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Abstract

We propose efficient Eulerian methods for approximating the finite-time Lyapunov exponent (FTLE). The
idea is to compute the related flow map using the level set method and the Liouville equation. There are
several advantages of the proposed approach. Unlike the usual Lagrangian-type computations, the resulting
method requires the velocity field defined only at discrete locations. No interpolation of the velocity field
is needed. Also, the method automatically stops a particle trajectory in the case when the ray hits the
boundary of the computational domain. The computational complexity of the algorithm is O(∆x−(d+1))
with d the dimension of the physical space. Since there are the same number of mesh points in the x-t space,
the computational complexity of the proposed Eulerian approach is optimal in the sense that each grid
point is visited for only O(1) time. We also extend the algorithm to compute the FTLE on a co-dimension
one manifold. The resulting algorithm does not require computation on any local coordinate system and is
simple to implement even for an evolving manifold.
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1. Introduction

Coherent structure is an important concept in understanding fluid motions. The goal is to segment
the domain into different regions with similar behavior according to a quantity such as the strain, kinetic
energy, or the vorticity. Since these mentioned quantities are measured locally at fixed given locations and
also instantaneously at fixed given times, their corresponding coherent structures are classified as Eulerian
coherent structure (ECS). Computationally, these coherent structures can be easily extracted from any of
these Eulerian quantities. For example, vorticity can be computed from the velocity field defined on an
underlying mesh. The coherent structure can then be identified by looking at the level lines of the resulting
vorticity field. The implementation is straight-forward and the computation can be done systematically.

Another class of coherent structure is the Lagrangian coherent structure (LCS) which tries to partition
the space-time domain into different regions according to a Lagrangian quantity advected along with passive
tracers. Among many, a simple definition of LCS uses the finite-time Lyapunov exponent (FTLE) [15,
11, 12, 42, 21]. It measures the rate of separation between adjacent particles over a finite time interval
with an infinitesimal perturbation in the initial location. For a given time, particles are first advected
in the flow for a period of time to obtain the flow map which takes the initial particle location to it’s
arrival location. Mathematically, these particles in the extended phase space satisfy the following ordinary
differential equation (ODE)

ẋ(t) = u(x(t), t) (1)
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with the initial condition x(t0) = x0 and a Lipschitz velocity field u : Rd × R → Rd. We define the flow
map Φ : Rd → Rd to be the mapping which takes the point x0 to the particle location at the final time
t = t0 + T , i.e Φ(x0; t0, T ) = x(t0 + T ) with x(t) satisfies (1). Then the FTLE is computed using the norm
of the Jacobian of this resulting flow map. Following the definition of Haller [11, 13, 14], one can see that
LCS is closely related to the ridges of the FTLE fields. In particular, we refer any interested reader to a
recent paper by Haller [14] for a careful study in the relationship between these two concepts. Even though
efficient extraction of LCS from the FTLE is already an active area (see the adaptive mesh refinement
(AMR) method for efficient extraction and visualization of the LCS in [39]), in this work we will concentrate
only on developing efficient algorithms on calculating the FTLE. Moreover, the proposed algorithm may be
applied to compute the FTLE for a wide range of time level or on a stationary or even an evolving manifold.

Recently there are vast research on applications of Lagrangian coherent structure based on the FTLE
including fluid flow data in oceans [18, 42], hurricane structure visualization [40], flight data analysis [5, 45],
gravity wave propagation [46] and some bio-inspired fluid flows [27, 10, 28], to name but a few recent
examples. However, even with tremendous applications, there has not been much discussions on methods
for efficient computations. Since LCS is long treated as a Lagrangian property of the fluid flow, majority
of numerical methods are still based on Lagrangian ray tracing technique by solving (1) using a numerical
integrator. For instance, to compute the FTLE for a given time t0 ∈ [Ts, Tf ], one first uniformly discretizes
the computational domain and then solves the above ray tracing system (1) with the initial condition
x(t0) = x0 forward or backward in time for a period of time T which leads to the forward or backward FTLE.
If the propagation time is long (T ≫ 1) or the FTLE is required for large period of time (|Tf − Ts| ≫ 1),
the computational cost will be very expensive.

To reduce the computational cost, one way is to adaptively refine the computational mesh around the
LCS so that most computational time is spent on resolving any fine feature. This reduces the computational
cost in the spatial dimensions. Various adaptive methods have been recently proposed. For example, [7] has
proposed adaptively refining the underlying Cartesian mesh locally so that the mesh size is h/2l for some
adaptive level l with h is the grid size in the coarsest level. Adaptive method based on a triangular mesh has
also been implemented in [20]. Graphics Processing Unit (GPU) has also been applied for such computations
for efficient parallel computations [8]. However, all these methods are done on each individually time level.
For the FTLE at a different time level, one has to shoot out another independent set of Lagrangian particles
to compute the flow map.

An interesting implementation has been recently proposed in [3] which decomposes the flow map into a
composition of maps of smaller time steps. This approach tries to reduce the computational cost in the time
domain marching by recycling most of these maps in computing the FTLE at later time. However, such
approach requires interpolation of these flow maps and it also needs to explicitly store all these intermediate
maps. There could be problems in both the accuracy and the memory management.

In this paper, we first propose an Eulerian approach to compute the FTLE on a fixed Cartesian mesh.
The idea is to determine the evolution using the Level Set Method [33] so that the flow map satisfies
a Liouville equation. This resulting hyperbolic partial differential equation (PDE) can be solved by any
well-established robust and high order accurate numerical methods.

There are several advantages of the proposed approach. The Lagrangian approach to FTLE requires
velocity field defined not only on a given mesh points, but also at arbitrary locations in the computational
domain. Indeed, high order reconstruction methods could be applied [19]. However, these methods could
be expensive to use in practice. Moreover, since the velocity field might only be Lipschitz continuous, high
order reconstruction might not be accurate at all. Our proposed approach on the other hand is similar to
other Eulerian-type methods which require velocity field defined only on a fixed underlying mesh.

The second part of the algorithm provides an easy way to approximate the FTLE for long time propa-
gation, i.e. |Tf − Ts| ≫ 1. The computational cost is very cheap since the method requires solving only one
single Liouville equation without constructing the flow map for later time at all. The overall computational
complexity of the proposed Eulerian approach is of O(∆x−d∆t−1) = O(∆x−(d+1)) with d is the dimension
of the physical space. This is optimal in the sense that such order is the same as the total number of grid
points in the extended phase space.

Another contribution of this paper is a simple way for computing the FTLE on a codimensional one
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manifold M ⊂ Rd. The manifold itself could be stationary so that all particles stay on the same manifold
for all time, or the hypersurface itself could evolve in time, i.e. M = M(t). One possible way to determine
the FTLE on a stationary manifold is proposed in [20] which explicitly parametrizes the surface M using
unstructured mesh and then the FTLE is defined using the local coordinate system. In this paper, we propose
a pure Eulerian way to compute the FTLE on an implicitly defined codimension one manifold. Using the
Level Set Method, we implicitly represent the hypersurface and we derive a new algorithm to compute
the FTLE without using any local coordinate system. All calculations will be done on the underlying
Cartesian mesh. Several similar approaches have been introduced to solve various PDE’s on surfaces. For
example, Level Set Method was first introduced to solve elliptic problems on a manifold in [1]. The authors
proposed a numerical projection operation to extend the diffusion operation from the interface to the whole
computational space. [2] recently introduced a Level Set Method to determine eigenvalues of some elliptic
operators on a codimensional one hypersurface. However, all these works concentrated only on solving an
elliptic PDE on a fixed manifold. The current paper studies a Level Set Method for computing the FTLE
on an evolving manifold.

The paper is organized as follow. In Section 2 we introduce the FTLE. We will also summarize typical
Lagrangian-type methods for computing these quantities. Our corresponding Eulerian formulation is ex-
plained in Section 3. We then generalize the method to compute the FTLE on a codimension one manifold
in section 5. Section 6 will show examples to demonstrate the efficiency of the proposed numerical approach.

2. Finite Time Lyapunov Exponent (FTLE)

2.1. Definition of FTLE

We consider a time dependent Lipschitz velocity field u : Ω × R → Rd where Ω ⊂ Rd is a bounded
domain in the d-dimensional space. The trajectory of any particle in the phase space can be obtained by
solving the following ordinary differential equation (ODE)

x′(t;x0, t0) = u(x(t;x0, t0), t) (2)

with the corresponding condition x(t0;x0, t0) = x0. This condition could be an initial condition if we want
to know the locations of the particle forward in time. We can also interpret it as a terminal condition if
we trace the trajectory backward in time. t0 in the above system is a reference time for the computation.
Collecting the solutions to (2) at time t = t0+T for all initial particle locations in Ω, we define the following
flow map Φ : Ω× R× R → Rd,

Φ(x; t0, T ) = x(T ;x0, t0) (3)

which takes the particle from x(t0;x0, t0) to x(t0 + T ;x0, t0) in a time period T .
To study the growth of an infinitesimal perturbation in an initial condition over a finite time period T ,

we have

δx(T ) = Φ(x+ δx(0); t0, T )− Φ(x; t0, T )

= DΦ(x; t0, T )δx(0) + higher order terms (4)

where DΦ(x; t0, T ) is the spatial gradient or the Jacobian of the flow map.
The leading order of the magnitude of this perturbation is given by

∥δx(T )∥ =
√
⟨δx(0), [DΦ(x; t0, T )]∗DΦ(x; t0, T )δx(0)⟩ , (5)

where [·]∗ denotes the adjoint or the transpose of a matrix. Denoting ∆(x; t0, T ) the Cauchy-Green defor-
mation tensor

∆(x; t0, T ) = [DΦ(x; t0, T )]
∗DΦ(x; t0, T ) , (6)

we obtain the largest strength deformation

max
δx(0)

∥δx(T )∥ =
√
λmax[∆(x; t0, T )]∥e(0)∥ = exp[σT (x, t0)|T |]∥e(0)∥ , (7)
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where e(0) aligns with the eigenvector associated with the largest eigenvalue of the deformation tensor
λmax[∆(x; t0, T )]. Using this quantity, we define the finite-time Lyapunov exponent (FTLE) using

σT (x, t0) =
1

|T |
ln
√
λmax[∆(x; t0, T )] . (8)

The absolute value of T reflects the fact that we can trace the particles both forward and backward in time.
In the case when T < 0, we are measuring the maximum stretch backward in time and this corresponding to
the maximum compression forward in time. To distinguish different measures, we call σT (x, t0) the forward
FTLE if T > 0 and the backward FTLE if T < 0. The value T in the definition of σT (x, t0) reflects the fact
that the FTLE depends also on the time period T in computing the flow map. In the limit when T → ∞,
we recover the traditional definition of Lyapunov exponent.

The FTLE is time-dependent for general flows. If the velocity field is time-dependent, one has to
recompute the flow map for different reference time t0. Since one has to keep generating the flow maps for
different tk, this is why usual numerical approach is very time consuming.

2.2. Lagrangian approaches to the FTLE

Usual numerical methods in computing the flow map Φ(x; t0, T ) relies on ray tracing by solving (2)
numerically on an initial Cartesian mesh at time t = t0. For each grid point x = xi, one solves (2) using
high order ODE solvers for time up to t = t0+T . After going through all mesh points in the computational
domain, one constructs the deformation tensor (6) by finite differencing the forward flow map Φ(xi; t0, T )
on the initial Cartesian mesh at t = t0. The forward FTLE can then be computed by the largest eigenvalue
of the d× d matrix.

One difficulty is that the velocity field might only be discretely defined on a mesh. Since this Lagrangian
approach follows ray paths by solving an ODE, typical implementation requires an extra high order inter-
polation routine applying to the discrete velocity field [19]. Despite the fact that this theoretically imposes
a stronger regularity condition on the velocity field, this extra step might be very time-consuming.

The second concern is about the numerical accuracy when using a high order adaptive time integrator
such as ode45 in MATLAB. Since the flow map at each grid locations are individually computed using the
ODE solver, it is hard to reconcile the accuracies at different mesh points. When calculating the numerical
derivatives and the resulting FTLE, error might be amplified and might seriously pollute in the final solution.
We will demonstrate this behavior in the example section.

Another issue concerns about the computational efficiency. For a given t = t0, one has to solve the ODE
system for many different initial conditions in order to compute the flow map. For computing the FTLE
at the next time step t = t1 = t0 + ∆t however, those rays obtained on the previous time step t = t0 are
all discarded. This process actually throws away many useful information on the flow map as described in
[3]. To improve the computational efficiency, [3] has proposed an interesting implementation which tries to
recycle part of those information obtained in earlier computations. The idea is to decompose the flow map
operator Φt0+T

t0 into a composition of maps

Φt0+T
t0 = ΦtN

tN−1
◦ · · · ◦ Φt2

t1 ◦ Φ
t1
t0 , (9)

where tk = t0 + kT/N for k = 0, 1, · · · , N . Numerically, since each map Φ
tk+1

tk
is still computed using

Lagrangian ray tracing, interpolation has to be done on each step to match ray trajectories at different time
level. Defining the interpolation operator by I, we have

Φt0+T
t0 = ΦtN

tN−1
◦ · · · ◦ IΦt2

t1 ◦ IΦ
t1
t0 . (10)

This approach is computational efficient since the flow map Φt1+T
t1 can be decomposed into

Φt1+T
t1 = IΦtN+1

tN ◦ · · · ◦ IΦt3
t2 ◦ Φ

t2
t1 . (11)

If the maps Φ
tk+1

tk
for k = 1, · · · , N are all stored once they are computed, we can form Φt1+T

t1 by determining

only Φ
tN+1

tN . However, the memory requirement for such implementation could be extremely large if N ≫ 1.
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(a) (b)

Figure 1: Lagrangian and Eulerian interpretations of the function Ψ. (a) Lagrangian ray tracing from a given grid location x
at t = t0. Note that y might be a non-grid point. (b) Eulerian values of Ψ at a given grid location y at t = t0 + T gives the
corresponding take-off location at t = t0. Note the take-off location might not be a mesh point.

This could be problematic in high dimensional high resolution simulations. We finally remark that if the
flow is steady, i.e. time-independent, this method can be interpreted as a simple case of the phase flow
method proposed in [4].

3. Eulerian formulation for FTLE

In this section, we will reformulate the above Lagrangian computations to an Eulerian formulation based
on the Level Set Method [33] and Liouville equations. For simplicity, we will first concentrate on calculating
the backward FTLE σ−T (x, t0 + T ) for some T > 0. The negative sign in this notation emphasizes that
the flow map can be interpreted as tracing any particle in the negative time direction. The main idea
is to introduce the Liouville equation to compute the backward flow map Φ(x; t0 + T,−T ) on a uniform
Cartesian mesh. Since the velocity field is required only on the mesh location, we do not need to interpolate
the discrete velocity field. Similar technique has been widely use in the level set community [32] and has
been successfully applied in a series of study in high frequency asymptotic solutions to the wave equation
[36, 26, 25] and to the Schödinger equation [24].

The next step of the proposed algorithm is to propagate the backward FTLE σ−T (x, t0 + T ) forward in
time from t ∈ [t0 + T, Tf ] in order to obtain approximations to σ−T (x, t) or σ−(t−t0)(x, t) for t > t0 + T .

3.1. Constructing the backward flow map and the backward FTLE

We define a vectored value function Ψ = (Ψ1,Ψ2, · · · ,Ψd) : Ω × R → Rd. At t = t0, we initialize these
functions by

Ψ(x, t0) = x = (x1, x2, · · · , xd) . (12)

These functions provide a labeling for any particle in the phase space at t = t0. In particular, any particle
initially located at (x0, t0) = (x10, x

2
0, · · · , xd0, t0) in the extended phase space can be implicitly represented

by the intersection of d codimension-1 surfaces represented by ∩d
i=1{Ψi(x, t0) = xi0} in Rd. At the first glance

this representation seems redundant. However, following the particle trajectory with x = x0 as the initial
condition in a given velocity field, any particle identity should be preserved in the Lagrangian framework
and this implies that the material derivative of these level set functions is zero, i.e.

DΨ(x, t)

Dt
= 0 . (13)

This implies the following level set equations, or the Liouville equations,

∂Ψ(x, t)

∂t
+ (u · ∇)Ψ(x, t) = 0 (14)
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with the initial condition (12). This implicit representation therefore embeds all path lines in the extended
phase space. For instance, the trajectory of a particle initially located at (x0, t0) can be found by determining
the intersection of d codimension-1 surfaces represented by ∩d

i=1{Ψi(x, t) = xi0} in the extended phase space.
Furthermore, this implicit representation provides a way to determine the forward flow map from t = t0 to
t = t0 + T . In particular, the forward flow map at a grid location x = x0 is given by

Φ(x0; t0, T ) = y (15)

for y satisfies Ψ(y, t0 + T ) = Ψ(x0, t0) ≡ x0. Note that y in general is a non-mesh location. We have
demonstrated a typical two dimensional scenario in figure 1 (a).

The solution to (14) contains much more information than what we have just interpreted above. We can
use the solution Ψ(x, t) for t ∈ R to construct the flow map for all time, i.e. Φ(x; t, T ). For example, we
assume that we have already solved the above Liouville equation to obtain the solutions at the time levels
t = t1 = t0 +∆t and t = t1 + T . Since the points (Φ(x1; t1,−∆t), t0), (x1, t1) and (Φ(x1; t1, T ), t1 + T ) in
the extended phase space are on the same ray trajectory, the function value of Ψ at these locations are the
same. This means

Ψ(x1, t1) = Ψ(Φ(x1; t1,−∆t), t0)

= Φ(x1; t1,−∆t)

= Ψ(Φ(x1; t1, T ), t1 + T ) , (16)

and so the flow map can be obtained by
Φ(x1; t1, T ) = y (17)

for y satisfies Ψ(y, t1 + T ) = Ψ(x1, t1). This interpretation is in fact an Eulerian version of the approach
proposed in [3]. However, since such Eulerian method still requires one to store the solution to (14) at all
intermediate time, we will not pursue the computations in this direction in the current work.

Instead, we will interpret this level set implicit representation in the following way. Consider a given
mesh location y in the phase space at time t = t0+T , as shown in figure 1 (b), i.e. (y, t0+T ) in the extended
phase space. Since the intersection ∩d

i=1{Ψi(x, t) = Ψi(y, t0 + T )} represents the path line in the extended
phase space passing through (y, t0 + T ), the level set functions Ψ(y, t0 + T ) represent the coordinates of
the takeoff location at t = t0 of a Lagrangian particle reaching y at t = t0 + T . Therefore, these level set
functions defined on a uniform Cartesian mesh in fact give the backward flow map from t = t0+T to t = t0,
i.e.

Φ(y; t0 + T,−T ) = Ψ(y, t0 + T ) . (18)

Moreover, solution to the level set equations (14) for t ∈ (t0, t0 + T ) provides also backward flow maps for
all intermediate times, i.e.

Φ(y; t, t− t0) = Ψ(y, t) . (19)

With the backward flow map defined on a uniform mesh at t = t0 + T , we can compute the deformation
tensor and therefore the backward FTLE σ−T (x, t0 + T ) according to (6) and (8).

To summarize the procedure, we provide the following algorithm for computing the backward FTLE
σ−T (x, t0 + T ) in the two-dimensional space d = 2.

Algorithm 1: Computing the backward FTLE σ−T (x, t0 + T ):

1. Discretize the computational domain

xi = xmin + (i− 1)∆x , ∆x =
xmax − xmin

I − 1
, i = 1, 2, · · · , I

yj = ymin + (j − 1)∆y , ∆y =
ymax − ymin

J − 1
, j = 1, 2, · · · , J

tk = t0 + k∆t , ∆t =
T

K
, k = 1, 2, · · · ,K .
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2. Initialize the level set functions

Ψ1(xi, yj , t0) = xi

Ψ2(xi, yj , t0) = yj .

3. Solve the Liouville equations for each individual level set function

∂Ψ1

∂t
+ (u · ∇)Ψ1 = 0

∂Ψ2

∂t
+ (u · ∇)Ψ2 = 0 (20)

for up to t = tK = t0 + T .

4. Compute the Cauchy-Green deformation tensor

∆(xi, yj ; tK ,−T ) = [DΨ(xi, yj , tK)]∗DΨ(xi, yj , tK) , (21)

with Ψ = (Ψ1,Ψ2)T .

5. Determine the backward FTLE at t = t0+T by computing the largest eigenvalue of the deformation tensor
at each grid point (xi, yj)

σ−T (xi, yj , tK) =
1

T
ln
√
λmax[∆(xi, yj ; tK ,−T )] . (22)

The Liouville equation in step 3 can be solved efficiently using any well-developed high order numerical
methods like WENO5-TVDRK2 [34, 16]. Indeed, there is a higher order total variation diminishing Runge-
Kutta (TVDRK) solver for time integration (TVDRK3). However such numerical scheme requires that the
velocity field defined at non-mesh point in the time-direction and therefore we do not implement it here.

Now we discuss the boundary conditions for (20). For practical implementations, we might obtain the
velocity field only within certain computational domain. In the Lagrangian implementation, one might sim-
ply stop the trajectory at the boundary. However, this approach is not trivial to perform in the Lagrangian
implementation. If one has naively implemented this constraint by imposing a zero velocity field outside the
computational domain, the resulting method might extend the velocity field discontinuously and this will
introduce serious error in the integration. Another method is to interpolate the Lagrangian trajectory in
time to obtain the location where the characteristic intersects with the computational domain.

Our Eulerian approach on the other hand can automatically impose such a boundary condition according
to the direction of the flow. In particular, we impose the following boundary conditions for t > t0,

Ψ(x, t)|x∈∂Ω = Ψ(x, t0)|x∈∂Ω = x (23)

if n · u < 0 where n is the outward normal of the boundary, and

n · ∇Ψi(x, t)|x∈∂Ω = 0 (24)

for i = 1, · · · , d if n · u > 0. The first constraint imposes the inflow condition for which all incoming
information will carry the location where the corresponding characteristics enter the computational domain.
Consider an interior grid point (xi, yj , tk) on a characteristic hitting the computational boundary at t ∈
[t0, tk) when tracing backward in time. The corresponding value of Ψ(xi, yj , tk) will contain the precise
location where the particle entered the domain.

On the boundary with n ·u > 0, information is out-going from the interior and no boundary condition is
required. For the ease of numerical implementations, we simply impose a non-reflective boundary condition
so that no information on this portion of the boundary will interfere with function values at the interior.
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When computing the Jacobian of the flow map on those mesh locations next to computational domain, we
will use one-sided differencing away from the boundary to avoid influence by such boundary condition.

Indeed, as demonstrated in [45], such boundary conditions might seriously influence the FTLE. Stopping
particle trajectories at the in-flowing boundary will turn boundaries into repelling invariant manifold, while
stopping particle trajectories at the out-going boundary will turn boundaries into attracting invariant man-
ifold. We refer interested readers to [45] for a better velocity extension which can eliminate any artificial
LCS due to the boundary condition.

3.2. Constructing the forward flow map and the forward FTLE

For the forward FTLE σT (x, t0), equation (15) indeed provides an algorithm to compute the forward
flow map Φ(x; t0, T ). However, the corresponding implementation requires a further interpolation and root-
finding process to determine a non-mesh location y representing the particle arrival location at t = T . Here,
we propose another way to determine the forward flow map by reversing the above process for the backward
flow map. We initialize the level set functions at t = t0 + T by

Ψ(x, t0 + T ) = x , (25)

and we solve the corresponding level set equations (14) backward in time. The forward FTLE at t = t0
is determined by first determining the Jacobian of the resulting flow map and then computing the largest
eigenvalue of the deformation tensor ∆(x; t0, T ). Then the forward FTLE is formed by

σT (x, t0) =
1

T
ln

√
λmax[∆(x; t0, T )] . (26)

Note that in the original Lagrangian formulation, the attracting LCS or the unstable manifold is obtained
by backward time tracing, while the repelling LCS or the stable manifold is computed by forward time
integration. In this current Eulerian formulation, on the other hand, forward time integration of the Liouville
equations gives the attracting LCS and backward time marching provides the repelling LCS.

3.3. Evolution of the FTLE in time

In the previous sections, we have discussed our Eulerian approach in computing both the backward flow
map Φ−T (x; t0+T ) for some time interval T > 0 and also the backward FTLE σ−T (x, t0+T ). Generalization
to the forward flow map and the corresponding forward FTLE have also been described. In this section,
we will explain the way how we approximate σ−T (x, t) or σ−(t−t0)(x, t) for an arbitrary t > t0 + T using
σ−T (x, t0 + T ).

Our approach is motivated by the following observation proven in [42] which is essentially a finite time
approximation to the Oseledec’s multiplicative ergodic theorem under some more restrictive assumptions.

Theorem 3.1 (Theorem 3.1 in [42]). The traditional (forward) Lyapunov exponent is constant along
trajectories. Also, the (forward) finite-time Lyapunov exponent becomes constant along trajectories for large
integration times T .

In the proof, the authors have estimated the difference between σT (x, t0) and σT (Φs(x; t0), t0 + s) for
some arbitrary but fixed s,

|σT (x, t0)− σT (Φs(x; t0), t0 + s)| ≤ 2|s|
|T |

max
t∗

σt∗−t0(x, t0) = O(|T |−1) . (27)

This implies that along any particle trajectory, the material derivative of the (forward) FTLE is bounded
by ∣∣∣∣DσT (x, t)

Dt

∣∣∣∣ = lim
s→0

|σT (Φs(x; t), t+ s)− σT (x, t)|
|s|

≤ 2

|T |
max
t∗

σt∗−t0(x, t0) = O(|T |−1) (28)
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If T is large enough, we approximate the right hand side of the inequality by zero and so

DσT (x, t)

Dt
= 0 . (29)

This means that the (forward) FTLE constructed by a fixed map of size T is almost constant along any
Lagrangian particle trajectory, and the traditional Lyapunov exponent (for T → ∞) is constant along any
ray trajectory.

In the previous section, we have introduced an Eulerian approach to compute the backward FTLE
σ−T (x, t0 + T ) on the time level t = t0 + T . The above theorem implies also that this backward FTLE
is almost constant along a Lagrangian particle trajectory. Such condition provides a way to approximate
the FTLE. In particular, if T is large enough, we can approximate the solution σ−T (x, t) for t > t0 + T by
simply solving the following Liouville equation

∂σ−T (x, t)

∂t
+ u · ∇σ−T (x, t) = 0 , (30)

with the initial condition at t = t0 + T obtained by the algorithm derived in the previous section. Indeed,
this Liouville equation has already been derived in [42] (equation (33)). However, such relation was derived
solely to explain the Lagrangian property of the LCS and was used only to estimate the flux across it. To
the best of our knowledge, no numerical approach has been developed to compute the FTLE based on this
Eulerian formulation.

Using (27), we can estimate the error we made in approximating σ−T (x, t) by solving the Liouville
equation (30). Let S be the time difference from t = T . Since∣∣σ−T (ΦS(x; t0 + T ), t0 + T + S)− σ−T (x, t0 + T )

∣∣ ≤ 2S

T
max
t∗

σt∗(x, T ) = O

(
S

T

)
, (31)

the error in the approximation is linear in S.
There is a second interpretation of the solution from the Liouville equation (30). We can also treat the

solution σ(x, t) as an approximation to the FTLE constructed by the flow map Φ(x; t,−(t− t0)) which maps
a point (x, t) in the extended phase space to it’s takeoff location at time t = t0. This means that the solution
from (30) can be used to approximate σ−(t−t0)(x, t).

Corollary 3.2. Let
σ̃−T (x, t) = lnλmax[∆(x; t,−T )] (32)

be a scaled backward FTLE so that

σ−T (x, t) =
1

2|T |
σ̃−T (x, t) . (33)

Along any Lagrangian particle trajectory, the scaled backward FTLE σ̃−(t−t0)(y, t) satisfies∣∣∣σ̃−(t−t0)(y, t)− σ̃−T (x, t0 + T )
∣∣∣ = O(t− t0 − T ) (34)

for y = Φ(x; t0 + T, t− t0 − T ) and for t > t0 + T .

This implies that σ̃−T (x, t0+T ) is a linear approximation to the scaled FTLE σ̃−T−S(y, t0+T +S) with
the error depends linearly on the time difference S. To approximate the backward FTLE for t > t0 + T , we
only need to divide it by a factor of 1/2(T + S), i.e. we can approximate

σ−T−S(y, t0 + T + S) =
1

2(T + S)
σ̃−T (x, t0 + T ) +O

(
S

T + S

)
. (35)

We note that when T is large enough, both of these approaches provide good approximations to the
FTLE. However, the error in the second approximation (34) is significantly smaller than that in the first
approximation given in (31).
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These two properties lead to the following algorithm for propagating the backward FTLE from t = t0+T
forward in time.

Algorithm 2: Computing both the backward FTLE σ−T (x, t0 + T + S) and σ−T−S(x, t0 + T + S) using

σ−T (x, t0 + T ) according to algorithm 1:

1. Discretize the computational domain

xi = xmin + (i− 1)∆x , ∆x =
xmax − xmin

I − 1
, i = 1, 2, · · · , I

yj = ymin + (j − 1)∆y , ∆y =
ymax − ymin

J − 1
, j = 1, 2, · · · , J

sk = t0 + T + k∆s , ∆s =
Tf − t0 − T

K ′ , k = 1, 2, · · · ,K ′ .

2. Follow Algorithm 1 and obtain σ̃(xi, yj , s0) according to (32).

3. Solve the Liouville equations for the scaled backward FTLE

∂σ̃

∂t
+ (u · ∇)σ̃ = 0 (36)

using the initial condition σ̃(xi, jj , s0).

4. Scale the solution appropriately to approximate the backward FTLE using one of the following

σ−T (xi, yj , sk) =
1

2T
σ̃(xi, yj , sk)

σt0−sk(xi, yj , sk) =
1

2(t0 − sk)
σ̃(xi, yj , sk) . (37)

4. Advantages and limitations of the Eulerian formulation

In this section, we will discuss several properties of the proposed Eulerian formulation for computing the
FTLE. Limitations of the proposed approach will also be described.

First we will compare the computational complexity of the proposed algorithms with a typical Lagrangian-
type computation. Let d be the dimension of the domain, N = O(∆x−1) be the number of mesh points
in each spacial dimension, M = T/∆t = O(∆t−1) be the number of time steps to march for t = T and
K = (Tf − t0)/∆t = O(∆t−1) be the total number of time steps to march until t = Tf . To compute the flow
map Φ(x; tk, tk+T ) for each tk for k = 1, · · · ,K, usual Lagrangian-type method requires shooting rays from
Nd locations and solving each of these ODE system for a period of time T . The computational complexity
for this step is O(NdM). Computing the FTLE from the flow map requires O(Nd) operations. To compute
the FTLE for all time steps will therefore need O(NdMK) = O(∆x−d∆t−2) operations.

Now for our Eulerian formulation, we first solve d level set equations in the d-dimensional space for a
period of time T . This takes O(dNdM) operations. Once we have obtained the solutions to these level
set functions at t = t0 + T , we can construct the FTLE at t = t0 + T (backward FTLE) and this step
requires O(Nd) computations. The next step in our algorithm is to propagate the FTLE according to
the Liouville equation for a time period t = Tf − t0 − T . The computational complexity for this step is
O(Nd(K − M)). Since there is a Courant-Friedrichs-Lewy (CFL) condition associated to the numerical
solution to a hyperbolic equation, we have ∆t = O(∆x). Therefore, the complexity of the overall algorithm
is O(dNdM +Nd+Nd(K−M)) = O(Nd[(d−1)M +K+1]) = O(∆x−(d+1)). Note that there are O(NdK)
mesh points in the extended phase space Ω× [t0, Tf ], our Eulerian approach is actually optimal in the sense
that each point in the computational domain is visited for only O(1) time.
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One can compare the computational complexities of these approaches. The Eulerian algorithm is more
efficient if the time-marching size in the Lagrangian method is chosen so that ∆t−2 > O(∆x−1), i.e. ∆t <
O(

√
∆x). Indeed, one might pick a large ∆t > O(

√
∆x) in the Lagrangian approach since the timestep in

an ODE solver is not restricted by the mesh size but the required accuracy in the solution. However, this
means that ∆t is controlled by the stiffness of the ODE system, which is unfortunately flow-dependent.

Indeed, the current Eulerian approach by solving PDE’s requires that ∆t is restricted by a CFL condition
of O(∆x). This seems to be problematic in practice. However, if the velocity field is obtained by a CFD
solver, the same stability condition has already been imposed on the time marching step. Therefore, solving
these extra linear PDE’s will not significantly increase the overall computational time. Of course, if one
has already obtained and has stored the velocity field, the Lagrangian approach might compute the FTLE
solution in a shorter time. Since the ODE timestep is restricted solely by the stiffness of the ODE system
based on the velocity field, one might be able to apply a much larger ODE timestep ∆t≫ O(

√
∆x) > O(∆x).

If the velocity field is not determined by a CFD solver but is obtained from real life measurements,
Eulerian approaches proposed in this work might also require interpolation procedure as in the typical
Lagrangian approach. However, unlike the Lagrangian approach where interpolation is done along the
characteristics, these Eulerian approaches require interpolating the velocity field only on a uniform Cartesian
mesh.

Next we consider the memory issues. Assuming that we have already obtained the velocity field from
a computational fluid dynamic (CFD) code. Typical Lagrangian approaches to FTLE will require first to
load and store the velocity field at all mesh points at the beginning of the FTLE computations because one
would trace various characteristics in Rd by interpolating the stored velocity field. The memory requirement
therefore depends on the resolution of the flow field and is given by O(dP d+1) with d is the dimension of
the physical space, and P is the number of mesh points in the time and also each spatial dimension. In the
current proposed Eulerian approach on the other hand, one can directly incorporate the Liouville equation
(14) into the CFL code such that the flow map is obtained at the same time when one is generating the
velocity field. We do not have to obtain and store the whole flow field at all time levels ahead of the FTLE
computations but only at the current and the next time levels. Therefore, we need only an extra O(dNd)
memory with N is the number of mesh point in each spatial dimension.

Concerning the storage of the computed FTLE, typical Lagrangian approach can output the solution
right away which implies a memory requirement of only O(d). The Eulerian approach, on the other hand,
requires an allocation of O(dNd) variables for storing the flow map Ψ(x).

Numerical dissipation in the PDE formulation might cause inaccuracy. Since the flow map and the
FTLE have shape features near LCS, the numerical dissipation in the PDE solver might smooth out such
structure. In general such Eulerian approach will require high order numerical schemes to accurately capture
the solution or fine mesh near such feature. We will demonstrate this effect in Section 6.1. Adaptive mesh
refinement [29] based on tree data structure might help to further improve the computational efficiency.

For the approximation we made in Section 3.3, an order of O(S/T ) error is introduced in the compu-
tations. Clearly, such error is not desirable for large S since newly created LCS may be missing in the
resulting FTLE. This may give misleading results especially in aperiod flows. Therefore, it is advised that
results from algorithm 2 should be carefully interpreted when used. One possible improvement is to reapply
algorithm 1 once every period of S = O(T ) so that the error we introduce in algorithm 2 is bounded. This
will be further studied in the future.

5. FTLE on an evolving codimensional one manifold

In this section, we will discuss the computation of FTLE on a codimensional one manifold. An approach
in this direction was proposed in [20] in which the manifold was parametrized by an adaptive triangular
mesh. To determine the deformation matrix defined on the manifold, particles were seeded on the interface
and the Jacobian was formed by using a local coordinate system. This is unfortunately difficult to do in
practice, especially in high dimensions. Furthermore, if the particles does not stay on the same manifold in
time, i.e. the manifold is time-dependent, the approach proposed in [20] could be very expensive since one
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might need to reparametrize the manifold at some later time. In this paper, we consider the case where the
manifold itself moves along with the flow. The proposed approach can naturally compute the Jacobian of the
flow on an evolving manifold and it does not require a local coordinate system to compute the deformation
matrix.

We consider a codimension one manifoldM(t) in Rd evolving in time under the velocity field ũ : M×t→
Rd. Using the level set method [33], we represent the codimension one manifold implicitly by the zero level
set of a level set function ϕ(x, t) : Rd × R → R, i.e.

M(t) = {x : ϕ(x, t) = 0} . (38)

In this Eulerian framework, the evolution of the manifold satisfies the level set equation

ϕt + u · ∇ϕ = 0 (39)

where u is the velocity field extended off the manifold M at each time step by

uτ + sgn(ϕ)(n · ∇)u = 0 (40)

with the boundary condition u(M) = ũ(M), sgn(x) is the signum function and n = ∇ϕ/|∇ϕ| is the normal
of the manifold M [33, 41, 32].

To avoid explicit computing the local coordinate systems for each point on the manifold M, we propose
the following strategy which involves computation in the whole Rd space rather than in a local coordinate
system of M. A local computation is possible but will not be fully discussed here. The idea is to introduce
a normal extension of the flow map and an extra singular value to the deformation matrix. For simplicity,
we first consider computing the backward FTLE σ−T (x, t0) for x ∈ M(t0 + T ).

Following the previous approach, we obtain the flow map by solving the following Liouville equation for

∂Ψ(x, t)

∂t
+ (u · ∇)Ψ(x, t) = 0 , (41)

with the initial condition Ψ(x, t0)|ϕ−1(0) = x and u is the extended velocity field we defined above. Note that
the PDE is solved in the whole computational space and therefore it requires an initial condition defined not
only on {ϕ = 0} but also everywhere in the whole computational domain. There are various ways to extend
the initial condition on the manifold to the whole computational domain. One trivial way is to simply use
Ψ(x, t0) = x. Once we obtain the flow map at time t = t0+T , we could extract the zero level set which gives
M and also the take-off location of each particle on the interface. To determine the FTLE however, one has
to extract the flow map defined on M and then calculate any necessary component on a local coordinate
system.

In this paper, however, we propose another extension so that we have an easier way for constructing
the deformation matrix. To define Ψ away from the manifold M at t = t0, we require n · ∇Ψ = 0 with
n = ∇ϕ/|∇ϕ| is the normal of the manifold.

To illustrate the idea, we first consider the following simple two dimensional case where the manifold is
a circle of radius r0 centered at the origin. At t = 0, the deformation tensor defined on the one-dimensional
manifold should be identity. Now, using the proposed normal extension, we obtain the following initial
condition Ψ(x, y, 0) = (Ψ1(x, y, 0),Ψ2(x, y, 0))

Ψ1(x, y, 0) =
r0x√
x2 + y2

Ψ2(x, y, 0) =
r0y√
x2 + y2

. (42)

The corresponding Jacobian is

DΨ =
r0

(x2 + y2)3/2

(
y2 −xy
−xy x2

)
(43)
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and the eigenvalues of the resulting deformation matrix on the manifold ϕ = 0 are therefore λ0 = 0 and
λ1 = 1 with their corresponding eigenvectors w0 = (x, y)T and w1 = (y,−x)T . The largest eigenvalue is
λ1 which gives the correct FTLE. We note that the other eigenvalue is zero. This implies that any initial
location perturbation in the normal direction of the manifold, i.e. n = (x, y)T = w0, has no contribution
to the deformation matrix and therefore the information in the normal direction will not contribute to the
FTLE. For a general manifold, we obtain such an initial condition by solving

Ψτ + sgn(ϕ)(n · ∇)Ψ = 0 (44)

with the initial condition at τ = 0
Ψ(x, τ = 0) = x . (45)

Since we require the solution in a local neighborhood of the manifold, we do not need to solve this PDE
until we obtain the steady state solution. Numerically, we can simply solve the above hyperbolic PDE for
several iterations in the τ -direction.

Now we consider a later time t = t0+T . If we follow the approach we have introduced above and simply
solve the flow map everywhere in the computational domain, the perturbation in the normal direction of the
manifold M(t0+T ) will unfortunately contribute to the deformation matrix for general flows since (n ·∇)Φ
is in general non-zero. Therefore at each time step, we first extend the flow map off from the manifold by
solving (44) so that the map is constant in the normal direction of the manifold. Once again, this normal
extension implies a zero singular value in this normal direction of the manifold. When we compute the
deformation tensor, this flow map extension will guarantee that any perturbation in the normal direction
introduces only a zero singular value and it has no contribution to the all other singular values of the
Jacobian. In particular, without lost of generality we assume the local coordinate system {e1, · · · , ed−1} for
M at a given point x0. The Jacobian matrix of the map Ψloc at x = x0 ∈ M has the following singular
value decomposition (SVD),

DΨloc = UΣV ∗ (46)

with Σ = diag(σ1, · · · , σd−1) is a diagonal matrix, U = (u1 · · ·ud−1) and V = (v1 · · ·vd−1) are some
orthogonal matrices, (·)∗ is the vector or matrix transpose and ui,vi ∈ Rd−1 are vectors in the local
coordinates system at x0. Now, if we extend the flow map away from M in the normal direction according
to (44), i.e. adding ed = n to the local coordinate system, the Jacobian matrix of the flow map in the whole
Rd space has the following SVD decomposition

DΨ =

(
DΨloc 0
0∗ 0

)
= Ũ Σ̃Ṽ ∗ (47)

with

Ũ =

(
U 0
0∗ 1

)
, Ṽ =

(
V 0
0∗ 1

)
(48)

and Σ̃ = diag(σ1, · · · , σd−1, 0). Therefore, by extending the map from the manifold M in the normal
direction, we introduce only one zero singular value to the new Jacobian DΨ. The largest singular value
remains unchanged and it is the same as that computed on the manifold using the local coordinates system.

Now, once we have obtained this backward flow map, we compute the backward FTLE at t = t0+T . For
time t > t0 + T , we follow the same procedure as above and propagate it forward in time according to the
Liouville equation (30).

To compute the forward FTLE, we follow a similar procedure. However, since we require an implicit
representation of the manifold on the final time t = Tf given the level set function at t = t0, we will first
solve the level set equation for ϕ forward in time for t ∈ (t0, Tf ]. If we directly reverse the above procedure,
we will back propagate this level set function from t = Tf to t = t0 which is unnecessary. Instead, we will
store the level set function at various times t = t̃k̃ when we want to visualize the FTLE. We summarize the
procedure here.

Algorithm 3: Computing the forward FTLE σT (x, t0) for x ∈ M(t0) using a pure PDE approach:
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1. Discretize the computational domain

xi = xmin + (i− 1)∆x , ∆x =
xmax − xmin

I − 1
, i = 1, 2, · · · , I

yj = ymin + (j − 1)∆y , ∆y =
ymax − ymin

J − 1
, j = 1, 2, · · · , J.

2. Initialize the level set function ϕ(xi, yj , t0) at t = t0 so that M = {ϕ = 0}.
3. Solve the level set equation

∂ϕ

∂t
+ (u · ∇)ϕ = 0 (49)

for up to t = t0 + T .

4. Initialize the level set functions at t = t0 + T

Ψ1(xi, yj , Tf ) = xi

Ψ2(xi, yj , Tf ) = yj .

5. Extend Ψ1 and Ψ2 away from the manifold by

∂Ψ1

∂τ
+ sgn(ϕ)(n · ∇)Ψ1 = 0

∂Ψ2

∂τ
+ sgn(ϕ)(n · ∇)Ψ2 = 0 (50)

with n = ∇ϕ/|∇ϕ|.
6. Solve the Liouville equations for each individual level set function backward in time

∂Ψ1

∂t
+ (u · ∇)Ψ1 = 0

∂Ψ2

∂t
+ (u · ∇)Ψ2 = 0 (51)

from t = t0 + T to t = t0.

7. Extend the map off the manifold at t = t0 by

∂Ψ1

∂τ
+ sgn(ϕ)(n · ∇)Ψ1 = 0

∂Ψ2

∂τ
+ sgn(ϕ)(n · ∇)Ψ2 = 0 (52)

with n = ∇ϕ/|∇ϕ|.
8. Compute the Cauchy-Green deformation tensor at t = t0

∆(xi, yj ; t0, T ) = [DΨ(xi, yj , t0)]
∗DΨ(xi, yj , t0) , (53)

with DΦ computed using the Cartesian coordinates.

9. Determine the forward FTLE at t = t0 by computing the largest eigenvalue of the deformation tensor at
each grid point (xi, yj)

σ̃T (xi, yj , t0) = lnλmax[∆(xi, yj ; t0, T )] . (54)

In this algorithm, the computation is done on the whole Rd space rather than on the d− 1 dimensional
manifold. The overall computational complexity is indeed of order O(∆x−(d+1)) as in the algorithm we
proposed earlier in Section 3. Note however that since we care about the solution in a small neighborhood
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of the manifold M(t), we can speed up the whole computation by applying the local level set technique
as in [35]. The idea is to concentrate the computational power in a local neighborhood of the evolving
manifold M(t) by computing any solution only if |ϕ(x, t)| < ϵ∆x. By this local level set procedure, the
overall computational complexity can be reduced to O(∆x−d).

Indeed, one might also consider the following Lagrangian tracing technique on an Eulerian mesh for
computing the forward FTLE. There is a very important difference in this algorithm from the approach
in [20]. We do not parametrize the manifold explicitly. Instead of shooting Lagrangian particles from the
manifold at the initial time, we discretize the underlying mesh uniformly and then using those grid locations
near the manifold as the initial condition in the ray tracing system. We do not require a complicated
triangulation of the surface. Once we have obtained the flow map in a neighborhood of the interface, we
follow the above approach to extend the flow map from the implicit interface. Note however that the main
purpose of the current paper is to propose pure Eulerian formulations for computing the FTLE, we will not
concentrate on this Lagrangian formulation but will simply state it here for completeness.

Algorithm 4: Computing the forward FTLE σT (x, t0) for x ∈ M(t0) with the surface implicitly represented by

a level set function and the flow map computed by Lagrangian ray tracing:

1. Discretize the computational domain

xi = xmin + (i− 1)∆x , ∆x =
xmax − xmin

I − 1
, i = 1, 2, · · · , I

yj = ymin + (j − 1)∆y , ∆y =
ymax − ymin

J − 1
, j = 1, 2, · · · , J.

2. Initialize the level set function ϕ(xi, yj , t0) at t = t0 so that M = {ϕ = 0}.
3. Solve the Lagrangian tracing system

x′(t) = u

y′(t) = v (55)

for up to t = t0 + T with the initial conditions x(t0) = (x(t0), y(t0))
T = (xi, yj)

T if |ϕ(xi, yj)| < ϵ.

4. Construct the flow map Ψ(xi, yj ; t0, T ) = x(t0 + T ).

5. Extend Ψ1 and Ψ2 away from the manifold by

∂Ψ1

∂τ
+ sgn(ϕ)(n · ∇)Ψ1 = 0

∂Ψ2

∂τ
+ sgn(ϕ)(n · ∇)Ψ2 = 0 (56)

with n = ∇ϕ/|∇ϕ|.
6. Compute the Cauchy-Green deformation tensor at t = t0

∆(xi, yj ; t0, T ) = [DΨ(xi, yj , t0)]
∗DΨ(xi, yj , t0) , (57)

with DΨ computed using the Cartesian coordinates.

7. Determine the forward FTLE at t = t0 by computing the largest eigenvalue of the deformation tensor at
each grid point (xi, yj)

σ̃T (xi, yj , t0) = lnλmax[∆(xi, yj ; t0, T )] . (58)

In the special case where the manifold is time-independent, i.e. u · n = 0 and M(t) ≡ M(t = t0), we do
not need to solve the level set equation (49). The rest of the algorithm follows.
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Figure 2: (Example 6.1) (a) The backward FTLE using ∆x = ∆y = 1/128 at t = 15, T = 5 and S = 10. (b) The backward
FTLE using ∆x = ∆y = 1/512 at t = 15, T = 5 and S = 10. (c) The forward FTLE using ∆x = ∆y = 1/128 at t = 0, T = 5
and S = 10. (d) The forward FTLE using ∆x = ∆y = 1/512 at t = 0, T = 5 and S = 10.

6. Numerical Examples

In this section we will apply our Eulerian formulation to demonstrate the computational efficiency of the
method. Indeed the original definition of the FTLE is given by (8),

σT (x, t0) =
1

2|T |
lnλmax[∆(x; t0, T )] (59)

we will show only the scaled version

σ̃(x, t0) = lnλmax[∆(x; t0, T )] (60)

by ignoring the scaling factor 1/2|T |. The main reason is that our backward FTLE algorithm can in fact
compute all σ−T (x, T ) and σ−T (x, t) and/or σ−(t−t0)(x, t) for t > t0 + T . It will be confusing to normalize
the FTLE by a fixed factor of 1/|T | in both time regimes.

In those three dimensional cases, we will extract the zero level set using the MATLAB functions isosurface
and patch. To graph the FTLE on the zero level set, we will also use the functions isonormals and isocolors.

6.1. Double-Gyre flow

This example is taken from [42] to describe a periodically varying double-gyre. The flow is modeled by
the following stream-function

ψ(x, y, t) = A sin[πf(x, t)] sin(πy) , (61)

where

f(x, t) = a(t)x2 + b(t)x ,

a(t) = ϵ sin(ωt) ,

b(t) = 1− 2ϵ sin(ωt) . (62)

The velocity field can be obtained by u(x, y) = −∂ψ/∂y and v(x, y) = ∂ψ/∂x. In this example, we follow
[42] and use A = 0.1, ω = 2π/10 and ϵ = 0.1.

In figure 2 (a), we discretize the domain [0, 2] × [0, 1] using 257 grid points in the x-direction and 129
grid points in the y-direction. This gives ∆x = ∆y = 1/128. We first solve the level set equations from
t = t0 = 0 to t = T = 5 and then construct the scaled backward FTLE, σ̃(x, T ). Once we have obtained
this quantity, we switch to another Liouville equation and propagate σ̃(x, t) up to Tf = 15. Since we are
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Figure 3: (Example 6.1) (a) The backward FTLE with ∆x = ∆y = 1/512 at t = 15.0 using the Lagrangian approach (MATLAB
function ode45) with T = 15. (b) the forward FTLE with ∆x = ∆y = 1/512 at t = 0.0 using the Lagrangian approach
(MATLAB function ode45) with T = 15. (c) The backward FTLE with ∆x = ∆y = 1/512 at t = 15.0 using the Lagrangian
approach (RK4 with a fixed timestep) with T = 15. (d) The forward FTLE with ∆x = ∆y = 1/512 at t = 0.0 using the
Lagrangian approach (RK4 with a fixed timestep) with T = 15. (e) The backward FTLE with ∆x = ∆y = 1/512 at t = 15.0
using the proposed Eulerian approach with T = 15. (f) The forward FTLE with ∆x = ∆y = 1/512 at t = 0.0 using the
proposed Eulerian approach with T = 15.
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advecting the level set functions forward in time, these figures are actually showing the scaled backward
FTLE. We have also used some finer meshes for computing the level set functions. Figure 2 (b) shows the
computed FTLE at t = 15 and T = 5 using a mesh of ∆x = ∆y = 1/512. As we can see, we recover the
finer features in the FTLE field by refining the underlying computational mesh.

Next we compute the scaled forward FTLE. We solve the level set equation backward in time from
t = Tf = 15 for a time of T = 5, i.e. we obtain the solutions to (Ψ1(x, y, t),Ψ2(x, y, t)) for t ∈ [10, 15] using
the initial condition Ψ1(x, y, Tf ) = x and Ψ2(x, y, Tf ) = y. Once we get σ̃(x, Tf − T ), we back propagate it
by solving another Liouville equation until t = 0. Figures 2 (c) and (d) show the contour plot of this forward
FTLE. Figure 2 (c) shows the FTLE using an underlying Cartesian mesh of size ∆x = ∆y = 1/128. Similar
to figures 2 (a) and (b), we have refined the computation mesh to ∆x = ∆y = 1/512 in figure 2 (d). Similar
to the backward FTLE, we can recover the fine feature in σ−T (x, y, t) when we refine the computational
mesh.

In figure 3, we compare our solutions with the Lagrangian solutions. Figure 3 (a), (c) and (e) show
the solutions to the scaled backward FTLE at t = T = 15. Figure 3 (b), (d) and (f) plot the scaled
forward FTLE at t = 0. All these solutions are computed on the same underlying mesh of 1025×513
so that ∆x = ∆y = 1/512. The first row (figures (a) and (b)) shows the solutions computed by the
Lagrangian approach using the MATLAB function ode45 which automatically chooses an adaptive timestep
in the program. As we have mentioned before, it is difficult to reconcile the accuracies at different mesh
points. When we compute the resulting FTLE by finite differencing the map, error will amplify and this
explains the tiny oscillations in the solutions. When applying a fourth order Runge-Kutta solver with a fixed
timestep, these oscillations are removed and we have shown the results on the second row (figures (c) and
(d)). The third row is the Eulerian solutions computed by the proposed method. The solutions are clean
and the fine structures in the FTLE are well-captured. Note that those solutions in figure 2 are obtained
by simply propagating the scaled FTLE obtained by T = 5 for a time difference S = 10. Even though the
estimate (34) says the error in this scaled FTLE might grow at worst of O(S), the error in the FTLE is
actually of O(S/(T + S)) and is only of O(10−1).

To confirm the computational complexities we discussed in Section 4, we have recorded the CPU times
for the proposed Eulerian approach and also the Lagrangian formulation (with two different ways to choose
∆t) using different ∆x’s. Table 1 shows these data measured in seconds. We have coded in MATLAB R2010a
and these programs are executed in a laptop computer with a Intel Core 2 Duo 2.8GHz processor. Note that
we are not claiming that the Eulerian approach always gives more accurate solutions. In fact, the Eulerian
solutions from this table provide only approximations to the true FTLE as discussed earlier. Moreover,
none of these codes has been optimized. In particular, the Lagrangian code was written with for-loops over
all particles. One should be able to significantly improve these CPU times if the computational codes are
properly vectorized/optimized. Therefore, one should use these CPU times to confirm the computational
complexity only, but not to conclude that the Eulerian computation is faster than the Lagrangian compu-
tation. The second column in the table shows the computational times (in seconds) for using the proposed
Eulerian approach with T = 5 and S = 10. We have computed the rate r in the computational complexity
O(∆x−r) using the CPU time measurements in the second column. These numerical values suggest that
the computational complexity is roughly O(∆x−3) which matched well with the estimate we have stated
in Section 4. Because the solution from the code contains the FTLE on a mesh with O(∆x−3) points in
the x− y − t space, each grid point is visited for only O(1) time. For the Lagrangian formulation, we have
computed the flow map using the fourth order Runge-Kutta method with a fixed timestep. The estimate in
Section 4 gives O(NdMK) with N is the number of mesh points in each spatial direction, M is the number
of time marching steps in the RK4 solver and K is the number of points we discretize the time domain of
the FTLE solution. Even though we are showing only the FTLE at t = 0 or t = 15 in figure 3, similar
to the Eulerian approach we compute the FTLE also at all time steps, i.e. on all O(NdK) mesh points.
The measured CPU times are shown on the fourth and the sixth columns. On these two columns, we have
used N = O(∆x−1) and K = O(∆x−1). On the fourth column where ∆t = 1, i.e. M = O(1), we obtain
the numerical complexity of O(NdMK) = O(∆x−3) on the fifth column. For the sixth column, we have
M = O(∆x−1) and so O(NdMK) = O(∆x−4). All CPU times observed from the table also match well
with the estimate O(NdMK).
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∆x Eulerian Rate Lagrangian with ∆t = 1 Rate Lagrangian with ∆t = ∆x Rate
1/64 22.87 - 1085 - 4591 -
1/128 110.9 2.28 8424 2.95 71440 3.96
1/256 1021 3.20 66030 2.97 1123000 3.97
1/512 8859 3.11 525700 2.99 - -

Table 1: (Example 6.1) CPU times (in seconds) for the Eulerian approach with T = 5 and S = 10, and the Lagrangian
approach with ∆t = 1 and ∆t = ∆x. The computational complexity for the proposed Eulerian approach is approximately
O(∆x−3), while the complexity for the Lagrangian approach is roughly O(∆x−3∆t−1). Note that both the Eulerian code and
the Lagrangian code are not optimized. One should be able to significantly improve these CPU times if the computational
codes are properly vectorized/optimized.
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6.2. A simple analytic field
In this example, we consider a simple analytical velocity field [45] given by

u = x− y2 and v = −y + x2 . (63)

The computational domain is [−6, 6]2 and we assume that we do not have any information on the velocity
outside this domain. Unlike usual Lagrangian approach where the ray trajectories have to be artificially
stopped at the boundary of the computational domain, we can naturally impose the fixed inflow boundary
condition and the non-reflective outflow boundary condition.

We consider first solving the level set equations forward in time from t = 0 to t = T = 1.5. Then we
calculate the FTLE σ̃(x, T ) on the fixed Cartesian mesh points. Once we have obtained this quantity, we
switch to another Liouville equation and propagate it up to Tf = 5, i.e. S = 3.5. The solution is plotted
in figure 4 (a). Since we are advecting the level set functions forward in time, these figures are actually
showing the backward FTLE.

Next we solve the level set equations backward in time from t = Tf = 5 up to t = Tf − T = 3.5 with the
initial condition Ψ1(x, y, Tf ) = x and Ψ2(x, y, Tf ) = y. Using these level set functions at t = Tf−T = 3.5, we
compute the forward FTLE and then back propagate it until t = 0. The solutions at different time using 257
mesh points are shown in figure 4 (b). In figure 4 (c) and (d), we repeat the computations but using T = 5.
As we can see, we can well-approximate the solutions by simply advecting the FTLE along Lagrangian
trajectories. We have also shown the solutions using the usual Lagrangian approach in figure 4 (e) and (f).
One can clearly observe the artificial LCS’s due to the naive treatment of the particle trajectory by imposing
u = v = 0 outside the computational domain. A velocity extension algorithm has been proposed in [45]
to remove such LCS. We do not repeat the computations here but refer any interested reader to the cited
reference. Comparing our solutions to the typical Lagrangian approach, we do not observe any interference
from the boundary conditions. Both our computed forward and backward FTLE’s are clean away from the
true LCS.

6.3. Rayleigh-Bénard convection
In this section, we consider a three-dimension example for which the velocity field is given by [21]

u =
A

k
ξ sin kr cos z ,

v =
A

k
y sin kr cos z ,

w = −A sin z

(
r cos kr +

2

k
sin kr

)
, (64)

where A = 0.24, k = 2, r2 = ξ2 + y2 and ξ = x − g(t). Unlike [21] where the paper has chosen a
random forcing g(t), we simply use g(t) = 0.5 cos(2πt). In figure 5 (a), we have shown different isosur-
faces of the backward FTLE computed at t = 50 using T = 12 and S = 38, i.e. we have computed
(Ψ1(x, y, z, t),Ψ2(x, y, z, t),Ψ3(x, y, z, t)) for (x, y, z) ∈ [−2, 2]3 and t ∈ [0, T = 12] forward in time by
solving their corresponding level set equations with the initial conditions

Ψ1(x, y, z, 0) = x

Ψ2(x, y, z, 0) = y

Ψ3(x, y, z, 0) = z . (65)

We have also plotted the isosurfaces of the forward FTLE σT (x, t) at t = 0, T = 12 and S = 38 using the
same underlying Cartesian mesh in figure 5 (b).

To compare our solutions with the typical Lagrangian approach, we have shown both the forward and the
backward FTLEs on the cross section z = 1 in figure 6. The Lagrangian solutions are computed on the same
mesh with ∆x = ∆y = ∆z = 1/32 using RK4 with a fixed time-marching step ∆t = 1/16. Similar to the
previous example, we stop any ray trajectory if it hits the boundary by imposing u = v = w = 0 outside the
computational domain [−2, 2]3. Our proposed Eulerian computations match with the Lagrangian solutions
very well even for such a relatively coarse mesh.
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Figure 4: (Example 6.2) (a) The backward FTLE using the proposed Eulerian approach with ∆x = ∆y = 6/256, t = 5.0,
T = 1.5 and S = 3.5. (b) The forward FTLE using the proposed Eulerian approach with ∆x = ∆y = 6/256, t = 0.0, T = 1.5
and S = 3.5. (c) The backward FTLE using the proposed Eulerian approach with ∆x = ∆y = 6/256, t = 5.0 and T = 5.0.
(d) The forward FTLE using the proposed Eulerian approach with ∆x = ∆y = 6/256, t = 0.0 and T = 5.0. (e) The backward
FTLE using the usual Lagrangian approach with ∆x = ∆y = 6/256, t = 5.0 and T = 5. (b) The forward FTLE using the
usual Lagrangian approach with ∆x = ∆y = 6/256, t = 0.0 and T = 5.
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(a) (b)

Figure 5: (Example 6.3) (a) The backward FTLE using ∆x = ∆y = 1/32 at t = 50, T = 12 and S = 38. (b) The forward
FTLE using ∆x = ∆y = 1/32 at t = 0, T = 12 and S = 38.
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Figure 6: (Example 6.3) (a) The backward FTLE on the cross section z = 1 using the proposed Eulerian approach with
∆x = ∆y = 1/32, t = 5, T = 5. (b) The backward FTLE on the cross section z = 1 using the usual Lagrangian approach with
∆x = ∆y = 1/32, t = 5 and T = 5. (c) The forward FTLE on the cross section z = 1 using the proposed Eulerian approach
with ∆x = ∆y = 1/32, t = 40, T = 10. (d) The forward FTLE on the cross section z = 1 using the usual Lagrangian approach
with ∆x = ∆y = 1/32, t = 40, T = 10.
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(a) (b)

Figure 7: (Example 6.4) The forward FTLE on a sphere under the rigid body rotation. The exact solution is zero everywhere
on the sphere. The underlying mesh size is (a) ∆x = 3/32 and (b) ∆x = 3/128.

6.4. FTLE on a sphere

In this example, we consider several simple three dimensional cases of a sphere to check the convergence
and the accuracy of the proposed Eulerian approach. The first example is a rotating sphere under the rigid
motion given by u(x, y) = y, v(x, y) = −x and w(x, y) = 0. Figure 7 shows the FTLE on the sphere at t = π
using mesh of size ∆x = ∆y = ∆z = 3/32 and 3/128, respectively. Since the rotation is rigid, the Jacobian
is identity and therefore the FTLE is zero everywhere on the manifold. There are various sources of error
in the algorithm. One comes from the implicit representation of the interface. Since MATLAB extracts
the zero level set using linear interpolations, the location of the interface may be off by an error of order
O(∆x). Numerical solutions to the level set equations or the Liouville equations also contribute error to
the FTLE. However, as we can see from these solutions, the error does decrease as we refine the underlying
mesh. Few errors from grid effects might still be observable, but these errors are of order of 10−3 using only
∆x = 3/128.

In the next example we consider the expansion of a sphere in the normal direction. The initial radius
of the sphere is r0 = 0.75. The velocity of the sphere is chosen to be vn = 1 and we are interested in the
solution of the backward FTLE at t = T = 0.5. The exact solution can be found in this simple case and it
is given by

σ̃−T = ln

(
r0

r0 + T

)2

= 2 ln

(
3

5

)
≃ −1.021651248 . (66)

In figure 8 we showed the errors in the backard FTLE on an expanding sphere at t = T = 0.5. Similar
to previous calculations, the error in the solution drops as we refined the underlying mesh. We have also
computed the forward FTLE at t = 0 with T = 0.5

σ̃T = ln

(
r0 + T

r0

)2

= 2 ln

(
5

3

)
≃ 1.021651248 . (67)

The solutions using a coarse and a fine computation mesh are plotted in figure 8 (c) and (d). Note, however,
that the errors in these solutions are significant larger that in the backward FTLE. The main reason is that
the forward FTLE computations require an extra step to solve the level set equation from t = 0 to t = T ,
i.e. step 3 in Algorithm 3. This introduces extra perturbations in extracting the FTLE on the final manifold.

In this last example from this section, we consider an advection motion in the field of four point vortices
on a sphere [30, 31]. The velocity of any marker particle satisfies the motion

x′ =
1

2π

4∑
i=1

xi × x

2(1− x · xi)
, (68)
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(a) (b)

(c) (d)

Figure 8: (Example 6.4) The error in the backward FTLE on a sphere under the motion in the normal direction. The underlying
mesh size is (a) ∆x = 3/32 and (b) ∆x = 3/128. The error in the forward FTLE on a sphere under the motion in the normal
direction. The underlying mesh size is (c) ∆x = 3/32 and (d) ∆x = 3/128.
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(a) (b)

(c) (d)

Figure 9: (Example 6.4) (a) and (b) The backward FTLE on a sphere under 4 point vortices at t = 2 with T = 2. (c) and (d)
The corresponding forward FTLE at t = 0.0 with T = 2.

with the point vortices centered at (1/
√
3,−1/

√
3, 1/

√
3), (1/

√
3,−1/

√
3,−1/

√
3), (−

√
2/3, 1/

√
3, 0) and

(−1/
√
3,−1/

√
3, 1/

√
3). In figure 9, we have shown both the backward and the forward FTLE on the sphere

of radius r0 = 1 from two different angles. The mesh size is ∆x = ∆y = ∆z = 3/128.

6.5. FTLE on an evolving manifold

In this last section, we approximate the FTLE on an evolving manifold. In this first example, we consider
an important flow in designing numerical methods for interface evolutions where an initial sphere is moving
along with a vortex flow. In the second example, we propose to apply the techniques we have developed to
study the so-called paraxial assumption which is widely used in the seismic community.

6.5.1. Sphere under vortex flow

In the first example, we consider the motion of a sphere under the vortex motion [6] governed by

u = 2 sin2(πx) sin(2πy) sin(2πz)

v = − sin2(πy) sin(2πx) sin(2πz)

w = − sin2(πz) sin(2πy) sin(2πx) . (69)

This challenging flow is widely used as a test case in various numerical methods for interface evolutions.
It was originally proposed in [6] to test if a numerical method is able to resolve very thin structures. The
initial sphere is centered at (0.35, 0.35, 0.35) with radius 0.15. Figure 10 shows both the backward and the
forward FTLE using T = 0.5 from two different angles. In figure 10 (a) and (b) we plot the backward FTLE

25



(a) (b)

(c) (b)

Figure 10: (Example 6.5) (a) and (b) The backward FTLE on an evolving manifold under the vortex motion at t = 0.5 with
T = 0.5. (c) and (d) The corresponding forward FTLE at t = 0.0 with T = 0.5.
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on the evolved manifold at t = 0.5. The forward FTLE at t = 0.0 is shown in (c) and (d). The special
structures of the FTLE defined on the evolving interface are nicely captured. Note that no parametrization
of the evolving surface is needed in this computation. The interface is implicitly represented by the level set
function defined on the fixed Cartesian mesh.

6.5.2. Application to paraxial geometrical optics

Paraxial assumption is widely used in the seismic community [9, 38, 44, 36, 26, 22, 23]. In this example,
we will apply the technique we have developed above to study the validity of such assumption. Some
preliminary results will be shown at the end of the section. We consider the linear acoustic wave equation.
According to the Debye procedure, we first insert the high frequency asymptotic ansatz into the wave
equation. Among all the terms in the asymptotic ansatz, the most important term is the zeroth order term,
the so-called geometrical optics term [17]. This geometrical optics term consists of two functions, a phase
function satisfying the eikonal equation which is a first-order nonlinear PDE, and an amplitude function
which solves a linear transport equation with the phase gradient as coefficients, i.e.

|∇τ | = 1

c
, ∇ · (A2∇τ) = 0 . (70)

Thus to construct the geometrical optics term, we first solve the eikonal equation for the phase function and
then integrate the transport equation afterwards for amplitude. We consider a point source condition for
the eikonal equation defined in an open, bounded domain

Ω = {(x, z) : x ∈ [xmin, xmax] , z ∈ [0, zmax]} . (71)

In many applications, for example, wave propagation in seismics application, the traveltime T is carried by
the so-called subhorizontal rays [9, 43], where subhorizontal means oriented in the positive z-direction. By
the method of characteristics, we use z as a time-like variable so that we derive the following reduced system
[36, 26, 37].

dx

dz
= tan θ

dθ

dz
=

1

c
(cz tan θ − cx) , (72)

with the initial condition x(z = 0) = xs and θ(z = 0) = θs where θs ∈ [θmin, θmax] ⊂ (−π/2, π/2).
Obviously it might not be always valid to make such paraxial approximation in the computational

domain. A simple condition is that all emitted rays from the point source travel in one single direction
which is assumed to be the positive z-direction. Mathematically, this condition requires

|θ(z)| < π/2 , (73)

where θ(z) is the angle made by the ray and the positive z-direction on a given z-level.
In the typical ray tracing method, one first approximates this open interval (−π/2, π/2) by [θmin, θmax]

for some θmin > −π/2 and θmax < π/2. Rays are then emitted from the point source location with initial
take-off angles chosen uniformly from this closed interval. One disadvantage of this Lagrangian formulation
concerns the resolution of the solution. Since these rays will travel in the phase space according to the ray
system, such Lagrangian formulation does not guarantee uniform resolution of the traveltime. In [36, 26, 37],
we propose an Eulerian approach based on the level set method. Since we care only about those rays emitting
from a given single point source located at x = xs, we can implicitly represent all these rays by the zero
level set of a level set function ϕ(x, θ; z) in the phase space. Following [36, 26, 37], we solve

ϕz +
dx

dz
ϕx +

dθ

dz
ϕθ = 0 (74)

and extract the corresponding zero level set ϕ−1(0) to obtain all arrival rays on the given level z with an
corresponding takeoff angle θ(z = 0) ∈ [θmin, θmax]. For more details, we refer any interested readers to
[36, 26, 37] for a complete derivation.
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Figure 11: Ray trajectories of the velocity models (a) cw(x, z). and (b) cs(x, z). In (a), we cannot approximate the θ interval
by [θmin, θmax] since there are always rays missing (red dashed line).

Even with uniform resolution in the arrivaltime, paraxial approximation might not always give good
approximations to the overall wavefield after we have obtained the solution of the amplitude function along
these characteristics. The main reason is that the approximation in the domain for the initial takeoff angle
might lead to incomplete arrival rays. We consider the following two simple velocity models.

cw(x, z) = 3− 2.5 exp

(
−x

2

2

)
cs(x, z) = 1 + 0.2 sin

(πz
2

)
sin[3π(x+ 0.55)] . (75)

Their corresponding ray trajectories are shown in figure 11. We plot in solid blue lines for those rays shooting
from the point source at xs = 0 with take-off angle θmin < θ0 < θmax for some fixed θmin and θmax. We
also trace several rays from the same point source with take-off angles outside this interval. These rays are
shown using red dashed lines in figure 11.

We first consider the waveguide example c(x, z) = cw(x, z) in figure 11 (a). Rays with initial takeoff
angle outside the domain [θmin, θmax] will turn back and reach the region near x = 0. Ignoring these rays
by truncating (−π/2, π/2) using [θmin, θmax], we will not have enough information to construct the overall
wavefield at a larger z since these missing rays will interact with other rays to get an interference pattern. In
the second case as shown in figure 11 (b), on the other hand, these red-dashed rays have a different dynamic.
In this particular example, these rays will leave the computational domain and will not affect the wavefield
in the region |x| < 1 on the level z = 2.

Based on this Eulerian formulation, in this section we suggest a way to detect if the truncation in the
θ-space provides a good approximation to the resulting wavefield using the FTLE. We follow the technique in
algorithm 3 to compute the forward FTLE. Since the existence of LCS implies that trajectories on the evolving
manifold will travel as patches and the separation will grow in time (the direction z in this application).

We show some preliminary results of the forward FTLE on an evolving manifold in figures 12 and 13.
We plot the contours of the FTLE with T = zf − z in a small neighborhood of the zero level set of ϕ. In
particular, figure 12 (c) and figure 13 (c) show the forward FTLE on the depth z = 0 with zf = 2 and T = 2.
As seen in figure 12 (c), there is no obvious LCS observed. This implies that all emitted rays from the single
point source are traveling roughly as a single patch. It is therefore not clear how one can determine the
θmax and the θmin in the paraxial approximation. Figure 13 (c) shows the computed FTLE in the sinusoidal
model. The structure is much clear and this confirms us the computational domain in the θ-direction is big
enough to capture necessary arrival rays for later wavefield construction.

A future work is to extend this approach to carefully study the paraxial assumption in [26] for computing
paraxial geometrical optics approximation to the 3D wave equation. In that case, emitted rays from the
single point source will be represented by a co-dimensional two surface in the x− y − θ − ϕ phase space.
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Figure 12: (Example 6.5) The forward FTLE of the waveguide model cw using ∆x = ∆θ = 1/256 with zf = 2 at (a) z = 1.8,
(b) z = 0.8, and (c) z = 0.0. No LCS is observed on the evolving manifold. This implies rays from the point source will travel
as a single patch and it is not straight-forward how to obtain the truncated computational domain [θmin, θmax] in the paraxial
computation.
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Figure 13: (Example 6.5) The forward FTLE of the Sinusoidal model cs using ∆x = ∆θ = 1/256 with zf = 2 at (a) z = 1.8,
(b) z = 0.8 and (c) z = 0.0. LCS is clearly observed which implies that rays from the points may travel in very different
directions with a small perturbation in the initial take-off angle.
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7. Conclusion and future work

In this paper, we propose an Eulerian framework for approximating the FTLE based on the level set
formulation. The related flow map is computed by solving Liouville equations on a fixed mesh. Four
algorithms are proposed to compute the FTLE under various situations. Algorithm 1 proposes an Eulerian
approach for computing the backward FTLE by determining the corresponding flow map using the Liouville
equation. This algorithm determines the FTLE on a single given time t = T . To efficiently obtain a wider
range of FTLE, we propose in algorithm 2 an approximation of the FTLE by simply propagating the scaled
FTLE obtained at t = T using algorithm 1. Note however that this algorithm only approximates the true
FTLE with an error of O(S/T ) or O(S/(S + T )) with S is the time difference from t = T . One should be
careful when interpreting this output.

The second part of the paper computes the FTLE on evolving manifolds. A pure Eulerian approach
is proposed in algorithm 3 which embeds the moving surface using a level set function. All computations
are done on a fixed uniform Cartesian mesh. The method requires no local coordinate system or any local
parametrization of the interface. A corresponding Lagrangian version is suggested in algorithm 4.

In the future, we propose to combine the current approaches with a CFD solver or to incorporate our
algorithms with a flow field from real life measurements. We will also generalize the example in Section
6.5.2 to carefully study the paraxial assumption in computing the high frequency asymptotic solution to
wave propagation in high dimensions.
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