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Abstract. One challenge in surface restoration is to design surface diffusion preserving ridges and sharp cor-
ners. In this paper, we propose a new surface restoration model based on the observation that surfaces’ implicit
representations are continuous functions whose first order derivatives have discontinuities at ridges and sharp cor-
ners. Regularized by vectorial total variation on the derivatives of surfaces’ implicit representation functions, the
proposed model has ridges and corners preserving properties validated by numerical experiments. To solve the pro-
posed fourth order and convex problem efficiently, we further design a numerical algorithm based on the augmented
Lagrangian method. Moreover, the theoretical convergence analysis of the proposed algorithm is also provided. To
demonstrate the efficiency and robustness of the proposed method, we show restoration results on several different
surfaces and also conduct comparisons with mean curvature flow method and nonlocal mean method.
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1. Introduction. With the rapid development of data acquisition technology, more and
more 3D surfaces can be easily collected and widely used in many fields, such as computer
graphics, computer vision as well as medical image analysis. However, 3D surfaces obtained
from laser scanner, computed tomography (CT), magnetic resonance (MR) or 3D ultrasound
devices are usually contaminated by some noise due to local measurement errors. Typically,
these surfaces have crucial features represented as ridges and sharp corners. Thus, it is critical
to process these noisy surfaces using ridges and sharp corners preserving methods.

In the last decade, several feature-preserving methods have been developed for 3D sur-
face fairing in the computer graphics society [32, 25, 20, 36, 2]. Among all other techniques,
surface diffusion methods via different curvature flows have beeb successfully used in sur-
face processing. The most natural way for surface smoothing is motion by mean curvature
flow (MCF) or Laplace smoothing [12, 48, 40], which is essentially the process of reducing
the surface area. As a second order model, MCF is effective to remove oscillations on noisy
surfaces. However, it has limitations for preserving ridges and sharp corners on surfaces. To
tackle the challenge of ridges and sharp corners preserving problems, several other second
order models of the anisotropic surface diffusions are considered in [13, 10, 14, 3, 37, 11],
which can be viewed as processes of reducing weighted surface area. Besides the above sec-
ond order models, the fourth order isotropic or anisotropic flows based on minimizing the
surface total curvature or weighted total curvature are discussed in [46, 47].

More recently, there has been an increasing interest to study surface processing by adapt-
ing ideas from image processing. Based on the fact that surfaces usually have similar repeated
patterns, nonlocal approaches in 2D imaging [7, 21] are adapted to study 3D surface smooth-
ing in [15, 33], where numerical experiments provide ridges and sharp corners preserving
results. A critical limitation of the nonlocal mean method is that the computation of the non-
local weight function is very time consuming, thus a semi-nonlocal process with a small patch
size is usually considered in practice. Inspired by the success of the total variation (TV) in
2D imaging, Elsey and Esedoglu [18] introduce an analogue of the total variation denoising
model for surface processing by minimizing the absolute value of the Gauss curvature as reg-
ularization. Their model can guarantee preservation of ridges and sharp corners for convex
surfaces, or surfaces with local constant sign of Gauss curvature on a fine scale. For surfaces
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not satisfying either of these two conditions, which are also commonly seen in practice, their
ridges and sharp corners might be lost using the model proposed in [18].

In this work, we propose a new model for 3D surface processing with ridges and sharp
corner preserving properties based on a simple observation as follows. In image processing,
the representation functions are piecewise smooth functions; thus the total variation provides
a powerful tool to study images with jumps preserving properties [38, 42]. Comparing with
representation functions for images, the implicit representation functions of curves or sur-
faces have their own essential differences. “Image functions” are normally discontinuous,
and the salient features are contained in the discontinuities. “Implicit surface functions” are
normally continuous [35], while their derivatives have discontinuities due to the ridges and
sharp corners of the represented surfaces. If the jumps of the derivatives of the implicit func-
tions can be well preserved, then the corresponding ridges and sharp corners of surfaces can
be also well preserved. Therefore, a natural choice for surface processing would be to choose
the total variation to process the derivatives of the implicit functions of surfaces. More pre-
cisely, given a surface with implicit function representation φ : D ⊂ R3 → R and its three
directional derivatives ∂xφ, ∂yφ, ∂zφ, we need to consider the total variation for the vector
(∂xφ, ∂yφ, ∂zφ). As a generalization of the total variation for vector-valued images, the vec-
torial total variation is studied in [1, 6] for color image processing. Thus, we can utilize the
vectorial total variation to have the jump preservation of the derivative of the implicit function
φ, which leads to the ridges and sharp corners preserving property as we desired for surface
processing. This nice property of the proposed model will be experimentally illustrated in
section 5.

As an important distinction of the proposed model, the optimization problem we pro-
posed is convex. Thus, the global minimizer of our model will provide the desired solution,
which avoids terminating the processing in artificial given iteration steps as geometric diffu-
sion methods in [46, 47, 40, 11]. Overall, the gradient flow of the proposed model leads to a
fourth order problem, which is usually extremely time consuming to approach the optimizer.
To solve the proposed minimization problem efficiently, we design a fast algorithm based on
the augmented Lagrangian method. With the help of auxiliary variables, the solution of the
original optimization problem can be iteratively approached by computation of several easy-
solving subproblems. This algorithm is inspired by a series work of operator splitting and
split Bregman iterations [34, 49, 24, 23, 45, 50, 44], which popularize the idea of using oper-
ator splitting to solve optimization problems. The equivalence of the split Bregman iterations
to the alternating direction method of multipliers (ADMM), Douglas-Rachford splitting and
augmented Lagrangian method can be found in [19, 39, 45, 50]. Moreover, we also show the
theoretical convergence analysis of the proposed algorithm inspired by the general discussion
of the augmented Lagrangian method in [22].

To summarize, this paper proposes a fourth order PDE based surface restoration model
which has numerical validation of ridges and sharp corners preserving properties and also has
a corresponding fast algorithm. The rest of this paper is organized as follows. In section 2,
motivated by considering vectorial total variation for the derivatives of the surface implicit
function, we first introduce a variational model for 3D surface restoration, and then explain
the proposed model in a toy example. In section 3, we design fast algorithms to solve the
proposed model based on the augmented Lagrangian method. Meanwhile, the theoretical
convergence analysis is also provided. After that, the numerical implementations are dis-
cussed in section 4. To demonstrate the robustness and efficiency of the proposed model and
algorithms, we report experimental results and comparisons with previous methods in section
5. In addition, we also illustrate the potential applications of the proposed model to surface
processing in medical imaging. Finally, conclusions are made in section 6.
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2. A Fourth Order Variational Model for Surface Restoration. The total variation
model plays an important role in image processing due to its edge preserving property. By ob-
serving that the derivatives of the surface implicit representation functions are discontinuous
on ridges and sharp corners, we propose a noisy surface restoration model with the regu-
larization as the vectorial total variation of the first order derivatives of the surface implicit
functions.

2.1. Motivation and model. In the pioneering work [38], Rudin, Osher and Fatemi
introduce the ROF denoising model for gray-scale/scalar image u0 : Ω → R based on the
total variation (TV) as follows:

min
u

∫
Ω

|∇u|+ η

2

∫
Ω

(u− u0)2 (2.1)

Due to the edge preserving properties of the total variation (TV), the TV related models have
had remarkable success on image processing. In the case of color image ~u = (u1, · · · , um) :
Ω → Rm, the above ROF model can be naturally generalized as the following color TV-L2
model [1, 6] (also related to [5]):

min
~u

∫
Ω

√
‖∇u1‖2 + · · ·+ ‖∇um‖2 +

η

2

∫
Ω

(~u− ~u0)2 (2.2)

The regularization referred as vectorial total variation has also been studied in [26, 16] for
color image processing.

In the problem of surface processing, one of the major challenges is diffusing surfaces
with ridges and sharp corner preserving properties. Compared with image functions, an es-
sential distinction of the implicit function representations for surfaces is that surface repre-
sentation functions are not piecewise continuous but continuous. However, derivatives of the
implicit functions may have discontinuities due to the ridges and sharp corners of surfaces.
If the jumps of the derivatives of the implicit functions can be well preserved, then the cor-
responding ridges and sharp corners of surfaces can be also well preserved. Therefore, it is
natural to consider the above vectorial total variation for the derivatives of implicit functions.

More precisely, letM be a closed surface in R3 with implicit signed distance function
representation φ [35]. Namely,M = φ−1(0) = {(x1, x2, x3) ∈ Ω ⊂ R3 | φ(x1, x2, x3) =
0}. Then φ is a continuous function with possible discontinuity of its first order derivatives
(φx, φy, φz) if M has ridges or sharp corners. We consider a surface restoration model
regularized by the vectorial total variation for the vector field (φx, φy, φz) as follows:

min
φ

∫
Ω

√
‖∇φx‖2 + ‖∇φy‖2 + ‖∇φz‖2 +

η

2

∫
Ω

(φ− φ0)2

= min
φ

∫
Ω

√√√√ 3∑
α,β=1

(
∂2φ

∂xα∂xβ

)2

+
η

2

∫
Ω

(φ− φ0)2 (2.3)

If we denote the Hessian matrix of φ by H(φ) =

(
∂2φ

∂xα∂xβ

)
3×3

and its Frobenius norm

by |H(φ)| =

√∑3
α,β=1

(
∂2φ

∂xα∂xβ

)2

. Then we can write down the above model as the

following simple expression:

min
φ

∫
Ω

|H(φ)|+ η

2

∫
Ω

(φ− φ0)2 (2.4)
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Moreover, this vectorial total variation model for the first order derivatives only need one-
step processing instead of two-step methods as in [31, 47] with the first step of processing the
derivatives of the surface and the second step of recovering the surface from the derivatives.

2.2. Discretization. In practice, we assume the implicit representation φ is defined on
regular N1 × N2 × N3 grids with grid width h. Let’s denote V as the Euclidean space
RN1×N2×N3 . Then, the Hessian matrix of φ is defined on W = V × · · · × V︸ ︷︷ ︸

9

. For conve-

nience, we use the following notations for any φ ∈ V, P = (pαβ)3×3, Q = (qαβ)3×3 ∈ W
in the rest of this paper:

|Q|W =
∑
i,j,k

( 3∑
α,β=1

q2
αβ(i, j, k)

)1/2

, ||φ||2V =
∑
i,j,k

φ2(i, j, k),

〈Q,P 〉W =
∑
i,j,k

( 3∑
α,β=1

qαβ(i, j, k)pαβ(i, j, k)
)
, ||Q||2W = 〈Q,Q〉W ,

We denote the backward and forward discretization of derivative with periodic boundary
condition as:

∂−x1
φ(i, j, k) =

{
(φ(i, j, k)− φ(i− 1, j, k)), 1 < i ≤ N1;
(φ(1, j, k)− φ(N1, j, k)), i = 1.

∂+
x1
φ(i, j, k) =

{
(φ(i+ 1, j, k)− φ(i, j, k)), 1 ≤ i < N1;
(φ(1, j, k)− φ(N1, j, k)), i = N1.

∂−x2
φ(i, j, k) =

{
(φ(i, j, k)− φ(i, j − 1, k)), 1 < j ≤ N2;
(φ(i, 1, k)− φ(i,N2, k)), j = 1.

∂+
x2
φ(i, j, k) =

{
(φ(i, j + 1, k)− φ(i, j, k)), 1 ≤ j < N2;
(φ(i, 1, k)− φ(i,N2, k)), j = N2.

∂−x3
φ(i, j, k) =

{
(φ(i, j, k)− φ(i, j, k − 1)), 1 < k ≤ N3;
(φ(i, j, 1)− φ(i, j,N3)), k = 1.

∂+
x3
φ(i, j, k) =

{
(φ(i, j, k + 1)− φ(i, j, k)), 1 ≤ k < N3;
(φ(i, j, 1)− φ(i, j,N3)), k = N3.

The corresponding discretization of second order derivatives are given by (α, β = 1, 2, 3):

∂−+
xαxβ

φ(i, j, k) = (∂−xα(∂+
xβ
φ))(i, j, k), ∂+−

xαxβ
φ(i, j, k) = (∂+

xα(∂−xβφ))(i, j, k)

∂−−xαxβφ(i, j, k) = (∂−xα(∂−xβφ))(i, j, k), ∂++
xαxβ

φ(i, j, k) = (∂+
xα(∂+

xβ
φ))(i, j, k),

We denote the discretization of Hessian H : V → W as follows:

H(φ) =

 ∂−+
x1x1

φ ∂++
x1x2

φ ∂++
x1x3

φ
∂++
x2x1

φ ∂−+
x2x2

φ ∂++
x2x3

φ
∂++
x3x1

φ ∂++
x3x2

φ ∂−+
x3x3

φ

 (2.5)

Then, the discretization of the surface restoration model (2.4) can be written as:

min
φ∈V
E(φ) = |H(φ)|W +

η

2
‖φ− φ0‖2V (2.6)

We writeRL1 :W → R,RL1(Q) = |Q|W , thenR is a convex function defined onW . Thus,
E(φ) = RL1(Hφ)+ η

2‖φ−φ0‖2V is also a convex function. In addition, it is easy to see that E
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is continuous and coercive. Therefore, the following results can be obtained from a standard
result in convex optimization [17]:

THEOREM 2.1. The problem (2.6) has a unique solution φ∗ satisfying:

0 ∈ η(φ∗ − φ0)−H∗(∂RL1(Hφ∗)) (2.7)

where ∂RL1(Hφ∗) is the sub-differential ofRL1 at Hφ∗ and H∗ is the dual operator of H .

2.3. Discussion about the proposed model. To clearly explain in what sense the pro-
posed model preserves ridges and sharp corners, we first check the model for a 1D curve
example, the graph of h(x) = 1− |x|. Remember that the regularization of our model is the
total variation(TV) of the derivative. A well-known result for TV-L2 model is that the output
will preserve jumps, but lose ontrast [43, 4, 42]. In our case, jump is the sharp corner at x = 0
and the contrast is the slope of h(x). We can expect that our model in 1D case will keep the
corner at x = 0 and shrink the angle of the corner. However, the mean curvature flow in this
case will smooth out the sharp corner. Thus, we expect the proposed model preserves ridges
and corners in the sense that the sharpness of ridges and corners will be preserved, but their
angles might have small shrinkage. However, theoretical analysis in high dimension case is
not straightforward, which will be investigated in our future work. Here, we would like to
take a toy surface example to illustrate this point numerically.

LetMc be a surface defined as the graph of a function fc(x, y) = 1− |x| − |y|, (x, y) ∈
[−1, 1]2. Namely,Mc = {(x, y) ∈ [−1, 1]2 | (x, y, fc(x, y))}, which can also be represented
as the zero level set of the function φc(x, y, z) = fc(x, y) − z : [−1, 1]3 → R. This surface
and the corresponding level curves of fc in [−1, 1]2 are with ridges and sharp corners. In
this special example, we consider all surfaces given as graphs of function f(x, y) on [−1, 1]2

with implicit representation φ(x, y, z) = f(x, y)− z. Then the proposed model (2.4) can be
written as:

φ∗ = arg min
φ

∫ √
‖∇∂xφ‖2 + ‖∇∂yφ‖2 + ‖∇∂zφ‖2 +

η

2

∫
(φ− φ0)2

=⇒ f∗ = arg min
f

∫
[−1,1]2

√
f2
xx + f2

xy + f2
yx + f2

yy +
η

2

∫
[−1,1]2

(f − f0)2 (2.8)

FIG. 2.1. Energy curves ofEcη , E
ε
η , Eη via different

value of η are color-coded as red, black and blue curves,
respectively.

This is exactly the LLT model proposed
in [30] for image processing. In fact, the
second order norm in the above minimiza-
tion has also been used in Chambolle-Lions
[8] together with the TV-norm in a setting
for image decomposition. The LLT model
has been analyzed in a number of papers
[27, 28, 29].

Here, we would like to first analyze the
minimizer f∗ in the case that f0 = fc. Since
the closed-form solution is not straightfor-
ward to obtain even for this simple case, we
numerically illustrate the relation of f∗ and
η to demonstrate its ridge and shape corners
preserving properties.

By choosing the grid size h = 0.01, we write the discretized energy Eη(f) = |H(f)|W+
η
2‖f−fc‖

2
V using the similar notation introduced in section 2.2. A straightforward calculation

indicates that a smoothed version ofMc given by fε(x, y, z) = 1 −
√
x2 + ε2 −

√
y2 + ε2
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FIG. 2.2. Numerical test of (2.8) with f0 = 1− |x| − |y| and η = 0.5, 10, 20. The first row: output surfaces
f∗ and corresponding red color-coded level contours using η = 0.5, 10, 20 respectively. The second row: level
contours comparison of the resulting surfaces f∗ with the input clean surface and resulting surface f∗ε . The third
row: zoom-in images of the second row.

may have a smaller energy Eη(fε) than Eη(fc). This might give an intuition that the pro-
posed model is energetically favorable to choose fε, which will lead to the ridges and cor-
ners smoothing instead of preserving. However, a more careful numerical calculation shows
that fε never attains the global minimal value for the convex energy Eη . If we write Ecη =
Eη(fc), E

ε
η = minε Eη(fε), Eη = minf Eη(f), a comparison among these three values is

reported in Figure. 2.1 with different values of η. It is clear to see that Ecη ≥ Eεη ≥ Eη . In
other words, the ridges and corners smoothed version fε is not the minimizer of the proposed
model for all test value η. In Figure. 2.2, we report resulting surfaces using η = 0.5, 10, 20.
One can observe that the larger η is chosen, then the smaller difference we can have between
the output f∗ and fc, while f∗ε = arg minε Eη(fε) always smears out ridges and corners for
different values of η = 0.5, 10, 20. To clearly show the ridges preserving property, we project
the level contours of resulting surfaces from f∗ and f∗ε to the 2D plane and illustrate com-
parisons with clean surface fc in the second and third rows of Figure. 2.2. One can observe
that a small value of η will lead to ridges and corners smoothing although the input surface is
completely noisy free. However, a suitable scale of η in the proposed model can successfully
preserve the ridges and corners of the input surface. A careful check of the last four zoom-in
images in Figure. 2.2 will find that, although resulting f∗ are not exact the same as the input
clean surface fc, differences of ridges and corners of f∗ and fc are close enough in the way
that the sharpness of ridges and corners are preserved while the angles of f∗ may have tiny
shrinkage. However, f∗ε can not preserve ridges and corners for all test values η = 0.5, 10, 20.
In this sense, we call f∗ preserve ridges and corners of fc.

To have a further test to the proposed model for noisy surface restoration, we consider
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a noise contaminated surface Mσ = {(x, y) ∈ [−1, 1]2 | (x, y, fσ(x, y)}, where fσ =
fc+σ∗ξ and ξ satisfies the standard normal distributionN (0, 1). In Figure.2.3, we illustrate a
preliminary result of the above model using η = 20 to a noisy input surface fσ with σ = 0.01.
Figure.2.3 (b) and (c) illustrate a promising surface restoration result with well-preserved
ridges and sharp corners.
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FIG. 2.3. (a)The input surface with Gaussian noise and the corresponding contours; (b) The output surface
restoration result and the corresponding contours. (c) A Comparison of contours from the input noisy surface, the
output restoration result and the clean surface with blue, red and black color respectively.

3. Fast algorithms using augmented Lagrangian methods. Because of the second
order derivates and the non-differentiability of absolute value in model (2.4), the gradient
descent approach needs extreme carefulness about the way of choosing the time step, and it is
highly time consuming. Instead of using gradient descent approach, dual methods have been
proposed in [9, 41]. More recently, Wu et al. [50] propose another fast algorithm to solve 2D
LLT [30] for image processing based on augmented Lagrangian methods. Here, we adapt the
augmented Lagrangian method in [50] to solve the proposed surface restoration model (2.4)
in 3D. More importantly, we theoretically prove the convergence of the proposed algorithm
based on the augmented Lagrangian method.

If we introduce an auxiliary variableQ forH(φ), then the discretized variational problem
(2.6) is equivalent to the following constrained problem:

min
φ∈V,Q∈W

E2(φ,Q) = |Q|W +
η

2
‖φ− φ0‖2V s.t. Q = H(φ) (3.1)

To solve the above constrained problem, we define the augmented Lagrangian:

L(φ,Q; Λ) = |Q|W +
η

2
‖φ− φ0‖2V +

r

2
‖Q−H(φ)‖2W + 〈Λ, Q−H(φ)〉W (3.2)

whose corresponding saddle-point problem can be described as follows:

Find (φ∗, Q∗; Λ∗) ∈ V ×W ×W
s.t. L(φ∗, Q∗; Λ) ≤ L(φ∗, Q∗; Λ∗) ≤ L(φ,Q; Λ∗), ∀ (φ,Q; Λ) (3.3)

Theoretically, the following statement about the above saddle-point problem holds:
THEOREM 3.1. φ∗ ∈ V is a solution of the problem (2.6) if and only if there exist

Q∗,Λ∗ ∈ W such that (φ∗, Q∗; Λ∗) is a solution of the saddle point problem (3.3).
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[Proof]: Suppose (φ∗, Q∗; Λ∗) is a solution of the saddle point problem (3.3). Then
Q∗ = H(φ∗) from the first inequality of (3.3). By using the second inequality of (3.3), we
can have:

|H(φ∗)|W +
η

2
||φ∗ − φ0||2V ≤ |Q|V +

η

2
||φ− φ0||2V +

r

2
||Q−H(φ)||2W + 〈Λ∗, Q−H(φ)〉W

By taking Q = H(φ), we have:

|H(φ∗)|W +
η

2
||φ∗ − φ0||2V ≤ |H(φ)|W +

η

2
||φ− φ0||2V , ∀ φ ∈ V (3.4)

On the other hand, if φ∗ is a solution of the problem (2.6), we choose Q∗ = H(φ∗). Accord-
ing to the theorem 2.1, there exit a Λ∗ ∈ ∂RL1(Hφ∗), such that H∗(Λ∗) = η(φ∗ − φ0). To
verify (φ∗, Q∗; Λ∗) is a saddle point of the problem (3.3), we need to prove

L(φ∗, Q∗; Λ) ≤ L(φ∗, Q∗; Λ∗) ≤ L(φ,Q; Λ∗), ∀ (φ,Q; Λ) ∈ V ×W ×W (3.5)

This first inequality is easy to check since Q∗ = H(φ∗). To verify the second inequality, we
only need to illustrate:

|Q∗|W +
η

2
||φ∗ − φ0||2V ≤ |Q|W +

η

2
||φ− φ0||2V +

r

2
||Q−H(φ)||2W + 〈Λ∗, Q−H(φ)〉W

(3.6)

Due to the construction of Q∗ and Λ∗, we can have the following inequalities:

η

2
||φ− φ0||2V −

η

2
||φ∗ − φ0||2V + 〈Λ∗, H(φ∗ − φ)〉W ≥ 0, ∀φ ∈ V (3.7)

|Q|W − |Q∗|W + 〈Λ∗, Q−Q∗〉W ≥ 0, ∀Q ∈ W (3.8)

Then the inequality (3.6) can be obtained directly for the summation of (3.7) and (3.8) . This
completes the proof. �

According to the theorem 3.1, a solution of the variational problem (2.6) can be obtained
by solving the saddle point problem (3.3). We can iteratively approach a solution of (3.3) by
solving a series of minimization problems which lead to the first algorithm.

Algorithm 1: Augmented Lagrangian method for the variational problem (2.6)

1. Initialization: Q0 = H(φ0), Λ1 = 0,
2. Update φ,Q;

(φn, Qn) = arg min
φ,Q
L(φ,Q; Λn) (3.9)

3. Update Lagrange multipliers:

Λn+1 = Λn + r(Qn −H(φn)) (3.10)

The solution of the minimization problem (3.9) can be computed by the alternating min-
imization method. We here particularly choose one alternating step and obtain the second al-
gorithm. Moreover, similar as the algorithms of augmented Lagrangian provided by Glowin-
ski in [22], we have the following theorem about the convergence analysis of the proposed
Algorithm 2.
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Algorithm 2: Augmented Lagrangian method for the variational problem (2.6)

1. Initialization: Q0 = H(φ0), Λ1 = 0,
2. Update φ;

φn = arg min
φ
L(φ,Qn−1; Λn) (3.11)

3. Update Q;

Qn = arg min
Q
L(φn, Q; Λn) (3.12)

4. Update Lagrange multipliers:

Λn+1 = Λn + r(Qn −H(φn))

THEOREM 3.2 (Convergence analysis). Assume (φ∗, Q∗; Λ∗) is a saddle-point of (3.3),
then the asymptotical behaviors of φn, Qn and Λn satisfy:

lim
n→∞

φn = φ∗, lim
n→∞

Qn = Q∗, lim
n→∞

Λn = Λ∗ (3.13)

Therefore, limn→∞ L(φn, Qn; Λn) = L(φ∗, Q∗; Λ∗) = E1(φ∗) and φn will converge to the
solution of (2.6).
[Proof]: Define all errors as follows:

enφ = φn − φ∗, enQ = Qn −Q∗, enΛ = Λn − Λ∗. (3.14)

According to the theorem 3.1, we have Q∗ = H(φ∗). Therefore, we have:

en+1
Λ = enΛ + r(enQ −Henφ)

=⇒ ||enΛ||2W − ||en+1
Λ ||2W = −2r〈enΛ, enQ −Henφ〉W − r2||enQ −Henφ||2W (3.15)

Since (φ∗, Q∗; Λ∗) is a saddle-point of (3.3), we have:

φ∗ = arg min
φ∈V
L(φ,Q∗; Λ∗) and Q∗ = arg min

Q∈W
L(φ∗, Q; Λ∗) (3.16)

Therefore, for any φ ∈ V, Q ∈ W ,
η

2
||φ− φ0||2V −

η

2
||φ∗ − φ0||2V + 〈Λ∗, H(φ∗ − φ)〉W + r〈Q∗ −Hφ∗, H(φ∗ − φ)〉W ≥ 0,

(3.17)
|Q|W − |Q∗|W + 〈Λ∗, Q−Q∗〉W + r〈Q∗ −Hφ∗, Q−Q∗〉W ≥ 0,

(3.18)

Similarly, from the construction of φn and Qn, we have:

φn = arg min
φ∈V
L(φ,Qn−1; Λn) and Qn = arg min

Q∈W
L(φn, Q; Λn) (3.19)

Therefore, for any φ ∈ V, Q ∈ W ,
η

2
||φ− φ0||2V −

η

2
||φn − φ0||2V + 〈Λn, H(φn − φ)〉W + r〈Qn−1 −Hφn, H(φn − φ)〉W ≥ 0

(3.20)
|Q|W − |Qn|W + 〈Λn, Q−Qn〉W + r〈Qn −Hφn, Q−Qn〉W ≥ 0

(3.21)
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Let φ = φn in (3.17), φ = φ∗ in (3.20), respectively, and then add them together:

〈enΛ, Henφ〉W + r〈en−1
Q −Henφ, Henφ〉W ≥ 0 (3.22)

Let Q = Qn in (3.18), Q = Q∗ in (3.21),respectively, and then add them together:

〈enΛ,−enQ〉W + r〈−enQ +Henφ, e
n
Q〉W ≥ 0 (3.23)

We add (3.22) and (3.23) together:

〈enΛ, Henφ − enQ〉W + r〈en−1
Q −Henφ, Henφ〉W + r〈−enQ +Henφ, e

n
Q〉W ≥ 0

=⇒ −〈enΛ, enQ −Henφ〉W − r||enQ −Henφ||2W + r〈Henφ, enQ − en−1
Q 〉W ≥ 0 (3.24)

By combining (3.15) and (3.24), we can have:

||enΛ||2W − ||en+1
Λ ||2W ≥ r2||enQ −Henφ||2W + 2r2〈Henφ, enQ − en−1

Q 〉W (3.25)

We further analyze 〈Henφ, enQ − e
n−1
Q 〉W by expanding it as:

〈Henφ, enQ − en−1
Q 〉W = 〈Henφ −Hen−1

φ , enQ − en−1
Q 〉W

+ 〈Hen−1
φ − en−1

Q , enQ − en−1
Q 〉W + 〈en−1

Q , enQ − en−1
Q 〉W(3.26)

Notice thatQn−1 = arg minφ∈V L(φn−1, φ; Λn−1), we can have similar inequality as (3.21):

|Q|W − |Qn−1|W + 〈Λn−1, Q−Qn−1〉W + r〈Qn−1 −Hφn−1, Q−Qn−1〉W ≥ 0, ∀Q ∈ W
(3.27)

Let Q = Qn in (3.27), Q = Qn−1 in (3.21), respectively, and then add them together:

〈Λn−1 − Λn, Qn −Qn−1〉W + r〈Qn−1 −Qn +H(φn − φn−1), Qn −Qn−1〉W ≥ 0,

⇒ 〈Λn − Λn−1, Qn −Qn−1〉W + r||Qn −Qn−1||2W − r〈H(φn − φn−1), Qn −Qn−1〉W ≤ 0

Since Λn−Λn−1 = r(Qn−1−Hφn−1), Qn−Qn−1 = enQ−e
n−1
Q , φn−φn−1 = enφ−e

n−1
φ ,

〈Hen−1
φ − en−1

Q , enQ − en−1
Q 〉W + 〈Henφ −Hen−1

φ , enQ − en−1
Q 〉W ≥ ||enQ − en−1

Q ||2W
(3.28)

By combining (3.28), (3.25) and (3.26), we can have:

||enΛ||2W − ||en+1
Λ ||2W ≥ r2||enQ −Henφ||2W + 2r2(||enQ − en−1

Q ||2W + 〈en−1
Q , enQ − en−1

Q 〉W)

= r2||enQ −Henφ||2W + r2(||enQ||2W − ||en−1
Q ||2W + ||enQ − en−1

Q ||2W)

= r2||Qn −Hφn||2W + r2(||enQ||2W − ||en−1
Q ||2W + ||Qn −Qn−1||2W)

This implies:

(||enΛ||2W + r2||en−1
Q ||2W)− (||en+1

Λ ||2W + r2||enQ||2W) ≥ r2||Qn −Hφn||2W + r2||Qn −Qn−1||2W
(3.29)

Therefore, the sequence {||enΛ||2W + r2||en−1
Q ||2W}n is a decreasing sequence, thus it is con-

vergent. This indicates that the left hand side of (3.29) will converge to 0, which further
implies:{

{Λn}n, {Qn}n, {Hφn}n are bounded sequences

limn→∞ ||Qn −Hφn||2W = 0, and limn→∞ ||Qn −Qn−1||2W = 0
(3.30)
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Furthermore, since (φ∗, Q∗,Λ∗) is a solution of the saddle-point problem (3.3), we have:

E2(φ∗, Q∗) ≤ E2(φn, Qn) + 〈Λ∗, Qn −Hφn〉W +
r

2
||Qn −Hφn||2W (3.31)

In addition, we take φ = φ∗ in (3.20) and Q = Q∗ in (3.21), the summation of them would
be:

E2(φ∗, Q∗) ≥ E2(φn, Qn) + 〈Λn, Qn −Hφn〉W + r||Qn −Hφn||W + r〈Henφ, Qn −Qn−1〉
(3.32)

By combining (3.30), (3.31), and (3.32), we have:

lim inf E2(φn, Qn) ≥ E2(φ∗, Q∗) ≥ lim sup E2(φn, Qn)

=⇒ lim
n→∞

E2(φn, Qn) = E2(φ∗, Q∗) (3.33)

Moreover, since (φ∗, Q∗; Λ∗) is a saddle point of L(φ,Q; Λ), we have:

Λ∗ ∈ ∂RL1(Q∗) =⇒ H∗(Λ∗) = η(φ∗ − φ0),

|Qn|W − |Q∗|W + 〈Λ∗, Qn −Q∗〉W ≥ 0, (3.34)

Then we have:

E2(φn, Qn) + 〈Λ∗, Qn −Hφn〉W
= |Qn|W +

η

2
‖φn − φ0‖2V + 〈Λ∗, Qn −Hφn〉W

≥ |Q∗|W − 〈Λ∗, Qn −Q∗〉W +
η

2
‖φn − φ0‖2V + 〈Λ∗, Qn −Hφn〉W

≥ |Q∗|W +
η

2
‖φn − φ0‖2V + 〈Λ∗, Hφ∗ −Hφn〉W

= E2(φ∗, Q∗)− η

2
‖φ∗ − φ0‖2V +

η

2
‖φn − φ0‖2V + 〈Λ∗, Hφ∗ −Hφn〉W

= E2(φ∗, Q∗) +
η

2
〈φ∗ + φn − 2φ0, φ

n − φ∗〉V + η〈φ∗ − φ0, φ
∗ − φn〉V

= E2(φ∗, Q∗) +
η

2
‖φ∗ − φn‖2V (3.35)

By combining (3.35) with (3.30) and (3.33), we can have:

lim
n→∞

φn = φ∗, lim
n→∞

Qn = Q∗ (3.36)

In addition, by the construction of Λn, it is easy to have limn→∞ Λn = Λ∗. This completes
the proof. �

Theorem 3.2 clearly indicates the convergence of the Algorithm 2. Based on this theo-
retical guarantee, we can solve the variational model (2.4) by approaching the solution of its
discrete model (2.6). Numerically, we need to solve two minimization problems in Algorithm
2, which will be discussed in the next section for more details.

4. Numerical Implementation. According to the Algorithm 2, we need to solve two
minimization problems (3.11) and (3.12). Let’s define an operator H∗ :W → V by:

H∗((qαβ)3×3) = ∂+−
x1x1

q11 + ∂−−x1x2
q12 + ∂−−x1x3

q13

+∂−−x2x1
q21 + ∂+−

x2x2
q22 + ∂−−x2x3

q23

+∂−−x3x1
q31 + ∂−−x3x2

q32 + ∂+−
x3x3

q33 (4.1)
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Then it is easy to verify that 〈H(φ), Q〉W = 〈φ,H∗(Q)〉V . Namely, H∗ is the adjoint opera-
tor of H . The minimizer of the problems (3.11) is the same as the minimizer of the following
problem:

φn = arg min
φ
L(φ,Qn−1; Λn)

= arg min
φ

η

2
‖φ− φ0‖2V +

r

2
‖Qn−1 −H(φ)‖2W − 〈Λn, H(φ)〉W (4.2)

Whose minimizer φn satisfies the Euler-Lagrange equation:

η(φn − φ0) + rH∗H(φn)− rH∗(Qn−1)−H∗(Λn) = 0

(η + rH∗H)φn = rH∗(Qn−1) +H∗(Λn) + ηφ0 (4.3)

Since the periodic boundary condition is imposed, the above equation (4.3) can be efficiently
solved using the fast Fourier transform (FFT). If we writeF as the discrete Fourier transform,
then

F∂+
x1
φ(i, j, k) = (e

√
−1θ1i − 1)Fφ(i, j, k), F∂−x1

φ(i, j, k) = (1− e−
√
−1θ1i )Fφ(i, j, k)

F∂+
x2
φ(i, j, k) = (e

√
−1θ2j − 1)Fφ(i, j, k), F∂−x2

φ(i, j, k) = (1− e−
√
−1θ2j )Fφ(i, j, k)

F∂+
x3
φ(i, j, k) = (e

√
−1θ3k − 1)Fφ(i, j, k), F∂−x3

φ(i, j, k) = (1− e−
√
−1θ3k)Fφ(i, j, k)

where

θ1
i =

2π

N1
i, i = 1, · · · , N1, θ2

j =
2π

N2
j, j = 1, · · · , N2, θ3

k =
2π

N3
k, k = 1, · · · , N3

By applying FFT on the both sides of (4.3), we can have:

(η + 4r(cos θ1
i + cos θ2

j + cos θ3
k − 3)2)Fφ(i, j, k) = Fg(i, j, k) (4.4)

where g = rH∗(Qn−1) +H∗(Λn) + ηφ0.
On the other hand, the minimizer of the problems (3.12) is the same as the minimizer of

the following problem:

Qn = arg min
Q
L(φn, Q; Λn)

= arg min
Q
|Q|W +

r

2
‖Q−H(φn)‖2W + 〈Λn, Q〉W

= arg min
Q
|Q|W +

r

2
‖Q− (H(φn)− Λn

r
)‖2W (4.5)

Whose solution is analytically given by [49]:

Qn(i, j, k) = max{0, 1− 1

r|Bn(i, j, k)|
}Bn(i, j, k). (4.6)

Where Bn = H(φn)− Λn

r .
In summary, by utilizing formula (4.4) and (4.6) in the Algorithm 2, we can easily com-

pute the solution to the variational model (2.4). As the common properties of augmented
Lagrangian and operator splitting method, the original nonlinear and high order variational
model (2.4) can be split to several subproblems, which can be either solved with analytical
forms or by fast algorithms. Therefore, we can expect that the proposed augmented La-
grangian algorithm for our model will be solved efficiently. In the next section, we will show
several numerical results to demonstrate the proposed model and Algorithm 2 for 3D surface
restoration.
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5. Numerical Results. In this section, we illustrate experimental results on several syn-
thetic surfaces using the proposed model and algorithm. We first design a numerical experi-
ment to show the parameter dependence of the proposed method. In order to demonstrate the
efficiency and robustness of the proposed method, we also conduct numerical comparisons
with the mean curvature flow method [40] and nonlocal mean method [15]. In addition, we
indicate the possible applications of our method to surface processing in 3D medical imaging.
All experiments are implemented by C++ in a PC with a 4G RAM and a 2.66 GHz CPU.

Given a clean surface Mc represented by its signed distance function φMc
: RN1 ×

RN2 × RN3 → R, we consider a synthetic noise contaminated surfaceMn implicitly repre-
sented by φ0 = φMc + σξ, where ξ satisfies the standard normal distributionN (0, 1). Using
the proposed Algorithm 2, a sequence {φk | k = 1, 2, · · · } can be obtained to approximate the
minimizer of the model (2.4). We fix a small number ε as the tolerance and stop the iteration
at the k-th step if φk satisfies:

1

N1 ·N2 ·N3
‖φk − φk−1‖ < ε (5.1)

In the first numerical experiment, we test the parameter dependence of the proposed
model (2.4). The parameter r in Algorithm 2 comes from the augmented Lagrangian method.
The scale of r controls the difference between the auxiliary variable Q and H(φ). According
to the theorem 3.2, the proposed Algorithm 2 will converge for any positive number r. How-
ever, the rate of convergence will depend on the choice of r. Another parameter η controls
the weight of the fidelity term in the energy functional. The smaller η is chosen, the smoother
output surface will be obtained. As all variational methods for denoising problems, the choice
of η is dependent on the scale of noise of the input surface.

Figure. 5.1 reports experiments for testing the parameter dependence of the proposed
surface restoration model. In our experiment, we fix the stopping criteria ε = 10−8 and use
a noisy contaminated surface, an octa-flower surface 1 with size 124 × 123 × 90, showed in
the first row of Figure. 5.1, then we test the proposed Algorithm 2 in two sets of parameters.
First, we fix η = 10 and set r = 1, 10, 50, 100 to test the effect of the parameter r. The error
and energy evolution curves via iteration numbers are showed in the first two pictures on the
second row of Figure. 5.1, and the corresponding surface restoration results are showed in
the third row of Figure. 5.1. From our results, it is clear to see that different choices of r will
provide similar surface restoration results, while the algorithm may have different rate of con-
vergence in term of different values of r. Second, we fix r = 10 and set η = 1, 10, 50, 100
to test the effect of the parameter η. According to the error, energy evolution curves and
restoration results showed in Figure. 5.1, we can observe that the scale of η will control the
smoothness of the restoration results. The smaller η will provide the smoother output surface.
A suitable choose of η will provide a ridge and corner preserving restoration result, which is
compatible with the analysis discussed in Section 2.3. According the energy evolution curves
showed in Figure. 5.1, it can also be observed that the proposed algorithm does provide an
efficient approach to solve the proposed fourth order model. Although different combinations
of the parameters are chosen, only small numbers of iterations are needed such that the aux-
iliary variable Q converges to H(Q), the energy converges to steady states and satisfactory
results are produced in all experiments.

In the second experiment, we compare our method with the mean curvature flow method [40]
and nonlocal mean method [15]. To test the restoration results for all three methods, we syn-
thesize noise contaminated surfaces. Given a clean surfaceMc with signed distance function

1The octa-flower surface and other three synthetic surfaces are obtained from the public available database
SHARP3D
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FIG. 5.1. Parameters dependence of the proposed model. The first row:the clean surface and the input surface
contaminated by Gaussian white noise (σ = 0.1); The second row: numerical error of Lagrangian multipliers
log(‖Q−H(φ)‖2W ) and energy evolution curves via iteration numbers; The third row: surface restoration results
by fixing η = 10 and choosing r = 1, 10, 50, 100 respectively; The fourth row: surface restoration results by fixing
r = 10 and choosing η = 1, 10, 50, 100 respectively.

representation φMc , Gaussian white noise is added to φMc to have the input noisy surface φ0.
The output φk from all three methods will not only smooth outMn as the zero level set of φ0,
but also smooth out each layer of φ0 nearMn. Thus, we measure the difference between φk

and φMc
in a narrow band ofMc to have a quantitative description of the restoration result.

In other words, we propose the following signal-to-noise ratio (SNR):

SNRin = 10 log10

∫
Dε φ

2
Mc

dx∫
Dε(φMc

− φ0)2dx
, SNRout = 10 log10

∫
Dε φ

2
Mc

dx∫
Dε(φMc

− φk)2dx
(5.2)

where Dε is the narrow band ofMc within 2× grid width.
Four clean surfaces used in our experiment are plotted in Figure 5.2. We contaminate

these four surfaces with two scales, σ = 0.1 and σ = 0.15, of Gaussian noise as the input
surfaces illustrated in the first column of Figure 5.3 and Figure 5.4. For all three methods,
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sharp sphere
size 106× 113× 113

twirl
size 128× 147× 111

block
size 106× 106× 197

octa flower
size 124× 123× 90

FIG. 5.2. The synthetic clean surface data set.

parameters are tuned to produce the best results we can have. We choose η = 10, r = 5, ε =
10−8 in our method and set time step dt = 0.0001 in mean curvature flow method. The
code of a nonlocal mean method is obtained from the authors in [15], where computation is
conducted in a surface narrow band to save computation time and the patch size is chosen
to be 11 × 11 × 11. We would like to point out that a larger patch size in nonlocal mean
method will slightly improve the restoration results, but the computation will be extremely
time consuming. Thus we only report results using patch size as 11×11×11. We choose the
weight for similarity function as c = 0.85 in the case of σ = 0.1 and c = 1 in the case of σ =
0.15. Figure 5.3 and Figure 5.4 report the surface restoration results obtained from these three
methods. The quantitative comparison is listed in the Table 5.1. As predicted by the theory,
mean curvature flow will smear ridges and sharp corners, which can not provide satisfactory
surface restoration results. The nonlocal mean method will provide much better behavior for
preserving ridges and sharp corners. However, the processing to compute nonlocal weight is
time consuming even though it is only conducted in the narrow band. Our proposed method
can simultaneously have computation efficiency and properties of preserving ridges and sharp
corners. In addition, we would like to point out that the efficiency of proposed algorithm can
be further improved by processing on the surface narrow band.

σ = 0.1 SNRin
The Proposed Method (η = 10, r = 5) MCF (dt = 0.0001) NL (c = 0.85)
iterations time(s) SNRout iterations time(s) SNRout iterations time(s) SNRout

sharp sphere 7.23 32 29.43 21.49 150 11.37 15.60 120 233.66 19.31
twirl 7.33 34 44.18 18.77 150 17.70 14.73 120 174.28 19.18
block 7.45 36 56.40 22.54 150 18.66 16.84 120 218.17 21.16

octa flower 10.78 29 21.74 21.01 150 11.69 16.58 120 105.43 19.32

σ = 0.15 SNRin
The Proposed Method (η = 10, r = 5) MCF (dt = 0.0001) NL (c = 1)
iterations time(s) SNRout iterations time(s) SNRout iterations time(s) SNRout

sharp sphere 3.74 30 26.89 20.57 150 12.03 12.49 200 244.08 16.35
twirl 3.82 33 46.08 18.13 150 18.08 10.22 200 190.12 15.72
block 3.94 34 50.60 21.74 150 20.14 12.95 200 241.22 18.11

octa flower 7.25 29 21.45 20.56 150 11.71 15.05 200 112.83 16.27
TABLE 5.1

Comparison of proposed method with the mean curvature flow (MCF) method and the nonlocal mean method (NL)

Finally, we illustrate a potential application of our method to medical image processing.
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Noisy surfaces Our method Nonlocal mean Mean curvature flow

FIG. 5.3. Surface restoration comparison. The first column: input surfaces contaminated by Gaussian white
noise (σ = 0.1). The second column: results obtained by the proposed method. The third column: results obtained
by nonlocal mean method. The fouth column: results obtained by the mean curvature flow method.

3D surfaces collected from CT, MR, or 3D ultrasound devices are usually contaminated by
certain noise due to local measurement error, which will further affect the surface analysis
afterwards. In addition, these medical data have crucial features represented as ridges and
sharp corners which need to be preserved. In Figure 5.5, we demonstrate our method on sur-
face restorations in medical imaging. From the second row of Figure 5.5, it is clear to see that
our method provide promising results with ridges and sharp corners preserving properties.

6. Conclusion. In this work, we propose a ridges and sharp corner preserving model
for 3D surface restoration based on vectorial total variation for the derivatives of the surface
implicit representation functions. Moreover, an efficient numerical algorithm is proposed
to solve the minimization problem based on augmented Lagrangian method. Meanwhile, we
theoretically prove the convergence of the proposed algorithm. To demonstrate the robustness
and efficiency of the proposed method, we compare our method with a mean curvature flow
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Noisy surfaces Our method Nonlocal mean Mean curvature flow

FIG. 5.4. Surface restoration comparison. The first column: surfaces contaminated by Gaussian white noise
(σ = 0.15). The second column: results obtained by the proposed method. The third column: results obtained by
nonlocal mean method. The fouth column: results obtained by the mean curvature flow method.

method and a nonlocal mean method. In addition, we also illustrate possible applications of
the proposed method to surface restoration in medical imaging.
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Hippocampus Putamen Gray Matter White Matter

FIG. 5.5. The first row: noisy surfaces. The second row: results obtained by the proposed method.
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