and (pk) . Hence, the stopping criteria in (4.33) can be

used to guarantee the accuracy of these sequences.

Following the results in Section 5.2.1 and the stopping rules above, we can use Algorithm

5.1 to solve the regularized US speckle noise based likelihood estimation problem (5.5).

Algorithm 5.1 (Damped) US-FB-REC-REG Algorithm

1. Parameters: f , α > 0 , ω ∈ (0, 1] , maxRECIts ∈ N , tol > 0

2. Initialization: k = 0 , u0 := c > 0

3. Iteration:

while ( ( k < maxRECIts ) and

( optk ≥ tol or uoptk ≥ tol or poptk ≥ tol ) ) do . (5.12), (4.33)

i) Compute uk+ 1
2

via reconstruction step in (5.11).

ii) Set ωk = ω.

iii) Compute uk+1 via convex variational problem (4.27).

iv) k ← k + 1

end while

4. Return uk
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5.3 Image Denoising

In this section, we are interested in the problem of image denoising, which is a relevant

issue in medical ultrasound imaging (cf. [110, 101, 92]). In [101], Krissian et al. proposed

a total variation based model to denoise an ultrasound image corrupted by speckle noise,

which can be generalized to the following minimization problem with an arbitrary convex

regularization functional J ,

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Ω

(f − u)2

u
dµ + αJ(u) . (5.13)

To solve this minimization problem with the total variation regularization, the authors

in [101, 92] suggest a gradient descent algorithm based on the Euler-Lagrange equation.

However, such an approach requires always an approximation of TV by differentiable

functionals (4.6) and needs a severe step size restriction. Here, we propose a strategy

based on the damped US-FB-REC-REG algorithm introduced in Section 5.2.1 to solve

the denoising problem (5.13).

We can see that the denoising problem (5.13) coincides with the US speckle noise based

likelihood reconstruction model (5.5) in the case of identity operator K . Hence, we

can use the US-FB-REC-REG splitting strategy (5.11) with the damped modification

in (4.26) in order to obtain a numerical iteration scheme for the US denoising problem

(5.13). Since the reconstruction step in (5.11) simplifies in the case of identity operator

K to uk+ 1
2

= f2

uk
, the damped regularization step in (4.26) results in the following

iteration sequence,

uk+1 = (1− ωk)uk + ωk
f 2

uk
− ωk αuk pk+1 , pk+1 ∈ ∂J(uk+1) , (5.14)

with ωk ∈ (0, 1] . This step can be realized by solving a convex variational problem of

the form (cf. (4.27))

uk+1 ∈ arg min
u ∈W (Ω)

 1

2

∫
Ω

(
u −

(
ωk

f2

uk
+ (1− ωk)uk

))2

uk
+ ωk αJ(u)

 . (5.15)

In the undamped case (i.e. ωk = 1 ), the algorithm (5.14) represents a semi-implicit

iteration scheme with respect to the optimality condition of (5.13), which is given by

u ( 1 − f 2

u2
+ α p ) = 0 , p ∈ ∂J(u) , (5.16)

and thus actually realized a denoised image in medical ultrasound imaging. Note that
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the optimality condition (5.16) is obtained via the Karush-Kuhn-Tucker conditions, anal-

ogous to (5.9) with identity operator K .

Remark. We have seen that the iteration scheme (5.14) solves the US denoising problem

(5.13) by a sequence of modified L2 variational models of the form (5.15). In this way,

we obtain a maximum a-posteriori probability estimate, but unfortunately for the price

of high computational efforte, which are comparable to the incorporated US-FB-REC-

REG reconstruction strategy (5.11). Hence, motivated by the approximated denoising

model in the case of Poisson noisy images in Section 4.5.2, one can consider the same

approach to reduce the computational complexity of the computational sequence (5.15).

Actually, using the Taylor linearization (4.38) with the function Gf setting as the data

fidelity term in (5.13), we obtain an approximation of the form

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Ω

(f − u)2

f
dµ + αJ(u) . (5.17)

The use of this approximation only makes sense if the given noisy image f is strictly

positive, since in the case of negative values the minimization problem becomes a max-

imization problem. Formally, the given noisy image can be negative due to the signal

dependent perturbation of the form (5.1), however in practice the displayed ultrasound

images are positive so that the approximation (5.17) can be used to reduce the complex-

ity of the sequence (5.15).

5.4 Analysis

In this section, we carry out a mathematical analysis of the US speckle noise based varia-

tional model (5.5). In the case of identity operator K and total variation regularization,

an existence and uniqueness proof as well as the positivity preservation of a solution was

given in [92]. In this work, we concentrate on the mathematical analysis of the general

reconstruction problem (5.5) with respect to the following aspects:

• We propose a theoretical framework for an arbitrary convex regularization func-

tional J , also including singular energies such as the total variation or general `1 -

or L1 -type functionals. For such energies we prove the well-posedness, i.e. the

existence, uniqueness, and stability of a solution with respect to the variational

regularization model (5.5).

• We study the damped US-FB-REC-REG algorithm proposed in Section 5.2.1 with

respect to preservation of positivity of a solution and a stable convergence behavior

of this iteration scheme.
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5.4.1 Properties of Data Fidelity Term

For the analysis of the regularized US speckle noise based likelihood estimation problem

(5.5), we first study the data fidelity term DUS : L2(Σ) × L2(Σ) → R≥ 0 ∪ {+∞} of

(5.5) defined by

DUS(ϕ, ψ) :=

∫
Σ

(ϕ − ψ)2

ψ
dν for all ψ ≥ 0 a.e. , (5.18)

where ν is a measure. Note that the integrand is nonnegative and vanishes if and only

if ϕ = ψ . In the following, we will study some analytical results of this functional,

which will be necessary in the following analysis.

Lemma 5.4.1 (Properties of Data Fidelity Term). Let A : U(Ω) → V (Σ) be a linear

operator between locally convex spaces U(Ω) and V (Σ) (see Definition 3.1.17), such that

U(Ω) and V (Σ) are associated with topologies τU and τV . Additionally, we assume

that the operator A is sequentially continuous (see Definition 3.1.5) with respect to the

topologies τU and τV and that V (Σ) is continuously embedded in L2(Σ) (see Definition

3.1.23). Moreover, we suppose that the operator A preserves positivity, i.e. it satisfies

Au ≥ 0 a.e. for any u ≥ 0 a.e. . Then, the following statements hold:

(i) For any fixed ϕ ∈ L2(Σ) , the function ψ 7→ DUS(ϕ, ψ) is convex and thus, due

to the linearity of the operator A , the function u 7→ DUS(ϕ,Au) is also convex.

(ii) For any fixed ϕ ∈ L2(Σ) , the function u 7→ DUS(ϕ,Au) is lower semicontinuous

with respect to the topology τU .

Proof. (i) The convexity of the function ψ 7→ DUS(ϕ, ψ) follows directly from the form

of the second directional derivative of DUS(ϕ, · ) , namely (DUS(ϕ, · ))′′ (ψ) = 2ϕ2

ψ3 ,

which is positive for any ψ ≥ 0 a.e. (ii) Fix a function ϕ ∈ L2(Σ) . Let (un) be

a sequence in the domain of the function v 7→ DUS(ϕ,Av) which converges in the

topology τU to some u ∈ { v ∈ U(Ω) : v ≥ 0 a.e. } . Then, due to the sequential

continuity of the operator A with respect to the topologies τU and τV as well as the

continuous embedding of V (Σ) in L2(Σ) , we obtain the convergence of the sequence

(Aun) to Au in the norm topology on L2(Σ) as well as the pointwise convergence

almost everywhere on Σ . Thus, the sequence
(

(ϕ − Aun)2 /Aun
)

converges almost

everywhere to (ϕ − Au)2 /Au and by applying Fatou’s Lemma we obtain∫
Σ

(ϕ − Au)2

Au
dν ≤ lim inf

n→∞

∫
Σ

(ϕ − Aun)2

Aun
dν .

This inequality means that the function v 7→ DUS(ϕ,Av) is lower semicontinuous with

respect to the topology τU .
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5.4.2 Assumptions

In this section, we discuss the necessary foundations for the analysis of the regularized

US speckle noise based likelihood estimation problem (5.5). Since almost all required

assumptions on the forward operator K and the regularization functional J are identical

with the ones described in Assumptions 4.6.5, we will only point out the few necessary

changes in the following.

At the beginning, we extend the convex regularization funtional J : W (Ω) → R≥ 0 on

a Banach space W (Ω) ⊂ U(Ω) to a convex functional on Banach space U(Ω) using the

extension (4.45) (cf. Section 4.6.2). Then, we can also extend the admissible solution

of the minimization problem (5.5) from W (Ω) to U(Ω) and denote for the following

analysis the objective functional with F (u) ,

min
u ∈ U(Ω)
u≥ 0 a.e.

F (u) := DUS(f,Ku) + αJ(u) , α > 0 , (5.19)

where the functional DUS is defined in (5.18). Now, based on the discussion in Section

4.6.2, we make the following assumptions.

Assumption 5.4.2. We demand the conditions given in Assumption 4.6.5, excluding

the item (ii), which we replace in the case of the data fidelity term (5.18) by

(ii) The Banach space Vµ(Σ) is continuously embedded in L2
µ(Σ) (Definition 3.1.23),

where L2
µ(Σ) is the Lebesque space L2(Σ) with respect to the measure µ .

5.4.3 Well-Posedness of Minimization Problem

In the following, we verify the existence, uniqueness, and stability of the regularized US

speckle noise based likelihood estimation problem represented by the minimization of

(5.19).

Theorem 5.4.3 (Existence of Minimizers). Let U(Ω) , Vµ(Σ) , K , J , and F satisfy

Assumption 5.4.2. Assume that α > 0 and f ∈ Vµ(Σ) . Then, the functional F

defined in (5.19) has a minimizer.

Proof. Due to the positivity of the data fidelity term DUS and the lower semicontinuity

of the function v 7→ DUS(f,Kv) , f ∈ Vµ(Σ) fix, with respect to the topology τU in

Lemma 5.4.1, the proof works analogously to the proof of Theorem 4.6.8.
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Next, we consider the uniqueness of the minimizers, for which it is enough to verify

the strict convexity of the objective functional F defined in (5.19). For this purpose,

it is straight-forward to see that the function u 7→ DUS(f,Ku) is strictly convex for

functions with infΩ u > 0 , if the operator K is injective, i.e. the null space is trivial

since K is linear (cf. Assumption 4.6.5). Therefore, we can immediately conclude the

following result.

Theorem 5.4.4 (Uniqueness of Minimizers). Let U(Ω) , Vµ(Σ) , K , J , and F satisfy

Assumption 5.4.2. Assume that K is an injective operator and f ∈ Vµ(Σ) . Then, the

function u 7→ DKL(f,Ku) and also the functional F from (4.46) is strictly convex for

functions u fulfilling infΩ u > 0 . In particular, the minimizer of F is unique.

Finally, we show the stability of the regularized US estimation problem (5.19) with

respect to a certain kind of data perturbations. For the necessity of a stability result

compare the discussion above Theorem 4.6.10.

Theorem 5.4.5 (Stability with Respect to Perturbations in Measurements). Let U(Ω) ,

Vµ(Σ) , K , J , and F satisfy Assumption 5.4.2. Fix α > 0 and assume that the

functions fn ∈ Vµ(Σ) , n ∈ N , are approximations of a data function f ∈ Vµ(Σ) in

the L2
µ(Σ) -norm, i.e.

lim
n→∞

‖fn − f‖L2
µ(Σ) = 0 . (5.20)

Moreover, let

un ∈ arg min
v ∈ U(Ω)
v ≥ 0 a.e.

{
Fn(v) := DUS(fn, Kv) + αJ(v)

}
, n ∈ N , (5.21)

and u a solution of the regularized problem (5.19) corresponding to the data function f .

Additionally, we assume that f belongs to the function space L∞µ (Σ) and there exists a

positive constant c such that

0 < c ≤ Ku a.e. on Σ . (5.22)

Then, the problem (5.19) is stable with respect to perturbations in the data, i.e. the

sequence (un) has a τU -convergent subsequence and every τU -convergent subsequence

converges to a minimizer of the functional F in (5.19).

Proof. The proof is similar to the one of Theorem 4.6.10, where we proved the stability

of the Poisson likelihood estimation problem (4.46), and only modifications at the be-

ginning of the proof are required. According to the latter one, we first show the uniform
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boundedness of the sequence
(
J(un)

)
for the existence of a τU -convergent subsequence

of (un) . Let α > 0 fix, then the positivity of the functional DUS and the definition of

un as a minimizer of the objective functional Fn in (5.21) imply that

J(un) ≤ DUS(fn, Kun) + αJ(un) ≤ DUS(fn, Ku) + αJ(u) , ∀n ∈ N . (5.23)

Hence, the sequence
(
J(un)

)
is bounded, if the sequence

(
DUS(fn, Ku)

)
on the right-

hand side of (5.23) is bounded. To show this, we use condition (5.20) and obtain with

the Cauchy-Schwarz inequality the strong convergence of the sequence (fn) to f in the

L1
µ(Σ) -norm,

lim
n→∞

‖f − fn‖L1
µ(Σ) = 0 . (5.24)

Thus, the condition (5.20) implies together with the inequality∣∣DUS(fn, Ku) − DUS(f,Ku)
∣∣

=
∣∣DUS(fn − f + f,Ku) − DUS(f,Ku)

∣∣
=

∣∣∣∣ ∫
Σ

(fn − f)2

Ku
dµ + 2

∫
Σ

(
f

Ku
− 1

)
(fn − f) dµ

∣∣∣∣
≤
∥∥∥∥ 1

Ku

∥∥∥∥
L∞µ (Σ)︸ ︷︷ ︸

<∞

‖f − fn‖2
L2
µ(Σ)︸ ︷︷ ︸

(5.20)→ 0

+ 2

∥∥∥∥ f

Ku
− 1

∥∥∥∥
L∞µ (Σ)︸ ︷︷ ︸

<∞

‖f − fn‖L1
µ(Σ)︸ ︷︷ ︸

(5.24)→ 0

,

the following convergence

lim
n→∞

DUS(fn, Ku) = DUS(f,Ku) . (5.25)

Note that the boundedness of 1
Ku

follows from assumption (5.22) and the boundedness

of f
Ku
− 1 is derived from the assumption that f belongs to the function space L∞µ (Σ) .

With result (5.25), we can now proceed analogously to the proof of Theorem 4.6.10,

replacing the Kullback-Leibler functional DKL by DUS and noting that the space Vµ(Σ)

is now continuously embedded in L2
µ(Σ) (see Assumption 5.4.2 (ii)).

5.4.4 Positivity Preservation of US-FB-REC-REG Algorithm

In the following, we analyze the positivity preservation of the US-FB-REC-REG splitting

approach (5.11) and its damped modification (4.26). Since the regularization steps in this

strategy coincides with the regularization steps of the damped FB-EM-REG algorithm,

we can use the results obtained in Section 4.6.4, particularly the maximum principle for

the weighted L2 regularization problem (4.57) in Lemma 4.6.11.
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Lemma 5.4.6 (Positivity of (damped) US-FB-REC-REG Algorithm). Let (ωk) be a

given sequence of damping parameters with ωk ∈ (0, 1] for all k ≥ 0 , the initialization

function u0 be strictly positive and let the data function f lie in L∞µ (Σ) . Additionally,

we assume that the operator K satisfies the positivity preservation in Assumption 4.6.5

(v) and that the adjoint operator K∗ fulfills

K∗g > 0 , ∀g ∈ Vµ(Σ)

such that g ≥ 0 and ∃x with g(x) > 0 .
(5.26)

Moreover, we suppose that the regularization functional J fulfills the condition (4.58)

for the maximum principle in Lemma 4.6.11. Then, each half step of the (damped)

US-FB-REC-REG splitting method and therewith also the solution is strictly positive.

Proof. Since u0 > 0 and the operator K does not effect the strict positivity, we have

Ku0 > 0 and thus at least a point x such that (f /Ku0)2(x) > 0 . With assumption

(5.26), we obtain that the first reconstruction step u 1
2

in (5.11) is strictly positive.

Because the regularization step in (5.11) can be realized via the convex variational

problem (4.25), the maximum principle in Lemma 4.6.11 using q := u 1
2
> 0 and

h := u0

K∗1Σ
> 0 yields u1 > 0 . With the same argument, we also obtain u1 > 0

if we take the damped regularization step (4.26) via the variational problem (4.27),

using the maximum principle with q := ω0 u 1
2

+ (1− ω0)u0 > 0 for ω0 ∈ (0, 1] and

h := u0

K∗1Σ
> 0 . Inductively, the strict positivity of the whole nested iteration sequence

(uk) and with it the strict positivity of the solution is obtained by the same arguments

using Lemma 4.6.11.

In the context of Poisson distributed data, we analyzed the positivity preservation of the

(damped) FB-EM-REG splitting algorithm in Section 4.6.4. In this context, we could

also prove a maximum principle and positivity preservation of the Poisson denoising

strategy explicitely in Lemma 4.6.13. In the case of the US framework, it is not possible

to provide the same procedure. The difficulty lies in the form of the “noisy” image

uk+ 1
2

= ωk
f2

uk
+ (1 − ωk)uk , which will be restored during the denoising iteration

sequence in (5.15). Since this term contains the function f2

uk
, we could not find a

suitable estimation so far such that we can proceed analogously to Lemma 4.6.13 in

order to obtain a maximum principle for the US denoising problem similar to (4.63)

using Lemma 4.6.11. However, Lemma 5.4.6 gives us also a positivity preservation

result for the US denoising strategy (5.15) if we restrict the consideration of the noisy

image f to the points, where the absolute values of f are strictly positive.
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Corollary 5.4.7 (Positivity of US Denoising Strategy). Let (ωk) be a given sequence

of damping parameters with ωk ∈ (0, 1] for all k ≥ 0 and the initialization function

u0 be strictly positive. Furthermore, we assume that the data function f lies in L∞µ (Ω)

and we define a set

M := {x ∈ Ω : |f(x)| > 0 } .

Moreover, we suppose that the regularization functional J fulfills the condition (4.58)

for the maximum principle in Lemma 4.6.11. Then, each half step of the (damped) US

denoising method (5.15) and with it also the solution is strictly positive on M .

Proof. The result follows direct from Lemma 5.4.6, since the identity operator K cer-

tainly fulfills the condition (5.26) on the point set M .

5.4.5 Convergence of Damped US-FB-REC-REG Algorithm

In this section, we show analogously to Theorem 4.6.14 the convergence of the damped

US-FB-REC-REG splitting algorithm under appropriate assumptions on the damping

parameters ωk .

Theorem 5.4.8 (Convergence of Damped US-FB-REC-REG Algorithm). Let U(Ω) ,

Vµ(Σ) , K , J , and F satisfy Assumption 5.4.2. Moreover, let (uk) be a sequence

of iterates obtained by the damped US-FB-REC-REG algorithm (5.11) with the damped

regularization step (4.26). Regarding this sequence of iterates, we make additional as-

sumptions:

• The data function f lies in L∞µ (Σ) and the adjoint operator K∗ fulfills the con-

dition (5.26).

• The regularization functional J fulfills the condition (4.58) for the maximum prin-

ciple in Lemma 4.6.11.

Now, if there exists a sequence of corresponding damping parameters (ωk) , ωk ∈ (0, 1] ,

satisfying the inequality

ωk ≤

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

sup
v ∈ [uk,uk+1]

∫
Σ

f 2 (Kuk+1 − Kuk)
2

(Kv)3
dµ

(1 − ε) , ε ∈ (0, 1) , (5.27)

then the objective functional F defined in (5.19) is decreasing during the iteration. If

we additionally suppose the four assumptions introduced in Theorem 4.6.14, then the



5.4 Analysis 115

sequence of iterates (uk) has a τU -convergent subsequence and every τU -convergent

subsequence converges to a minimizer of the functional F defined in (5.19).

Proof. The proof is build up analogously to the one of the damped FB-EM-REG al-

gorithm in Theorem 4.6.14. Thus, we distinguish only the steps where a change is

required.

First step: Monotone descent of the objective functional

To get a descent of the objective functional F , we look for a condition on the damping

parameters (ωk) , which guarantees a descent of the form (4.69) for all k ≥ 0 . To show

this condition, we add the difference DUS(f,Kuk+1) − DUS(f,Kuk) on both sides of

the inequality (4.70). Considering the definition of the data fidelity term DUS in (5.18)

and the objective functional F in (5.19) as well as using the relation given in (4.72), we

then obtain the following inequality (cf. (4.71)),

F (uk+1) − F (uk) +
1

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

≤
∫

Σ

(
(f − Kuk+1)2

Kuk+1

− Kuk+1 −
(f − Kuk)

2

Kuk
+ Kuk

)
dµ

+

∫
Ω

(
K∗
(

f

Kuk

)2

(uk+1 − uk)

)
dλ .

(5.28)

Using an auxiliary functional G : U(Ω) → R ∪ {+∞} defined as

G(u) :=

∫
Σ

(
(f − Ku)2

Ku
− Ku

)
dµ ,

the right-hand side of (5.28) can be formally interpreted as a Taylor linearization of G

of the form (4.73). In this linearization, we compute the second directional derivative

G′′(u; w1, w2) using the function φw2(t) := G′(u + t w2; w1) for any w2 ∈ U(Ω) ,

G′′(u; w1, w2) = φ′w2
(t)
∣∣
t= 0

= −
∫

Σ

∂

∂t

(
f 2

(Ku + tKw2)2
Kw1

)
dµ

∣∣∣∣
t= 0

= 2

∫
Σ

f 2Kw2Kw1

(Ku)3
dµ .

Following the proof of the damped FB-EM-REG algorithm, we obtain the descent of the

objective functional F if

sup
v ∈ [uk,uk+1]

∫
Σ

f 2 (Kuk+1 − Kuk)
2

(Kv)3
dµ ≤ 1 − ε

ωk

∫
Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ .
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By solving this inequality for ωk , we obtain the required condition (5.27) for the damping

parameters (ωk) in order to have a descent of the objective functional F . By a suitable

choice of ε in (5.27), we additionally can guarantee that ωk ≤ 1 for all k ≥ 0 .

Second and third step: Convergence of the primal and dual iterates

These partial steps can both be proven analogously to the damped FB-EM-REG algo-

rithm in Theorem 4.6.14.

Fourth step: Show that p ∈ ∂J(u)

The proof of this partial step is similar to the fourth step of the damped FB-EM-REG

algorithm in Theorem 4.6.14, except a slight difference. Due to the difference of the

reconstruction half steps in (4.24) and (5.11), we have to replace the terms f
Kukl

and

f
Ku

by
(

f
Kukl

)2

and
(
f
Ku

)2
respectively.

Fifth step: Convergence to a minimizer of the objective functional

For this partial step the same changes have to be made as for the fourth step.

5.5 Iterative Refinement via Bregman Distance Iteration

Based on the ideas in Section 4.7.3, we present an iterative refinement approach for the

US variational model (5.5) in this section using inverse scale space methods based on

Bregman distance iteration. As a recall, such a refinement is in general desirable due to

the systematic errors of variational regularization techniques, which cause oversmoothing

effects in the reconstructions (see Section 4.7.2).

5.5.1 Bregman-US-FB-REC-REG Algorithm

In the following, we briefly describe the iterative refinement approach for the US data

based likelihood estimation problem (5.5). The procedure is the same as in the case

of the Poisson data based variational reconstruction model proposed in Section 4.7.3

and only slight modifications in the resulting form of the iteration scheme are required.

According to Section 4.7.3, an iterative refinement is realized by a sequence of modified

US data likelihood estimation problems based on (5.5), namely (cf. (4.100))

ul+1 ∈ arg min
u ∈W (Ω)
u≥ 0 a.e.

{
DUS(f,Ku) + αDpl

J (u, ul)
}
, pl ∈ ∂J(ul) , (5.29)

where Dpl

J (u, ul) is the generalized Bregman distance defined in Definition 4.7.1. Due

to the convexity of the Bregman distance in the first argument (see Lemma 4.7.2) and
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the continuity of the data fidelity function DUS , the Karush-Kuhn-Tucker conditions

provide the existence of a Lagrange multiplier λ ≥ 0 , such that the stationary points

of the functional in (5.29) need to fulfill (cf. (4.101) using the subdifferential of DUS

given in (5.6))

0 ∈ K∗1Σ − K∗
(

f

Kul+1

)2

+ α
(
∂J(ul+1) − pl

)
− λ ,

0 = λul+1 ,

with pl ∈ ∂J(ul) . These both conditions lead to a fixed point equation of the form (cf.

(4.102))

0 ∈ ul+1 − ul+1

K∗1Σ

K∗
(

f

Kul+1

)2

+ α
ul+1

K∗1Σ

(
∂J(ul+1) − pl

)
, (5.30)

with pl ∈ ∂J(ul) and a well defined update formula for the iterates pl , namely

pl+1 := pl − 1

α

(
K∗1Σ −K∗

(
f

Kul+1

)2
)
∈ ∂J(ul+1) , (5.31)

with u0 constant and p0 := 0 ∈ ∂J(u0) . Based on equation (5.30), we can apply the

idea of the nested two step iteration (5.10) in every refinement step l = 0, 1, . . . and

obtain a strategy consisting of a reconstruction step

ul+1
k+ 1

2

=
ul+1
k

K∗1Σ

K∗
(

f

Kul+1
k

)2

, (5.32)

followed by solving an adapted variational regularization problem (4.105). To transfer

the shift term
〈
pl, u

〉
in (4.105) to the data fidelity term, we use the scaling

vl :=
α

K∗1Σ

pl

and obtain from (5.31) the following update formula for the iterates vl ,

vl+1 = vl −

(
1Ω −

1

K∗1Σ

K∗
(

f

Kul+1

)2
)

, v0 = 0 , (5.33)

such that we can use the regularization half step (4.108) with its damped modification

proposed in (4.109).
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5.5.2 Stopping Rules and Pseudocode

To provide stopping criteria for the iterative Bregman distance regularization above, we

proceed analogously to Section 4.7.4, where we proposed stopping rules for the Bregman

refinement of the FB-EM-REG algorithm. In the case of an US data based problem, we

have to make two modifications. First, we stop the outer Bregman refinement iteration

sequence using the generalized discrepancy principle with the US data based data fidelity

term DUS , i.e. at the index l∗ = l∗(δ, f) where the residual DUS(f,Kul∗) reaches the

noise level δ or an estimate of the noise level, i.e.

l∗ = max{ l ∈ N : DUS(f,Kul) ≥ τδ } , τ > 1 .

As second modification, the stopping criterion for the error in the optimality condition

(5.30) is given by (cf. (4.110))

optl+1
k+1 =

∥∥∥∥∥∥K∗1Σ − K∗

(
f

Kul+1
k+1

)2

−K∗1Σ v
l + α pl+1

k+1

∥∥∥∥∥∥
2

2,ul+1
k+1

. (5.34)

Hence, we can use Algorithm 5.2 to solve the stepwise refinement (5.29) of the regularized

US data based likelihood estimation problem (5.5).
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Algorithm 5.2 (Damped) Bregman-US-FB-REC-REG Algorithm

1. Parameters: f , α > 0 , ω ∈ (0, 1] , maxBregIts ∈ N , δ > 0 , τ > 1 ,

maxRECIts ∈ N , tol > 0

2. Initialization: l = 0 , u1
0 = u0 := c > 0 , v0 := 0

3. Iteration:

while ( DUS(f,Kul+1
0 ) ≥ τδ and l < maxBregIts ) do

a) Set k = 0.

while ( ( k < maxRECIts ) and

( optl+1
k ≥ tol or uoptl+1

k
≥ tol or

poptl+1
k
≥ tol ) ) do . (5.34), (4.111)

i) Compute ul+1
k+ 1

2

via reconstruction step in (5.32).

ii) Set ωl+1
k = ω.

iii) Compute ul+1
k+1 via convex variational problem (4.109).

iv) k ← k + 1

end while

b) Compute update vl+1 via (5.33).

c) Set ul+2
0 = ul+1

k .

d) l ← l + 1

end while

4. Return ul+1
0
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6
Regularization : Total Variation (TV)

In the previous Chapters 4 and 5, we proposed two variational frameworks with the

corresponding numerical strategies using a general convex regularization functional J

so far. In the following we discuss now the use of total variation (TV) functional as

regularization energy in both frameworks. The total variation functional is popular in

many problems in the calculus of variations and plays in particular an important role

in several fields of mathematical image processing. In the later application, the idea of

TV regularization has been firstly introduced as a denoising technique by Rudin, Osher

and Fatemi in [138], and has been generalized to various other imaging tasks such as

deblurring, inpainting or segmentation subsequently [49]. The main feature of these

resulting regularization techniques is the efficient realization of discontinuous solutions.

6.1 Functions of Bounded Variation

In most applications, edges in an image represent important and fundamental features

of an object, which will be used to analyse the available information in the image.

Mathematically, edges correspond to discontinuities of a function, such that we need the

possibility to represent discontinuous functions in order to obtain a useful mathematical

description of an imaging problem. Unfortunately, the classical Sobolev spaces do not

allow to handle such requirements, since the weak gradient of a Sobolev function is

a function again. In the case of a discontinuous function, the weak derivative can

be interpreted as a measure and the space BV (Ω) of functions of bounded variation

[4, 71, 80], can represent such functions. In image processing, the space BV (Ω) was

introduced by Rudin, Osher and Fatemi [138] in the field of image denoising and has

successively found applications in various other imaging tasks.
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In this section, we recall the definition and basic properties of the space of functions of

bounded variation, which are mainly collected from [2, 4, 71, 80, 143]. In the following,

we shall assume that Ω ⊂ Rd is an open set.

Definition 6.1.1 (Total Variation (TV)). Let u ∈ L1(Ω) . The total variation (TV) of

u in Ω is defined by∫
Ω

|Du| = sup

{∫
Ω

u divg dx : g ∈ C1
0(Ω,Rd) , ‖g‖∞ ≤ 1

}
, (6.1)

where C1
0(Ω,Rd) denotes the space of continuously differentiable functions from Ω to

Rd with compact support in Ω and divg =
∑d

i= 1
∂gi
∂xi

. The supremum norm inequality

in (6.1) means that supx ∈ Ω |g(x)| ≤ 1 , i.e. |g(x)| ≤ 1 for all x ∈ Ω .

Remark. Since the space C∞0 (Ω,Rd) of all arbitrarily often differentiable functions with

compact support in Ω is dense in C1
0(Ω,Rd) , we obtain in (6.1) the same supremum if

we replace C1
0(Ω,Rd) by C∞0 (Ω,Rd) .

Example 6.1.2.

(1) If u belongs to the Sobolev space W 1,1(Ω) ⊂ L1(Ω) , then the definition of a weak

derivative yields∫
Ω

u divg dx = −
∫

Ω

∇u · g dx for every g ∈ C∞0 (Ω,Rd) ,

so that ∫
Ω

|Du| =

∫
Ω

|∇u(x)| dx , (6.2)

where ∇u = (∇x1u, . . . ,∇xdu) denotes the weak gradient of u .

(2) Let u be defined in Ω = (−1,+1) as the Heaviside function, i.e.

u(x) =

 0 , if x ∈ (−1, 0) ,

1 , if x ∈ [0,+1) .

Then, ∫ +1

−1

u g′ dx = g(0) and

∫ +1

−1

|Du| = 1 ,

i.e. the distributional derivative Du of u is equal to the Dirac measure δ0 in 0 .

Definition 6.1.3 (Space of Functions of Bounded Variation). A function u ∈ L1(Ω)

has a bounded variation in Ω , if the total variation of u in Ω is finite. The set of all
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such functions with bounded variation in Ω is denoted by BV (Ω) , i.e.

BV (Ω) =

{
u ∈ L1(Ω) :

∫
Ω

|Du| < ∞
}
.

We call BV (Ω) the space of functions of bounded variation, which is equipped with the

norm

‖u‖BV (Ω) := ‖u‖L1(Ω) + |u|BV (Ω) , (6.3)

where | · |BV (Ω) is a seminorm defined by

|u|BV (Ω) :=

∫
Ω

|Du| .

Remark 6.1.4.

(1) It can be seen from Example 6.1.2, Item (1), that W 1,1(Ω) ⊆ BV (Ω) . In addition,

the fact that the two spaces are not equal, i.e. W 1,1(Ω) ( BV (Ω) , can be seen

from Example 6.1.2, Item (2). This is due to BV (Ω) containing step functions,

whose derivatives Du are distributions and hence are in particular not regular

functions.

(2) The definition of total variation in (6.1) is not unique for d ≥ 2 . Depending

on the definition of the supremum norm ‖g‖∞ = supx ∈ Ω |g(x)|`s with respect

to different norms on Rd with 1 ≤ s ≤ ∞ , one obtains equivalent versions of

the BV seminorm | · |BV (Ω) . More precisely, we obtain a family of total variation

seminorms defined by∫
Ω

|Du|`r = sup

{∫
Ω

u divg dx : g ∈ C∞0 (Ω,Rd) , |g|`s ≤ 1 on Ω

}
,

for 1 ≤ r < ∞ and the Hölder conjugate index s , i.e. r−1 + s−1 = 1 . The

most common formulations are the isotropic total variation (r = 2) and the

anisotropic total variation (r = 1) . For the sake of completeness, we anticipate

here that the different definitions of TV have effects on the structure of solutions

obtained during the TV minimization. In the case of isotropic TV, corners in

the edge set will not be allowed, whereas orthogonal corners are favored by the

anisotropic variant (cf. e.g. Fig. 6.1). For a detailed analysis, we refer e.g. to

[116, 68, 21, 153].

(3) If u ∈ BV (Ω) , then the distributional gradient Du = (D1u, . . . , Ddu) of u

can be identified with a vector valued Radon measure, see [6, pp. 39-40] or [71,

Sect. 5.1, Thm. 1]. Thus, the BV space obtains also discontinuous functions,
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since in contrast to the Sobolev spaces the measure Du needs not necessarily be

represented by a Lebesque measurable function.

Lemma 6.1.5. BV (Ω) is a Banach space with the norm ‖ · ‖BV (Ω) defined in (6.3).

Proof. See [80, p. 9].

Fig. 6.1. Effects of TV minimization depending on the not unique definition of

TV (cf. Remark 6.1.4, Item (2)). First row: original image. Second row: TV

regularized results obtaining with the isotropic TV definition (left) and anisotropic

one (right). We can observe that in the case of isotropic TV, corners in the edge

set will not be allowed, whereas orthogonal corners are favored by the anisotropic

variant.
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For many applications, the norm topology proposed in (6.3) is unfortunately too strong

to study certain properties in variational methods based on TV regularization such as

compactness, so that other weaker topologies are needed. In Section 3.1.3, we already

discussed such possibilities, namely the weak and the weak* topology, which are strictly

weaker as the strong norm topology. Hence, since BV (Ω) is a normed linear space, we

can directly use Definition 3.1.29 to specify the weak topology on BV (Ω) . However,

this topology will be used rather less due to the fact that one can say very little about

the dual space of BV , so that the weak convergence is hard to characterize. Moreover,

the Banach-Alaoglu Theorem 3.1.31 provides the compactness of a set only in the weak*

topology. Hence, one works with the weak* topology on BV (Ω) , knowing that the BV

space can actually be identified with the dual space of a separable space [4, Remark

3.12].

Definition 6.1.6 (Weak* Topology on BV [4, Def. 3.11]). A sequence (un) in BV (Ω)

is called weakly* convergent to some u ∈ BV (Ω) , if (un) converges to u in L1(Ω) -

norm and the sequence of distributional gradients (Dun) , interpreted as vector valued

Radon measures, weakly* converges to Du in Ω , i.e.

‖un − u‖L1(Ω) → 0 and lim
n→∞

∫
Ω

φ dDun =

∫
Ω

φ dDu , ∀φ ∈ C0(Ω) .

Lemma 6.1.7. A sequence (un) in BV (Ω) is weakly* convergent to some u ∈ BV (Ω) ,

if and only if (un) is bounded in BV (Ω) -norm and converges to u in L1(Ω) -norm, i.e.

un ⇀∗ u ⇔ ‖un − u‖L1(Ω) → 0 and sup
n
‖un‖BV (Ω) < ∞ .

Proof. See [4, Prop. 3.13].

In the following, we recall some basic properties of functions of bounded variation and

the total variation seminorm, which will be needed in the analysis of the total variation

regularization methods later.

Lemma 6.1.8 (Convexity). The total variation functional | · |BV (Ω) is convex on BV (Ω) .

Proof. See [2, Thm. 2.4].

Remark. It is also well known that the total variation functional fails to be strictly

convex, what can be simply shown by an example (see [2, Ex. 2.2]).

Lemma 6.1.9 (Lower Semicontinuity). The total variation functional | · |BV (Ω) is lower

semicontinuous in the L1
loc(Ω) -norm topology, i.e. for every sequence (un) of functions



126 6 Regularization : Total Variation (TV)

in BV (Ω) which converges in L1
loc(Ω) to a function u holds

|u|BV (Ω) ≤ lim inf
n→∞

|un|BV (Ω) .

Proof. See [71, Sect. 5.2, Thm. 1] or [80, Thm. 1.9].

Remark 6.1.10. Since | · |BV (Ω) is convex (Lemma 6.1.8), the strong lower semicontinuity

implies the weak lower semicontinuity in L1(Ω) (cf. [64, p. 11, Cor. 2.2]). Consequently,

it follows for bounded Ω that the BV seminorm | · |BV (Ω) is also lower semicontinuous

with respect to the weak topology on Lp(Ω) for 1 ≤ p < ∞ (cf. [2, Thm. 2.3]).

Lemma 6.1.11 (Compactness). Let Ω ⊂ Rd , d ≥ 1 , be an open and bounded set with

a Lipschitz boundary. Then, BV (Ω) is compactly embedded in Lp(Ω) for 1 ≤ p <

d / (d− 1) (see Definition 3.1.25), i.e.

BV (Ω)
c
↪→ Lp(Ω) for 1 ≤ p <

d

d − 1
,

and is continuously embedded in Lp(Ω) for p = d / (d− 1) (see Definition 3.1.23), i.e.

BV (Ω) ↪→ Lp(Ω) for p =
d

d − 1
,

where we use the notation that p = ∞ if d = 1 .

Proof. See [4, Cor. 3.49] or [2, Thm. 2.5].

Remark 6.1.12. In [2, Thm. 2.5], the authors prove that the space BV (Ω) is actually

also compactly embedded in Lp(Ω) with p = d / (d−1) for dimensions d ≥ 2 , however

with respect to the weak topology on Lp(Ω) (see Definition 3.1.29).

Notice that the compactness results presented above correspond to those of functions

in the Sobolev space W 1,1(Ω) ⊂ BV (Ω) , see [70, Sect. 5.7, Thm. 1; Sect. 5.6, Thm.

2]. However, note that there is also another type of compactness corresponding to the

weak* topology on BV (Ω) proposed in Definition 6.1.6. With this topology, we obtain

the following result as a direct consequence of the Banach-Alaoglu Theorem 3.1.31.

Lemma 6.1.13 (BV -Weak* Compactness). Let (un) be a sequence in BV (Ω) which is

uniformly bounded in ‖ · ‖BV (Ω) , then there exists a subsequence (unj) and u ∈ BV (Ω)

such that

unj ⇀∗ u in BV (Ω) .
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6.2 TV Regularization in Image Processing

The concept of the space of functions of bounded variation BV (Ω) and its assigned total

variation seminorm | · |BV (Ω) proposed in the previous section is a popular technique to

solve different problems in the calculus of variations and plays an important role in

several fields of mathematical image processing. The main reason for theirs popularity

is the property that the BV space can represent discontinuous functions, which will

even be preferred during the minimization of the TV functional. Hence, we give in the

following a brief overview of the ways the TV seminorm will be used in image processing

(cf. e.g. [47]) and recall the main properties of TV minimization using the standard

application of image denoising.

However, we start for the moment with the problem of the image reconstruction. A

commonly used and studied model in the literatur assumes that the observed data f

are perturbed by additive Gaussian noise of the form (cf. Section 2.1),

f = Kū + η , (6.4)

where ū denotes the desired exact properties of an object, K : U(Ω) → L2(Σ) is a

bounded (typically compact) linear operator on a Banach space U(Ω) , which transforms

the desired spatial information into measurement signals, and η is an additive white

Gaussian noise. As already discussed in Section 2.1, the perturbed operator equation

(6.4) is ill-posed and hence some type of regularization, which is directly related to certain

a-priori information about a solution, is required to enforce a stable approximation at the

desired image ū . In image processing, there are various tasks where one is in particular

interested in the preservation of the edges in an image. Mathematically, the edges are

strongly related to the discontinuities of a function, so that in the case of Gaussian

perturbed data (6.4) the following variational technique based on the TV regularization

functional will be used (cf. (2.5)),

min
u ∈BV (Ω)

1

2
‖Ku − f‖2

L2(Σ) + α |u|BV (Ω) , α > 0 . (6.5)

From the statistical point of view in Section 2.2, one uses the a-priori probability density

p(u) (2.8) with J(u) = |u|BV (Ω) . This means that images with smaller total variation

(higher prior probability) are preferred in the minimization. The expected reconstruc-

tions are cartoon-like images, i.e. they will result in almost uniform (mean) intensities

inside the different structures which are separated by sharp edges. An analysis of (6.5)

with respect to the existence, uniqueness and stability of minimizers can be found e.g.

in [2].
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One of the most famous application of TV regularization in image processing is the

Rudin-Osher-Fatemi (ROF) model [138] for image denoising. This model is a special

case of the reconstruction problem (6.4) and (6.5) using the identity operator K ,

min
u ∈BV (Ω)

1

2
‖u − f‖2

L2(Ω) + α |u|BV (Ω) , α > 0 , (6.6)

where f denotes the observed noisy image. The goal of this formulation is to decompose

the given noisy image f = ū + η into a clean (exact) image ū and the Gaussian

noise η . However, it is in general not possible to compute the exact image ū and an

approximation u is wanted. In particular, one can directly observe that such a solution

u approaches the noisy image f as α → 0+ .

The motivation for using TV in image processing is the effective suppression of noise

and more significantly, the realization of homogeneous regions with mostly sharp edges.

These features are in particular attractive for such applications, where the goal is to

identify object shapes that are separated by sharp edges. This preservation of edges

results from the fact that the TV functional essentially penalizes only the regularity of

the level sets of the desired solution and does not exclude the possibility of discontinuities.

This feature can be deduced from the coarea formula.

Lemma 6.2.1 (Coarea Formula [80, Thm. 1.23]). Let u ∈ BV (Ω) , then

|u|BV (Ω) =

∫
Ω

|Du| =

∫ ∞
−∞

(∫
Ω

|D1{x ∈ Ω : u(x)< t }|
)
dt ,

where 1E denotes the characteristic function of the set E , defined by 1E(x) = 1 if

x ∈ E and 1E(x) = 0 if x /∈ E .

Another interesting characterization of the question why the TV seminorm can preserve

discontinuities, can be found in [40] with respect to the interpretation of the so-called

source condition (SC) for total variation methods. In general, a regularization functional

J is used to obtain a smoothing of an image with respect to a certain criterion, which will

be determined by the choice of J and its variations. In the past, smooth, in particular

quadratic, regularizations have attracted most attention, mainly due to the simplicity

in analysis and computation. However, regularization functionals of the form

J(u) =
1

s

∫
Ω

|∇u|s dx for 1 < s < ∞ , (6.7)

cannot yield image reconstructions with sharp edges. Since, using the classical L2 -data

fidelity term as in (6.5), the regularization functionals (6.7) imply that a minimizer u
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has to fulfill

div
(
|∇u|s− 2∇u

)
=

1

α
K∗(Ku − f) , (6.8)

where K∗ denotes the adjoint operator of K . This condition means that the smooth-

ing process happens in two steps: in the first one, the adjoint operator K∗ creates a

smoothing depending on the reconstruction task represented by K . Note that this step

is not present in the case of denoising problems, since K and K∗ are identity oper-

ators. In the second step, the smoothing occurs by the inversion of a nondegenerate

elliptic differential operator of second order on the left-hand side of (6.8), which results

from the regularization functional in (6.7) only. However, this behavior changes in the

case of the TV functional, which has formally the form (6.7) with s = 1 (see Example

6.1.2, Item (1)). Hence, the elliptic differential operator in the second smoothing step

is then degenerate and hence effects only the level lines of the image. More precisely,

the optimality condition of (6.5) is given by

p =
1

α
K∗(Ku − f) , p ∈ ∂|u|BV (Ω) ⊂ (BV (Ω))∗ , (6.9)

where ∂ denotes the subdifferential of a functional (see Definition 3.2.6). Here, we see

that the first smoothing step by the adjoint operator K∗ is actually a dual one, because

it effects the subgradient p as an element of the dual space of BV (Ω) . Subsequently,

the second step is actually a relationship between the primal variable u and the dual

variable p . In the total variation case, this leads to a significantly different behavior in

the second step, since the dual variable is directly linked to the properties of the level

sets. This can be shown if u is sufficiently regular with |∇u| > 0 , then the subgradient

is singleton given by

∂|u|BV (Ω) = {κ(u) } with κ(u) = div

(
∇u
|∇u|

)
.

The element κ(u) has a geometric interpretation, namely it represents the mean cur-

vature of the level sets of u . Hence, the optimality condition (6.9) means that we can

expect that the length of the level sets is minimized during TV minimization, but that

it does not prohibit discontinuities in the solution.

However, despite the enormous popularity of TV minimization, it has also some un-

wanted effects. In the presence of noise, it tends to piecewise constant solutions, so-

called “staircasing effect” (see Fig. 6.2d), which was analyzed in detail e.g. in [59]

and [45]. Another deficit of TV regularization is the systematic loss of contrast in the

reconstructions, even if the given data f are noise free (see Fig. 6.2b and Fig. 6.3).

This effect is the well-known systematic error of the total variation minimization and
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was studied extensively in [116] and [125]. To this aspect, Meyer showed in [116] some

analytic results for the ROF model (6.6) using the Banach space G = divL∞(Ω,R2) ,

Ω ⊂ R2 , equipped with the norm

‖w‖∗ = inf
w = divg

g ∈ L∞(Ω,R2)

‖g‖L∞(Ω,R2) = inf
w = divg

g ∈ L∞(Ω,R2)

ess sup
x ∈ Ω

√
g2

1(x) + g2
2(x) . (6.10)

Using this space, Meyer showed that for a given image f and its ROF solution u as in

(6.6), we have

‖f‖∗ <
α

2
⇒ u = 0 ,

‖f‖∗ ≥
α

2
⇒ ‖f − u‖∗ =

α

2
and

∫
Ω

u (f − u) dx =
α

2
|u|BV (Ω) .

In particular, we see that the solution u vanishes completely depending on the G -norm

of the image f and the regularization parameter α . Also the following quantitative

result of ROF minimization was given in [116, p. 36]: Let f = σ 1BR(0) , σ > 0 , be

the multiple of the characteristic function of a disc with the radius R > 0 . Then, the

ROF solution is given by

u =

 0 , if σ R
α
≤ 1 ,(

σ − α
R

)
1BR(0) , if σ R

α
≥ 1 .

We can observe the mentioned systematic loss of contrast in the reconstruction. More

precisely, we see that u is a shrinked version of the given clean image f , where the

shrinkage is proportional to the regularization parameter α . However, notice the fact

that the solution u preserves the exact location of the discontinuities. In the case of a

signal in one dimension, we illustrate the systematic loss of contrast of ROF minimization

in Fig. 6.3.

In [116], Meyer also studied the aspect of cartoon-texture decomposition induced by the

ROF model. There, he showed that the variational problem (6.6) yields a decomposition

of the noise free image f = u + v with v := f − u into a cartoon part (or primal

sketch) u and a texture part v , which obtains the oscillatory patterns (including also

noise if f is noisy). An example of such a decomposition in the case of a noise free

image f is shown in Figure 6.4.

Finally, we briefly note that based on the ROF model (6.6) several further developments

were presented in the literature. Among others for instance different generalizations of

the denoising problem (6.6) to general reconstruction problems based on the variational
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(a) Noise free signal ū (b) TV minimizer of noise free signal ū

(c) Additive Gaussian noisy signal f (d) TV minimizer of noisy signal f

Fig. 6.2. Illustration of effects of TV minimization in one dimension. (a) Given

noise free 1D signal ū . (b) TV minimizer of ū using ROF model (6.6). Here, we

observe only the systematic loss of contrast in the reconstruction. (c) Noisy signal

f obtained by degradation of ū with additive Gaussian noise. (d) TV minimizer

of f using ROF model (6.6). Here, we observe that in the presence of noise the

solution tends to a piecewise constant function in linear and quadratic parts of ū

and demonstrates the so-called “staircasing effect” of TV minimization.

formulation (6.5) using a certain forward operator K depending on the restoration

task. An abstract mathematical analysis of such methods is given e.g. in [2]. On the

other side, there are several improvement suggestions with respect to the cartoon-texture

decomposition of an image by replacing the L2 -data fidelity term in the ROF model

(6.6) by other norms [9]. For example, Meyer proposed in [116] to use the G -norm

‖ · ‖∗ (6.10) as data fitting term in order to obtain a better extraction of signals with

large oscillations, and thus in particular texture and noise, from the given image f .

However, since this model is difficult to realize due to the form of the G -norm, several
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Fig. 6.3. Illustration of systematic loss of contrast by TV minimization in one

dimension. Solid line: Given noise free signal f = ū . Dashed line: TV

minimizer u of f using ROF model (6.6) with α = 0.3 . We observe that the

shrinkage is proportional to the regularization parameter α , but the solution u

preserves the exact location of the discontinuities of f .

approximations on this model were given e.g. in [161, 126, 8] and the references therein.

Another possibility to modify the ROF model (6.6) was suggested in [3] and [124] to

replace the L2 -norm by the L1 -norm. In [124], Nikolova has shown that this model is

more effective for certain types of noise, such as salt and pepper noise. In the continuous

case, the TV − L1 model was studied by Chan and Esedoglu in [48] and the authors

observed that this model has better behavior regarding the loss of contrast compared to

the ROF model. Another very interesting approach to compensate the loss of contrast

during the TV minimization has been proposed by Osher et al. in [125]. There, the

authors perform a contrast enhancement and texture preservation by inverse scale space

methods using the Bregman distance iteration. Note that we use the same strategy also

in our Poisson framework proposed in Section 4.7 in order to compensate the systematic

errors of an arbitrary convex regularization functional.

6.3 TV Regularization in Poisson and US Speckle

Frameworks

In this section, we focus our attention on the use of the TV functional as regularization

energy in the Poisson and US speckle frameworks, which we proposed in Chapters 4 and

5.
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Fig. 6.4. Illustration of the cartoon-texture decomposition induced by the ROF

model (6.6). First row: Noise free original image f . Second row: Cartoon part

u obtained by the ROF model for increasing regularization parameter α from left

to right. Third row: Texture part v := f − u corresponding to the cartoon part

above.

As already mentioned in Section 4.1, the application of the TV seminorm as regular-

ization technique for Poisson distributed reconstruction problems is not new. Various

methods have already been suggested for the TV regularized Poisson likelihood estima-

tion problem (4.16),

min
u ∈BV (Ω)
u≥ 0 a.e.

∫
Σ

(Ku − f logKu) dµ + α |u|BV (Ω) , α > 0 , (6.11)

but still with some restrictions or limited successes, such as e.g. in the case of positron
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emission tomography (PET) [93, 127], deconvolution problems [19, 57, 72, 147], or de-

noising problems [104]. The main difficulties, which create these limitations, are caused

by the following two features of the objective functional in (6.11). First, the strong non-

linearity in the data fidelity term resulting in issues in the computation of minimizers.

Secondly, the strong computational efforts due to nondifferentiability of the TV regu-

larization functional in the usual sense. To handle these difficulties, the authors in [72]

and [147] proposed two algorithms, called PIDAL and PIDSplit+, using an augmented

Lagrangian approach and the equivalent split Bregman method respectively in order to

separate the reconstruction process from the regularization part. Both methods use the

exact definition of TV (6.1), but require an inversion of the operator I + K∗K , where

I is the identity operator and K∗ is the adjoint of the ill-posed forward operator K .

Thus, both methods are efficient only if K∗K is diagonalizable and can be inverted

fast, as for instance in case of a convolution operator K via fast Fourier transform or

discrete cosine transform. Additionally, in contrast to the PIDSplit+ algorithm in [147],

the PIDAL algorithm in [72] ensures that Ku is nonnegative and not that the final so-

lution u is nonnegative, which however is essential in (6.11). Another common strategy

to overcome the nondifferentiability of the TV regularization functional is to use the

formal definition of TV in (6.2) and to approximate it by differentiable functionals of

the form

|u|εBV (Ω) =

∫
Ω

√
|∇u|2 + ε , ε > 0 . (6.12)

However, this approach creates blurring effects in the reconstructions, if ε is not small

enough. In [14], Bardsley proposed an efficient computational method based on gradient

projection and lagged-diffusivity, where the nonnegativity constraint is guaranteed via

a simple projection into the feasible set. On the other hand, the methods in [57], [93]

and [127] are realized as elementary modifications of the EM algorithm (see Section

4.3) with a fully explicit or semi-implicit treatment of TV in the iteration. A major

disadvantage of these approaches is that the regularization parameter α needs to be

chosen very small, since otherwise the positivity of solutions is not guaranteed and the

EM based algorithm cannot be continued. Due to the additional parameter dependence

on ε in (6.12), these algorithms are less robust.

In the case of the US speckle noise based variational regularization problem (5.4),

min
u ∈W (Ω)
u≥ 0 a.e.

∫
Σ

(f − Ku)2

Ku
dµ + αJ(u) , α > 0 , (6.13)

the TV regularization was to our knowledge only considered in the case of denoising

problems [101, 92]. There, the authors use a gradient descent algorithm based on Euler-

Lagrange equation using an approximation of TV by differentiable functionals (6.12).
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In this thesis, we propose to use the robust FB-EM-REG and US-FB-REC-REG algo-

rithm, which we introduced in Chapters 4 and 5 using a forward-backward (FB) splitting

strategy, in order to solve the minimization problems (6.11) and (6.13), respectively.

In the context of TV regularized likelihood estimation problems (6.11) and (6.13), we

rename these algorithms to FB-EM-TV and US-FB-REC-TV. In contrast to the PI-

DAL algorithm in [72] and the PIDSplit+ algorithm in [147], the FB-EM-TV splitting

approach leads to a single step of the expectation-maximization (EM) algorithm (see

Section 4.3) in the reconstruction step. Hence, we do not require any inversion of the

forward operator K and can reuse this procedure for problems occurring for instance

in medical tomography, such as positron emission tomography (PET) or single-photon

emission computed tomography (SPECT) [167, 12]. In addition, the EM algorithm is a

popular iterative method in medical imaging, microscopy, or astronomy, so that the EM

algorithm existing in such applications can be used in the FB-EM-REG strategy without

any additional effort. Moreover, the regularization steps in our splitting strategies lead

in the case of TV regularization to the solution of a modified variant of the ROF model

(6.6) with a weight in the data fidelity term. Hence, this analogy allows us to use the

exact definition of the TV functional (6.1) and creates the opportunity to carry over

efficient numerical schemes known for the ROF model. In Sections 6.3.3 and 6.3.4 we

present two algorithms for the weighted variant of the ROF model, namely a modified

version of the projected gradient descent algorithm of Chambolle [41] and an augmented

Lagrangian method which is very similar to the alternating split Bregman algorithm [82],

and obtain in this way accurate, robust, and efficient numerical schemes. The advan-

tage of such a numerical realization of regularization steps is that it can be performed

equally well also for large regularization parameters. Thus, our proposed approaches are

also applicable for problems with a low signal-to-noise ratio (SNR). Finally, using the

analytical results for the FB-EM-REG algorithm in Section 4.6 and the US-FB-REC-

REG algorithm in Section 5.4, we will show that the assumptions made there on the

regularization energy are fulfilled for the TV functional. Hence, we obtain in particular

that both algorithms realize actually strictly positive reconstruction results.

6.3.1 Analytical Results

In this section, we carry out a mathematical analysis of the TV regularized estimation

problems (6.11) and (6.13). We prove that these problems are well-posed, that the

corresponding splitting algorithms preserve the positivity of the solution and that the

damped modifications of these iteration schemes have a stable convergence behaviour.

To do this, we carry over the results obtained in the general context of a convex reg-

ularization functional in Sections 4.6 and 5.4, and show that the assumptions on the

regularization energy are fulfilled in the case of the total variation functional.
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Considering the total variation regularization functional in Sections 4.6 and 5.4, we have

to choose the image spaces W (Ω) and U(Ω) as follows,

W (Ω) = BV (Ω) and U(Ω) = Lp(Ω) , (6.14)

where Ω ⊂ Rd , d ≥ 1 , is an open and bounded domain with Lipschitz boundary, and

1 ≤ p

 < ∞ , if d = 1 ,

≤ d
d− 1

, if d ≥ 2 .
(6.15)

In this way, W (Ω) and U(Ω) are both Banach spaces and fulfill W (Ω) ⊂ U(Ω) due

to embedding results in Lemma 6.1.11. Moreover, following Assumption 4.6.5 (i), we

have to equip the space U(Ω) with a topology τU .

Definition 6.3.1 (Choice of Topology τU ). Due to the compact embedding results in

Lemma 6.1.11 and Remark 6.1.12, we choose the topology τU as follows,

• τU is the strong norm topology on Lp(Ω) with 1 ≤ p < d / (d− 1) for d ≥ 1 ,

• τU is the weak topology on Lp(Ω) (see Definition 3.1.29) with p = d / (d−1) for

d ≥ 2 .

Finally, we carry over for the following analysis the definition of the objective functional

F in (4.46) and (5.19), however adapted to the context of TV regularization,

min
u ∈ Lp(Ω)
u≥ 0 a.e.

FKL(u) := DKL(f,Ku) + α |u|BV (Ω) ,

min
u ∈ Lp(Ω)
u≥ 0 a.e.

FUS(u) := DUS(f,Ku) + α |u|BV (Ω) ,
α > 0 , (6.16)

where DKL is the Kullback-Leibler (KL) functional as in Definition 4.6.1 and DUS is

given in (5.18).

Using the spaces W (Ω) and U(Ω) chosen in (6.14), we begin with the verification of

Assumption 4.6.5 (vi)-(viii) with respect to the regularization functional J . In the

case of the total variation regularization, i.e. J = | · |BV (Ω) , these assumptions are all

fulfilled, since the total variation functional is

• convex on BV (Ω) (see Lemma 6.1.8) and can be extended to a convex functional

on U(Ω) as in (4.45) considering Remark 3.2.3, Item (3),

• lower semicontinuous with respect to the weak topology on Lp(Ω) for 1 ≤ p < ∞
(see Remark 6.1.10) and hence also with respect to the topology τU on U(Ω) ,
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• proper (see Definition 3.2.2), because BV (Ω) contains also piecewise constant

functions, so that the condition on the objective functionals FKL and FUS (6.16)

in Assumption 4.6.5 (vii) is certainly fulfilled.

It remains to verify Assumption 4.6.5 (viii), namely the sequential precompactness of

the sub-level sets of TV functional with respect to the topology τU . To do this, we use

the strategy proposed in Remark 4.6.6, Item (5). Hence, due to compact embedding

results in Lemma 6.1.11 and Remark 6.1.12, it suffices to show that the total variation

functional on U(Ω) is BV (Ω) -coercive. For this purpose, we first prove that the objec-

tive functionals FKL and FUS defined in (6.16) are BV (Ω) -coercive and then reduce

this property to the TV functional.

Lemma 6.3.2 (BV-Coercivity of Poisson Objective Functional). Let Vµ(Σ) and K

satisfy Assumption 4.6.5 (i) - (iv). Moreover, assume that α > 0 , f ∈ Vµ(Σ) is

nonnegative and 1 ≤ p ≤ d / (d − 1) . Additionally, assume that the operator K is

bounded and it does not annihilate constant functions. Since K is linear, the latter

condition is equivalent to

K1Ω 6= 0 , (6.17)

where 1Ω denotes the characteristic function on Ω . Then, the functional FKL defined

in (6.16) is BV-coercive (see Definition 4.6.7), i.e. we obtain

FKL(u) → +∞ whenever ‖u‖BV (Ω) → +∞ . (6.18)

Proof. For the proof of BV-coercivity, we derive an estimate of the form

‖u‖BV (Ω)
(6.3)
= ‖u‖L1(Ω) + |u|BV (Ω) ≤ c1

(
FKL(u)

)2
+ c2 FKL(u) + c3 , (6.19)

with constants c1 ≥ 0 , c2 > 0 and c3 ≥ 0 . Then, the desired coercivity property

(6.18) follows directly from the positivity of the functional FKL for all u ∈ Lp(Ω) with

u ≥ 0 a.e.

For the derivation of this estimate, we use that any u ∈ BV (Ω) has a decomposition

of the form

u = w + v , (6.20)

where

w =

(∫
Ω
u dx

|Ω|

)
1Ω and v := u − w with

∫
Ω

v dx = 0 .

First, we estimate |v|BV (Ω) and ‖v‖L1(Ω) . Because constant functions have no variation,
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the positivity of the KL functional yields

α |v|BV (Ω) ≤ α |u|BV (Ω) ≤ FKL(u) ⇒ |v|BV (Ω) ≤
1

α
FKL(u) .

This together with the Poincaré-Wirtinger inequality (see e.g. [6, Sect. 2.5.1]) yields an

estimate of the L1 norm,

‖v‖L1(Ω) ≤ C1|v|BV (Ω) ≤ C1
1

α
FKL(u) , (6.21)

where C1 > 0 is a constant that depends on Ω ⊂ Rd and d only. Now, using the

decomposition (6.20) and the estimates to |v|BV (Ω) and ‖v‖L1(Ω) , the problem (6.19)

reduces to the estimation of the L1 norm of constant functions, since

‖u‖BV (Ω) ≤ ‖w‖L1(Ω) + ‖v‖L1(Ω) + |v|BV (Ω)

≤ ‖w‖L1(Ω) + (C1 + 1)
1

α
FKL(u) .

(6.22)

To estimate now ‖w‖L1(Ω) , we consider the L1
µ distance between Ku = Kw + Kv

and f due to the continuous embedding of Vµ(Σ) in L1
µ(Σ) in Assumption 4.6.5. With

Lemma 4.6.3 (iii), we obtain an upper bound,

‖(Kv − f) + Kw‖2
L1
µ(Σ) ≤

(
2

3
‖f‖L1

µ(Σ) +
4

3
‖Kv + Kw‖L1

µ(Σ)

)
DKL(f,Ku)

≤
(

2

3
‖f‖L1

µ(Σ) +
4

3
‖Kv‖L1

µ(Σ) +
4

3
‖Kw‖L1

µ(Σ)

)
FKL(u) ,

and as a lower bound we obtain,

‖(Kv − f) + Kw‖2
L1
µ(Σ) ≥

(
‖Kv − f‖L1

µ(Σ) − ‖Kw‖L1
µ(Σ)

)2

≥ ‖Kw‖L1
µ(Σ)

(
‖Kw‖L1

µ(Σ) − 2 ‖Kv − f‖L1
µ(Σ)

)
.

(6.23)

Combining (6.21) with both inequalities yields

‖Kw‖L1
µ(Σ)

(
‖Kw‖L1

µ(Σ) − 2

(
‖K‖C1

1

α
FKL(u) + ‖f‖L1

µ(Σ)

))
≤
(

2

3
‖f‖L1

µ(Σ) +
4

3
‖K‖C1

1

α
F (u) +

4

3
‖Kw‖L1

µ(Σ)

)
FKL(u) .

(6.24)

This expression contains terms describing the function w only in dependence of the

operator K . For the estimate of ‖w‖L1(Ω) itself, we use the assumption (6.17) on the
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operator K . Thus, there exists a constant C2 > 0 with

C2 =

∫
Σ
|K1Ω| dµ
|Ω|

and ‖Kw‖L1
µ(Σ) = C2 ‖w‖L1(Ω) . (6.25)

This identity used in inequality (6.24) yields

C2 ‖w‖L1(Ω)

(
C2 ‖w‖L1(Ω) − 2

(
‖K‖C1

1

α
FKL(u) + ‖f‖L1

µ(Σ)

)
− 4

3
FKL(u)

)
≤
(

2

3
‖f‖L1

µ(Σ) +
4

3
‖K‖C1

1

α
FKL(u)

)
FKL(u) .

(6.26)

To receive an estimate of the form (6.19), we distinguish two cases:

Case 1: If

C2 ‖w‖L1(Ω) − 2

(
‖K‖C1

1

α
FKL(u) + ‖f‖L1

µ(Σ)

)
− 4

3
FKL(u) ≥ 1 , (6.27)

then we conclude from (6.26) that

‖w‖L1(Ω) ≤
1

C2

(
2

3
‖f‖L1

µ(Σ) +
4

3
‖K‖C1

1

α
FKL(u)

)
FKL(u) ,

and obtain with (6.22),

‖u‖BV (Ω) ≤
4C1 ‖K‖

3C2 α

(
FKL(u)

)2
+

(
2

3C2

‖f‖L1
µ(Σ) +

C1 + 1

α

)
FKL(u) . (6.28)

Case 2: If the condition (6.27) does not hold, i.e.

‖w‖L1(Ω) <
1

C2

(
1 + 2

(
‖K‖C1

1

α
FKL(u) + ‖f‖L1

µ(Σ)

)
+

4

3
FKL(u)

)
,

then we find from (6.22) that

‖u‖BV (Ω) ≤
(

2 ‖K‖C1
1
α

+ 4
3

C2

+
C1 + 1

α

)
FKL(u) +

1 + 2 ‖f‖L1
µ(Σ)

C2

. (6.29)

With the assumptions on the space Vµ(Σ) and the boundedness of the operator K , we

have that f ∈ L1
µ(Σ) and that ‖K‖ < ∞ , so that we obtain from (6.28) and (6.29)

the desired coercivity property (6.19).
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Lemma 6.3.3 (BV-Coercivity of US Objective Functional). Let Vµ(Σ) and K satisfy

Assumption 5.4.2 (i) - (iv). Moreover, assume that α > 0 , f ∈ Vµ(Σ) and 1 ≤ p ≤
d / (d − 1) . Additionally, assume that the operator K is bounded and satisfies (6.17).

Then, the functional FUS defined in (6.16) is BV-coercive (see Definition 4.6.7).

Proof. The procedure of this proof is analogously to the proof of the BV-coercivity of

the KL objective functional in Lemma 6.3.2. Due to the positivity of the functional

DUS , we obtain analogously to (6.22) the following estimate,

‖u‖BV (Ω) ≤ ‖w‖L1(Ω) + (C1 + 1)
1

α
FUS(u) , (6.30)

where C1 > 0 is a constant that depends on Ω ⊂ Rd and d only. For the BV-

coercivity of the functional FUS , we have now to estimate the L1 -norm of w . To

do this, we consider the L1
µ(Σ) distance between Ku = Kw + Kv and f due to

the continuous embedding of Vµ(Σ) in L2
µ(Σ) in Assumption 5.4.2 (ii). With Cauchy-

Schwarz inequality, we obtain an upper bound,

‖(Kv − f) + Kw‖2
L1
µ(Σ) ≤ ‖Ku‖L1

µ(Σ)DUS(f,Ku)

≤
(
‖Kv‖L1

µ(Σ) + ‖Kw‖L1
µ(Σ)

)
FUS(u) ,

and the lower bound is given in (6.23). Combining both inequalities with (6.21) and

(6.25) yields (cf. (6.26))

C2 ‖w‖L1(Ω)

(
C2 ‖w‖L1(Ω) − 2

(
‖K‖C1

1

α
FUS(u) + ‖f‖L1

µ(Σ)

)
− FUS(u)

)
≤ ‖K‖C1

1

α

(
FUS(u)

)2
.

(6.31)

To receive an estimate of the form (6.19), we distinguish two cases:

Case 1: If

C2 ‖w‖L1(Ω) − 2

(
‖K‖C1

1

α
FUS(u) + ‖f‖L1

µ(Σ)

)
− FUS(u) ≥ 1 , (6.32)

then we conclude from (6.31) that

‖w‖L1(Ω) ≤
1

C2

‖K‖C1
1

α

(
FUS(u)

)2
,

and obtain with (6.30),

‖u‖BV (Ω) ≤
1

C2

‖K‖C1
1

α

(
FUS(u)

)2
+

C1 + 1

α
FUS(u) . (6.33)
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Case 2: If the condition (6.32) does not hold, i.e.

‖w‖L1(Ω) <
1

C2

(
1 + 2

(
‖K‖C1

1

α
FUS(u) + ‖f‖L1

µ(Σ)

)
+ FUS(u)

)
,

then we find from (6.30) that

‖u‖BV (Ω) ≤
(

2 ‖K‖C1
1
α

C2

+
C1 + 1

α

)
FUS(u) +

1 + 2 ‖f‖L1
µ(Σ)

C2

. (6.34)

With the assumptions on the space Vµ(Σ) and the boundedness of the operator K , we

have that f ∈ L1
µ(Σ) and that ‖K‖ < ∞ , so that we obtain from (6.33) and (6.34)

the desired coercivity property (6.19).

From the BV-coercivity of the functionals FKL and FUS in Lemma 6.3.2 and Lemma

6.3.3 yields that there exists a positive constant C such that a minimizer u of FKL

or FUS fulfills ‖u‖L1(Ω) ≤ C . Hence, the following result is a direct consequence of

Lemma 6.3.2 and Lemma 6.3.3.

Corollary 6.3.4 (BV-Coercivity of TV Functional). Suppose the assumptions of Lemma

6.3.2 or Lemma 6.3.3. Then, the functional J defined by

J(u) :=


|u|BV (Ω) , if ‖u‖L1(Ω) ≤ C ,

∞ , else ,

is BV -coercive for a positive constant C big enough.

Now, we obtain the following results as a direct consequence of Theorems 4.6.8 - 4.6.10

and Theorems 5.4.3 - 5.4.5.

Theorem 6.3.5 (Existence of Poisson Minimizers). Let Vµ(Σ) and K satisfy Assump-

tion 4.6.5 (i) - (iv). Moreover, assume that α > 0 , f ∈ Vµ(Σ) is nonnegative and p

satisfies the restrictions in (6.15). Additionally, assume that the operator K is bounded

and satisfies (6.17). Then, the functional FKL defined in (6.16) has a minimizer.

Theorem 6.3.6 (Existence of US Minimizers). Let Vµ(Σ) and K satisfy Assumption

5.4.2 (i) - (iv). Moreover, assume that α > 0 , f ∈ Vµ(Σ) and p satisfies the re-

strictions in (6.15). Additionally, assume that the operator K is bounded and satisfies

(6.17). Then, the functional FUS defined in (6.16) has a minimizer.
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Theorem 6.3.7 (Uniqueness of Poisson Minimizers). Let Vµ(Σ) and K satisfy As-

sumption 4.6.5 (i) - (iv). Moreover, assume that α > 0 , p satisfies the restrictions in

(6.15) and f ∈ Vµ(Σ) fulfills infΣ f > 0 . Additionally, suppose that the operator K

is bounded, injective and satisfies (6.17). Then, the minimizer of the objective functional

FKL is unique.

Theorem 6.3.8 (Uniqueness of US Minimizers). Let Vµ(Σ) and K satisfy Assumption

5.4.2 (i) - (iv). Moreover, assume that α > 0 , f ∈ Vµ(Σ) and p satisfies the re-

strictions in (6.15). Additionally, suppose that the operator K is bounded, injective and

satisfies (6.17). Then, the minimizer of the objective functional FUS with infΩ u > 0

is unique.

Theorem 6.3.9 (Stability of Poisson Problem with respect to Perturbations in Mea-

surements). We use the notations and assumptions introduced in Theorem 4.6.10. Then,

the Poisson minimzation problem in (6.16) is stable with respect to the perturbations in

the data, using the topology τU specified in Definition 6.3.1.

Theorem 6.3.10 (Stability of US Problem with respect to Perturbations in Measure-

ments). We use the notations and assumptions introduced in Theorem 5.4.5. Then, the

US minimization problem in (6.16) is stable with respect to the perturbations in the data,

using the topology τU specified in Definition 6.3.1.

Next, we verify the positivity preservation of the iteration sequence (uk) obtained with

the FB-EM-TV algorithm and US-FB-REC-TV algorithm, which correspond to the

splitting strategies (4.24) and (5.11) with TV seminorm | · |BV (Ω) as regularization func-

tional, respectively.

Lemma 6.3.11 (Positivity of (damped) FB-EM-TV Algorithm and Poisson Denoising

Strategy). Suppose the assumptions made in Lemmas 4.6.12 and 4.6.13 respectively,

except condition (4.58) on the regularization functional J . Then, each half step of the

(damped) FB-EM-TV splitting method and with it also the solution is strictly positive.

The same behaviour holds also for each step of the (damped) Poisson denoising strategy

(4.36).

Lemma 6.3.12 (Positivity of (damped) US-FB-REC-TV Algorithm and US Denoising

Strategy). Suppose the assumptions made in Lemma 5.4.6 and Corollary 5.4.7 respec-

tively, except condition (4.58) on the regularization functional J . Then, each half step of

the (damped) US-FB-REC-TV splitting method and with it also the solution is strictly

positive. The same behaviour holds also for each step of the (damped) US denoising

strategy (5.15).
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Proof of Lemma 6.3.11 and Lemma 6.3.12. In the case of TV regularization, we have to

prove that the TV seminorm | · |BV (Ω) fulfills condition (4.58) for the maximum principle

in Lemma 4.6.11, i.e.

|v|BV (Ω) ≤ |ũ|BV (Ω) for v = min{max{ũ, a}, b} ,

where a and b are positive constants with a < b and ũ is a solution of the weighted

ROF model (6.35). However, using the set

M := {x ∈ Ω : v(x) = ũ(x) } ⊆ Ω ,

we see that the function v has (due to its definition) no variation on Ω \ M , so that

we obtain

|v|BV (Ω) = |v|BV (M) = |ũ|BV (M) ≤ |ũ|BV (Ω) .

Finally, we verify the convergence of the damped FB-EM-TV and US-FB-REC-TV split-

ting algorithms under appropriate assumptions on the damping parameters ωk given in

(4.65) and (5.27), respectively.

Theorem 6.3.13 (Convergence of Damped FB-EM-TV Algorithm). Let Vµ(Σ) and K

satisfy Assumption 4.6.5 (i) - (iv). Moreover, use the notations and the assumptions on

data function f given in Theorem 4.6.14. Then, the objective functional FKL defined

in (6.16) is decreasing during the iteration, if the sequence of damping parameters (ωk)

satisfies inequality (4.65). In addition, if the conditions in (4.66) are fulfilled, then the

damped FB-EM-TV algorithm converges to a minimizer of the functional FKL in the

sense of Theorem 4.6.14.

Theorem 6.3.14 (Convergence of Damped US-FB-REC-TV Algorithm). Let Vµ(Σ)

and K satisfy Assumption 5.4.2 (i) - (iv). Moreover, use the notations and the as-

sumptions on data function f given in Theorem 5.4.8. Then, the objective functional

FUS defined in (6.16) is decreasing during the iteration, if the sequence of damping

parameters (ωk) satisfies inequality (5.27). In addition, if the conditions in (4.66) are

fulfilled, then the damped US-FB-REC-TV algorithm converges to a minimizer of the

functional FUS in the sense of Theorem 5.4.8.

Proof of Theorem 6.3.13 and Theorem 6.3.14. We have to verify the additional assump-

tions in Theorem 4.6.14 and Theorem 5.4.8.

• As already shown in the proof of Lemma 6.3.11, the TV functional fulfills the

condition (4.58) for the maximum principle.
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• It is easy to see that the TV functional is one-homogeneous, i.e. it satisfies

|λu|BV (Ω) = λ |u|BV (Ω) for all λ > 0 . Moreover, assumption (4.67) is directly

fulfilled, since

sup
‖v‖BV (Ω) ≤ 1

|v|BV (Ω)

(6.3)

≤ sup
‖v‖BV (Ω) ≤ 1

‖v‖BV (Ω) ≤ 1 .

• The U(Ω) -coercivity of the functional FKL and FUS follows directly from the

BV (Ω) -coercivity shown in Lemmas 6.3.2 and 6.3.3, and the fact that BV (Ω) is

continuously embedded in U(Ω) specified in (6.14), i.e. we have ‖u‖BV (Ω) → ∞
whenever ‖u‖U(Ω) → ∞ . Moreover, with the choice of the space U(Ω) in (6.14),

the continuous embedding of U(Ω) in L1(Ω) is automatically fulfilled.

• With the space U(Ω) and the topology τU specified in (6.14) and Definition 6.3.1

respectively, the condition (4.68) is fulfilled, if we choose X = L1(Ω) and τX as

the weak topology on L1(Ω) .

6.3.2 Weighted ROF : General Form

To solve the regularized Poisson likelihood estimation problem (6.11), we proposed in

Sections 4.4.1 and 4.7.3 the (Bregman-)FB-EM-REG algorithm as a nested two step

iteration strategy. The same splitting approach we also used in Sections 5.2.1 and 5.5.1

in order to derive the (Bregman-)US-FB-REC-REG algorithm for the US speckle noise

based variational regularization problem (5.4). However, we left open the question of the

numerical realization of the regularization half steps (4.25), (4.27), (4.108) and (4.109)

contained in both iteration strategies. Since the numerical realization of these steps

depends on the structure of the chosen regularization functional, we now discuss this

aspect in the case of the TV seminorm. Fortunately, all these regularization half steps

have a similar form, so that we can propose a uniform numerical framework, which is

also valid for the image denoising variational problems (4.37), (4.41), (5.15) and (5.17).

The most general form of all the schemes above is

min
u ∈BV (Ω)

1

2

∫
Ω

(u − q)2

h
+ γ |u|BV (Ω) , γ > 0 , (6.35)

with an appropriate setting of the “noise” function q , the weight function h and the

regularization parameter γ . The choice of all these parameters with respect to the

desired restoration method is summarized in Table 6.1.

We see that the variational problem (6.35) is just a modified version of the well known

ROF model (6.6), with an additional weight h in the data fidelity term. This analogy
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Algorithm q h γ

Poisson Denoising (4.37) f uk α

Damped Poisson Denoising (4.37) ωk f + (1− ωk)uk uk ωk α

Approximated Poisson Denoising (4.41) f f α

US Denoising (5.15)
f 2

uk
uk α

Damped US Denoising (5.15) ωk
f 2

uk
+ (1− ωk)uk uk ωk α

Approximated US Denoising (5.17) f
f

2
α

FB-EM-REG Algorithm (4.25)
uk+ 1

2

uk
K∗1Σ

α
US-FB-REC-REG Algorithm (4.25)

Damped FB-EM-REG Algorithm (4.27)
ωk uk+ 1

2
+ (1− ωk)uk

uk
K∗1Σ

ωk αDamped US-FB-REC-REG Algorithm (4.27)

Bregman-FB-EM-REG Algorithm (4.108)
ul+1
k+ 1

2

+ ul+1
k vl ul+1

k

K∗1Σ

α
Bregman-US-FB-REC-REG Algorithm (4.108)

Damped Bregman-FB-EM-REG Algorithm (4.109)
ωl+1
k ul+1

k+ 1
2

+ ωl+1
k ul+1

k vl + (1− ωl+1
k )ul+1

k
ul+1
k

K∗1Σ

ωl+1
k α

Damped Bregman-US-FB-REC-REG Algorithm (4.109)

Table 6.1. Overview for the setting of the functions q , h and parameter γ in

(6.35) with respect to the different algorithms proposed in Chapters 4 and 5.

creates the opportunity to carry over the different numerical schemes known for the ROF

model, e.g. we refer to [43, 7, 42] and the references therein. Most of these computational

schemes can be adapted to the weighted modification (6.35) and we consider in the

following two very popular numerical realizations for TV regularized problems in image

processing. In the first one, we use the exact dual TV approach (6.1) for the minimization

of (6.35), which does not need any smoothing of the total variation. Then, our approach

is analogous to the projected gradient descent algorithm of Chambolle in [41], which

characterizes the subgradients of TV as divergences of vector fields with supremum

norm less or equal one. The second numerical scheme will be similar to the alternating

split Bregman algorithm [82] based on the splitting strategy in [164], where the idea is to

“decouple” the L1 and L2 portions of the energy in the ROF model (6.6). An interesting

connection of this splitting strategy was studied recently in [69] and [146], where the

authors showed an equivalence to the augmented Lagrangian methods and alternating
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direction method of multipliers. In the case of the weighted ROF problem (6.35), we will

use a slightly modified augmented Lagrangian approach of the alternating split Bregman

algorithm in order to handle better the weight in the data fidelity term. Using either

method, the weighted ROF problem (6.35) can be solved efficiently, obtaining accurate

and robust algorithms.

6.3.3 Weighted ROF : Projected Gradient Descent Algorithm

Here we establish an iterative algorithm to compute the solution of the variational prob-

lem (6.35) using a modified variant of the projected gradient descent algorithm of Cham-

bolle [41]. To this end, the formulation (6.35) can be written as a saddle point problem

in the primal variable u and the dual variable g using the exact dual definition of the

TV functional in (6.1),

inf
u ∈BV (Ω)

sup
g ∈ C∞0 (Ω,Rd)
‖g‖∞ ≤ 1

L(u, g) :=
1

2

∫
Ω

(u − q)2

h
+ γ

∫
Ω

u divg . (6.36)

Formally, the infimum regarding u and the supremum regarding p can be swapped. In

the case of the standard ROF model (6.6), i.e. if the weight h in (6.35) is missing, this

property is proved in [119]. However, this proof can also be carried over to the weighted

variant (6.36) with minimal modifications. Moreover, a more precise analysis of this

property for general saddle point problems is available in [64, p. 175, Prop. 2.3]. After

exchanging inf and sup , the primal optimality condition for the saddle point problem

(6.36) is given by

∂

∂u
L(u, g) = 0 ⇔ u = q − γ h divg . (6.37)

Hence, if an optimal dual variable g̃ is available, the condition (6.37) can be used to

obtain a solution of (6.36) and (6.35), i.e. the primal solution u is given by

u = q − γ h divg̃ . (6.38)

For the computation of g̃ , we substitute (6.37) into (6.36) and obtain a purely dual

problem, which depends on g only. With terms that are constant with respect to the

optimization variable and hence do not change the supremum, and under substitution

of maximization by minimization of the negative functional, we obtain

g̃ ∈ arg min
g ∈ C∞0 (Ω,Rd)

∫
Ω

(γ h divg − q)2

h
,

s.t. |g(x)|`s − 1 ≤ 0 , ∀x ∈ Ω ,

(6.39)
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where | · |`s is a vector norm on Rd with 1 ≤ s ≤ ∞ , depending on the definition of

total variation for d ≥ 2 (cf. Remark 6.1.4, Item (2)). In the following, we study only

the most frequently used formulations, namely the isotropic total variation (s = 2)

and the anisotropic total variation (s = ∞) . Since the dual problem (6.39) is a

(weighted) quadratic optimization problem with a nonlinear inequality constraint, we

use the Karush-Kuhn-Tucker (KKT) conditions (cf. e.g. [89, Thm. 2.1.4]) to computate

the optimal dual variable g̃ below.

We begin with the isotropic problem formulation using s = 2 in (6.39). In this case,

the inequality constraint in (6.39) is equivalent to |g(x)|2`2 − 1 ≤ 0 for all x ∈ Ω and

the KKT conditions yield the existence of a Lagrange multiplier λ(x) ≥ 0 a.e. on Ω ,

such that

− ∇ (γ h divg − q)(x) + λ(x) g(x) = 0 , ∀x ∈ Ω , (6.40)

and

λ(x) ( |g(x)|2`2 − 1 ) = 0 , ∀x ∈ Ω . (6.41)

Fortunately, the multiplier λ can be specified explicitely from the complementarity

condition (6.41), which yields that for any x ∈ Ω ,

λ(x) > 0 and |g(x)|`2 = 1 or λ(x) = 0 .

Thus, in any case we obtain from (6.40),

λ(x) = |λ(x) g(x)|`2 = |∇ (γ h divg − q)(x)|`2 , ∀x ∈ Ω ,

and can write (6.40) as a fixed point equation for g , obtaining the following iteration

sequence,

gn+1(x) =
gn(x) + τ

(
∇ (γ h divgn − q)(x)

)
1 + τ |∇ (γ h divgn − q)(x)|`2

, ∀x ∈ Ω . (6.42)

In the case of the anisotropic problem formulation, i.e. using s = ∞ in (6.39), we

can proceed analogous to the isotropic case above, however with the single difference

that the inequality constraint for the dual variable g in (6.39) is multi-valued for any

x ∈ Ω ,

|g(x)| = |(g1, . . . , gd)(x)|`∞ ≤ 1 ⇔ |gi(x)| ≤ 1 for 1 ≤ i ≤ d .

Therefore, the KKT conditions deliver in this case the existence of Lagrange multipliers

λi(x) ≥ 0 a.e. on Ω for 1 ≤ i ≤ d , such that for any i ∈ {1, . . . , d} ,

−∇xi(γ h divg − q)(x) + λi(x) gi(x) = 0 , ∀x ∈ Ω ,
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and

λi(x) ( |gi(x)| − 1 ) = 0 , ∀x ∈ Ω ,

where ∇xi denotes the i -th component of the gradient ∇ . Then, analogous to the

isotropic case above, we obtain the following iteration sequence for the dual variable

component gi with 1 ≤ i ≤ d ,

gn+1
i (x) =

gni (x) + τ
(
∇xi(γ h divgn − q)(x)

)
1 + τ |∇xi(γ h divgn − q)(x)|

, ∀x ∈ Ω . (6.43)

Finally, in a standard discrete setting on pixels with unit step sizes and first derivatives

computed by one-sided differences, the convergence result of Chambolle in [41, Thm.

3.1] can be transferred to the weighted ROF problem (6.35). The proof based on the

Banach fixed point theorem and required the condition

0 < τ ≤
(

4 d γ ‖h‖L∞(Ω)

)−1
, (6.44)

in order to obtain a contraction constant less one, where 4 d is the upper bound of

the discrete divergence operator. Hence, we can guarantee the convergence of (6.42)

and (6.43) to a optimal solution, if the damping parameter τ satisfies the condition

(6.44). Note that the weight h can be interpreted as an adaptive regularization, since

the regularization parameter γ is weighted in (6.42) and (6.43) by the function h .

Using these solvers, the (dual) projected gradient descent algorithm for the weighted

ROF (6.35) can be now summarized as in Algorithm 6.1.

6.3.4 Weighted ROF : Augmented Lagrangian Method

Next, we present an efficient numerical scheme to compute the solution of the weighted

ROF model (6.35) and follow the idea of the (alternating) split Bregman algorithm

proposed by Goldstein and Osher in [82]. In contrast to the projected gradient descent

algorithm above, this splitting strategy uses the formal definition of the TV seminorm

(6.2),

|u|BV (Ω)
(formally)

=

∫
Ω

|∇u|`r , (6.45)

where | · |`r is a vector norm on Rd with 1 ≤ r < ∞ , depending on the definition of

total variation for d ≥ 2 (cf. Remark 6.1.4, Item (2)). Like for the previous algorithm,

we will only consider the common formulations of the isotropic total variation (r = 2)

and the anisotropic total variation (r = 1) .
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Algorithm 6.1 Projected Gradient Descent Algorithm for Weighted ROF

1. Parameters: q , h , γ > 0 , tol > 0 , d ≥ 1

2. Initialization: n = 0 , g0 := 0 , τ :=
(

4 d γ ‖h‖L∞(Ω)

)−1
, stop := c > tol

3. Iteration:

while ( stop ≥ tol ) do

if Isotropic TV Formulation then

i) Compute gn+1 via (6.42).

end if

if Anisotropic TV Formulation then

i) Compute gn+1 via (6.43).

end if

ii) Set stop = ‖γ h divgn+1 − γ h divgn‖L2(Ω).

iii) n ← n+ 1

end while

4. Return u := q − γ h divgn . (6.38)

The key idea of the split Bregman algorithm is to “decouple” the L1 part (TV functional

(6.45)) and L2 part (data fitting term) of the ROF energy in (6.6) by substituting the

gradient in the TV term with an auxiliary function. This idea was first proposed in [164]

for L1 -regularized deconvolution problems. Based on this splitting strategy, Goldstein

and Osher suggest to apply a Bregman iteration, similar to (4.97) with an appropriate

setting of Hf and J , to strictly enforce the constraint condition, which results in the

splitting approach. In [69] and [146], the authors showed an interesting connection of the

split Bregman algorithm to the augmented Lagrangian methods (ALM) and alternating

direction method of multipliers (ADMM). In the case of the weighted ROF problem

(6.35), we will use a modified augmented Lagrangian approach of the alternating split

Bregman algorithm in order to handle better the weight in the data fidelity term. For

an overview and introduction of the ALM we refer e.g. to [73, 81, 90].

Following the decoupling idea of the split Bregman algorithm, the weighted ROF model

(6.35) is equivalent to a constrained optimization problem of the form

min
u, ũ, v

1

2

∫
Ω

(ũ − q)2

h
+ γ

∫
Ω

|v|`r s.t. ũ = u and v = ∇u . (6.46)

The difference to the split Bregman algorithm is that we introduce an additional auxiliary
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function ũ , which will simplify the handling of the weight function h in the following

numerical scheme. In order to obtain an unconstrained minimization problem again, we

follow the idea of the augmented Lagrangian methods and define the following augmented

Lagrangian functional with respect to the problem (6.46),

L(u, ũ, v; λ1, λ2) =
1

2

∫
Ω

(ũ − q)2

h
+ γ

∫
Ω

|v|`r

+ 〈λ1, v − ∇u〉 +
µ1

2
‖v − ∇u‖2

L2(Ω)

+ 〈λ2, ũ − u〉 +
µ2

2
‖ũ − u‖2

L2(Ω) + χũ≥ 0 ,

(6.47)

where λ1 and λ2 are Lagrange multipliers as well as µ1 and µ2 are positive relax-

ation parameters. To guarantee the positivity of the solution, we additionally add an

indicator function χũ≥ 0 defined in (4.11). To derive a numerical scheme based on the

augmented Lagrange functional in (6.47), the basic procedure is to apply the standard

Uzawa algorithm (without preconditioning) [65] and to set the stepsize of the gradient

ascent with respect to the Lagrange multipliers to the relaxation parameters. This leads

to a splitting strategy, which iteratively minimizes the augmented Lagrangian functional

with respect to the primal variables u , ũ and v , and updates the Lagrange multipliers

λ1 and λ2 subsequently, i.e. we have

un+1 ∈ arg min
u

{
〈λn2 , ũn − u〉 +

µ2

2
‖ũn − u‖2

L2(Ω) (6.48)

+ 〈λn1 , vn − ∇u〉 +
µ1

2
‖vn − ∇u‖2

L2(Ω)

}
,

ũn+1 ∈ arg min
ũ

{
1

2

∫
Ω

(ũ − q)2

h
+
〈
λn2 , ũ − un+1

〉
(6.49)

+
µ2

2
‖ũ − un+1‖2

L2(Ω) + χũ≥ 0

}
,

vn+1 ∈ arg min
v

{
γ

∫
Ω

|v|`r +
〈
λn1 , v − ∇un+1

〉
(6.50)

+
µ1

2
‖v − ∇un+1‖2

L2(Ω)

}
,

λn+1
1 = λn1 + µ1 (vn+1 − ∇un+1) , (6.51)

λn+1
2 = λn2 + µ2 (ũn+1 − un+1) . (6.52)

The efficiency of this strategy is now strongly dependent on the question, how fast we

can solve each of the subproblems (6.48), (6.49) and (6.50). Since the minimization

problem (6.48) is now “decoupled” from the L1 -norm, it is also differentiable with the
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following optimality condition,

(µ2I − µ1∆)un+1 = λn2 + µ2 ũ
n − div(λn1 + µ1 v

n) , (6.53)

where I is the identity operator and ∆ denotes the Laplace operator. As we will see

in (6.64) and (6.65), this problem can be solved efficiently in the discrete setting using

the discrete cosine transform (DCT),

un+1 = DCT−1

(
DCT

(
λn2 + µ2 ũ

n − div(λn1 + µ1 v
n)
)

µ2 + µ1 k̂

)
, (6.54)

where k̂ represents the negative Laplace operator −∆ in the discrete cosine space

and DCT−1 denotes the inverse discrete cosine transform. Moreover, the minimization

problem (6.49) is also differentiable and can be actually computed by an explicit formula

of the form

ũn+1 =


q + h (µ2 u

n+1 − λn2 )

I + µ2 h
, if

q + h(µ2 u
n+1 − λn2 )

I + µ2 h
≥ 0 ,

0 , else .

(6.55)

For the minimization problem with respect to v in (6.50), we differentiate between the

isotropic and anisotropic formulation of total variation in (6.45). The simplest case is

the anisotropic TV definition with r = 1 , where (6.50) is equal to

vn+1 ∈ arg min
v

{
γ

d∑
i= 1

∫
Ω

|vi| +
d∑

i= 1

∫
Ω

(λn1 )i (vi − ∇xiu
n+1)

+
µ1

2

d∑
i= 1

‖vi − ∇xiu
n+1‖2

L2(Ω)

}
,

(6.56)

where ∇xi denotes the i -the component of the gradient ∇ . The unique minimizer of

this problem is given explicitely by a simple one-dimensional shrinkage formula of the

form

vn+1
i (x) = sgn

((
∇xiu

n+1 − (1/µ1) (λn1 )i
)
(x)
)

max
( ∣∣(∇xiu

n+1 − (1/µ1) (λn1 )i
)
(x)
∣∣ − (γ/µ1) , 0

) (6.57)

for any x ∈ Ω and 1 ≤ i ≤ d . This shrinkage is extremely efficient and requires only

a few operations per element of vn+1 . For the isotropic TV definition with r = 2 in
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(6.45), the minimization problem (6.50) is equal to

vn+1 ∈ arg min
v

{
γ

∫
Ω

√
v2

1 + · · · + v2
d +

d∑
i= 1

∫
Ω

(λn1 )i (vi − ∇xiu
n+1)

+
µ1

2

d∑
i= 1

‖vi − ∇xiu
n+1‖2

L2(Ω)

}
.

Since the variables v1, . . . , vd are not decoupled here as they were in the anisotropic

case (6.56), we need another treatment fo this problem. Fortunately, we can still solve

this minimization problem explicitly using a generalized shrinkage formula presented in

[164],

vn+1
i (x) =

(
∇xiu

n+1 − (1/µ1) (λn1 )i
)
(x)∣∣(∇un+1 − (1/µ1)λn1

)
(x)
∣∣
`2

max
( ∣∣(∇un+1 − (1/µ1)λn1

)
(x)
∣∣
`2
− (γ/µ1) , 0

) (6.58)

for any x ∈ Ω and 1 ≤ i ≤ d , where the convention (0/0) · 0 = 0 is used. Using

these solvers, the augmented Lagrangian method for the weighted ROF problem (6.35)

can be now summarized as in Algorithm 6.2.

Discrete Laplace Inversion via Cosine Transform

In the augmented Lagrangian method above, we have seen that the minimization prob-

lem (6.48) with respect to the image variable u leads to the inversion of the Laplace

operator shown in (6.53). In (6.54), we proposed a solution of this problem using the

discrete cosine transform. In the following, we verify this proposal and assume initially

that we want to solve the Poisson equation,

f = −∆u , (6.59)

with f and u satisfying Neumann boundary conditions. Then, using the discrete setting

as proposed in Definition 2.1.2, a discrete finite differences approximation of (6.59) on

d dimensional regular grid of N1 × · · · × Nd points is given by

fi1,...,id = 2

(
1

h2
1

+ · · · +
1

h2
d

)
ui1,...,id −

1

h2
1

(ui1+1,...,id + ui1−1,...,id)

− · · · − 1

h2
d

(ui1,...,id+1 + ui1,...,id−1) ,

(6.60)
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Algorithm 6.2 Augmented Lagrangian Method for Weighted ROF

1. Parameters: q , h , γ > 0 , µ1 > 0 , µ2 > 0 , tol > 0

2. Initialization: n = 0 , ũ0 := q , v0 := 0 , λ0
1 := 0 , λ0

2 := 0 , stop := c > tol

3. Iteration:

while ( stop ≥ tol ) do

i) Compute un+1 via (6.54).

ii) Compute ũn+1 via (6.55).

if Isotropic TV Regularization then

iii) Compute vn+1 via (6.58).

end if

if Anisotropic TV Regularization then

iii) Compute vn+1 via (6.57).

end if

iv) Update λn+1
1 via (6.51).

v) Update λn+1
2 via (6.52).

vi) Set stop = ‖ũn+1 − ũn‖L2(Ω).

vii) n ← n+ 1

end while

4. Return ũn

where hk = 1
Nk

, k = 1, . . . d , denotes the stepsize of the image grid in the k -th

direction. Due to the Neumann boundary conditions , we can rewrite f and u in terms

of the inverse discrete cosine transform. This transform has the following form in the

case of a function g with Neumann boundary conditions,

gi1,...,id =

N1 − 1∑
p1 = 0

· · ·
Nd − 1∑
pd = 0

βN1
p1
· · · βNdpd ĝp1,...,pd

cos

(
π (2i1 + 1) p1

2N1

)
· · · cos

(
π (2id + 1) pd

2Nd

)
with

βNkpk =


1√
Nk

, if pk = 0 ,√
2
Nk

, if 0 < pk ≤ Nk − 1 ,



154 6 Regularization : Total Variation (TV)

for all 0 ≤ ik ≤ Nk − 1 with 1 ≤ k ≤ d . Hence, replacing f and u in (6.60) by the

representation of the inverse discrete cosine transform yields

f̂p1,...,pd

k∏
j = 1

cos

(
π (2ij + 1) pj

2Nj

)

= 2

(
1

h2
1

+ · · · +
1

h2
d

)
ûp1,...,pd

k∏
j = 1

cos

(
π (2ij + 1) pj

2Nj

)

−
d∑

k = 1

1

h2
k

ûp1,...,pd

∏
j 6= k

cos

(
π (2ij + 1) pj

2Nj

)
(

cos

(
π (2ik + 3) pk

2Nk

)
+ cos

(
π (2ik − 1) pk

2Nk

))
, (6.61)

for all 0 ≤ pk ≤ Nk − 1 with 1 ≤ k ≤ d . To simplify this equality, we use the

addition theorem cos(x± y) = cos(x) cos(y) ∓ sin(x) sin(y) and can rewrite (6.61) to

cos

(
π (2ik + 3) pk

2Nk

)
+ cos

(
π (2ik − 1) pk

2Nk

)
= 2 cos

(
π (2ik + 1) pk

2Nk

)
cos

(
2 π pk
2Nk

)
for all 1 ≤ k ≤ d , so that we obtain

f̂p1,...,pd =

(
2

(
1

h2
1

+ · · · +
1

h2
d

)
−

d∑
k = 1

2

h2
k

cos

(
2π pk
2Nk

))
ûp1,...,pd .

Finally, using the relation cos(2x) = 1− sin2(x) , the discrete cosine coefficients ûp1,...,pd

of solution u of the Poisson equation (6.59) can be represented by

ûp1,...,pd =
f̂p1,...,pd

k̂p1,...,pd

, 0 ≤ pk ≤ Nk − 1 , k ∈ {1, . . . , d} , (6.62)

with the following representation of the negative Laplace operator −∆ in the discrete

cosine space,

k̂p1,...,pd := 4
d∑

k = 1

sin
(
π pk
2Nk

)
hk

2

. (6.63)

The computational difficulty of (6.62) is that we have to divide by zero, if pk = 0 for

all k ∈ {1, . . . , d} . However, in the optimality condition (6.53), we have to invert a

Laplace operator of the form

(µ2I − µ1 ∆)u = f . (6.64)
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Hence, denoting with DCT the discrete cosine transform operator, we can rewrite this

equation as

DCT (f) = DCT (µ2 u − µ1 ∆u)

= µ2DCT (u) + µ1DCT (−∆u) = µ2DCT (u) + µ1DCT (u) k̂ ,

so that the solution u of (6.64) is given by

u = DCT−1

(
DCT (f)

µ2 + µ1 k̂

)
, (6.65)

where DCT−1 denotes the inverse discrete cosine transform operator. We see also that

in contrast to (6.62), the right-hand side of (6.65) is now completely unproblematic to

solve.





157

7
Regularization : Nonlocal Total Variation (NL-TV)

In this chapter, we consider a recently proposed nonlocal (NL) extension of the total

variation (TV) functional (6.1) and use this new approach as regularization energy in

the context of the Poisson framework, which we proposed in Section 4. Here, the no-

tion nonlocal means that any point in an image can interact directly with any other

point in the whole image domain. The main idea of nonlocal extension is based on the

definition of nonlocal derivative operators, with a view to realize additional prior infor-

mation derived from the object itself. In the continuous setting, such nonlocal operators

have first been proposed by Gilboa and Osher in [79], using a variant of the gradient

and divergence definitions in a discrete setting on weighted graphs given in context of

semi-supervised machine learning by Zhou and Schölkopf in [171, 172].

7.1 Introduction

In Section 6.2 we have seen the problem of the cartoon-texture decomposition of the

Rudin-Osher-Fatemi model (6.6), which shows that TV minimization is not able to pre-

serve texture and fine structures in an image (cf. Fig. 6.4). This effect is caused by the

regularity assumption of the TV formulation on the image model, namely that the image

has a simple geometrical description consisting of a set of connected sets (objects) with

smooth contours (edges). Additionally, the model assumes that the image is smooth

inside single objects and has discontinuous jumps across the boundaries. Therefore, TV

regularization is optimal to reduce the noise and to reconstruct the main geometrical

configuration in an image. However, it fails to preserve texture, details and fine struc-

tures, because they behave in all aspects like noise and thus cannot be distinguished

from noise.
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In the following, we present a quite different approach, which has been proposed recently

by Gilboa and Osher in [79]. This strategy extends the TV functional to a nonlocal

variant using the definition of nonlocal derivative operators based on a nonlocal weight

function (graph). The notion nonlocal means that any point can directly interact with

any other point in the whole image domain, where the intensity of the interaction is

depending on the value of the weight function. This weight function should represent

the similarity of the two points and should be significant, if both points are similar in

an appropriate measure. Therefore, the expectation is that such an approach is able

to process both structures (geometrical parts) and texture within the same framework,

due to the identification of recurring structures in the whole image. To introduce this

strategy in the following, we begin briefly with the discussion of local smoothing filters,

in order to clarify the difference to the nonlocal ones. Subsequently, we present the

approach of neighborhood filters, which will form the basis of the nonlocal idea. Finally,

due to the deficiencies of neighborhood filters in the presence of noise, we introduce the

nonlocal means (NL-means) algorithm, a robust and stable extension of these filters. In

the following, we will only give a short repetition of these methods und refer to [33] for

a detailed discussion.

7.1.1 Local Denoising Methods

The denoising techniques commonly used in image processing are of local structure,

meaning that the methods involve only a small spatially neighborhood around a point

to denoise the value at this point. The most popular example using this strategy is

the Gaussian smoothing filter with a fast decaying Gaussian kernel. In addition, due to

the local definition of derivatives, methods based on (weak) partial derivatives are also

local techniques. To these belong, for instance, approaches based on partial differential

equations, such as anisotropic diffusion techniques [6, 49, 129, 165], as well as TV regu-

larization methods using functionals (6.1) and (6.2). Hence, caused by the fundamental

assumption that the noise is oscillatory and the image is smooth or piecewise smooth,

local methods are effective to separate smooth parts from oscillatory ones due to the

local perspective of the image. However, many geometrically fine structures are as oscil-

latory as noise, so that such methods cannot distinguish noise from fine structures and

will remove them both. Additionally, in many cases, local methods create new artefacts

such as “blurring”, the “staircasing effect”, the “checkerboard effect”, “wavelet outliers”

and many other. To illustrate this behaviour of local methods, we briefly discuss the

Gaussian smoothing filter and anisotropic diffusion filters in the following.

The Gaussian smoothing filter belongs to the class of local smoothing filters, which

are based on the idea that the gray or color values of an image are similar in a local
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spatial neighborhood. Thus, a local averaging process should be able to reduce the

random perturbations (noise) in an image. Actually, this strategy reduces the noise,

but with the potential problem of oversmoothing. This problem concerns in particular

the edges of an object, since there the assumption of locally similar gray values is most

strongly violated. For instance, in the case of a black-white edge, it will be averaged to

a continuous descent of the level values and appears optically blurred. The frequency

domain filters, which have a different point of view than the local smoothing filters, show

a similar behaviour. These methods perform the denoising process in the frequency space

and damp high frequencies, which are characteristical for the noise. Such an approach is

called low-pass filter, because only the low frequencies remain unchanged. The similarity

to local smoothing filters lies in the fact that the absence of high frequencies induces a

small local variation of gray level values. Hence, damping of high frequencies leads to

outliers and artefacts at the edges.

The main deficiency of local smoothing filters is the problem of oversmoothing at the

edges. To improve the performance of such methods, anisotropic diffusion filters [165,

129] perform the convolution process only in the direction orthogonal to the gradient of

a function and avoid therefore the blurring effects at the edges. Hence, diffusion filters

handle edges very well, but fail on flat regions creating some artefacts (cf. e.g. [33]).

7.1.2 Neighborhood Filters

The local denoising methods discussed above perform the restoration process using only

a spatial proximity of points and cannot handle discontinuities (edges) and flat zones in

the same framework. Hence, we recall in the following another class of filters, so-called

neighborhood filters (NFs), which damp this behaviour. The NFs perform an averaging

process, but they use a new definition of neighborhood. In contrast to local smoothing

filters, NFs are not just defining a neighborhood as a spatial closeness of points, but also

take the gray level values of an image into account.

The more general continuous form of NFs is given as follows: Let f be the given noisy

image and ξ is a reference function. Then, the neighborhood filter solution NFξ of the

function f at point x ∈ Ω , with Ω ⊂ Rd open and bounded, is defined by

NFξ(f)(x) =
1

C(x)

∫
Ω

wξ(x, y) f(y) dy , (7.1)

where C(x) =
∫

Ω
wξ(x, y) dy is the normalization factor. The kernel function wξ

determines the actual form of the filter, depending in particular on the reference image

ξ and its gray level values. The value wξ(x, y) represents the similarity of points x
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and y with respect to an appropriate measure and should be significant if x and y are

similar. Finally, in image denoising tasks, the reference image is usually chosen as the

given noisy image f . However, it is in general better to choose ξ as close as possible to

the unknown true image in order to introduce relevant informati in the weight function

wξ regarding image structures.

The idea of NFs go back to the works of Yaroslavsky (Yaroslavsky filter) [168] and Lee

(sigma filter) [105] using the following kernel form in (7.1),

wξ(x, y) =

 1 , if |ξ(y) − ξ(x)| ≤ δ and |y − x| ≤ ρ ,

0 , else ,
(7.2)

where δ and ρ are positive parameters. The name sigma filter results from the fact that

Lee chose the parameter δ as 2σ , where σ is assumed to be the standard deviation

of additive white Gaussian noise in the image. The idea of this choice is that any

point with the gray level value difference greater than 2σ most likely comes from a

different population and should be excluded from the average. However, the Yaroslavsky

and sigma filter are less popular than the more recently proposed SUSAN filter [151]

and bilateral filter [156]. The difference between these two and (7.2) is that instead

considering a hard ball restriction of radius h and ρ , SUSAN and bilateral filters use a

weight function of the form

wξ(x, y) = e−
|ξ(y)− ξ(x)|2

δ2 e
− |y − x|

2

ρ2 , (7.3)

where δ and ρ act now as filtering parameters. However, in practice there is few

difference between approaches (7.2) and (7.3).

We see in (7.2) and (7.3) that the averaging process of the NFs is not only based on

a spatial neighborhood, but also on a neighborhood of gray and color level values. In

particular, the latter feature represents the crucial difference to the local smoothing

filters. Additionally, we obtain the following characterization of the NFs observing the

weight functions (7.2) and (7.3): For small ρ and large δ , the NFs behave as local

smoothing filters. For large ρ and small δ , we actually observe a nonlocal averaging

process over similar gray level values, meaning that any point y in the image domain

can be used to estimate the gray level value at point x . Therefore, certain self-similarity

structures in an image can be utilized to reduce the variance of the noise.

The main advantage of the nonlocal strategy, in comparison to the local smoothing

filters, is that NFs allow to process both structures and texture in the same framework.

For instance, inside a homogeneous region, the gray level values differ slightly from
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each other in the case of additive Gaussian noise and the NFs (7.1) with (7.2) and

(7.3) compute a smoothed region using arithmetic or Gaussian mean, respectively. On

the other side, if we have an edge separating two regions and the gray value difference

between these regions is larger than δ , then the NFs compute averages over points y

belonging to the same region as the reference point x . Therefore, these algorithms do

not lead to blurring effects at the edges. However, NFs have the disadvantage that they

can yield undesirable blocky structures, the so-called “staircasing effect”, in the restored

images [35]. This fact can be explained by the strong relation of NFs to nonlinear

diffusion partial differential equations [13, 33, 34, 150].

7.1.3 NL-means Algorithm

Recently, a generalization of the neighborhood filters above has been proposed by Buades,

Coll and Morel in [33], calling the algorithm nonlocal means (NL-means). This efficient

model consists of denoising a gray level value at a point by averaging point values with

similar structures (patches). Thus, not only the local gray level values of points are used

to define similarity, but rather the values of a window around these points will be com-

pared to define a similarity neighborhood. Mathematically, the idea of the NL-means

algorithm is written as an averaging process (7.1) with the following weight function,

wξ(x, y) = e−
(Gσ ∗ |ξ(y+ ·)− ξ(x+ ·)|2)(0)

δ2 , (7.4)

where h is a positive filtering parameter and Gσ a Gaussian convolution kernel with

standard deviation σ and

(Gσ ∗ |ξ(y + ·) − ξ(x + ·)|2)(0) =

∫
Rd
Gσ(t) |ξ(y + t) − ξ(x + t)|2 dt .

The definition of the weight function (7.4) shows that this function is significant only

if the window around y has similar structures as the corresponding window around

x . Hence, the NL-means algorithm is very efficient in reducing noise, while preserving

contrast in natural images and redundant structures such as texture.

The idea of similarity windows has been proposed first by Efros and Leung in the context

of texture synthesis [62]. The idea there was to search for similar image patches in a

sample image and to fill in holes in another image using the center value of found

patches. There are also further works, which base on the utilization of the image values

in a window around a point in order to take the advantage of self-similarity of natural

images. For instance, the works of Kervrann and Boulanger use an adaptive and patch-
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based approach to denoise an image [96, 97, 98]. Similar idea of NL-means, but with

distinct differences, are also the statistical neighborhood approaches used in an universal

denoiser called DUDE of Weissman et al. [166] and in the UINTA algorithm of Awate

and Whitaker [10]. A brief summary of both methods is given for example in [33].

7.2 Nonlocal Variational Framework

The concepts of the neighborhood filters and the NL-means algorithm presented in

Sections 7.1.2 and 7.1.3 are both of nonlocal nature. These methods use an averaging

process over similar gray level values, where similar point values can be located arbitrarily

far away from each other in the whole image domain. The particular advantage of the

NL-means algorithm, in comparison to the usually used local (filtering) methods, is

that it is very efficient to reduce noise, while preserving relevant information along an

edge, regular texture patterns and contrast of natural images. However, the NL-means

algorithm is used in the filtering theory and it is not clear as such a nonlocal approach can

be utilized in the context of energy minimization and variational regularization theory,

in particular as it can be generalized to other imaging tasks than denoising.

7.2.1 Variational Understanding of Nonlocal Filtering Methods

A first variational understanding of nonlocal filtering methods was given by Kindermann,

Osher and Jones in [99] as a minimization functional with nonlocal correlation terms.

There, the authors interpreted the usage of a neighborhood filter as a single step of

solving a fixed-point equation, which based on the optimality condition of a certain

nonlocal functional. However, due to the nonconvexity of functionals occurring in [99],

Gilboa and Osher proposed in [78] an alternative convex nonlocal quadratic functional

of weighted differences,

Jw(u) =
1

4

∫
Ω× Ω

(u(x) − u(y))2wξ(x, y) dx dy , (7.5)

where the weight function wξ : Ω × Ω → R≥ 0 is nonnegative and symmetric, i.e.

wξ(x, y) = wξ(y, x) . In order to utilize the superior properties of the NL-means algo-

rithm, the authors proposed to use the weight function (7.4). In addition, Gilboa and

Osher showed in [78] that the functional (7.5) can be viewed as a continuous generaliza-

tion of graphs and is related to concepts from spectral graph theory [50, 118]. Namely,

the linear operator associated with the Euler-Lagrange equation of the functional (7.5)

is closely related to the graph Laplacian. Hence, the Euler-Lagrange descent flow of
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(7.5) can be interpreted as a nonlocal diffusion process, which is able to achieve the su-

perior filtering properties of the NL-means algorithm in [33]. Later, Gilboa et al. given

a further generalization of (7.5) in [77] using a more general convex framework,

Jw(u) =
1

2

∫
Ω× Ω

φ(|u(x) − u(y)|)wξ(x, y) dx dy , (7.6)

where the function φ : R≥ 0 → R≥ 0 is nonnegative, convex and fulfills φ(0) = 0 .

7.2.2 Nonlocal Operators of Gilboa and Osher

The approaches proposed in (7.5) and (7.6) provide a first variational framework of non-

local regularization functionals, however they do not allow a systematic and coherent

extension of local regularization energies to nonlocal ones. Hence, based on the defini-

tion of gradient and divergence operators on weighted graphs by Zhou and Schölkopf in

[171, 172], Gilboa and Osher proposed in [79] a uniform variational framework using con-

tinuous graphs and nonlocal derivative operators. This novel approach allows to define

new types of regularization functionals in image processing and other areas. In particu-

lar, it provides a nonlocal extension of all derivative based methods in inverse problems.

Moreover, caused by the nonlocal structure of the weighted graph, this framework allows

to adapt penalization energies to the geometry of the underlying functions, which one

wants to recover. Note that also Bougleux et al. proposed in [25, 26] a regularization

framework on weighted graphs for image and mesh filtering using similar operators in

the discrete setting.

To introduce the framework of Gilboa and Osher in [79], we consider a nonnegative and

symmetric weight function wξ : Ω × Ω → R≥ 0 , as e.g. defined in (7.4), on a reference

image ξ . Then, the nonlocal gradient ∇wu(x) at x ∈ Ω is defined as the vector of all

partial derivatives ∇wu(x, ·) , such that

∇wu(x, y) := (u(y) − u(x))
√
wξ(x, y) , ∀y ∈ Ω . (7.7)

Subsequently, the graph divergence operator of a vector v : Ω × Ω → R can be defined

by the standard adjoint relation with the gradient operator, i.e.

〈∇wu, v〉 := −〈u, divwv〉 ∀u : Ω → R , ∀v : Ω × Ω → R ,

which leads to the following definition of the nonlocal divergence divwv(x) at x ∈ Ω ,

(divwv)(x) =

∫
Ω

(v(x, y) − v(y, x))
√
wξ(x, y) dy . (7.8)
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Then, the Laplacian of a graph is defined by

∆wu(x) :=
1

2
divw(∇wu(x)) =

∫
Ω

(u(y) − u(x))wξ(x, y) dy ,

where a factor 1
2

is needed to be consistent with the standard definition of the Laplacian.

The definition of the graph Laplacian in this way has the well known properties of the

Laplace operator, namely it is self-adjoint and negative semi-definite, i.e. it holds

〈∆wu, u〉 = 〈u,∆wu〉 and 〈∆wu, u〉 = − 〈∇wu,∇wu〉 ≤ 0 .

7.2.3 Nonlocal Total Variation (NL-TV) Functional

The nonlocal derivative operators of Gilboa and Osher, introduced in Section 7.2.2, have

the advantage that they provide a systematic and coherent framework, which allows an

accurate extension of non-smooth energies, such as total variation, to a nonlocal formu-

lation. Using the definition of the nonlocal gradient and divergence operator in (7.7)

and (7.8), the nonlocal TV (NL-TV) functional | · |NL−BV (Ω) can be defined similarly to

the local case in (6.1).

Definition 7.2.1 (Nonlocal Total Variation (NL-TV)). The nonlocal total variation of

a function u in Ω is defined by

|u|NL−BV (Ω) = sup

{∫
Ω

u divw g dx : g ∈ C(Ω× Ω,R), ‖g‖∞ ≤ 1

}
, (7.9)

where C(Ω × Ω,R) denotes the space of continuous functions from Ω × Ω to R . The

supremum norm inequality in (7.9) means that supx, y ∈ Ω |g(x, y)| ≤ 1 .

Remark 7.2.2.

(1) Similar to (6.2), one obtains a formal characterization of the nonlocal TV functional

using the nonlocal gradient operator ∇w ,

|u|NL−BV (Ω) =

∫
Ω

|∇wu(x)| dx . (7.10)

(2) In Remark 6.1.4, Item (2), we have seen that the definition of total variation in

(6.1) is not unique for the image dimension d ≥ 2 . The same behavior remains

in the case of the nonlocal TV definition in (7.9) and (7.10). Namely, depending

on the choice of the inner norm in the supremum inequality in (7.9) or the vector

norm in (7.10), we obtain an isotropic or anisotropic formulation of the nonlocal

TV functional.
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7.2.4 Nonlocal Regularization for Inverse Problems

In variational regularization theory, the adaptive properties of nonlocal regularization

functionals can be utilized by replacing the common local regularization functionals by

nonlocal ones. However, the main difficulty of nonlocal regularization strategies is the

good estimation of the weight function wξ , in particular in the case of inverse problems,

where the given data f usually lie in a different space than the desired approximation

u . In some inverse problems like denoising or deconvolution, the nonlocal weight graph

wξ can be directly estimated from the noisy image or the given measurements. For many

other problems, the observation f cannot be used directly to estimate the regularization

graph and other approaches are necessary to overcome this problem. A first strategy was

proposed by Lou et al. [109] in the case of deconvolution and tomographic reconstruc-

tions. There, the main idea is to precompute a crude solution of inverse problems by a

suitable fast image restoration method and to use this reconstruction as the reference

image ξ for the computation of the weight function wξ . However, a more accurate ap-

proach should be to choose the reference image ξ so that it is as close as possible to the

desired true object. Hence, in the general setup of variational regularization problems

(4.92), it is more appropriate to consider the problem,

min
u

Hf (Ku− f) + αJw(u) ,

s.t. wξ = wu ,

where Jw denotes a nonlocal regularization functional, as in (7.5) or (7.6), with respect

to the weight graph wξ with reference image ξ . This formulation means that we perform

an optimization problem with respect to the desired image u and the optimal graph wu

simultaneously. Since a direct numerical solution of this problem is difficult to compute,

Peyré et al. proposed in [130] to update the weight graph during the reconstruction

process using a forward-backward operator splitting technique [51]. The same approach

was also given by Zhang et al. in [170], however using a (preconditioned) Bregmanized

operator splitting strategy.

7.3 Nonlocal Operators on Directed Graphs

The main challenge of nonlocal regularization strategies presented in Section 7.2 is the

development of efficient numerical solvers, in particular in the case of high-dimensional

inverse problems. The main reason lies in the high complexity of the weight graph

wξ , which allows a high number of possible interactions between points in the image

domain Ω . Therefore, in the case of fully nonlocal approaches, we expect a maximal
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memory complexity of |Ω|2 and a high computational time, caused by the possibility

that any point can directly interact with any other point in the image. Hence, a variety

of approaches have been proposed recently to reduce these problems. A usual approach

to improve computational time and storage efficiency is the so-called semi-local approach

(cf. e.g. [33], [78], [79], [170], . . . ), which uses for each point x ∈ Ω a small search

window Ωw ⊂ Ω centered at x . Subsequently, only similarity weights between x and

the points in Ωw will be computed. Another possibility to reduce the complexity of

the nonlocal weight graph is to eliminate the computation of weights for points with

dissimilar neighborhoods, which requires a fast preselection of similar patches. In [113],

Mahmoudi and Sapiro use a local average of gray values in a certain neighborhood and

gradients to preclassify the image patches and thereby to reduce the number of weight

computations. A similar strategy was also used by Brox, Kleinschmidt and Cremers in

[29], arranging the data in a cluster tree.

In [78, 77, 79, 170], a further strategy was proposed to improve computational time and

storage efficiency. For each point x ∈ Ω a fixed number M of best neighbors with

highest weight values in the semi-local searching window Ωw are included in the neigh-

borhood, where M << |Ωw| . However, the use of this simplification strategy destroys

in general the symmetry of the weight function wξ , which is an essential assumption in

the nonlocal operator framework of Gilboa and Osher in Section 7.2.2. In the context

of graph theory, the symmetry destruction of the weight function wξ leads to a directed

structure of the weight graph wξ . Hence, we propose in the following the use of nonlocal

derivative operators on directed graphs, i.e. the weight function wξ does not need to be

symmetric. Subsequently, we show that our framework is an extension of the nonlocal

framework of Gilboa and Osher in [79] in the sense, that up to normalization factors,

they will coincide in the case of a symmetric (undirected) weight function. Finally, we

also show that in the discrete setting the local gradient and divergence operators can be

viewed as a special case of the proposed framework.

7.3.1 Continuous Formulation of Directed Graphs

In the following, we use a variant of the gradient and divergence definitions on directed

graphs given by Hein et al. in [86]. However, in our case we introduce a completely con-

tinuous framework, which can be transferred easily to the discrete setting later. Hence,

let Ω ⊂ Rd and w : Ω × Ω → R≥ 0 be a nonnegative weight function, which does

not need to be symmetric. The weight value w(x, y) can be interpreted as a positive

measure between the points x and y . Despite the continuous formulation in the follow-

ing, we try to retain the standard notions of graph theory and denote a pair of points
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(x, y) ∈ Ω × Ω as an edge, if and only if w(x, y) > 0 . Note that we consider each edge

as an ordered pair of points (x, y) , representing a directed connection from x to y with

weight w(x, y) . Subsequently, the set of all such edges is denoted by E ⊂ Ω × Ω , i.e.

E := { (x, y) ∈ Ω × Ω : w(x, y) > 0 } . (7.11)

Hence, in an analogous way to graph theory, we denote the triple G = (Ω, E, w) as

a weighted directed graph consisting of a set of points Ω ⊂ Rd and a set of directed

edges E characterized by the weight function w . In particular, note that due to the

definition of the set of edges E in (7.11), it holds

w(x, y) = 0 if and only if (x, y) /∈ E . (7.12)

Finally, we define the outgoing and ingoing degree functions dout, din : Ω → R≥ 0 of a

point x ∈ Ω as

dout(x) :=

∫
N(x)

w(x, y) dy and din(x) :=

∫
Ω

w(y, x) dy ,

where the notation N(x) denotes the neighborhood of a point x , consisting of points

y ∈ Ω connected to x by a directed edge (x, y) ∈ E , i.e.

N(x) := { y ∈ Ω : w(x, y) > 0 } . (7.13)

Additionally, we assume that dout(x) + din(x) > 0 for all x ∈ Ω , meaning that each

point in Ω has at least one in- or outgoing edge, i.e. there are no isolated points in the

graph G .

7.3.2 Hilbert Spaces of Functions on Directed Graphs

Let G = (Ω, E, w) be a weighted directed graph. In the following, we denote with

H(Ω) the space of functions u : Ω → R , with assigning a real value u(x) to each

point x ∈ Ω . Moreover, there are also functions defined on the edges E of the graph,

such as the weight function w . Hence, let H(E) be the space of real-valued functions

v : E → R defined on the edges E of the graph G . Subsequently, we define the inner

products for both function spaces H(Ω) and H(E) . For the functions on Ω , we use a

weighted version of the standard L2 inner product of the form

〈u, ũ〉H(Ω) :=
1

CH(Ω)

∫
Ω

u(x) ũ(x)χ(x) dx , (7.14)
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where CH(Ω) :=
∫

Ω
χ(x) dx is a normalization factor and

χ(x) = χout
(
dout(x)

)
+ χin

(
din(x)

)
(7.15)

a measure on the neighborhood of the point x with χout, χin : R≥ 0 → R≥ 0 . In

addition, we assume that χout(0) = χin(0) = 0 and χout, χin are both strictly positive

on R> 0 . According to (7.14), we define a norm on H(Ω) induced by the inner product

as ‖u‖H(Ω) = 〈u, u〉1/2H(Ω) .

The inner product for functions on the edge set E is defined as follows,

〈v, ṽ〉H(E) :=
1

CH(E)

∫
Ω× Ω

v(x, y) ṽ(x, y)φ(w(x, y)) dx dy , (7.16)

where CH(E) :=
∫

Ω× Ω
φ(w(x, y)) dxdy is a normalization factor and φ : R≥ 0 → R≥ 0

is a function with φ(0) = 0 and is strictly positive on R> 0 . Actually, with the

assumptions on the function φ and property (7.12), we integrate only over the set of

edges E in (7.16), such that we can rewrite (7.16) to

〈v, ṽ〉H(E) =
1

CH(E)

∫
E

v(x, y) ṽ(x, y)φ(w(x, y)) dx dy ,

=
1

CH(E)

∫
Ω

∫
N(x)

v(x, y) ṽ(x, y)φ(w(x, y)) dy dx .

(7.17)

Note that the elements of the function space H(E) are vector-fields and we are interested

in a norm of a vector. Hence, let 1 ≤ p < ∞ and v ∈ H(E) , then the p-norm of a

vector-field v at x ∈ Ω is defined as

|v|`p(x) :=

(∫
N(x)

|v(x, y)|p φ(w(x, y)) dy

)1/p

. (7.18)

Moreover, we also define the maximum norm of a vector-field v ∈ H(E) at a point

x ∈ Ω as

|v|`∞(x) := sup
y ∈N(x)

|v(x, y)|φ(x, y) .

Now, it is easy prove that the inner products (7.14) and (7.16) are well defined. Since

both inner products are defined via additional weight functions χ and φ , we obtain a

family of inner products on H(Ω) and H(E) . Hence, we rename the Hilbert spaces

H(Ω) and H(E) to H(Ω, χ) and H(E, φ) , respectively. Finally, note that the elements

of the function space H(E, φ) can be interpreted as a flow on the edges, such that the

function value on an edge (x, y) corresponds to the “mass” flowing from the point x to

the point y (per unit time) (cf. [86]).
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7.3.3 Definition of Nonlocal Operators on Directed Graphs

Based on the continuous formulation of directed graphs in Section 7.3.1 and the definition

of Hilbert spaces in Section 7.3.2, we will now introduce a continuous variant of the

gradient and divergence operators on directed graphs given by Hein et al. in [86].

Definition 7.3.1 (Gradient Operator on Directed Graphs). Let G = (Ω, E, w) be a

weighted directed graph. Then, the gradient operator ∇w : H(Ω, χ) → H(E, φ) of a

function u ∈ H(Ω, χ) is defined on a directed edge (x, y) ∈ E as follows,

(∇wu)(x, y) := (u(y) − u(x)) γ(w(x, y)) , ∀(x, y) ∈ E , (7.19)

where γ : R≥ 0 → R≥ 0 is strictly positive on R> 0 with γ(0) = 0 . Hence, the nonlocal

gradient ∇wu(x) at a point x ∈ Ω is defined as the vector of all partial derivatives

(∇wu)(x, · ) with respect to the set of edges (x, y) ∈ E , i.e.

∇wu(x) := (∇wu)(x, y) , ∀y ∈ N(x) .

Definition 7.3.2 (Divergence Operator on Directed Graphs). Let G = (Ω, E, w) be a

weighted directed graph. Then, the divergence operator divw : H(E, φ) → H(Ω, χ) of

a vector-field v ∈ H(E, φ) is defined by the standard adjoint relation with the gradient

operator with respect to the inner products introduced in (7.14) and (7.16), i.e.

〈∇wu, v〉H(E) := − 〈u, divwv〉H(Ω) , ∀u ∈ H(Ω, χ) , ∀v ∈ H(E, φ) . (7.20)

Proposition 7.3.3. The divergence (divwv)(x) , defined in (7.20), at a point x ∈ Ω

is given by

(divwv)(x) =
CH(Ω)

χ(x)CH(E)

(∫
N(x)

v(x, y) γ(w(x, y))φ(w(x, y)) dy

−
∫

Ω

v(y, x) γ(w(y, x))φ(w(y, x)) dy

)
,

(7.21)

where χ(x) is defined in (7.15) and the constants CH(Ω) and CH(E) are given as follows,

CH(Ω) =

∫
Ω

χ(x) dx and CH(E) =

∫
Ω

∫
N(x)

φ(w(x, y)) dy dx . (7.22)

Proof. From the expressions of the inner product on H(E, φ) in (7.16) and (7.17), as

well as from the definition of the edge derivative in (7.19), the left-hand side of (7.20)
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is written as,

〈∇wu, v〉H(E) =
1

CH(E)

(∫
Ω× Ω

u(y) v(x, y) γ(w(x, y))φ(w(x, y)) dx dy

−
∫

Ω

∫
N(x)

u(x) v(x, y) γ(w(x, y))φ(w(x, y)) dy dx

)

=
1

CH(E)

(∫
Ω

u(y)

(∫
Ω

v(x, y) γ(w(x, y))φ(w(x, y)) dx

)
dy

−
∫

Ω

u(x)

(∫
N(x)

v(x, y) γ(w(x, y))φ(w(x, y)) dy

)
dx

)
.

We consider the first term on the right-hand side and rename x and y by y and x ,

respectively. With this renaming, we obtain

〈∇wu, v〉H(E) =
1

CH(E)

(∫
Ω

u(x)

(∫
Ω

v(y, x) γ(w(y, x))φ(w(y, x)) dy

−
∫
N(x)

v(x, y) γ(w(x, y))φ(w(x, y)) dy

)
dx

)
(7.20)
= − 〈u, divwv〉H(Ω)

(7.14)
= − 1

CH(Ω)

∫
Ω

u(x) (divwv)(x)χ(x) dx .

Then, the result (7.21) is obtained by taking u(x) = 1 for all x ∈ Ω .

Remark. As mentioned in [86], the first term on the right-hand side of (7.21) can be

interpreted as the outgoing flow, whereas the second term can be seen as the ingoing

flow.

Definition 7.3.4 (Graph Laplacian for Directed Graphs). Let G = (Ω, E, w) be a

weighted directed graph. Then, the graph Laplacian ∆w : H(Ω, χ) → H(Ω, χ) of a

function u ∈ H(Ω, χ) is defined by

∆wu := divw(∇wu) . (7.23)
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Proposition 7.3.5. The graph Laplacian ∆wu(x) , defined in (7.23), at a point x ∈ Ω

is given by

∆wu(x) =
CH(Ω)

χ(x)CH(E)

(∫
N(x)

(u(y) − u(x)) γ2(w(x, y))φ(w(x, y)) dy

+

∫
Ω

(u(y) − u(x)) γ2(w(y, x))φ(w(y, x)) dy

)
,

(7.24)

where χ(x) is defined in (7.15) and the constants CH(Ω) and CH(E) are given in (7.22).

Proof. The explicit form (7.24) results directly from the definition of the graph Laplacian

in (7.23), using the definitions of the gradient and divergence operator in (7.19) and

(7.21), respectively.

Lemma 7.3.6. The graph Laplacian ∆w defined in (7.23) is self-adjoint and negative

semi-definite, i.e. it holds

〈ũ,∆wu〉H(Ω) = 〈∆wũ, u〉H(Ω) , ∀u, ũ ∈ H(Ω, χ) ,

and

〈∆wu, u〉H(Ω) ≤ 0 , ∀u ∈ H(Ω, χ) .

Proof. Both properties result directly from the definitions of the graph Laplacian in

(7.23) and the divergence operator in (7.20).

7.3.4 Special Case : Undirected Graphs

Let G = (Ω, E, w) be an undirected weighted graph. In this case, the weight function

w is symmetric, i.e. w(x, y) = w(y, x) . The symmetry of the weight function implies

that whenever there is a directed edge from x to y , there is also a directed edge from

y to x with the same weight value. Hence, this implies that there is no difference

between out- and ingoing edges and we obtain dout ≡ din , such that we denote the

degree function by d with

d(x) =

∫
N(x)

w(x, y) dy
(7.12)
=

∫
Ω

w(x, y) dy , ∀x ∈ Ω .

Consequently, we also have χout = χin in (7.15), such that there is a unique function

χ as weight in the inner product (7.14).
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Since there is no difference between out- and ingoing edges and due to the properties

of the functions γ and φ ( γ(0) = φ(0) = 0 ), the divergence (divwv)(x) (7.21) of

a vector field v ∈ H(E, φ) at a point x ∈ Ω simplifies in the case of an undirected

graph as follows,

(divwv)(x) =
CH(Ω)

χ(x)CH(E)

∫
N(x)

(v(x, y) − v(y, x)) γ(w(x, y))φ(w(x, y)) dy

=
CH(Ω)

χ(x)CH(E)

∫
Ω

(v(x, y) − v(y, x)) γ(w(x, y))φ(w(x, y)) dy .

(7.25)

With the same argument, we also obtain a simplification of the graph Laplacian ∆wu(x)

(7.24) of a function u ∈ H(Ω, χ) at a point x ∈ Ω in the case of an undirected graph

as follows,

∆wu(x) =
2CH(Ω)

χ(x)CH(E)

∫
N(x)

(u(y) − u(x)) γ2(w(x, y))φ(w(x, y)) dy

=
2CH(Ω)

χ(x)CH(E)

∫
Ω

(u(y) − u(x)) γ2(w(x, y))φ(w(x, y)) dy .

(7.26)

With a suitable choice of the functions χ , γ , and φ , one now can obtain from equation

(7.26) the different expressions of the Laplace operator in graph theory, such as the

normalized and combinatorial Laplacian (cf. [86]).

7.3.5 Special Case : Nonlocal Operators of Gilboa and Osher

In Section 7.2.2, we introduced a framework of nonlocal derivative operators proposed

by Gilboa and Osher in [79]. In this framework, the authors considered a symmetric

weight function w , i.e. an undirected weighted graph, to define the nonlocal gradient

and divergence operators, as well as the nonlocal graph Laplacian. In the following,

we show that the framework in Section 7.2.2 represents a special case of the operators

(7.19), (7.25) and (7.26), using a suitable choice of functions χ , γ and φ . For this

purpose, we use the simplifications of derivative operators in Section 7.3.4 and set

γ(w(x, y)) =
√
w(x, y) and φ(w(x, y)) = 1

for all (x, y) ∈ E , with E being defined as in (7.11). Additionally, we use a uniform

measure χ (7.15) on the neighborhood of a point of the form

χ(x) = 1 , ∀x ∈ Ω .
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Hence, we obtain from (7.19), (7.25) and (7.26) the following formulations of nonlocal

derivative operators at a point x ∈ Ω ,

∇wu(x) = (u(y) − u(x))
√
w(x, y) , ∀y ∈ N(x) ,

(divwv)(x) =
|Ω|
|E|

∫
Ω

(v(x, y) − v(y, x))
√
w(x, y) dy ,

∆wu(x) =
2 |Ω|
|E|

∫
Ω

(u(y) − u(x))w(x, y) dy .

Up to normalization factors, these operators correspond to the framework of Gilboa and

Osher mentioned in Section 7.2.2.

7.3.6 Discretization of Nonlocal Operators on Directed Graphs

In this section, we discretize the continuous formulation of directed graphs in Section

7.3.1 and consider the discrete versions of the nonlocal operators on directed graphs

proposed in Section 7.3.3.

Using the discrete setting proposed in Definition 2.1.2 and the continuous formulation

of directed graphs in Section 7.3.1, we denote the triple G = (V, E, w) as a discrete

weighted directed graph consisting of a finite set V of N1 · · · Nd vertices (pixels) and a

finite set E ⊂ V × V of weighted directed edges. In this context, we denote by ux ,

x = (i1, . . . , id) , the value of a pixel x ∈ V for 1 ≤ ik ≤ Nk and k = 1, . . . , d .

Moreover, let wxy be the discrete version of the weight function w(x, y) . Analogously

to (7.13), we use the neighbor set notation Nx defined as

Nx := { y ∈ V : wxy > 0 } .

Then, the outgoing dout and ingoing din degrees measure the sum of the out- and

ingoing weights of a vertex,

doutx =
∑
y ∈Nx

wxy and dinx =
∑
y ∈ V

wyx , ∀x ∈ V . (7.27)

Moreover, corresponding to Section 7.3.2, we denote with H(V, χ) and H(E, φ) the

Hilbert spaces of the real -valued functions on the vertices V and edges E respectively,

associated with the following inner products (cf. (7.14) and (7.17)),

〈u, ũ〉H(Ω) :=
1

CH(Ω)

∑
x ∈ V

ux ũx χx , u, ũ ∈ H(V, χ) ,

〈v, ṽ〉H(E) :=
1

CH(E)

∑
x ∈ V

∑
y ∈Nx

vxy ṽxy φ(wxy) , v, ṽ ∈ H(E, φ) .

(7.28)
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In the discrete setting, the function χ is defined as in (7.15) by

χx := χout
(
doutx

)
+ χin

(
dinx

)
, ∀x ∈ V ,

and the normalization constants CH(Ω) and CH(E) are given analogously to (7.22),

CH(Ω) :=
∑
x ∈ V

χx and CH(E) :=
∑
x ∈ V

∑
y ∈Nx

φ(wxy) . (7.29)

Then, the weighted discrete gradient operator ∇w of a function u ∈ H(V, χ) at a vertex

x ∈ V is given corresponding to Definition 7.3.1 as

∇wux := (∇wu)xy = (uy − ux) γ(wxy) , y ∈ Nx . (7.30)

Moreover, the weighted discrete divergence operator divw of a vector-field v ∈ H(E, φ)

at a vertex x ∈ V is given corresponding to Definition 7.3.2 as

(divwv)x :=
CH(Ω)

χxCH(E)

( ∑
y ∈Nx

vxy γ(wxy)φ(wxy) −
∑
y ∈ V

vyx γ(wyx)φ(wyx)

)
. (7.31)

Finally, the discrete graph Laplacian ∆w on a directed graph of a function u ∈ H(V, χ)

at a vertex x ∈ V is given corresponding to Definition 7.3.4 as

∆wux :=
CH(Ω)

χxCH(E)

( ∑
y ∈Nx

(uy − ux) γ
2(wxy)φ(wxy)

+
∑
y ∈ V

(uy − ux) γ
2(wyx)φ(wyx)

)
.

(7.32)

7.3.7 Special Case : Discrete Local Derivative Operators

In the following, we show that the discrete local gradient and divergence operators also

can be put into the framework proposed in Section 7.3.3. For this purpose, we use the

discrete versions of nonlocal operators on directed graphs proposed in Section 7.3.6 and

simplify these to the discrete local derivative setting.

Using the discrete setting of the framework in Section 7.3.6, we obtain the discrete local

gradient and divergence operator by a suitable choice of functions χ , γ and φ . For

the sake of convenience, we consider in the following only the case of a two dimensional

image, but the approach is extendable to arbitrary dimensions in a straight-forward way.
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The discrete finite forward difference approximation of the gradient is given by

∇ui1,i2 =
(

(∇u)1
i1,i2

, (∇u)2
i1,i2

)
=

(
ui1+1,i2 − ui1,i2

h1

,
ui1,i2+1 − ui1,i2

h2

)
,

where h1 = 1
N1

and h2 = 1
N2

denote the stepsizes of the image grid in the first and

second direction. Hence, regarding the form of the weighted gradient in (7.30), we set

for a fixed vertex x = (i1, i2) the value γ(wxy) as

γ(wxy) :=


1
h1
, if y = (i1 + 1, i2) ,

1
h2
, if y = (i1, i2 + 1) ,

0 , else .

(7.33)

In particular, due to the assumption in Definition 7.3.1 that the function γ is strictly

positive on R> 0 with γ(0) = 0 , we obtain from (7.33) that the weight wxy is strictly

positive if and only if y = (i1 + 1, i2) or y = (i1, i2 + 1) , such that the neighbor set

Nx of a vertex x = (i1, i2) is given by

Nx = { y = (i1 + 1, i2) and y = (i1, i2 + 1) } . (7.34)

This result implies that each vertex has two edges only, namely one edge in the first

direction and one in the second one. Hence, we can define the weighted graph w at

each pixel x = (i1, i2) as

wxy :=


w1 > 0 , if y = (i1 + 1, i2) ,

w2 > 0 , if y = (i1, i2 + 1) ,

0 , else .

This implies that the out- and ingoing degrees (7.27) of a vertex coincide, i.e.

doutx = dinx = w1 + w2 , ∀x ∈ V ,

where the right-hand side is in particular independent from x , such that

χ := χx = χout
(
w1 + w2

)
+ χin

(
w1 + w2

)
, ∀x ∈ V .

Therefore, the normalization constants in (7.29) simplify to

CH(Ω) = χ |V | and CH(E) =
(
φ(w1) + φ(w2)

)
|V | .
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Consequently, we obtain from (7.32) the following form of the Laplace operator,

∆wui1,i2 =
1

C

(
ui1+1,i2 − ui1,i2

h2
1

φ(w1) +
ui1,i2+1 − ui1,i2

h2
2

φ(w2)

+
ui1−1,i2 − ui1,i2

h2
1

φ(w1) +
ui1,i2−1 − ui1,i2

h2
2

φ(w2)

)
=

1

C

(
ui1+1,i2 − 2ui1,i2 + ui1−1,i2

h2
1

φ(w1)

+
ui1,i2+1 − 2ui1,i2 + ui1,i2−1

h2
2

φ(w2)

)
,

(7.35)

with C := φ(w1) + φ(w2) . For the characterization of the divergence operator (7.31),

note that the vector-field v ∈ H(E, φ) is a function on the edge set E . However, as we

can see in (7.34), each vertex has two edges only, such that for a fixed pixel x = (i1, i2)

the vector vxy is two-valued of the form

vxy =
(
vx,(i1+1,i2), vx,(i1,i2+1)

)
=: (v1

i1,i2
, v2

i1,i2
) .

Consequently, we obtain from (7.31) the following form of the divergence operator,

(divwv)i1,i2 =
1

C

(
v1
i1,i2

h1

φ(w1) +
v2
i1,i2

h2

φ(w2)

−
v1
i1−1,i2

h1

φ(w1) −
v2
i1,i2−1

h2

φ(w2)

)

=
1

C

(
v1
i1,i2
− v1

i1−1,i2

h1

φ(w1) +
v2
i1,i2
− v1

i1,i2−1

h2

φ(w2)

)
.

(7.36)

In formulations (7.35) and (7.36), we obtain the standard discrete local divergence and

Laplace operator, if we set φ ≡ 1 on R> 0 .

7.4 NL-TV Regularization in Poisson and US Speckle

Frameworks

In Section 7.2, we introduced a variational regularization strategy in image processing,

which can realize additional prior information derived from an image itself. The main

characteristic of this novel approach is the use of a nonlocal weighted graph, which iden-

tifies similar structures in an image and allows to adapt the penalization to the geometry

of underlying functions, which one wants to recover. Based on such a graph, Gilboa and
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Osher proposed in [79] a nonlocal operator framework (see Section 7.2.2), which allows

to extend non-smooth energies, such as total variation, to a nonlocal variant. In or-

der to take advantage of the adaptive properties of nonlocal regularization strategies in

the context of inverse problems with Poisson and US speckle corrupted data, we use

in this section the nonlocal TV (NL-TV) functional (7.9) as regularization energy in

the frameworks proposed in Chapters 4 and 5. Finally, we mention that the use of the

NL-TV regularization in the combination with the Kullback-Leibler data fidelity term

was already proposed by Steidl and Teuber in [154], however in the context to remove

multiplicative Gamma noise in the images.

We now consider the NL-TV regularized likelihood estimation problems (4.16) and (5.5),

and propose to use the nested two step iteration schemes, which we introduced in Chap-

ters 4 and 5 using a forward-backward splitting approach. As already discussed in the

case of the local TV functional in Section 6.3.2, the open question in these two step it-

eration schemes remains the numerical realization of the regularization half steps (4.25),

(4.27), (4.108) and (4.109). Using the definition of the NL-TV functional | · |NL−BV (Ω) in

(7.9) or (7.10), the general form of all these regularization half steps is given analogously

to (6.35) by

min
u

1

2

∫
Ω

(u − q)2

h
+ γ |u|NL−BV (Ω) , γ > 0 , (7.37)

with an appropriate setting of the “noise” function q , the weight function h and the

regularization parameter γ , as summarized in Table 6.1. The variational problem (7.37)

is a modified version of the NL-ROF model proposed in [79], with weight h in the

data fidelity term. To solve the standard NL-ROF model, extensions of Chambolle’s

projected gradient descent algorithm [41] and alternating split Bregman algorithm [82]

have been proposed in [79] and [170], respectively. The only difference of these nonlocal

extensions compared to the local versions of algorithms is that one has to replace the local

gradient and divergence operators by nonlocal ones. Hence, based on these approaches,

the modified projected gradient descent algorithm of Chambolle proposed in Section

6.3.3 and the augmented Lagrangian method proposed in Section 6.3.4 for solving the

weighted ROF model (6.35) can be extended to solve the weighted NL-ROF problem

(7.37).

In the following, we use the nonlocal operator framework proposed in Section 7.3, where

we defined the nonlocal gradient and divergence operators in the more general case of

directed graphs.
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7.4.1 Weighted NL-ROF : Projected Gradient Descent Algorithm

Using the dual definition of the NL-TV functional | · |NL−BV (Ω) in (7.9), we can proceed

analogously to Section 6.3.3 to provide a numerical scheme for (7.37). Namely, the

primal solution u is given similarly to (6.38) by

u = q − γ h divw g̃ , (7.38)

where divw is defined in (7.21). Subsequently, depending on the isotropic or anisotropic

formulation of the NL-TV functional (cf. Remark 7.2.2, Item (2)), we obtain the fol-

lowing iteration schemes to compute the optimal dual variable g̃ in (7.38). In the case

of the isotropic NL-TV formulation, we obtain for a fixed point x ∈ Ω (cf. (6.42)),

gn+1(x, y) =
gn(x, y) + τ

(
∇w (γ h divw g

n − q)
)
(x, y)

1 + τ |∇w (γ h divw gn − q)|`2(x)
, ∀y ∈ N(x) , (7.39)

where ∇w and divw are defined in (7.19) and (7.21), and the vector norm | · |`2 is given

by (7.18). In the case of the anisotropic NL-TV formulation, we obtain the following

iteration for a fixed point x ∈ Ω (cf. (6.42)),

gn+1(x, y) =
gn(x, y) + τ

(
∇w(γ h divw g

n − q)
)
(x, y)

1 + τ |
(
∇w(γ h divw gn − q)

)
(x, y)|

, ∀y ∈ N(x) . (7.40)

Convergence Study of Iteration Scheme

As already mentioned, Gilboa and Osher presented in [79] a nonlocal extension of the

projected gradient descent algorithm of Chambolle [41] to solve the NL-ROF model,

i.e. (7.37) with h ≡ 1 . There, the authors also proved in the discrete setting the

convergence of the algorithm to the global minimizer, if

0 < τ ≤ 1

‖divw‖2
.

In the following, we resolve ‖divw‖2 in the context of discrete nonlocal operators on

directed graphs, which we proposed in Section 7.3.6. Subsequently, we show that in the

setting of discrete local gradient and divergence operators, we obtain with our framework

the original bound ‖divw‖2 ≤ 8 of Chambolle in [41].

Lemma 7.4.1. With the notations and definitions of the discrete nonlocal operators in

Section 7.3.6, the projected gradient descent algorithm of Chambolle [41] to solve the
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NL-ROF model, i.e. (7.37) with h ≡ 1 , converges for

0 < τ ≤
CH(E)

4CH(Ω)Cmax
(7.41)

with

Cmax := max
x ∈ V

{∑
y ∈Nx γ

2(wxy)φ(wxy)

χx
,

∑
y ∈ V γ2(wyx)φ(wyx)

χx

}
. (7.42)

Proof. Let v ∈ H(E, φ) , then

‖divwv‖2
H(Ω)

(7.28)
=

1

CH(Ω)

∑
x ∈ V

(divwv)2χx

(7.31)
=

CH(Ω)

C2
H(E)

∑
x ∈ V

(∑
y ∈Nx

vxy γ(wxy)φ(wxy) −
∑
y ∈ V

vyx γ(wyx)φ(wyx)

)2
χx
χ2
x

.

Subsequently, using (a − b)2 ≤ 2 (a2 + b2) and the Cauchy-Schwarz inequality, we

obtain

‖divwv‖2
H(Ω) ≤

2CH(Ω)

C2
H(E)

∑
x ∈ V

((∑
y ∈Nx

v2
xy φ(wxy)

)(∑
y ∈Nx

γ2(wxy)φ(wxy)

)

+

(∑
y ∈ V

v2
yx φ(wyx)

)(∑
y ∈ V

γ2(wyx)φ(wyx)

))
1

χx

(7.42)

≤
2CH(Ω)Cmax

C2
H(E)

∑
x ∈ V

(∑
y ∈Nx

v2
xy φ(wxy) +

∑
y ∈ V

v2
yx φ(wyx)

)
.

The property φ(0) = 0 and the renaming of x and y by y and x , respectively, yields∑
x ∈ V

∑
y ∈ V

v2
yx φ(wyx) =

∑
x ∈ V

∑
y ∈Nx

v2
xy φ(wxy) .

Hence, we have

‖divwv‖2
H(Ω) ≤

4CH(Ω)Cmax
C2
H(E)

∑
x ∈ V

∑
y ∈Nx

v2
xy φ(wxy)

(7.28)
=

4CH(Ω)Cmax
CH(E)

‖v‖2
H(E) .

Remark.

• Due to the dependence of the right-hand side of (7.41) on the functions γ , φ and

χ , we cannot propose an explicit bound on τ . Hence, the bound τ depends on

the special choice of these functions and the underlying weighted graph w .
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• In Section 7.3.7, we discussed the choice of functions γ , φ and χ , to obtain the

standard discrete local gradient and divergence operators in our framework. Using

the definitions from there, we obtain from (7.41) the following bound on τ in the

two dimensional discrete local setting,

0 < τ ≤ 1

2
(

1
h2

1
+ 1

h2
2

) ,

where h1 and h2 denote the stepsizes of the image grid in the first and second

dimension. In the case of unit step sizes, this bound simplifies to τ ≤ 1
4

, which

does not coincide with the original bound τ ≤ 1
8

of Chambolle in [41]. The reason

is that the inner products defined in [41] are unweighted and not normalized, in

contrast to the definition of the inner products (7.28) in our framework. Hence,

if we formally set χ ≡ 1 and φ ≡ 1 on R> 0 , as well as CH(Ω) = CH(E) = 1 ,

then we obtain from (7.41) the following bound on τ ,

0 < τ ≤ 1

4
(

1
h2

1
+ 1

h2
2

) ,

which simplifies in the case of unit stepsizes to τ ≤ 1
8

.

• In the case of the weighted NL-ROF model (7.37), the convergence proof of Gilboa

and Osher in [79] for the NL-ROF problem can be transferred to the weighted

version. Hence, we can guarantee the convergence of the algorithm to an optimal

solution with Lemma 7.4.1, if the damping parameter τ satisfies

0 < τ ≤
CH(E)

4CH(Ω)Cmax γ ‖h‖L∞(Ω)

. (7.43)

The (dual) projected gradient descent algorithm for the weighted NL-ROF model (7.37)

can be now summarized as in Algorithm 7.1.

7.4.2 Weighted NL-ROF : Augmented Lagrangian Method

Using the definition of the NL-TV functional | · |NL−BV (Ω) in (7.10), we can proceed

analogously to Section 6.3.4 to provide a numerical scheme for the weighted NL-ROF

problem (7.37). Thus, the subproblem with respect to un+1 consists in solving the

following linear equation (cf. (6.53)),

(µ2I − µ1∆w)un+1 = λn2 + µ2 ũ
n − divw(λn1 + µ1 v

n) , (7.44)

where divw and ∆w are defined in (7.21) and (7.24). Since the graph Laplacian ∆w

is negative semi-definite (see Lemma 7.3.6) and the operator µ2I − µ1 ∆w with weight
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Algorithm 7.1 Projected Gradient Descent Algorithm for Weighted NL-ROF

1. Parameters: q , h , γ > 0 , σ > 0 , δ > 0 , tol > 0

2. Initialization: n = 0 , g0 := 0 , stop := c > tol

τ := CH(E) / (4CH(Ω) Cmax γ ‖h‖L∞(Ω)) . (7.43), (7.41)

3. Iteration:

a) Compute weighted graph wξ via (7.4) with reference image ξ = q .

while ( stop ≥ tol ) do

if Isotropic TV Formulation then

i) Compute gn+1 via (7.39).

end if

if Anisotropic TV Formulation then

i) Compute gn+1 via (7.40).

end if

ii) Set stop = ‖γ h divwg
n+1 − γ h divwg

n‖L2(Ω).

iii) n ← n+ 1

end while

4. Return u := q − γ h divwg
n . (7.38)

function w is diagonal dominant, un+1 in (7.44) can be solved by using a Gauss-Seidel

algorithm. Moreover, the minimization problem with respect to ũn+1 can be computed

by using an explicit formula given by (6.55). Similar as in Section 6.3.4, the vector-field

vn+1 is obtained by applying a shrinkage operator. In the case of the anisotropic NL-TV

formulation, the vector vn+1(x, ·) at a point x ∈ Ω is given similar to (6.57) by

vn+1(x, y) = sgn
((
∇wu

n+1 − (1/µ1)λn1
)
(x, y)

)
max

( ∣∣(∇wu
n+1 − (1/µ1)λn1

)
(x, y)

∣∣ − (γ/µ1) , 0
) (7.45)

for all y ∈ N(x) , where ∇w is defined in (7.19). In the case of the isotropic NL-TV

formulation, the vector vn+1(x, ·) at a point x ∈ Ω is given similar to (6.58) by

vn+1(x, y) =

(
∇wu

n+1 − (1/µ1)λn1
)
(x, y)∣∣(∇wun+1 − (1/µ1)λn1
)∣∣
`2

(x)

max
( ∣∣(∇wu

n+1 − (1/µ1)λn1
)∣∣
`2

(x) − (γ/µ1) , 0
) (7.46)
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for all y ∈ N(x) , where the vector norm | · |`2 is given by (7.18). Finally, the updates

of the Lagrange multipliers are given similar to (6.51) and (6.52) by

λn+1
1 = λn1 + µ1 (vn+1 − ∇wu

n+1) , (7.47)

λn+1
2 = λn2 + µ2 (ũn+1 − un+1) . (7.48)

The augmented Lagrangian method for the weighted NL-ROF model (7.37) can be now

summarized as in Algorithm 7.2.

Algorithm 7.2 Augmented Lagrangian Method for Weighted NL-ROF

1. Parameters: q , h , γ > 0 , µ1 > 0 , µ2 > 0 , σ > 0 , δ > 0 , tol > 0

2. Initialization: n = 0 , ũ0 := q , v0 := 0 , λ0
1 := 0 , λ0

2 := 0 , stop := c > tol

3. Iteration:

a) Compute weighted graph wξ via (7.4) with reference image ξ = q .

while ( stop ≥ tol ) do

i) Compute un+1 via (7.44) using Gauss-Seidel algorithm.

ii) Compute ũn+1 via (6.55).

if Isotropic TV Regularization then

iii) Compute vn+1 via (7.46).

end if

if Anisotropic TV Regularization then

iii) Compute vn+1 via (7.45).

end if

iv) Update λn+1
1 via (7.47).

v) Update λn+1
2 via (7.48).

vi) Set stop = ‖ũn+1 − ũn‖L2(Ω).

vii) n ← n+ 1

end while

4. Return ũn
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8
Reconstruction : Results in PET and US Imaging

In the following we will illustrate the performance of the numerical schemes, which we

proposed in Chapters 4 and 5, by 2D and 3D reconstructions on synthetic and real data

in positron emission tomography and medical ultrasound imaging.

8.1 Positron Emission Tomography (PET)

Positron emission tomography (PET) is a biomedical imaging technique, which enables

to visualize biochemical and physiological processes, such as glucose metabolism, blood

flow or receptor concentrations (see e.g. [167, 160, 12]). This modality is mainly applied

in nuclear medicine and can be used for instance to detect tumors, to locate areas of

the heart affected by coronary artery disease and to identify brain regions influenced

by drugs. Therefore, PET is categorized as a functional imaging technique and differs

from methods such as X-ray computed tomography (CT) that depicts priori anatomy

structures. The data acquisition in PET is based on weak radioactively marked pharma-

ceuticals, so-called tracers, which are injected into the blood circulation, and bindings

dependent on the choice of the tracer to the molecules to be studied. Used markers are

suitable radio-isotopes, which decay by emitting a positron, which annihilates almost

immediately with an electron. The resulting emission of two photons will then detected

by the tomograph device. Due to the radioactive decay, measured data can be modeled

as an inhomogeneous Poisson process with a mean given by the X-ray transform of the

spatial tracer distribution [123, Sect. 3.2]. The X-ray transform maps a function on

Rd into the set of its line integrals [123, Sect. 2.2]. More precisely, if θ ∈ Sd−1 and

x ∈ θ⊥ , then the X-ray transform K̄ may be defined by

(K̄u)(θ, x) =

∫
R
u(x + t θ) dt ,
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and corresponds to the integral of u over the straight line through x with direction θ .

Up to notation, in the two dimensional case the X-ray transform coincides with the more

popular Radon transform, which maps a function on Rd into the set of its hyperplane

integrals [123, Sect. 2.1]. If θ ∈ Sd−1 and s ∈ R , then the Radon transform can be

defined by

(K̄u)(θ, s) =

∫
x · θ = s

u(x) dx =

∫
θ⊥
u(s θ + y) dy , (8.1)

and corresponds in the two dimensional case to the integral of u over the straight line

represented by a direction θ and a distance to origin s .

In the following sections, we illustrate the performance of the (Bregman-)FB-EM-REG

algorithm proposed in Sections 4.4.1 and 4.7.3 using synthetic and real data in PET.

Here, we use total variation regularization and augmented Lagrangian method described

in Section 6.3.4 in order to solve the weighted ROF problem (6.35) occuring in the

regularization half steps of our splitting strategy. In the augmented Lagrangian method,

we have seen that the inversion of the Laplace operator equation in (6.53) can be solved

efficiently using the discrete cosine transform (6.54). To realize this iteration step, we use

a MATLAB implementation of the multidimensional (inverse) discrete cosine transform

of A. Myronenko [121].

8.1.1 2D Synthetic Results

In this section we compute reconstruction results using synthetic 2D PET data f ∈
R257× 256 (see Fig. 8.1c) simulated for a simple object ū ∈ R256× 256 (see Fig. 8.1a).

The data are obtained via a Monte-Carlo simulation for s ∈ [−1, 1] sampled at 257

samples and θ ∈ [0, 2π] sampled at 256 samples in (8.1), using one million simulated

events.

In Fig. 8.2 we present EM reconstructions for different numbers of iterations following

algorithm (4.15) with data f illustrated in Fig. 8.1c. We can observe that early

stopping in Fig. 8.2a leads to a natural regularization, however with blurring effects

and inhomogeneities in the whole object. A higher number of iterations leads to sharper

results, as in Fig. 8.2b, however the reconstructions suffer more and more from the

undesired “checkerboard effect”, as in Fig. 8.2c, due to the convergence of results to

positions of single decay events. In Fig. 8.2d we additionally display the expected

monotone descent of the objective functional in (4.13) for 1000 EM iterations. Finally,

we present in Fig. 8.2e the typical behavior of EM iterates for ill-posed problems as

described in [135]. Namely, the (metric) distance, here Kullback-Leibler, between the

iterates and the exact solution decreases initially before it increases as the noise is
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(a) Original object (b) Analytical data (c) Simulated measurements

Fig. 8.1. Synthetic 2D PET data. (a) Exact object ū ∈ R256× 256 . (b) Exact

Radon data f̄ = K̄ū ∈ R257× 256 with s ∈ [−1, 1] sampled at 257 samples and

θ ∈ [0, 2π] sampled at 256 samples in (8.1). (c) Simulated PET measurements f

via a Monte-Carlo simulation with s and θ as in (b), using one million events.

amplified during the iteration process. The minimal distance in Fig. 8.2e is reached

approximately after 25 iterations.

In Fig. 8.3 we illustrate reconstruction results obtained with the FB-EM-TV algorithm

(4.24) using different regularization parameters α . In comparison to the EM results

in Fig. 8.2, the regularized EM algorithm reduces noise and oscillations very well,

and reconstructs successful the main geometrical configurations of the desired image

in Fig. 8.1a, despite the low SNR of the given data in Fig. 8.1c. In Fig. 8.3a the

reconstruction is under-smoothed, whereas in Fig. 8.3c the computed image is over-

smoothed. A visually resonable reconstruction is illustrated in Fig. 8.3b. Moreover,

different statistical results for the FB-EM-TV reconstruction in Fig. 8.3b are plotted

in Fig. 8.4. As expected, we observe a decreasing behavior of the objective functional

values and Kullback-Leibler distances to the given measurements f and exact image ū .

In Fig. 8.5 we present reconstruction results for different refinement steps of the Bregman-

FB-EM-TV algorithm proposed in Section 4.7.3. Corresponding to the characteristic of

inverse scale space methods, we observe that the results will be improved with increasing

iteration number with respect to the systematic error of chosen regularization functional.

In the case of the total variation regularization, the systematic error is the reduction

of contrast, which will be refined by Bregman distance iteration, as we can observe in

the maximal intensity of reconstructions in Fig. 8.5. Moreover, in Fig. 8.5f we plot the

Kullback-Leibler distance between the Bregman iterates and the exact solution. There,

we can see that the reconstruction result at 7th refinement step has the smallest distance

to the original image ū .
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(a) EM result, 5 its (b) EM result, 25 its (c) EM result, 1000 its

(d) DKL(f, K̄uk) (e) DKL(uk, ū)

Fig. 8.2. Synthetic 2D PET data from Fig. 8.1: EM reconstructions. (a)-(c)

Reconstruction results obtained with the EM algorithm (4.15) and stopped at dif-

ferent iteration numbers. (d) Kullback-Leibler distances DKL between given mea-

surements f and transformed EM iterates K̄uk for 1000 iterations (solid line), as

well as between f and exact Radon data K̄ū (dash-dot line). (e) Kullback-Leibler

distance between EM iterates uk and exact object ū for 1000 iterations.

(a) FB-EM-TV, α = 0.0003 (b) FB-EM-TV, α = 0.0005 (c) FB-EM-TV, α = 0.0008

Fig. 8.3. Synthetic 2D PET data from Fig. 8.1: FB-EM-TV reconstructions. (a) -

(c) Reconstruction results obtained with the FB-EM-TV splitting algorithm (4.24)

using different regularization parameters α .
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(a) optk (4.32) (b) uoptk (4.33) (c) poptk (4.33)

(d) DKL(f, K̄uk) + α |uk|BV (e) DKL(f, K̄uk) (f) DKL(uk, ū)

Fig. 8.4. Synthetic 2D PET data from Fig. 8.1: different statistics for the result

in Fig. 8.3b with 100 FB-EM-TV iterations. (a) - (c) Stopping rules proposed in

Section 4.4.4. (d) Values of the objective functional. (e) Kullback-Leibler distances

between given measurements f and transformed FB-EM-TV iterates K̄uk (solid

line), as well as between f and exact Radon data K̄ū (dash-dot line). (e) Kullback-

Leibler distance between FB-EM-TV iterates uk and exact object ū .

8.1.2 2D Real Data Results

In Fig. 8.6 we illustrate the performance of the FB-EM-TV algorithm by evaluation of

cardiac H2
15O measurements obtained with positron emission tomography. This tracer

is used in the nuclear medicine for the quantification of myocardial blood flow [142].

However, this quantification needs a segmentation of myocardial tissue, left and right

ventricle [142, 20], which is extremely difficult to realize due to very low SNR of H2
15O

data. Hence, to obtain the tracer intensity in the right and left ventricle, we take a fixed

2D layer in two different time frames.

The tracer intensity in the right ventricle is illustrated in Fig. 8.6a, whereby the tracer

intensity in the left ventricle is presented in Fig. 8.6b, using measurements 25 seconds

and 45 seconds after tracer injection in the blood circulation respectively. To illustrate

the SNR problem, we present in Fig. 8.6 (left) reconstructions with the classical EM

algorithm. As expected, the results suffer from unsatisfactory quality and are impossible
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(a) 5th Bregman step (b) 7th Bregman step (c) 9th Bregman step

(d) 11th Bregman step (e) 13th Bregman step (f) DKL(ul, ū)

Fig. 8.5. Synthetic 2D PET data from Fig. 8.1: Bregman-FB-EM-TV recon-

structions. (a) - (e) Reconstruction results at different refinement steps of the

Bregman-FB-EM-TV algorithm proposed in Section 4.7.3. (f) Kullback-Leibler dis-

tance between Bregman-FB-EM-TV iterates ul and exact object ū for 15 Bregman

iterations.

to interpret. Hence, we take EM reconstructions with Gaussian smoothing (Fig. 8.6

(middle)) as references. The results in Fig. 8.6 (right) show the reconstructions with

the proposed FB-EM-TV algorithm. We can see that the results with the FB-EM-TV

algorithms are well suited for further use, such as segmentation for quantification of

myocardial blood flow, despite the very low SNR of H2
15O data [20].

8.1.3 3D Real Data Results

In this section we present 3D reconstruction results generated with the (Bregman-)FB-

EM-TV algorithm using cardiac 18F-FDG measurements obtained with PET. The mea-

surements and corresponding 3D EM algorithm for the reconstruction process were pro-

vided by K. Schäfers and T. Kösters (EIMI, WWU Münster). The 18F-FDG tracer is an

important radiopharmaceutical in nuclear medicine and is used for measuring glucose
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(a) Right ventricle: EM, Gaussian smoothed EM and FB-EM-TV results (from left to right)

(b) Left ventricle: EM, Gaussian smoothed EM and FB-EM-TV results (from left to right)

Fig. 8.6. Cardiac H2
15O PET measurements: tracer intesity results of different

reconstruction methods in two different time frames. (a) Tracer intensity in the

right ventricle using measurements 25 seconds after tracer injection in the blood

circulation. (b) Tracer intensity in the left ventricle using measurements 45 seconds

after tracer injection in the blood circulation.

metabolism, e.g. in brain, heart or tumors. In the following, in order to illustrate the 3D

data set, we take a fixed transversal, coronal and sagittal slice of reconstructions. In Fig.

8.7 (left) we display a Gaussian smoothed EM reconstruction after a data acquisition

of 20 minutes as a ground truth for very high count rates. To simulate low count rates,

we take the measurements after the first 5 seconds only. The corresponding Gaussian

smoothed EM reconstruction is illustrated in Fig. 8.7 (right).

In Fig. 8.8 we show reconstruction results obtained with the FB-EM-TV algorithm (left)

and its extension via Bregman distance regularization (right) using measurements after

5 seconds acquisition time of the data. There, we can observe that the major structures

of the object are well reconstructed by both approaches also for low count rates. How-

ever, as expected, the structures in the Bregman-FB-EM-TV result can be identified

better than in the standard FB-EM-TV reconstruction. In particular, this aspect can
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be observed well in Fig. 8.9, where we present scaled versions of both reconstructions in

order to allow a quantitative comparison. In Fig. 8.9, the reconstructions from in Fig.

8.8 are scaled to the maximum intensity of the EM result in Fig. 8.7 (left) obtained

with measurements after 20 minutes data acquisition. There, we can observe that the

result with the Bregman-FB-EM-TV algorithm has more realistic quantitative values

than the reconstruction with the standard FB-EM-TV algorithm.

(a) Transversal view: 20 minutes (left) and 5 seconds (right) data acquisition time

(b) Coronal view: 20 minutes (left) and 5 seconds (right) data acquisition time

(c) Sagittal view: 20 minutes (left) and 5 seconds (right) data acquisition time

Fig. 8.7. Cardiac 18F-FDG 3D PET measurements: tracer intensity results ob-

tained with the EM algorithm (4.15) for different count rates. Left: EM recon-

struction, 20 iterations, with Gaussian smoothing any 10th step after 20 minutes

data acquisition. Right: As left but after 5 seconds data acquisition. Additionally,

the reconstruction is scaled to the maximum intensity of the result on the left-hand

side due to the strong presence of noise outside of region of interest.
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(a) Transversal view: FB-EM-TV reconstruction (left) and Bregman-FB-EM-TV result (right)

(b) Coronal view: FB-EM-TV reconstruction (left) and Bregman-FB-EM-TV result (right)

(c) Sagittal view: FB-EM-TV reconstruction (left) and Bregman-FB-EM-TV result (right)

Fig. 8.8. Cardiac 18F-FDG 3D PET measurements: tracer intensity results ob-

tained with the (Bregman-)FB-EM-TV algorithm for measurements after 5 seconds

data acquisition. Left: Reconstruction with the FB-EM-TV algorithm (4.24), 20

iterations. Right: Reconstruction with the Bregman-FB-EM-TV algorithm pro-

posed in Section 4.7.3 at 6th refinement step.

8.2 Poisson Noise : TV vs. NL-TV Regularization

In this section we compare the performance of TV and NL-TV regularization in restora-

tion problems with Poisson noise. In the case of NL-TV regularization, we use the

projected gradient descent algorithm (with isotropic NL-TV formulation) proposed in

Section 7.4.1 in order to solve the weighted NL-ROF problem (7.37), which occurs in the

regularization half steps of the FB-EM-REG algorithm. The algorithm is implemented

in C with a MEX-interface to MATLAB and is parallelized with OpenMP. In the current
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(a) Transversal view: FB-EM-TV reconstruction (left) and Bregman-FB-EM-TV result (right)

(b) Coronal view: FB-EM-TV reconstruction (left) and Bregman-FB-EM-TV result (right)

(c) Sagittal view: FB-EM-TV reconstruction (left) and Bregman-FB-EM-TV result (right)

Fig. 8.9. Cardiac 18F-FDG 3D PET measurements: quantitative comparison be-

tween Bregman- and FB-EM-TV reconstructions for measurements after 5 seconds

data acquisition. Left and right: Results from Fig. 8.8 are scaled to the maximum

intensity of ground truth in Fig. 8.7 (left).

version of the algorithm, we use the NL-means weights (7.4), however with Gσ ≡ 1 , in

order to compute the weighted graph wξ . Moreover, in every regularization half step of

the FB-EM-REG algorithm we recompute the weighted graph using the current “noisy”

image as reference image ξ . The current version of the algorithm performs the fully

nonlocal approach without using a search window around a pixel. Hence, in order to

improve computational time of the dual iteration of the projected gradient descent algo-

rithm and to reduce the complexity of the weighted graph, we only take a fixed number

M of best neighbors with highest weight values for any pixel in an image. Using this

approach, the symmetry of the weighted graph will be destroyed such that we have a
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directed structure of the graph. Finally, in order to implement the algorithm efficiently,

we use priority queues and heap structures for the choice of the M best neighbors of

every pixel. The corresponding functions to sort these structures are partially taken

form [132] and [145].

At the beginning we represent in Fig. 8.10 a comparison between TV and NL-TV

regularization in the case of the standard additive Gaussian noise. As expected, the

denoised image by the NL-ROF model in Fig. 8.10d is significantly better than the

result obtained by the standard ROF model in Fig. 8.10c. In particular, texture and

recurring structures are well preserved by the nonlocal approach.

In Fig. 8.11 we show the comparison between TV and NL-TV regularization in the

case of Poisson noise in the image. For the denoising process, we use the exact Poisson

denoising strategy proposed in Section 4.5.1. Note that for the computation of the

nonlocal weighted graph, we use the NL-means weights (7.4) which are more suitable

for additive Gaussian noise in an image from the statistical point of view. Nevertheless,

using these weights the Poisson denoised image by the NL-TV regularization functional

in Fig. 8.11d has better preserved texture and recurring structures compared with TV

regularized result in Fig. 8.11c.

Finally, motivated by the result in Fig. 8.11 that the standard NL-means weights are

also suitable for Poisson noise, we illustrate in Fig. 8.12 reconstruction results with the

FB-EM-TV and FB-EM-NL-TV algorithm for synthetic PET data simulated on a part

of ’Barbara’ image. The measurements in Fig. 8.12c are obtained by using the forward

Radon operator as in Fig. 8.1. As expected, the reconstruction result with the standard

EM algorithm (4.15) in Fig. 8.12d suffers from unsatisfactory quality, despite a low level

of noise in the data. In Fig. 8.12e and Fig. 8.12f reconstruction results with the FB-

EM-REG algorithm are presented using TV and NL-TV regularization, respectively. We

can see that the FB-EM-NL-TV algorithm delivers visually better result than the local

variant, in particular the major structures in the image are preserved better. However,

also the nonlocal approach cannot reconstruct texture and fine details present in the

original object in Fig. 8.12a. The reason is that the forward Radon operator already

destroys these high-frequency informations.

8.3 Medical Ultrasound (US) Imaging

Ultrasound (US) imaging is one of the most important techniques in the field of medical

diagnostic, which enables a real-time examination of patients in almost all medical fields.
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(a) Original image ū (b) Additive Gaussian noisy image f

(c) ROF result uTV (d) NL-ROF result uNL−TV

Fig. 8.10. Comparison between TV and NL-TV regularization in the case of

additive Gaussian noise. (a) Original image ū (a part of the ’Barbara’ image) in

the intervall [0, 1] . (b) ū is degraded by additive Gaussian noise with variance

σ2 = 0.006 . (c) Denoising result uTV with ROF model (6.6). (d) Denoising result

uNL−TV with NL-ROF model (7.37) (h ≡ 1) using patch size 9× 9 and M = 10 .

The regularization parameters in (c) and (d) are chosen so that ‖f − uTV ‖L2(Ω) ≈
‖f − uNL−TV ‖L2(Ω)

(
> ‖f − ū‖L2(Ω)

)
.

In particular, since US imaging is a low-risk and painless application, it can be used in

sensible areas, such as in prenatal care or examination of kidneys and heart. The data

acquisition in US imaging is based on the propagation of acoustic waves (ultrasound
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(a) Original image ū (b) Poisson noisy image f

(c) FB-EM-TV result uTV (d) FB-EM-NL-TV result uNL−TV

Fig. 8.11. Comparison between TV and NL-TV regularization in the case of

Poisson noise. (a) Original image ū (a part of the ’Barbara’ image) in the intervall

[0, 1] . (b) ū is degraded by Poisson noise in the form that ū is first scaled up by

a factor 100 , subsequently degraded by Poisson noise and finally scaled back with

the same factor. (c) Denoising result uTV with TV regularization functional. (d)

Denoising result uNL−TV with NL-TV regularization functional using patch size

9 × 9 and M = 10 . In both results, we use the Poisson denoising strategy (4.37)

with ωk = 1 for all k ≥ 0 and 5 iteration steps. The regularization parameters

in (c) and (d) are chosen so that DKL(f, uTV ) ≈ DKL(f, uNL−TV ) (> DKL(f, ū) ) .
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(a) Original image ū (b) Exact Radon data f̄ (c) Poisson noisy data f

(d) EM result uEM (e) FB-EM-TV result uTV (f) FB-EM-NL-TV result
uNL−TV

Fig. 8.12. Simulated 2D PET data for a part of ’Barbara’ image: results of

different reconstruction methods. (a) Original image ū . (b) Exact Radon data

f̄ = K̄ū with Radon forward operator K̄ from Fig. 8.1. (c) f̄ is slightly de-

graded by Poisson noise. (d) Reconstruction result obtained with the EM algorithm

(4.15). (e) Reconstruction result obtained with the FB-EM-TV algorithm (4.24).

(f) Reconstruction result obtained with the FB-EM-NL-TV algorithm (4.24) us-

ing patch size 9 × 9 and M = 10 . In (d) - (f), we always perform 100 it-

eration steps. The regularization parameters in (e) and (f) are chosen so that

DKL(f, K̄uTV ) ≈ DKL(f, K̄uNL−TV )
(
> DKL(f, f̄)

)
.

waves) in the body, which will be reflected on the boundary layers between two different

mediums. The echos, which arise during this process, will be registered and the echo

intensity will be measured, which will be interpreted in order to generate an image of

reflections. However, the scattering of the ultrasound beam from tissue inhomogeneities

leads to so-called interference effects, which will be visible in an image as an acoustic

noise called speckle and causes the main degradation of the image quality.
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In the following sections, we illustrate the performance of the US-FB-REC-REG algo-

rithm for image denoising problems, which are more relevant issues in medical ultra-

sound imaging, using synthetic and real data. We use the denoising strategy proposed

in Section 5.3, and consider total variation regularization and the augmented Lagrangian

method described in Section 6.3.4 in order to solve the weighted ROF problems in (5.15).

8.3.1 2D Synthetic Results

In this section we illustrate the performance of the US speckle noise denoising strategy

proposed in Section 5.3 for a synthetic 2D image presented in Fig. 8.13a, where the

corresponding US speckle noisy image is given in Fig. 8.13b. For this purpose, we

compare in Fig. 8.13 the denoising results obtained with the standard ROF model

(6.6) and the US speckle noise adapted strategy (5.15). There, we can see that both

approaches deliver relative similar results, excepting the edge distortion of the inner

circle in the case of ROF result in Fig. 8.13c. This aspect is restored significantly better

in the result obtained with the US denoising strategy in Fig. 8.13d. Finally, we notice

that in contrast to the Poisson framework, where the damping strategy (4.26) is only

needed in the case of very high regularization parameter, here the damping approach is

always required.

8.3.2 2D Real Data Results

In Fig. 8.14 we show denoising results for real 2D ultrasound images. The data were

provided by J. Stypmann (UKM, Münster). In Fig. 8.14a and Fig. 8.14b two cardiac

data sets are illustrated, in Fig. 8.14c a liver data set. There, we can observe that the

denoising results on the right-hand side of Fig. 8.14 seem to be less suited for diagnostic

tasks, however are promising for a subsequently automatic segmentation of different

anatomical structures in an US image.
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(a) Original image ū (b) US speckle noisy image f

(c) ROF result uROF (d) US denoising scheme result uUS

Fig. 8.13. Synthetic 2D US data: comparison between standard ROF model and

US speckle noise adapted model. (a) Original synthetic image u . (b) ū degraded

by US speckle noise of the form f = ū +
√
ū η , where η is a Gaussian distributed

random variable with expected value 0 and variance σ2 = 0.05 . (c) Denoising

result uROF obtained with the standard ROF model (6.6). (d) Denoising result

uUS obtained with the US denoising strategy (5.15) using 20 iteration steps with

ωk = 0.1 for all k ≥ 0 . Regularization parameters in (c) and (d) are chosen so

that DUS(f, uROF ) ≈ DUS(f, uUS) (> DUS(f, ū) ) , where the functional DUS is

defined in (5.18).
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(a) US data of left and right ventricle with atria

(b) US data of left and right ventricle with atria

(c) US data of liver with hepatic veins

Fig. 8.14. Real 2D US data: denoising results of different data sets. (a) - (b) US

data sets of left and right ventricle with atria for two different frequency settings

of the ultrasound device. (c) US data set of liver with hepatic veins. Left: Noisy

measurements. Right: Denoising results obtained with the denoising strategy

(5.15) using 10 iteration steps and ωk = 0.1 for all k ≥ 0 .
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