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Abstract

Corpus callosum (CC) is an important structure in hu-
man brain anatomy. In this work, we propose a fully auto-
mated and robust approach to extract corpus callosum from
T1-weighted structural MR images. Our method is com-
posed of two key steps. In the first step, we find an ini-
tial guess for the curve representation of CC by using the
zero level set of the first nontrivial Laplace-Beltrami (LB)
eigenfunction on the white matter surface. In the second
step, the initial curve is deformed toward the final solution
with a geodesic curvature flow on the white matter surface.
For numerical solution of the geodesic curvature flow on
surfaces, we represent the contour implicitly on a triangu-
lar mesh and develop efficient numerical schemes based on
finite element method. Because our method depends only
on the intrinsic geometry of the white matter surface, it is
robust to orientation differences of the brain across popu-
lation. In our experiments, we validate the proposed algo-
rithm on 32 brains from a clinical study of multiple sclerosis
disease and demonstrate that the accuracy of our results.

1. Introduction

The corpus callosum (CC) is a wide, flat bundle con-
necting the left and right cerebral hemispheres, and plays
an important role in communication between the two hemi-
spheres. Various neuroimaging studies indicate that the
size, thickness and shape of CC are related to brain dysfunc-
tion [1, 2], gender [3], as well as intelligence [4, 5]. Man-
ual delineation is typically used in clinical and neuroscience
research practice. With the increasing availability of large
scale data set from multi-site studies for diseases such as

Alzheimer’s disease, multiple sclerosis, and autism, there is
an urgent need for fully automated methods for brain struc-
ture segmentation from magnetic resonance (MR) images.
In this paper, we propose a novel method for the extrac-
tion of the CC using Laplace-Beltrami eigenfunctions and
geodesic curvature flows on surfaces. Our method is in-
trinsic and thus robust to size and orientation variations of
brains.

Manually delineating the boundary of CC in the mid-
sagittal slice of an MR image is the most common ap-
proach in practice [3], but it is time consuming, highly de-
pendent on researchers’ experience, and difficult to repro-
duce. Based on the midsagittal slice of MR images, vari-
ous methods for general medical image segmentation [6, 7]
have been applied to CC extraction [8, 9, 10]. However,
these methods typically require prior knowledge from train-
ing data or good initialization from user interactions. In ad-
dition, both the manual and semi-automated methods work
on the midsagittal slice, which makes them depend on the
preprocessing steps used to extract this specific slice.

In this work, we propose a novel and fully automated
CC extraction method based on the intrinsic geometry of
3D white matter surfaces. Using the first nontrivial Laplace-
Beltrami (LB) eigenfunction, we explicitly capture the sym-
metry of the white matter surface and obtain an initial curve
almost close to the final solution. To further optimize the
result, we develop an implicit formulation of geodesic cur-
vature flows on surfaces and use it to minimize the length of
the initial curve and compute the final solution. For numer-
ical computation, we work directly on triangulated surfaces
by finite element method to realize implicit geodesic cur-
vature flows. In experiments, we demonstrate the geodesic
curvature flow in our method and apply it to brains from a
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clinical study of multiple sclerosis. Comparisons with tis-
sue maps show that our method can automatically generate
accurate curve representations of the CC.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review mathematical background of LB
eigenfunctions and use the first LB nodal curves to con-
struct an initial curve representation of CC. After that, an
implicit formulation of the geodesic curvature flow on sur-
face is introduced to deform the initial guess to the final
curve representation of CC in Section 3. Experimental re-
sults are presented in Section 4 to demonstrate the perfor-
mance of our method. Finally, conclusions and future work
are discussed in Section 5.

2. Laplace-Beltrami Nodal Curves

Let (M, g) denote a closed Riemannian surface. For any
smooth function ψ ∈ C∞(M), the Laplace-Beltrami (LB)
operator is defined as:

4Mψ = divM(∇Mψ) =
1√
G

2∑
i=1

∂

∂xi
(
√
G

2∑
j=1

gij
∂ψ

∂xj
)

(1)
where ∇M and divM are the surface gradient operator and
divergent operator, respectively, (gij) is the inverse matrix
of g = (gij), and G = det(gij).

The LB operator is self-adjoint and elliptic, so its spec-
trum is discrete and can be described as follows [11]:

4Mψn = −λnψn, n = 0, 1, 2, · · · . (2)

The eigenvalues of 4M can be ordered as 0 = λ0 <
λ1 6 λ2 6 · · · and the corresponding eigenfunctions are
φ0, ψ1, ψ2, · · · . Here, λ0 = 0 and the corresponding eigen-
function ψ0 is a constant function on M. Among the rest
eigenfunctions, we are particularly interested in the first
nontrivial eigenfunction ψ1, which satisfies the following
property:

ψ1 = arg min
ψ⊥ψ0,||ψ||=1

∫
M
|∇Mψ|2dM,

λ1 =

∫
M
|∇Mψ1|2dM. (3)

Numerically, we use the finite element method (FEM) to
compute the eigen-system of the LB operator [12, 13]. For
any given surfaceM in R3, we representM as a triangu-
lar mesh {V = {vi}Ni=1, T = {Tl}Ll=1}, where vi ∈ R3 is
the i-th vertex and Tl is the l-th triangle. One can choose
linear elements {ei}Ni=1, which satisfies ei(vj) = δi,j as
the notation of the Kronecker delta symbol, and write E =
SpanR{ei}Ni=1. Then the discrete version of the weak for-
mula of the continuous variational problem (2) is to find a

ψ ∈ E such that∑
l

∫
Tl

∇Mψ∇Mη = λ
∑
l

∫
Tl

ψη, ∀η ∈ E. (4)

If we write
ψ =

∑N
i xiei

A = (aij)N×N , aij =
∑
l

∫
Tl
∇Mei∇Mej

B = (bij)N×N , bij =
∑
l

∫
Tl
eiej ,

(5)

where the stiffness matrix A is symmetric and the mass ma-
trix B is symmetric and positive definite, the discrete varia-
tional problem is equivalent to the generalized matrix eigen-
problem:{

Ax = λBx,where x = (x1, · · · , xN )T

ψ =
∑N
i xiei.

(6)

Note that both A and B are N ×N sparse matrices. There
are a variety of numerical packages to solve the above prob-
lem. For instance, this can be solved with existing nu-
merical packages in MATLAB. In Figure 1 (a), we show a
computation result for the first nontrivial eigenfunction on
a white matter surface.

Due to the intrinsic nature of the LB operator and its
eigenfunctions, ψ1 has the following remarkable proper-
ties [14, 11]:

1. ψ1 is intrinsic and isometric invariant. Thus properties
derived from ψ1 are robust to rigid translation and pose
variations.

2. Let Γ0 = {p ∈ M | ψ1(p) = 0} be the zero-th level
curve of ψ1, which is so called the first LB nodal
curve (See Fig.1). Cheng [14] proved that Γ0 forms
continuous curves on M. In addition, Γ divides M
into two connected components.

The above properties ensure that the first LB nodal curves
define a set of well-behaved curves on the given surface,
and they are robust to surface pose variations. Moreover,
Ulenbeck proves that ψ1 is a Morse function for general
surfaces [15]. Thus, ψ1 can be used to detect surface global
structures such as symmetry. In practice, Shi et al. [16, 17]
proposed to utilize ψ1 to model the global shape of elon-
gated structures. In addition, due to the energy formula of
ψ1 in (3), we can observe that ψ1 only depends on how∇M
distribute on surfaces, which is further related to surface
local geometry. For the CC extraction problem, the target
surface is the white matter surface, which has a symmetric
structure between the left and right hemispheres. This sym-
metry will guide the position of the zeroth level curve of
ψ1 to appear in the middle of the two hemispheres on the
white matter surface. Therefore, the zeroth level curve of
the first nontrivial eigenfunction ψ1 provides a very good
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Figure 1. (a) The surface is color coded by the first nontrivial LB eigenfunction ψ1 and the red contour marks the zero level set of ψ1. (b)
A zoom-in of (a) around the middle part of the white matter surface. (c) The zeroth level curve Γ0 of ψ1.

initial guess of the curve representation of CC as illustrated
in Fig.1 (b) and (c).

However, there are limitations in this initial guess of the
CC. In Fig.1 (b), it is clear to observe that the initial curve is
not a satisfactory representation of the CC because it does
not exactly sit on the middle of the left and right cerebral
hemispheres. This is because the left and right hemispheres
are not completely symmetric. Intuitively speaking, this ini-
tial curve is not “straight”on the middle part of white matter
surface. Mathematically, we require that the curve repre-
sentation Γ of CC should be a geodesic curve between the
left and right cerebral hemispheres so that it can correctly
separate the two cerebral hemispheres. This condition is
not always satisfied for the initial guess constructed from
the first LB nodal curve, since the position of the LB nodal
curve depends on the degree of symmetry between the left
and right cerebral hemispheres. To tackle this problem, we
propose to utilize geodesic curvature evolution to optimize
the initial curve in the following section.

3. Geodesic Curve Evolutions on Surfaces
In this section, we develop a variational model for curve

evolution on surfaces. By minimizing a curve length energy
on surfaces, we deform the initial curve obtained in Section.
2 and compute a geodesic solution for CC segmentation.

3.1. Geodesic curvature flows

Given a surfaceM⊂ R3 and a unit speed surface curve
Γ : [0, L] → M, we consider the following energy Ec re-
lated to geodesic curvature flow to obtain geodesics on the
surfaceM:

Ec(Γ) =

∫
Γ

ds. (7)

By minimizing this energy, we can deform the initial
curve Γ0 obtained in section 2 on M in the gradient de-

Figure 2. The red contour represents a curve Γ on surfaceM. ~S is
the intrinsic normal, ~T is the tangent vector and ~N is the normal
vector ofM.

scent direction. Namely, the desired curve deformation can
be described as follows:{

dΓ
dt = κg ~S

Γ(0) = Γ0 = ψ−1
1 (0)

(8)

Here, ~S is the intrinsic normal of Γ in M and κg =

〈Γ′′, ~S〉 is the geodesic curvature of Γ, which measures how
Γ is curved on the surfaceM. It is easy to observe that the
curve in steady state of the flow in (8) satisfies κg = 0 and
is a geodesic curve onM. This geodesic curvature flow on
a 3D surface is a generalization of geodesic active contours
in 2D Euclidean planes [18, 19]. The behavior of geodesic
curvature flows on surfaces, however, are much more com-
plicated than geodesic active contours on Euclidean planes
because the surface geometry will also affect the curve evo-
lution [20, 21, 22]. More recently, a level set formula-
tion of geodesic curvature flow on surfaces was discussed
in [23, 24, 25].

Similar to implicit formulations for curve evolution in
Euclidean spaces [26], we consider implicit representation



of the geodesic curvature flow Γ(t) on the closed surface
M by a functional flow φ :M× [0,∞)→ R. Namely, we
represent each curve as Γ(t) = φ−1(0, t). Therefore

φ(Γ(t), t) = 0

=⇒ ∇Mφ ·
dΓ

dt
+ φt = 0 (9)

Moreover, Γ’s geodesic curvature κg can be given by
divM( ∇Mφ

|∇Mφ| )|Γ [27], and the intrinsic normal direction ~S

of Γ can be given by ~S = − ∇Mφ
|∇Mφ| . Thus, by combining

equations (8) and (9), we can write down the implicit repre-
sentation of the geodesic curvature flow in (8) as follows: φt = |∇Mφ|divM

(
∇Mφ
|∇Mφ|

)
φ(0) = the signed distance function of Γ0 onM

(10)
where the signed distance function of Γ0 onM can be com-
puted with the fast marching method on triangulated surface
M [28]. From the variational point of view, the correspond-
ing implicit formulation of the energy function Ec is:

Ec(φ) =

∫
φ−1(0)

ds =

∫
M
δ(φ)|∇Mφ|dM (11)

where abuse of notation, φ :M→ R, is using for a implicit
representation of a curve on M, and δ(·) is the standard
Delta function. Then, (10) is the gradient flow of (11). Note
the above development assumes the surface M is closed
and has no boundary. In the caseM is an open surface with
boundary ∂M, the corresponding implicit representation of
the geodesic curvature flow onM can be expressed as:

φt = |∇Mφ|divM

(
∇Mφ
|∇Mφ|

)
φ(0) = the signed distance function of Γ0 onM
∂φ
∂~n = 0, on ∂M

(12)
where ~n is the outward normal of the boundary ∂M.

3.2. Numerical Implementation

To solve the implicit geodesic curvature flow on surfaces,
Cheng et al. [23] propose to utilize level set representation
of surfaceM and approximate the solution of this problem
in regular grids. For white matter surfaces with complicated
geometry, this method needs highly redundant computation
and data storage. More recently, Spira et al. [24] tackle this
problem on parametric surfaces, which needs to first solve
the challenging problem of parameterizing the white matter
surface. Wu et al. [25] propose to use the finite volume
method on triangulated surfaces to solve an approximate
version of the original problem. In this section, we develop
a novel numerical scheme to directly solve this problem on

triangulated surfaces based on the finite element method.
Our method has very simple formulation, is easy to imple-
ment, and computationally efficient because all calculations
are on sparse matrices. The numerical schemes developed
here is also general and applicable for surfaces with high
genus and complicated geometry.

First of all, we write down the implicit geodesic curva-
ture flow (10) as follows:

φt = |∇Mφ|divM

(
∇Mφ
|∇Mφ|

)
= 4Mφ+ g(φ) (13)

where g(φ) = −∇Mφ·∇M(|∇Mφ|)
|∇Mφ| .

To solve the above flow on a triangulated surfaceM, we
consider the semi-implicit Galerkin scheme. Let us denote
the standard inner product as 〈f, g〉 =

∫
M fgdM. For any

test function η ∈ C∞(M), the weak form of the gradient
flow (13) is as follows:

〈φt, η〉+ 〈∇Mφ,∇η〉 = 〈g(φ), η〉. (14)

With the same finite element notation as we discussed in
Section 2, the discretization of the above equation can be
described as follows:

〈φ
n − φn−1

∆t
, η〉+ 〈∇Mφ

n +∇Mφn−1

2
,∇η〉 = 〈g(φn−1), η〉,

Therefore, we need to iteratively solve the following equa-
tion:

Bφn +
1

2
∆tAφn = Bφn−1 − 1

2
∆tAφn−1 + ∆tBg(φn−1)

In other words, we need to solve:

φn = (B +
1

2
∆tA)−1

(
(B − 1

2
∆tA)φn−1 + ∆tBg(φn−1)

)
whereA is the stiffness matrix andB is the mass matrix de-
fined in (5). Therefore, the numerical scheme of the implicit
curve evolution onM with the initial curve Γ0 is given as
follows:

φn = (B + 1
2∆tA)−1(B − 1

2∆tA)φn−1

+∆t(B + 1
2∆tA)−1Bg(φn−1)

φ0 = signed distance function of Γ0 = ψ−1
1 (0) onM.

(15)
The above equation shows that we can solve the geodesic
curvature flow problem on triangulated meshes with a se-
ries of matrix operations. Because the stiffness matrix A
and mass matrix B are symmetric and sparse, the above
equations can be solved efficiently. At each iteration, the
corresponding curve evolution is:{

Γn = (φn)−1(0)
Γ0 = (φ0)−1(0) = ψ−1

1 (0).
(16)

In summary, the novel approach we develop for CC ex-
traction can be described as follows:



1. Compute the first nontrivial eigenfunction ψ1 of a
given white matter surface, and use the first LB nodal
curve Γ0 = ψ−1

1 (0) as the initial curve;

2. To find the optimal curve representation of CC, we de-
form the initial curve Γ0 using the implicit geodesic
curvature flow developed in this section.

In contrast to manual delineation and other segmentation
approaches, the method proposed here uses intrinsic geom-
etry to automatically compute the curve representation of
CC. Moreover, the proposed method is very robust to the
segmentation of white matter surfaces. Since the boundary
of CC and other tissues near midsagittal slice are quite clear,
the main challenge of white matter segmentation is correct
extraction of sulci and gyri regions. However, the first non-
trivial LB eigenfunction is very robust to small variations of
surface geometry, which leads to the robustness of the initial
guess to the small variations due to sulci/gyri segmentation
of white matter surfaces. In addition, the results of geodesic
curvature flow only depend on the surface geometry near
CC regions that usually can be clearly segmented. Overall,
the proposed method tackles the problem of of finding mid-
sagittal slices from MR image volumes in previous meth-
ods, and it is robust to white matter surface segmentation
and pose variations across population.

4. Experimental Results
In this section, experimental results are presented to

demonstrate the performance of our method. For all exper-
iments, we first perform tissue classification on each input
MR image and automatically extract the white matter sur-
face by applying the fast evolution method in [29] to find the
boundary of the white matter region. After that, the method
developed in this paper is applied to automatically compute
the CC. In the first experiment, we present a detailed analy-
sis of our algorithm on the example used in Section 2. After
that, we test our method on 32 images from a clinical study
of multiple sclerosis to further illustrate and validate its ro-
bustness and accuracy.

4.1. Intrinsic curve evolution process in corpus col-
lasum extraction

As a demonstration of the proposed algorithm, we
choose the white matter surface and initial curve Γ0 shown
in Fig. 1. The initial curve Γ0 is deformed by the geodesic
curvature flow for 2500 steps with the time step ∆t = 0.5.
In Fig. 3 (a) and (b), we plot the initial curve Γ0 and the final
curve in red and blue color, respectively. It is clear to see
that the blue curve is much more straight than the red curve
on the surface and serves as a better representation of the
CC. In addition, we plot the length of the curve during each
iteration of the geodesic curvature flow in Fig. 3 (c), which
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Figure 3. (a) The red contour marks the initial curve Γ0 and the
blue contour marks the optimal curve deformed by the geodesic
curvature flow; (b) The red contour marks the initial curve Γ0,
the green contours mark intermediate curves, and the blue contour
marks the optimal curve; (c) Length of intermediate curves in the
evolution process.

shows that the geodesic curvature flow minimizes the curve
length energy and iteratively deforms the initial curve Γ0

to a steady state that achieves the shortest length. To com-
pare our result with the MR image, we project the optimal
curve onto the midsagittal slice. As shown in Fig. 4, the
initial curve does not accurately segment the boundary of
the CC because of its inaccurate position on the white mat-
ter surface. With the geodesic curvature flow, it is clear to
see the improvement from the initial curve to the optimal
curve. The two zoom-in images in Fig. 4 (b) and (c) also
show the excellent accuracy achieved by our method in CC
extraction.

a b
Figure 4. The red contour marks the initial curve Γ0 and the blue
contour marks the optimal curve deformed by geodesic curvature
flow. (b) is the amplificatory images of (a).

4.2. Validation on a clinical data set

In this section, we further validate the robustness and ac-
curacy of the proposed method by testing it on 32 MR im-
ages from a clinical data set for multiple sclerosis study. In
our experiments, the CC on all images are computed suc-
cessfully with the geodesic curvature flow in about 2000
steps with the time step ∆t = 0.5. In Fig. 5, we plot 32 pairs
of length comparisons between the initial curves obtained
by the first LB nodal curves and the optimal curves obtained
by the geodesic curvature flow. In Fig. 6, we plot the seg-
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Figure 5. Length comparisons between the initial curves (IC) and
optimal curves (OC). Initial curves are marked as red circles and
the corresponding optimal curves are marked as blue stars.

mentation results on the midsagittal slice of corresponding
MR images near CC regions. As the theoretical expecta-
tion of geodesics, the optimal curves obtained by geodesic
curvature flow do optimize the initial guess and contribute
more robustness and accurate results as we illustrated in
Fig. 6. While the initial guess curves obtained from the
first nontrivial LB eigenfunctions usually give fairly good
approximations, we can see the geodesic curvature flow can
provide significant improvement even when the initial guess
is quite tilted due to asymmetry in the white matter surface.
The combination of these steps ensures the robustness and
accuracy of the overall approach.

5. Conclusion and Future Work
In this paper, we proposed a novel method to extract the

curve representation of CC from automatically generated
white matter surfaces. Our approach can be realized in two
steps. In the first step, we compute the first nontrivial LB
eigenfunction of the given white matter surface and use its
zeroth level curve as the initial guess. In the second step,
we deform the initial guess using the geodesic curvature
flow on the white matter surface to optimize the curve rep-
resentation. Our method is completely determined by the
intrinsic geometry of the white matter surface. Therefore,
it provides an automated and robust approach for the con-
struction of the curve representation of CC. In future work,
we will perform validations on large data sets and apply it
to studies of callosal morphology in pathology and normal
development.
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