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Abstract

The level set method [31] is a popular technique for tracking moving interfaces
in several disciplines including computer vision and fluid dynamics. However, de-
spite its high flexibility, the original level set method is limited by two important
numerical issues. Firstly, the level set method does not implicitly preserve the
level set function as a distance function, which is necessary to estimate accurately
geometric features s.a. the curvature or the contour normal. Secondly, the level
set algorithm is slow because the time step is limited by the standard CFL con-
dition, which is also essential to the numerical stability of the iterative scheme.
Recent advances with graph cut methods [4, 3] and continuous convex relaxation
methods [7, 5, 16] provide powerful alternatives to the level set method for image
processing problems because they are fast, accurate and guaranteed to find the
global minimizer independently to the initialization. These recent techniques use
binary functions to represent the contour rather than distance functions, which are
usually considered for the level set method. However, the binary function cannot
provide the distance information, which can be essential for some applications s.a.
the surface reconstruction problem from scattered points and the cortex segmen-
tation problem in medical imaging. In this paper, we propose a fast algorithm
to preserve distance functions in level set methods. Our algorithm is inspired by
recent efficient ℓ1 optimization techniques, which will provide an efficient and easy
to implement algorithm. It is interesting to note that our algorithm is not limited
by the CFL condition and it naturally preserves the level set function as a distance
function during the evolution, which avoids the classical re-distancing problem in
level set methods. We apply the proposed algorithm to carry out image segmen-
tation, where our methods proves to be 5 to 6 times faster than standard distance
preserving level set techniques. We also present two applications where preserving
a distance function is essential. Nonetheless, our method stays generic and can be
applied to any level set methods that require the distance information.
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1 Introduction

In the last twenty years, the level set method (LSM) of Osher and Sethian [31] has
become a popular numerical technique for tracking moving interfaces in computational
geometry, fluid mechanics, computer graphics, computer vision and material sciences.
The main reasons of its success are the high flexibility of this method to adapt to different
problems, the ability to deal with changes of topology (contour breaking and merging)
without any extra functions and the guarantee of the existence of solutions in the class of
viscosity partial differential equations (PDEs). Moreover, extensive numerical algorithms
based on Hamilton-Jacobi equations have been developed, accurately handling shocks
and providing stable numerical schemas.

The key idea of the LSM is to implicitly represent a contour or interface as the
zero level set of a higher dimensional function, called the level set function (LSF), and
formulate the evolution of the contour through the evolution of the level set function. For
closed contours, signed distance functions (SDFs) were originally adopted to represent
level set functions because they directly provide stability and accuracy to the LSM [29, 30].
In the last years, however, new approaches have proposed to use binary functions, rather
than distance functions, to represent the contour. This change of representation allows
to use fast and convex optimization techniques with graph cut methods [4, 3] and convex
relaxation methods [7, 5, 16] to provide powerful alternatives to the distance preserving
level set method. Nevertheless, distance functions are still essential in several applications,
e.g. medical image segmentation, surface reconstruction or special effects in computer
graphics. For this reason, it is important to develop a fast and accurate algorithm for
distance preserving level set methods.

A major issue of distance preserving level set methods is the limited speed of the
existing algorithms, which are based on Hamilton-Jacobi equations and upwind schemes
[31, 30]. Two main issues handicap these iterative methods. First, the speed of the algo-
rithms is limited by the CFL condition [9], which is a necessary condition to guarantee
the stability of PDE-based iterative schemes. Secondly, the level set energy is hard to
optimize because of the ℓ1 - based total variation (TV) term, which is not differentiable
and is usually regularized. However, the regularization significantly slows down the mini-
mization process and does not provide an exact solution to the problem. In our work, we
will overcome these speed limitations using recent efficient techniques in ℓ1 optimization.

Another major issue of the LSM, pointed out by Gomes and Faugeras in [18], is
a contradiction between the theory and the implementation when LSF are represented
by SDF. Indeed, the LSM does not intrinsically preserve the SDF during the contour
propagation because SDFs are not solutions of the Hamilton-Jacobi equations associated
to the LSM. Additional techniques are then necessary to preserve the LSF as an SDF
during contour evolution. Unfortunately, no fully satisfying methods have been proposed
so far. The two most common approaches that have been suggested to fix this problem are
either re-distancing regularly the LSF as an SDF (this procedure is called re-distancing or
re-initialization), or constraining the LSF to remain an SDF during the contour evolution.

Re-distancing is the most common approach. It consists in stopping the evolution of
the LSF periodically and re-initializing it as an SDF while preserving the zero level set.
This approach introduces the questions of when and how to re-initialize the LSF. It is hard
to say when the re-distancing must be applied as there is a trade-off between speed (each
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re-distancing task takes time) and accuracy (the LSM will develop irregularities during
the evolution without re-distancing). Similarly, the re-initialization can be performed
with different LSM techniques, using PDEs [36] or the fast marching algorithm [1, 29].
The main issue with the re-distancing approach is the difficulty to preserve exactly the
location of the zero level set during the re-distancing process, which might shift the
moving interface to undesired positions.

The second approach aims at constraining the LSF to stay an SDF during the contour
evolution, avoiding the previous re-distancing procedure altogether. Gomes and Faugeras
introduced in [18] a new level set formulation to restrict the LSF to an SDF. The new
formulation consists of three coupled PDEs, which makes the analysis of the existence
of a solution and the numerical implementation more difficult than the standard LSM.
More recently, Li et al. [24, 25] proposed to add a penalty term in the level set energy to
constrain the LSF to be close to an SDF. They also developed a new algorithm, simpler
and more efficient than the conventional LSM method. However, the time step of the
algorithm is still restricted by the CFL condition and the SDF property is only encouraged
but not enforced. We will see that our method overcomes all of these limitations and
provides an efficient way to constrain exactly the LSF to be an SDF.

The level set method was first introduced in computer vision to carry out image seg-
mentation [6, 21, 8] and then extended to other tasks as stereo reconstruction [11], object
tracking [32], and object recognition [23]. In this paper, we focus on image segmentation
and surface reconstruction, but the proposed method can be easily extended to other
problems. In image segmentation, the level set method re-formulates the parametric ac-
tive contour into a non-parametric energy minimization problem (i.e. independent of the
contour discretization). The active contour is embedded as the zero level set of the LSF,
which moves according to the active contour evolution equation and drives its zero level
set to the edges of the desired object. The level set formulation easily includes edge-,
region- and shape-based terms in the image segmentation criteria, proving the high flex-
ibility of the LSM to adapt to different tasks and justifying its extensive use in the field.
Similar segmentation models have been applied to the problem of reconstructing a surface
form unorganized data points [41]. In that case, the LSM allows us to obtain an implicit
representation of the surface by an SDF, avoiding complex 3D parametrization methods
which require a prior knowledge of the topology of the surface, and providing an easy
and reliable way to directly estimate surface normals and curvature from the level set
function.

Here, we propose a fast and accurate algorithm for distance preserving level set meth-
ods. We constrain the LSF to remain an SDF via a constrained minimization problem.
The constrained minimization problem is hard to solve directly, so we propose to split
the original hard problem into sub-optimization problems which are easier to solve, and
combine them together using an augmented Lagrangian approach. This idea is borrowed
from the split-Bregman method [17] (and more generally from the alternating direction
methods of multipliers [12, 13, 26, 2, 35]), which is an efficient ℓ1 minimization method
originally developed to solve the compressed sensing problem. The proposed algorithm
holds several important properties. Firstly, it is fast because it is not limited by the
CFL condition, leading to a method 5 to 6 times faster than most distance preserving
LSM algorithms for the image segmentation problem. This improvement is due to the
splitting strategy and the reformulation of a constraint minimization, and allows us to
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deal with the non-differentiability of the TV norm and go beyond the CFL time step
restriction. Secondly, our algorithm preserves the LSM as an SDF, avoiding the classi-
cal re-distancing problem and providing desirable properties for some applications. For
example, this makes an important difference in surface reconstruction, where surface
normals can be fast and reliably estimated during the surface evolution instead of be-
ing required as input data s.a. [34, 22], and in medical image segmentation, where the
distance information can be exploited to include topology restrictions into the problem.
Finally, our algorithm is easy to implement because the iterative scheme is based on
standard minimization problems.

The rest of the paper is organized as follows. In Section 2 we review very briefly
the level set method applied to image segmentation and surface reconstruction. We
introduce our algorithm to solve efficiently the level set method in Sections 3 and 4.
Section 5 presents the results and Section 6 draws the conclusions.

2 Level Set Method for Image Segmentation and Sur-

face Reconstruction

Level set method can be applied to perform image segmentation using the active contour
method. In this context, the segmentation problem is defined as the following energy
minimization problem w.r.t. a contour C:

min
C⊂Ω

∫
C

wb(s)ds+

∫
Cin

win
r (x)dx+

∫
Cout

wout
r (x)dx, (1)

where Ω is the image domain, s is the arc-length parametrization and the first term
weights the length of C by an edge detector function wb, such as in [6, 21]. In the other
terms, Cin, Cout designate the regions inside and outside the contour C and win

r , wout
r are

region-based terms, such as the ones proposed in [8]. We adopt this minimization model
for image segmentation, as it represents a large class of active contour models published
in the literature.

Actually, similar models have also been used to reconstruct smooth surfaces from
unorganized data points. Given a set of (noisy) points {xi}1≤i≤N lying close to the
unknown surface, a smooth estimate of the surface S can be reconstructed by minimizing
the area energy weighted by the distance to the set of points {xi}1≤i≤N , i.e. wb(x) =
d{xi}(x) [20, 41]. Inspired by [22, 39], we propose a model which also includes a region-
based term win

r to improve the performance with sparse data sets. We adapt the model
proposed by Lempitsky and Boykov [22], which was designed to align the normals of
the reconstructed surface to the pre-computed orientations {ni}1≤i≤N of the data points.
Based on this surface information, a semi-dense vector field of the surface normal n̂ can
be estimated everywhere in space and the unknown surface can thus be reconstructed by
iteratively maximizing the alignment of the reconstructed surface normal N to n̂. Making
use of the divergence theorem, the function win

r can be identified as follows:

argmax
C⊂Ω

∫
C

n̂ · Nds = argmin
C⊂Ω

∫
Cin

− div n̂dx, (2)
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which corresponds to defining win
r = − div n̂. The flux of the semi-dense normal field at

the point x is estimated with the formula:

div n̂ (x) =
∑

1≤i≤N

1√
2πσ

e−
|x−xi|

2

2σ2 ⟨x− xi, ni⟩, (3)

where x−xi denotes the vector centred at xi and pointing at x and ni is the surface normal
estimated at xi. The proposed distance preserving LSM can estimate the surface normal
during the reconstruction process: ni = ∇ϕ (xi), where ϕ is the SDF. To sum up, the
proposed functions in (1) for the surface reconstruction problem are: wb(x) = d{xi}(x),
win

r = − div n̂, and wout
r = 0. Unlike the method of Lempitsky and Boykov, the proposed

surface reconstruction algorithm does not need to know a priori the normal of the surface
at the data points.

The level set method can be applied to solve (1) in general (and specifically the
image segmentation problem and the surface reconstruction problem), by re-writing the
minimization in terms of a level set function ϕ : Ω → R as follows:

min
ϕ

∫
Ω

wb(x)|∇H(ϕ)|+ wr(x)H(ϕ) s.t. |∇ϕ| = 1, (4)

where the curve in R2 (or surface in R3) C is represented by the zero level set of ϕ, H is
the Heaviside function, and the constraint |∇ϕ| = 1 guarantees the level set function to
be a signed distance function [36].

3 An Efficient Algorithm for Level Set Method pre-

serving Signed Distance Function

In this section, we introduce an efficient algorithm to solve the level set minimization
problem (4). The main idea is to split the original hard problem (4) into sub-optimization
problems which are well-known and easy to solve, and combine them together using an
augmented Lagrangian. This idea is borrowed from the split-Bregman method [17], which
is an efficient ℓ1 optimization method recently introduced in image processing to solve
the compressed sensing problem.

Let us consider the following constrained minimization problem, which is equivalent
to the original LSM problem (4):

min
ϕ,φ,u,q,p

∫
Ω

wb(x)|q|+ wr(x)u s.t.

{u=H(φ)
φ=ϕ
q=∇u
p=∇ϕ
|p|=1

(5)

where we introduce functions φ(x), u(x) ∈ R, q(x),p(x) ∈ Rn (boldface letters are used
to denote vector functions and n = 2 for 2D images, and n = 3 for 3D images). The
proposed splitting approach makes the original problem (4) easier to solve because (5)
can better handle the non-differentiability and non-linearity of (4). Indeed, it is known
from [17, 38] that the minimization of |∇ϕ| can be carried out efficiently by decoupling
the ℓ1-norm |.| and the gradient operator ∇. The term |∇ϕ| is thus replaced by |p| and
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p = ∇ϕ, and the term |∇H(ϕ)| can be changed into |q|, q = ∇u, u = H(φ) and φ = ϕ,
where φ is introduced to handle the non-linear term H(ϕ).

Next, we want to reformulate this constrained minimization problem as an uncon-
strained optimization task. This can be done with an augmented Lagrangian approach [13],
which translates the constraints into pairs of Lagrangian multiplier and penalty terms.
Let us define the augmented Lagrangian energy associated to (5):

L (ϕ, φ, u, q,p,Λ) =

∫
Ω

wb|q|+ wru

+ λ1(φ− ϕ) +
r1
2
(φ− ϕ)2

+ λ2(u−H (φ)) +
r2
2
(u−H(φ))2

+ λ3 · (q −∇u) +
r3
2
|q −∇u|2

+ λ4 · (p−∇ϕ) +
r4
2
|p−∇ϕ|2 s.t. |p| = 1 (6)

where Λ = (λ1, λ2,λ3,λ4) are the Lagrangian functions, i.e. λ1(x), λ2(x) ∈ R, λ3(x), λ4(x) ∈ Rn,
and r1, . . . , r4 are positive constants. The constraint minimization problem (5) reduces
to finding the saddle-point of the augmented Lagrangian energy L [13]. The solution to
the saddle point problem (6) can be approximated by the iterative Algorithm 1.

Algorithm 1 Augmented Lagrangian method for distance preserving level set methods

1: Initialize ϕ, φ, u, q,p,Λ
2: Find a minimizer of L with respect to variables (ϕ, φ, u, q,p) with fixed Lagrange

multipliers Λk:

(ϕk, φk, uk, qk,pk) = argmin
ϕ,φ,u,q,p

L
(
ϕ, φ, u, q,p,Λk−1

)
s.t. |p| = 1 (7)

3: Update Lagrange multipliers

λk
1 =λk−1

1 + r1(φ
k − ϕk) (8)

λk
2 =λk−1

2 + r2(u
k −H

(
φk

)
) (9)

λ3
k =λ3

k−1 + r3(q
k −∇uk) (10)

λ4
k =λ4

k−1 + r4(p
k −∇ϕk) (11)

4: Stop the iterative process when ∥ϕk − ϕk−1∥2 < ϵ.

We initialize ϕ0, φ0 with the signed distance function of the initial contour, u0 =
H(ϕ0), q0 = ∇u0, p0 = ∇ϕ0 and the Lagrange multipliers Λ0 = 0. At each itera-
tion, an alternating minimization method is used to find an approximate minimizer of
L (ϕ, φ, u, q, p, Λk−1) considering the Lagrange multipliers Λk−1 fixed. Then the
Lagrange multipliers are updated with the residual associated to each constraint and
the process is repeated until the change of the level set function ϕ falls below a certain
threshold ϵ, which happens at convergence.
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In general, it is difficult to find the exact minimizer of the minimization problem (7)
because the energy (6) is not convex (there is no guarantee of convergence). However,
experiments show that a good approximation can be found by the alternating direction
method of multipliers [13]. An approximate solution is thus computed by iteratively
alternating the minimization of L(ϕ, φ, u, q,p,Λk−1) w.r.t. each variable while considering
the others fixed. This leads to Algorithm 2.

The next step is to determine the solutions of the five sub-minimization problems (12),(13),(14),(15)
and (16), which can actually be computed efficiently.

Algorithm 2 Alternate minimizations for an approximate solution of (7)

1: Initialize ϕ̃0 = ϕk−1, φ̃0 = φk−1, ũ0 = uk−1, q̃0 = qk−1, p̃0 = pk−1.
2: For l = 1, ..., L and and fixed Lagrange multipliers Λk, solve the following sub-

problems alternatively:

ϕ̃l =argmin
ϕ

L(ϕ, φ̃l−1, ũl−1, q̃l−1, p̃l−1,Λl−1) (12)

φ̃l =argmin
φ

L(ϕ̃l, φ, ũl−1, q̃l−1, p̃l−1,Λl−1) (13)

ũl =argmin
u

L(ϕ̃l, φ̃l, u, q̃l−1, p̃l−1,Λl−1) (14)

q̃l =argmin
q

L(ϕ̃l, φ̃l, ũl, q, p̃l−1,Λl−1) (15)

p̃l =argmin
p

L(ϕ̃l, φ̃l, ũl, q̃l,p,Λl−1) s.t. |p| = 1 (16)

3: Set (ϕk, φk, uk, qk,pk) = (ϕ̃L, φ̃L, ũL, q̃L, p̃L).

4 Sub-Minimization Problems

In this Section, we simplify notation by omitting the super-index and the tilde symbol in
the sub-minimization problems (12)-(16).

4.1 Sub-Minimization Problems w.r.t. ϕ and u

The sub-minimization problems (12) and (14) can be written as follows:

min
ϕ

∫
Ω

r1
2

(
ϕ−

(
φ+

λ1

r1

))2

+
r4
2

∣∣∣∇ϕ−
(
p+

λ4

r4

)∣∣∣2 (17)

min
u

∫
Ω

wru+
r2
2

(
u−

(
H(φ)− λ2

r2

))2

+
r3
2

∣∣∣∇u−
(
q +

λ3

r3

)∣∣∣2 (18)

The Euler-Lagrange equation of (17) is:

(−r4∆+ r1)ϕ = −r4 div p+
λ4

r4
+ r1

(
φ+

λ1

r1

)
(19)
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which can be solved efficiently by the fast Fourier transform (FFT) as proposed in [38, 37].
Let us denote by f(i, j) a scalar 2D function discretized at the pixel location (i, j) in
the discrete image domain Ω = [1, Nx] × [1, Ny]. We also define the identity operator
If(i, j) = f(i, j) and shifting operators:

S±
x f (i, j) = f (i± 1, j) S±

y f (i, j) = f (i, j ± 1) , (20)

and write the discretization of (19) as:[
r4

(
S−
x − 2I + S+

x + S−
y − 2I + S+

y

)
− r1

]
ϕ(i, j) = h(i, j), (21)

whose right hand side is discretized as

h(i, j) = −r4(I − S−
x )px(i, j)− r4(I − S−

y )py(i, j)+

− (I − S−
x )λ4x(i, j)− (I − S−

y )λ4y(i, j) + r1φ(i, j) + λ1(i, j). (22)

Then we apply the discrete Fourier transform F , taking into account that the shifting
operators in frequency domain correspond to:

FS±
1 f (yi, yj) = e±ıziFf (yi, yj) zi =

2π

N
yi (23)

FS±
2 f (yi, yj) = e±ızjFf (yi, yj) zj =

2π

N
yj. (24)

where (yi, yj) are the discrete coordinates in the frequency domain. Assuming periodic
boundary conditions, expression (21) in Fourier domain now equals:

[2r4 (cos (zi) + cos (zj)− 2)− r1]︸ ︷︷ ︸
G

Fϕ (yi, yj) = Fh (yi, yj) , (25)

and provides us with a closed-form solution ϕ⋆ of (17):

ϕ⋆ = F−1( Fh/G ) (26)

which we can efficiently compute by FFT. It is now straightforward to apply the same
procedure to compute the minimizer u⋆ of (18), whose Euler-Lagrange equation is:

(−r3∆+ r2)u = −wr − r3 div q +
λ3

r3
+ r2

(
H(φ)− λ2

r2

)
. (27)

4.2 Sub-Minimization Problem w.r.t. φ

The sub-minimization problem (13) can be written as follows:

min
φ

∫
Ω

r1
2

(
φ−

(
ϕ− λ1

r1

))2

+
r2
2

(
H(φ)−

(
u+

λ2

r2

))2

(28)

Let us call z = ϕ− λ1

r1
and v = u+ λ2

r2
and observe that the minimization is decoupled for

each pixel. Let us define the function we want to minimize as

F (φ) =
r1
2
(φ− z)2 +

r2
2
(Hε(φ)− v)2. (29)
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Observe that for practical implementations, the minimization problem (29) involves a
smooth approximation Hε of the Heaviside function. We propose two steps to find quickly
a minimizer of (29).
Step 1: Find a solution φ0 of (29) for ϵ = 0 (i.e. for the distributional/non-smooth
Heaviside function). A closed-form solution exists for this problem and can be computed
as follows. The first term of (29) is minimized for φ0 = z. As the distributional Heaviside
function can take only values 0 or 1, the second term of (29) is minimized for φ0 < 0
when v < 1

2
and φ0 ≥ 0 when v ≥ 1

2
. This means that both terms are minimized for

φ0 = z if v < 1
2
and z < 0 or v ≥ 1

2
and z ≥ 0. Otherwise we must choose to minimize

the greater of these terms and set φ0 = 0 if E (0) < E (z) and φ0 = z otherwise.
Step 2: Find a solution φ0 of (29) for ϵ > 0 using the standard Newton’s method with
φ0 as initialization. The iterative Newton’s method for finding the minimizer of (29) is
as follows:

φm+1 = φm − F ′ (φm)

F ′′ (φm)
= φm − r1 (φ

m − z) + r2 (Hε(φ
m)− v) δε (φ

m)

r1 + r2 (Hε(φm)− v) δ′ε (φ
m) + r2δ2ε (φ

m)
, (30)

with φm=0 = φ0,

where δε and δ′ε are smooth approximations of the Dirac function and its derivative.
Finally, we have observed that two iterations are enough to find a good approximation
of the minimizer of (28), leading to a technique almost as fast as a closed-form solution.

4.3 Sub-Minimization Problem w.r.t. q

The sub-minimization problem (15) can be written as follows:

min
q

∫
Ω

wb|q|+
r3
2

∣∣∣q −
(
∇u− λ3

r3

)∣∣∣2 (31)

Let us call z = ∇u − λ3

r3
and observe that the minimization (31) is decoupled for each

pixel. The solution q⋆ of (31) is given by soft-thresholding with the shrinkage operator
[10]:

q⋆ = max
{
|z| − wb

r3
, 0
} z

|z|
(32)

4.4 Sub-Minimization Problem w.r.t. p

The sub-minimization problem (16) can be written as follows:

min
p

∫
Ω

r4
2

∣∣∣p−
(
∇ϕ− λ4

r4

)∣∣∣2 s.t. |p| = 1 (33)

Let us call z = ∇ϕ − λ4

r4
and observe again that the minimization (33) is decoupled for

each pixel and is equivalent to the minimization of the following function on the plane
F (p) = r4

2
|p− z|2 = r4

2
(|p|2 − |z|2 − 2p · z).

We can introduce the constraint in |p| = 1 in F by writing it F (p) = r4
2
(1− |z|2 − 2p · z).

It is obvious that the minimizer of F is of the form p⋆ = z
|z| , i.e. when vectors z and p
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have the same orientation, the scalar product p ·z reaches a maximum and the constraint
|p| = 1 is verified. The minimizer p⋆ of (33) is then given by:

p⋆ =
r4

|r4∇ϕ− λ4|
∇ϕ− 1

|r4∇ϕ− λ4|
λ4 (34)

5 Experiments and discussions

Sections 5.1 and 5.2 present the results in image segmentation and surface reconstruction
obtained with the proposed method. Section 5.3 compares our algorithm with existing
distance preserving LSMs.

5.1 Image segmentation and surface reconstruction

We apply Algorithm 2 for image segmentation by defining the edge and region terms
proposed in [6, 8], which have been extended to handle both gray level and color images.
Figure 1 shows the results obtained for different images from the Berkeley1, Weizmann2

and GrabCut3 databases. The method behaves as expected, providing the same results as
redistancing or penalty methods in terms of final segmentation, but with a considerable
speed-up in time.

We also use the proposed model to successfully reconstruct several surfaces from the
Stanford dataset4. We initialize the method with a sphere containing all the data points
and recompute the region term win

r = − div n̂ every 5 iterations as described in Section
2. Unlike [22, 39], we do not need to estimate a priori the surface normal at the data
points, as the surface normal at the points is directly estimated from the current value of
the LSF. Finally, the process is sped up with a standard multi-resolution approach, see
Figure 2. The final reconstructed surfaces are shown in figures 3 and 4.

5.2 Cortex segmentation with coupled surfaces

Cortex segmentation [19] is a problem that requires the distance information to be solved
successfully. Based on [18], we can develop a segmentation algorithm for the cortical
grey matter with two active contours coupled by their relative distance, which constrains
the thickness of the cerebral cortex. Graph cut methods and convex relaxation methods
cannot be directly applied to solve this problem because they use the binary function for
representing the contour and binary functions do not hold the distance information.

The cerebral cortex is the layer of the brain bounded by the outer and inner cortical
surfaces, that is, the outer interface between cerebral spinal fluid (CSF) and grey matter
and the inner interface between grey and white matter. Locating this cortical surface is
a first step in many brain imaging processes and measuring its thickness is a common
procedure in the diagnosis of many neurological diseases. We will see that the use of SDF
in the segmentation of cortical surface allows us to include information about the cortical

1http://www.eecs.berkeley.edu/vision
2http://www.wisdom.weizmann.ac.il/ vision
3http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/

grabcut.htm
4http://graphics.stanford.edu/data/3Dscanrep/
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Figure 1: Proposed level set-based segmentation method applied to natural images. For
each result, we show the segmentation result and the level set function. We plot the
initial zero level set in blue, the final contour in pink and the ±1,±2 level sets of the
final function in black.
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(a) grid 30x30x30, 2.4s (b) grid 60x60x60, 10.6s (c) grid 120x120x120, 50.5s

Figure 2: Reconstructed bunny at in the multiresolution approach. Linear interpolation
of the SDF obtained at lower resolutions was used as initial LSF for higher resolutions.

structure into the segmentation problem and, at the same time, provides an estimate of
the cortical thickness.

In order to extract the cortical layer we need to extract its two bounding surfaces C1

and C2. In theory, therefore, we could simply detect each of its bounding surfaces or
segment the regions defined by the white matter and the exterior parts of the brain by
independent minimization of the following functionals associated to C1 and C2

min
C1

E
(
wb, wr1, C

1
)
=

∫
C1

wb(s)ds+

∫
C1

in

wr1(x)dx, (35)

min
C2

E
(
wb, wr2, C

2
)
=

∫
C1

wb(s)ds+

∫
C2

in

wr2(x)dx, (36)

where wb is a boundary indicator and wr1, wr2 are region descriptors for the white matter
and the exterior areas of the brain. In practice, however, the boundaries between grey
and white matter are not clear, MRI images suffer from intensity nonuniformity and
the segmentations obtained with local region descriptors and boundary detectors do not
correctly locate the cortical layer.

To overcome these limitations, it has been proposed to incorporate a constraint on
the cortical structure to obtain a better segmentation. For simplicity, we modify the
model proposed in [40] to suit our variational formulation, but similar models for cortex
segmentation s.a. [28, 14] could also be adopted. We use a coupled surface model, where
a functional is minimized when C1 captures the CSF-grey matter interface, C2 the grey-
white matter boundary and the distance between them is close to the expected cortical
thickness d (about 3mm). The problem is written in terms of LSM, making use of the
SDF ϕ1 and ϕ2 to define the bounding surfaces C1 and C1. The functional to minimize
is then given by

min
ϕ1,ϕ2

E (wb, wr1, ϕ1) + E (wb, wr2, ϕ2) +
c

2

∫
Ω

(ϕ1 − ϕ2 − d)2 s.t.
{

|∇ϕ1|=1
|∇ϕ2|=1. (37)

The term (ϕ1 − ϕ2 − d)2 penalizes segmentations where the distance between the bound-
ing surfaces differs from the expected cortical thickness d. Indeed, when ϕ1 and ϕ2 are
the SDF defined by C1 and C2, the distance between the surfaces can be measured on the
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(a) grid 120x120x120, 50s (b) grid 240x240x240, 391s

(c) grid 200x160x120, 151s (d) grid 490x320x240, 1076s

(e) grid 200x160x120, 173s (f) grid 490x320x240, 1096s

Figure 3: Reconstructed surfaces from scattered data points at different resolutions.
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(a) grid 120x240x120, 173s (b) grid 240x480x240, 940s

(c) grid 60x60x120, 46s (d) grid 120x120x240, 315s

Figure 4: Reconstructed surfaces from scattered data points at different resolutions.
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(a) Initialization. (b) Coupled level
set functions.

(c) Non coupled
level set functions.

(d) Ground truth. (e) k-mean algo-
rithm.

Figure 5: Segmentation of grey-white matter interface on MRI images of human cortex.
The segmentation obtained with the proposed method 5(b) is clearly closer to the ground
truth 5(d) than the results obtained when no coupling terms is considered and the seg-
mentation is performed independently for the inner and outer cortical surfaces 5(c). The
segmentation 5(e) obtained with 3 phases of the k-mean algorithm fails because region
descriptors alone cannot segment grey-matter.

whole domain by ϕ1 − ϕ2 and, consequently, the term (ϕ1 − ϕ2 − d)2 drives the segmen-
tation to solutions where the distance between the surfaces is consistent with the cortical
structure.

The minimization technique presented in Section 4 can be directly applied to this
problem. The same splitting variables and Lagrange multipliers are now defined and
solved for each level set function and only the alternate minimization w.r.t ϕ1 and ϕ2 are
modified. The minimization problems w.r.t ϕ1 (the analogous applies to ϕ2) is now

min
ϕ1

∫
Ω

r1
2

(
ϕ1 −

(
φ1 +

λ1,1

r1

))2

+
c

2
(ϕ1 − ϕ2 − d)2 +

r4
2

∣∣∣∇ϕ1 −
(
p1 +

λ1,4

r4

)∣∣∣2, (38)

and its associated Euler-Lagrange equation

(−r4∆+ r1 + c)ϕ = −r4 div p+
λ4

r4
+ r1

(
φ+

λ1

r1

)
+ c (ϕ2 + d) (39)

can be solved efficiently by the fast Fourier transform as we have already explained in
Section 4.

We have applied this technique in an illustrative experiment to segment the cortical
layer in different slices of MRI images. Results are shown in Figure 5. We observe that
coupling the level set functions and constraining the expected cortical thickness in the
segmentation procedure produces a segmentation result (Fig. 5(b)) close to the ground
truth (Fig. 5(d)). The segmentation obtained without coupling (Fig. 5(c)) is not able to
find the fine structures.

5.3 Comparison to other distance preserving level set methods

In this section, we compare our proposed algorithm to the other techniques designed
to preserve the SDF in the LSM. To that purpose, we first remind the necessity of
preserving the LSF as an SDF in the proposed segmentation task with a simple example.
We initialize the LSF as an SDF and evolve it with the PDE techniques associated to
the LSM for the image segmentation problem (4). The level set function becomes too
steep around its zero level set after a few iterations, and stops its evolution because the
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(a) Initial contour
defined by level set
function.

(b) Initial level set function. (c) Final contour de-
fined by level set
function.

(d) Final level set function.

Figure 6: The level set function (ϕ = 0 in pink and ϕ = ±1,±2 in dark) develops
irregularities during the propagation and stops after a few iterations if the LSF is not
constrained to be (or at least close to) an SDF.

geometric features (i.e. curvature and normal) are not correctly estimated, see Figure 6.
Two common approaches have been introduced to overcome this problem, either by re-
distancing the LSF or by maintaining the SDF during the contour evolution (as proposed
in our method).

We will compare three different approaches in the case of image segmentation: our
method, the standard re-distancing approach and the method of Li et al. [24]. The re-
distancing process is carried out with the fast marching method [1], while the method of
Li et al. is defined by introducing a penalty term in the energy to constrain the LSF to
be close to an SDF as follows:∫

Ω

wb|∇H(ϕ)|+ wrH(ϕ) +
µ

2
(|∇ϕ| − 1)2. (40)

We refer the reader to [24, 25] for more details.
Our algorithm is presented on Figures 7(c)-7(g). Figures 7(h)-7(l) show the re-

distancing method [1]. Although the final segmentation and the final LSF provide the
desired results, the periodic re-initialization process produces a non-smooth minimization
of the level set energy (observe the jumps in the energy plots). Besides, we remind that
we do not know in general when to re-initialize the LSF as an SDF. In our experiments,
we applied the re-initialization every 5 iterations. We also remind that the re-distancing
process is not guaranteed to exactly preserve the location of the zero level set representing
the moving interface.

Next, we will consider the method of Li et al. [24], which is more related to our
method. Li et al. introduced the nice idea to constrain the LSF to be close to an SDF
via a penalty term. However, the penalty term does not constrain exactly the LSF to be
an SDF. Besides, the value of the penalty constant µ is a trade-off between speed and
accuracy. A small penalty value µ in (40) provides a fast algorithm but does not preserve
faithfully an SDF, leading to an LSF with small instabilities, while a large penalty value
µ provides a better SDF but slows down significantly the minimization process as the
number of iterations to reach the convergence state increases considerably. Figures 7(m)-
7(q) present the results with a small value µ and Figures 7(r)-7(v) show the results with
a large value µ.
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Our proposed method overcomes the limitations of Li et al., as our formulation con-
strains the LSF to be an SDF, and the proposed algorithm is fast because there is no
need to assign a large penalty constant to the penalty term. Indeed, Figures 7(q), 7(v)
and 7(g) show that our method keeps more faithfully the LSF as an SDF because the
penalty energy is lower, by at least one order of magnitude (the minimum of the penalty
energy is around 1 with our method, around 5 with Li et al.’s method with a large µ, and
around 100 with Li et al.’s method with a small µ). Our method is almost as accurate as
redistancing, when it comes to preserving the SDF, and overall faster than redistancing
and Li’s method, as shown in the next experiment with more detail. These advantages
are provided by the augmented Lagrangian approach, which can preserve accurately the
constraint while keeping a good minimization speed.

To quantify the improvement obtained with our method with respect to the other
distance preserving LSM techniques, we have used the previous algorithms to segment
72 images from the Berkeley, Weizmann and GrabCut databases. We compare on Figure
8 the different algorithms in terms of the quality of preserving the distance function and
speed. Figure 8(a) presents the values of the penalty terms at convergence for the 72
segmented images, showing that our method preserves the SDF almost as well as the
redistancing method and clearly better than Li et al.’s method. Indeed, the penalty
values for our method and the redistancing method are similar, while being an order of
magnitude smaller than Li et al.’s method. We also compare the time for each method
to converge, which is assumed when ||ϕ−ϕ∗||2

||ϕ∗||2 < ϵ. We observe in Figure 8(b) and Figure

8(c) that our algorithm is on average 5 to 6 times faster than the redistancing’s or Li’s
methods for all images. Finally, we present on Figure 8(d) a scatter plot of the penalty
obtained at convergence against the time required to converge, which shows that our
method presents a good trade-off between accuracy and speed.

6 Conclusion

We have introduced an efficient algorithm for distance preserving level set methods which
overcomes the main numerical limitations of the original level set method, i.e. the speed
and the preservation of the distance function. Although other fast optimization tech-
niques have been developed for the level set method [15, 7, 5, 16, 3], they cannot preserve
the level set function as a distance function, which is essential in some applications like
surface reconstruction, medical image segmentation or segmentation with higher order
geometric features [27, 33]. Finally, observe that the proposed algorithm can be sped up
significantly using a narrow-band approach and a parallelized version of the algorithm on
graphics processing units (GPUs).

Acknowledgment

We would like to thank Dr. Meritxell Bach Cuadra for kindly providing the MRI images,
and Dr. Li and his co-authors for making their code available. Virginia Estellers is sup-
ported by the Swiss SNF Grant 200021 130152. Dominique Zosso is supported by the
National Competence Center in Biomedical Imaging (NCCBI). Rongjie Lai’s work is sup-
ported by Zumberge Individual Award from USC’s James H. Zumberge Faculty Research

17



(a) Image. (b) Initial ϕ.

(c) Our method:
ϕ after 15 itera-
tions, 0.12s.

(d) Our method:
ϕ after 19 itera-
tions, 0.14s.

(e) Our method:
Final ϕ after 30
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65 iterations,
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algorithm [24]
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algorithm [24]
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1500 iterations,
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algorithm [24]
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ϕ after 8, 000
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(s) Li et al.’s
algorithm [24]
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ϕ after 10, 200
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algorithm [24]
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Final ϕ after
20, 000 itera-
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Figure 7: Level set method with our algorithm, with the re-distancing procedure [1], and
with Li et al.’s algorithm [24]. The first three columns represent the evolution of the LSF
at different times (the zero level set ϕ = 0 is in magenta and the iso level sets ϕ = ±1,±2
are in dark). The fourth column plots the energy

∫
Ω
wb|∇H(ϕ)|+wrH(ϕ)+ 1

2
(|∇ϕ| − 1)2

and the last column shows the evolution of the penalty energy
∫
(|∇ϕ| − 1)2 (closeness

measure between LSF and SDF) w.r.t. iterations. Our method provides the best trade-off
between speed and preservation of the distance function.
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(c) Speed improvement with our method
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(d) Quality against speed for the three
LSM

Figure 8: Comparison of quality of segmentation and speed for the different methods on
a dataset of 72 images. Quality of the LSF is measured in terms of the penalty term
at convergence 1

|Ω|

∫
(|∇ϕ| − 1)2 when the obtained contours are equivalent. Our method

preserves the SDF almost as well as redistancing, clearly better than Li et al.’s method
and is faster than any of them.
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