
Convergent Net Weighting Schemes in Hypergraph-based

Optimization ∗

Tony F. Chan1,2,3, Jason Cong1, Eric M. Radke2
1Univ. of California, Los Angeles Computer Science Dept.

2Univ. of California, Los Angeles Mathematics Dept.
3Hong Kong University of Science and Technology

tonyfchan@ust.hk, cong@cs.ucla.edu, radke@math.ucla.edu

October 3, 2011

1 Introduction

Approaches for solving the timing-driven placement problem have traditionally been either net-based
or path-based; see, e.g., [7] for an overview. Net weighting methods, which fall in the latter category,
have been a popular tool in analytical placers [16, 8, 9] for handling timing-driven placement. They
enjoy a number of advantages, including very low computational complexity, high flexibility, and ease
of implementation – weighting algorithms can be implemented within the framework of an existing
placement tool by a simple modification of the objective function. However, net weighting methods
suffer the disadvantage that they are largely ad-hoc; to date there has been very little theoretical
justification for their use [10]. As a result, a number of very different weighting schemes have been
proposed, of which some have been shown to be effective in reducing delay. Our goal is to distill the
essential properties of a robust and effective net weighting method.

Among commonly used schemes is the VPR weighting [11], a polynomial scheme defined on the edges
by

we =

(
1− σ(e)

Tp

)α
(1.1)

where σ(e) is the slack of edge e, Tp is the max path delay of the previous iterate, and α is a user-
defined constant. Another scheme is the PATH weighting [10], an exponential scheme that considers
all paths in a circuit efficiently:

we =
∑
π3e

α−
σ(π)
T (1.2)

where σ(π) is the slack of path π, T is a desired max path delay, and α is again a user-defined constant.
A third scheme is the APlace weighting [9], a piecewise polynomial scheme given by

we =
∑
π3e

f
(
delay(π), Tu

)
,

where f(d, Tu) =

{(
d
Tu

)α
− 1 if d > Tu

0 otherwise

(1.3)

∗This research is partially supported by the National Science Foundation under grants CCF-0430077 and CCF-
0528583.

1

Here Tu = (1− u)Tp, where u is a constant selected to be 0.1, 0.2, or 0.3, and α is also a user-defined
constant.

It has remained an open question under what conditions a net weighting scheme will converge to a
timing feasible placement, and what quality can be expected of such a placement. These are addressed
in the contributions of this work:

1. We develop a rigorous, generalized framework under which certain net weighting schemes are
guaranteed to converge to the optimum of the original timing-constrained placement problem,
provided the net weighted objective is minimized to a satisfactory degree. We then identify
particular net weighting schemes that adhere to this framework.

2. In the case we are able to find global minimizers of unconstrained net weighted objectives,
convergence is guaranteed to the global minimizer of the original timing-constrained problem.

3. However, most placers in practice cannot find a global minimizer and instead search for approxi-
mate local minimizers of the net weighted objectives. In this case, convergence is still guaranteed
to a local minimum candidate point of the original timing-constrained problem.

4. We implement convergent weighting schemes in the state-of-the-art placer mPL [3, 12]. When
we compare one scheme, a modification of the VPR weighting, to the original method, we find an
average 4% delay improvement on the MCNC benchmarks [18]. In every one of the benchmarks
tested, delay improvement was superior for the modified weighting.

2 Preliminaries

2.1 Definitions and Problem Formulation

We use the timing-driven placement problem as the most immediate application of this framework,
and refer to it throughout the remainder of this paper. However, the framework need not be restricted
to placement, as it can be considered in a general hypergraph-based optimization problem in which
net weights are applied to handle timing constraints.

Suppose we wish to minimize total wire length of a circuit by determining the pin locations x =
(x1, x2, . . . , xn), subject to the constraint that the total delay along any path should not exceed an
upper bound T > 0. The objective we wish to minimize is given by

G(x) =
∑

nets i∈N
hi(x)

where N is the (finite) set of all nets in the circuit, and hi(x) is a continuous, nonnegative function
measuring net i = {i1, i2, . . . , im} with the property

hi(x) = 0 =⇒ xi1 = xi2 = · · · = xim (2.1)

For hi, we could use for example half-perimeter wire length or its log-sum-exp approximation [15, 9],

hlse
i (x) = η log

m∑
j=1

exp(xij/η) + η log

m∑
j=1

exp(−xij/η)

for η > 0 small. The quadratic wire length approximation, as in e.g. [8], given by

hquad
i (x) =

m∑
j=1

m∑
k=j+1

hij ,ik |xij − xik |2

2

is also suitable in this framework.

To measure delay along each edge e in the circuit, we use the delay function de(x). (For each source-
sink pair of pins connected by a net, we consider an edge connecting them. We may also consider
internal delay of a node by considering an edge between an input and output pin of the node.) The
delay function de(x) measuring the delay of edge e = (s, t) is a function of the overall placement x,
and is continuous, nonnegative, convex, and has the property

xs = xt =⇒ de(x) = 0 (2.2)

For example, the Euclidean and quadratic delay functions, given by de(x) = γe|xt − xs|, and de(x) =
γe(xt − xs)2, respectively, are suitable in this framework. For simplicity we have assumed that the
placement area is one-dimensional. The analogous formulation for a two- or three-dimensional place-
ment follows in a straightforward manner. Note in particular that the Euclidean distance delay
function is suitable in higher dimensions, e.g. de(x,y) = γe

√
(xt − xs)2 + (yt − ys)2.

In the interest of brevity, we often use the edge delay vector d(x), which is defined simply as the
vector of delays de(x) along each edge e in the circuit, i.e. d(x) = [d1(x) . . . dM (x)]T , where M is
the number of edges in the circuit.

Further, we consider the slacks of the circuit, which are functions of the edge delay vector. For each
path π we have the path slack σπ:

σπ(d(x)) = T −
∑

edges e∈π

de(x) (2.3)

We require the path slack to be nonnegative in our problem formulation.

Also useful in this framework is the notion of edge slack. First define the arrival time of pin t, At(d(x)),
recursively as follows:

At(d(x)) =

{
0 if t ∈ PI
maxs∈fanin(t){As(d(x)) + d(s,t)(x)} otherwise

(2.4)

Similarly we define the required arrival time of pin s, Rs(d(x)), as follows:

Rs(d(x)) =

{
T if s ∈ PO
mint∈fanout(s){Rt(d(x))− d(s,t)(x)} otherwise

(2.5)

Then for the edge e = (s, t), we define its slack as:

σe(d(x)) = Rt(d(x))−As(d(x))− de(x) (2.6)

For any net i, we define its slack as σi(d(x)) = mine∈i σe(d(x)).

Now let P, PI , and PO denote the (finite) set of all pins, input pins, and output pins in the circuit,
respectively. All paths π = (π1, π2, . . . , πp) begin with an input pin π1 ∈ PI , end with an output pin
πp ∈ PO, and adjacent pins in the path are connected by an edge. We require that PI ∩ PO = ∅, i.e.
there are no single-pin paths. Let Π denote the set of all paths in the circuit, and let S = |Π|. Note
that we can also think of each net i and path π as a set and string of edges, respectively, and do so
when appropriate.

Now we are ready to present the problem to be solved. For simplicity, to prevent overlaps we tem-
porarily assume some pins are fixed; the more practical case involving density constraints is fully

3

compatible in this framework and discussed in section 3.2 below.

min
x

G(x)

subject to:

σπ(d(x)) ≥ 0 ∀ paths π ∈ Π

(some pins fixed)

(2.7)

Finally, one last piece of notation. Let Πe denote the set of all paths containing edge e, and let
Πi =

⋃
e∈i Πe denote the set of all paths passing through net i. Denote by F the set of feasible

placements x in the problem (2.7). Analogously, denote by F0 the set of placements strictly feasible
for all path timing constraints, i.e. the set of all x for which σπ(d(x)) > 0 for all paths π ∈ Π. We
make the mild assumption that F0 6= ∅.

2.2 Net Weighting Framework

Now let us introduce the sequence of weighted objective functions Nk(x) corresponding to the index
k = 1, 2, . . . as the following:

Nk(x) = G(x) + Ψk(x) (2.8)

where

Ψk(x) =
∑

nets i∈N
wki (d(x))hi(x)

Here for each net i, {wki }∞k=1 is a sequence of continuous, nonnegative weighting functions which we
require to satisfy the following property, termed the asymptotic slack control, for any fixed edge delay
vector d = d(x):

lim
k→∞

wki (d) =

0, if σi(d) > 0.

ci(d), if σi(d) = 0, where ci(d) is some finite constant.

∞, if σi(d) < 0.

(2.9) Asymptotic slack control.

Note that since Nk(x) =
∑

nets i∈N [1 + wki (x)]hi(x), implementing the new objective amounts to

simply multiplying each net measure hi(x) by the net weight 1 +wki (x) in the original objective G(x).

Please refer to Table A.1 in the Appendix for a full summary of notation used throughout this work.

2.3 Weighting Examples

We now identify particular weighting schemes that satisfy the sufficient criteria for convergence.

We can modify each of the VPR, PATH, and APlace weighting schemes, as defined in (1.1), (1.2), and
(1.3), respectively, to satisfy the asymptotic slack control. To do this, we create sequences of weighting
functions using an increasing weighting parameter αk in place of the ad-hoc, user-defined parameter α.
It should be noted that this change to satisfy the asymptotic slack control is necessary for convergence
to the optimum: without such a modification, specific circuit examples can be found for which the
original VPR, PATH, and APlace methods may fail to arrive at the optimum placement. Also, each
of these three weighting schemes have been originally defined as edge weighting schemes; we may
broaden their scope to net weighting schemes by summing over the edge weights, i.e. wi =

∑
e∈i we.

4

We modify the VPR weights to the following, named VPR-c:

wki (d(x)) =
∑
e∈i

(
1− σe(d(x))

T

)αk
(2.10)

Here {αk} is a sequence of parameters approaching infinity, and the max delay of the previous place-
ment, Tp, has been replaced with the desired max path delay T . This weighting scheme satisfies the
asymptotic slack control.

We use the following modified formulation of the PATH weighting, which we name PATH-c:

wki (d(x)) =
∑
π∈Πi

α
−σπ(d(x))

T

k (2.11)

Here, Πi is the set of all paths passing through net i, and {αk} is again a sequence of parameters
approaching infinity, with αk > 1 for each k. This weighting scheme satisfies the asymptotic slack
control. Figure 2.1 shows the shape of the PATH-c weighting function for increasing values of the net
weighting parameter.

Figure 2.1: PATH-c weighting for increasing net weighting parameter α.

For the APlace weighting, we additionally replace the desired timing improvement Tu with the fixed
desired max path delay T . The following modified weighting formulation is named APlace-c:

wki (d(x)) =
∑
π∈Πi

fαk
(
dπ(x)),

where fα(d) =

{(
d
T

)α − 1 if d > T

0 otherwise

(2.12)

Here, dπ(x) =
∑
e∈π de(x), and {αk} is a sequence of parameters approaching infinity. This weighting

scheme satisfies the asymptotic slack control.

5

Note that the authors of the PATH and APlace weightings have devised efficient methods to calculate
the weights, despite the exponential number paths through a net enumerated in their definitions. As
described in [10], the PATH algorithm computes all weights in time linear to the number of pins plus
the number of edges.

2.4 Preliminary Results

Before stating the main results of this paper, we present a necessary lemma and corollary to be used
later.

Lemma 2.1. For any edge delay vector d = [d1 . . . dM]T , σe(d) = minπ∈Πe{σπ(d)}.

Proof. First we show that σe(d) ≤ σπ(d) for any π ∈ Πe. Given e = (s1, t1), take any π =
(sp, . . . , s2, s1, t1, t2, . . . , tq) ∈ Πe. Then by the definitions above we have

σe(d) = Rt1(d)−As1(d)− d(s1,t1)

≤ Rt2(d)− d(t1,t2) −As2(d)− d(s2,s1) − d(s1,t1)

...

≤ Rtq (d)−Asp(d)−
∑
e0∈π

de0

= T −
∑
e0∈π

de0 = σπ(d)

(2.13)

Now, using a similar line of reasoning, given e = (s1, t1) we show there exists a path π∗ ∈ Πe such
that σe(d) = σπ∗(d). We do so by construction:

Start with p = 1, q = 1.

While sp /∈ PI
Choose sp+1 ∈ fanin(sp) such that Asp+1

(d) + d(sp+1,sp) = Asp(d).

Set p← p+ 1.

End while

While tq /∈ PO
Choose tq+1 ∈ fanout(tq) such that Rtq+1

(d)− d(tq,tq+1) = Rtq (d).

Set q ← q + 1.

End while

Set π∗ = (sp, . . . , s2, s1, t1, t2, . . . , tq).

It follows from construction of π∗ that each inequality in (2.13) becomes an equality, so that σe(d) =
σπ∗(d). Combining this with the above statement that σe(d) ≤ σπ(d) for any π ∈ Πe, we conclude
that σe(d) = minπ∈Πe{σπ(d)}.

Corollary 2.2. The condition

If σπ(d) > 0 ∀π ∈ Πi, then lim
k→∞

wki (d) = 0. (2.14a)

If σπ(d) ≥ 0 ∀π ∈ Πi, then lim
k→∞

wki (d) = ci(d), for some finite constant ci(d). (2.14b)

If σπ(d) < 0 for some π ∈ Πi, then lim
k→∞

wki (d) =∞. (2.14c)

is equivalent to the asymptotic slack control (2.9).

This corollary will be useful in the following discussion.

6

3 Global Convergence

3.1 Proof of Convergence

Given this framework and net weightings defined by (2.8), we can guarantee convergence of a subse-
quence of the global minimizers of the weighted objectives Nk(x) to a global minimizer of the original
constrained problem.

Theorem 3.1. Suppose that xk is a global minimizer of the weighted objective Nk(x) for each k =
1, 2, Then every limit point of the sequence {xk} is a global minimizer of the problem (2.7).

Proof. Let z be a global minimizer of the problem (2.7). First note that since each xk minimizes
Nk(x), we have that

Nk(xk) ≤ Nk(z), for all k

i.e.,
G(xk) + Ψk(xk) ≤ G(z) + Ψk(z), for all k (3.1)

Suppose x∗ is a limit point of {xk}, so there exists some subsequence K such that limk∈K xk = x∗.

We first show that x∗ ∈ F. We have by continuity that σπ(d(x∗)) = limk∈K σπ(d(xk)) for each path
π. Suppose that σπ(d(x∗)) < 0 for some π. Then there there exists some Z such that for all k ∈ K
with k > Z,

σπ(d(xk)) < −ε

for some ε > 0. By property (2.14) it follows that for each net i through which π passes,

wki (d(xk))→∞

Furthermore, since σπ(d(x∗)) < 0 it follows by definition that
∑
e∈π de(x

∗) > T > 0, so there exists

at least one ê = (ŝ, t̂) ∈ π such that dê(x
∗) > 0. Thus by (2.2), x∗ŝ 6= x∗

t̂
so that for the net î 3 ê, it

follows from (2.1) and nonnegativity that hî(x
∗) > 0. Then again by continuity we can choose k ∈ K

sufficiently large so that for some R > 0,

hî(x
k) > R

Thus we get:

Ψk(xk) =
∑

nets i∈N
wki (d(xk))hi(x

k)

≥ wk
î
(d(xk))hî(x

k)

≥ wk
î
(d(xk))R→∞ as k →∞

(3.2)

Now, since z ∈ F, it follows from (2.14) that limk∈K Ψk(z) = C for some constant C ≥ 0. This
fact, combined with (3.2), contradicts (3.1) for sufficiently large k ∈ K. We thus conclude that
σπ(d(x∗)) ≥ 0 for all paths π, so that x∗ ∈ F.

Now suppose that x∗ is not a global minimizer of (2.7), i.e. G(x∗) > G(z). We will show that this
implies that there exists a point y ∈ F0 such that G(x∗) > G(y).

If z ∈ F0, take y = z. Otherwise, choose any point x̃ ∈ F0, and assume G(x∗) ≤ G(x̃) (otherwise,
take y = x̃). Now let xβ = βx̃ + (1− β)z for β ∈ (0, 1). For each path π, we know that σπ(d(x̃)) > 0
and σπ(d(z)) ≥ 0. It follows by convexity of the delay function that the pathwise slack function is
concave; hence σπ(d(xβ)) ≥ β

(
σπ(d(x̃))

)
> 0, so that xβ ∈ F0 for all β ∈ (0, 1).

7

Now it follows by continuity that we can choose β = β1 sufficiently small so that G(xβ1) < G(x∗).
We have found our desired point y = xβ1

.

Now recall that by definition of xk,

G(xk) + Ψk(xk) ≤ G(y) + Ψk(y), for all k

We can take the limit of both sides of this inequality to obtain

G(x∗) + lim
k∈K

Ψk(xk) ≤ G(y)

and so by nonnegativity of each wki and hi,

G(x∗) ≤ G(y) (3.3)

which contradicts our previous assertion thatG(x∗) > G(y). We conclude that x∗ is a global minimizer
of (2.7).

3.2 Extension to Generalized Density Constraints

Up to this point, we have made the simplifying assumption that some pins are fixed and there are
no density or other additional constraints in the problem. We show in this section that the extension
of problem (2.7) to include more general equality constraints does not interfere with the convergence
of the net weighting scheme. The treatment of the density constraint as an equality constraint was
conducted effectively in [4]. We choose to include a penalty term on the weighted objective and use
standard techniques, as in e.g. [13], to show convergence.

Suppose we wish to solve the modified problem

min
x

G(x)

subject to:

σπ(d(x)) ≥ 0 ∀ paths π ∈ Π

Dr(x) = 0 ∀r = 1, . . . , R

(3.4)

where the constraints Dr(x) = 0 represent generalized density constraints, which could be used to
account for overlap, routability, temperature, and so on. Traditionally, analytical placers (e.g., [15])
divide the placement area into a grid of “bins” and discourage overlapping cells by bounding the
average density in each bin using an inequality constraint. In [4], filler “dummy” cells were introduced
to convert the inequality constraints into equality constraints and were shown to be effective.

Let us redefine the weighted objective (2.8) to include additional penalty terms for the generalized
density constraints:

N̂k(x) = G(x) + Ψk(x) +

R∑
r=1

pkr (Dr(x)) (3.5)

Here each pkr is a nonnegative function such that

lim
k→∞

pkr (D) =

{
0 if D = 0

∞ otherwise

Let D = {x : Dr(x) = 0, r = 1, . . . , R}. We make the assumptions that F0 ∩D 6= ∅, and that F ∩D
is in the closure of F0 ∩D. It follows readily that we can modify Theorem 3.1 to include the penalty
term:

8

Corollary 3.2. Suppose that xk is a global minimizer of the objective N̂k(x) for each k = 1, 2,
Then every limit point of the sequence {xk} is a global minimizer of the problem (3.4).

Proof. We use the proof of Theorem 3.1 with a few modifications. First, note that the limit point
x∗ ∈ D in addition to x∗ ∈ F as shown above, since otherwise

∑R
r=1 p

k
r

(
Dr(x

k)
)
→∞, contradicting

the fact that xk minimizes N̂k(x) for sufficiently large k ∈ K. Then, assuming that x∗ is not a global
minimum, we can find y ∈ F0 ∩D such that G(x∗) > G(y), following from the fact that we can select
points in F0 ∩D arbitrarily close to the global minimum z, and use it to obtain a contradiction as in
(3.3).

4 Local Convergence

In many cases, given highly non-convex density constraints, finding global minimizers of the weighted
objectives Nk is not practical. With this in mind, we now consider the case where we can only find
a local minimizer for each subproblem. We show that doing so will still converge to a Karush-Kuhn-
Tucker (KKT) point [13], i.e. a candidate point for a local minimizer, of an equivalent formulation of
the original problem (2.7).

4.1 Preliminaries

4.1.1 Assumptions

We may retain all original assumptions about the functions de and hi; however, the essential properties
for local convergence are that for each edge e and net i, each hi and de is nonnegative.

We also make the additional assumptions that the functions de and hi are continuously differentiable,
and that hi is Lipschitz continuous in the feasible region F and bounded below by some κ > 0. Note
that Lipschitz continuity follows from continuous differentiability of hi if F is compact. Also, note
that the lower bound κ on hi holds for the log-sum-exp wire length definition; for the quadratic and
half-perimeter wire lengths, it can be satisfied simply by making the adjustment hnew

i = hi + κ.

4.1.2 Net Weighting Framework

As in Section 4.1.1, we may retain all original requirements on the net weighting functions wki , but
the essential properties for local convergence are that each wki is nonnegative, and that the asymptotic
slack control (2.9) is satisfied.

Further, we require that each wki is continuously differentiable and make some additional requirements
on their structure. First, we require that each wki is nondecreasing :

∇dw
k
i (d(x)) ≥ 0

(4.1) Nondecreasing property.

Thus, increasing any edge delay while holding all other delays constant cannot have the effect of
reducing a weight.

Secondly, we require that the weighting functions are non-critically indifferent : in the limit, changes

9

in non-critical edge delays do not have an impact on the weights.

If σe(d(x)) > 0, then lim
k→∞

∂wki (d(x))

∂de
= 0 ∀ nets i

(4.2) Non-critical indifference.

Also, we require that each wki is path consistent : it can be written as some function of the path delays
in the circuit.

wki (d(x)) = fki
(
dπ1(x), . . . , dπS (x)

)
(4.3) Path consistency.

Finally, we make the mild expectation that the net weighting objectives Nk(x) do not become arbi-
trarily “jagged” around local minimizers in F; that is, there exists a ξ > 0 independent of k such that
if y ∈ F is a local minimizer for Nk(x), then Nk(x) is convex in BF(y, ξ) = {x : x ∈ F, ||x− y|| < ξ}.

We can verify that each of the identified convergent weighting schemes VPR-c (2.10), PATH-c (2.11),
and APlace-c (2.12) are indeed nondecreasing, non-critically indifferent, and path consistent.

The differentiability requirement is satisfied by the PATH-c weights, and may be satisfied by a slight
modification in the VPR-c and APlace-c weights to smooth around non-differentiable points. The
non-differentiability is due to the use of max and min functions in computing the slacks in the VPR-c
weights, and due to the piecewise nature of the weighting function at the point d = T in the APlace-c
weights. The non-differentiable points in the VPR-c weightings can be removed if the log-sum-exp
smooth approximations of the max and min functions [15] are used in computing the slacks. The
non-differentiable points in the APlace-c weightings can be removed by a simple smoothing of fa

around the point d = T .

4.1.3 Problem Formulation

In an equivalent formulation to (2.7), we introduce the new variable a = (a1, a2, . . . , an), where aj is
an upper bound on the arrival time of pin j. The problem then becomes:

min
x,a

G(x)

subject to:

as + de(x) ≤ at ∀ edges e ∈ E , where e = (s, t)

0 ≤ aj ∀ pins j ∈ PI
a` ≤ T ∀ pins ` ∈ PO
(some pins fixed)

(4.4)

Here we denote the set of all edges by E . Again we assume for simplicity that some pins are fixed; see
Section 4.3 for inclusion of generalized density constraints. For this problem, the Lagrangian is:

L(x,a,u,v,λ) =
∑

nets i∈N
hi(x)−

∑
pins j ∈ PI

ujaj −
∑

pins ` ∈ PO

v`(T − a`)

−
∑

edges e=(s,t)∈E

λe(at − as − de(x))

10

Then for any local minimum (x̄, ā) for the problem (4.4) at which the linear independence constraint
qualification [13] holds, by the KKT conditions there are Lagrange multipliers (ū, v̄, λ̄) such that the
following conditions are satisfied:∑

e∈E
λ̄e∇de(x̄) = −

∑
i∈N
∇hi(x̄) (4.5a)

ūj =
∑

e=(j,t)∈E

λ̄e ∀j ∈ PI (4.5b)

āj ≥ 0 and ūj ≥ 0, with at least one of these a strict equality ∀j ∈ PI (4.5c)

v̄` =
∑

e=(s,`)∈E

λ̄e ∀` ∈ PO (4.5d)

ā` ≤ T ∀` ∈ PO (4.5e)

v̄` ≥ 0 ∀` ∈ PO (4.5f)

v̄` = 0 or ā` = T ∀` ∈ PO (4.5g)∑
e1=(s,m)∈E

λ̄e1 =
∑

e2=(m,t)∈E

λ̄e2 ∀m ∈ P \ (PI ∪ PO) (4.5h)

ās + de(x) ≤ āt ∀e = (s, t) ∈ E (4.5i)

λ̄e ≥ 0 ∀e ∈ E (4.5j)

λ̄e = 0 or ās + de(x) = āt ∀e = (s, t) ∈ E (4.5k)

4.2 Local Convergence Proof

Given a placement x and an index k, we shall define the variable ã(d(x)) and the Lagrange multiplier

estimates ũk(x), ṽk(x), and λ̃
k
(x) as follows:

ãm(d(x)) = Am(d(x)) ∀m ∈ P (4.6a)

λ̃ke(x) =
∑
i∈N

∂wki (d(x))
∂de

hi(x) ∀e ∈ E (4.6b)

ũkj (x) =
∑

e=(j,t)∈E

λ̃ke(x) ∀j ∈ PI (4.6c)

ṽk` (x) =
∑

e=(s,`)∈E

λ̃ke(x) ∀` ∈ PO (4.6d)

Theorem 4.1. Suppose that xk is a local minimizer of the weighted objective Nk(x) for each k =
1, 2, . . . , and that xk ∈ F0 for all k sufficiently large. Then every limit point of {xk} is a KKT point
of the problem (4.4).

Proof. As in the proof of Theorem 3.1, let x∗ be a limit point of {xk}, so there exists some subsequence
K such that limk∈K xk = x∗. The proof will proceed by considering the variable ã(d(xk)) and

the estimates λ̃
k
(xk), ũk(xk), and ṽk(xk) given by (4.6) and showing that these satisfy the KKT

conditions (4.5) in the limit.

Properties (4.5b), (4.5d), and (4.5i) are clearly satisfied at every iteration via construction. Property
(4.5j) is also satisfied at every iteration, following from the nondecreasing property (4.1). Property
(4.5c) is satisfied at every iteration as well: this follows from the aforementioned fact that λ̃ke(x) ≥ 0
for all k and e ∈ E , and from the fact that ãm(d(x)) = Am(d(x)) = 0 for all m ∈ PI . Similarly,
Property (4.5f) is satisfied at every iteration.

11

For Property (4.5h), first note that for any m ∈ P \ (PI ∪ PO),⋃
e1=(s,m)∈E

Πe1 =
⋃

e2=(m,t)∈E

Πe2

Also, from path consistency (4.3) we have

∂wki (d)

∂de
=
∑
π∈Πe

∂fki
(
dπ1 , . . . , dπS

)
∂dπ

Combining these, we get

∑
e1=(s,m)∈E

λ̃ke1(x) =
∑

e1=(s,m)∈E

[∑
i∈N

∂wki (d(x))

∂de1
hi(x)

]

=
∑

e1=(s,m)∈E

[∑
i∈N

(∑
π∈Πe1

∂fki
(
dπ1(x), . . . , dπS (x)

)
∂dπ

hi(x)

)]

=
∑

e2=(m,t)∈E

[∑
i∈N

(∑
π∈Πe2

∂fki
(
dπ1(x), . . . , dπS (x)

)
∂dπ

hi(x)

)]

=
∑

e2=(m,t)∈E

λ̃ke2(x)

Thus Property (4.5h) is satisfied at every iteration.

The complementary slackness condition (4.5k) is satisfied in the limit: since each xk is timing feasible
for k sufficiently large, it follows that At(d(xk)) ≤ Rt(d(xk)) for all k sufficiently large and all
pins t ∈ P. Consider any edge e = (s, t) ∈ E such that ãs(d(x∗)) + de(x

∗) < ãt(d(x∗)); thus,
ãs(d(xk)) + de(x

k) < ãt(d(xk))− ε for some ε > 0 for all k sufficiently large. Then

σe(d(xk)) = Rt(d(xk))−As(d(xk))− de(xk) ≥ At(d(xk))−As(d(xk))− de(xk) > ε

Thus σe(d(x∗)) > ε so it follows from non-critical indifference (4.2) and continuity that limk∈K λ̃
k
e(xk) =

0.

Properties (4.5e) and (4.5g) are shown in a similar manner to Property (4.5k). It follows from timing
feasibility for k sufficiently large that Property (4.5e) is satisfied in the limit. For Property (4.5g),
consider any ` ∈ PO such that ã`(d(x∗)) < T , so that ã`(d(xk)) < T − ε for some ε > 0 for all
k sufficiently large. Now note that for any edge (s, `) ∈ E , we have that A`(d(xk)) ≥ As(d(xk)) +
d(s,`)(x

k), and since ` ∈ PO, we have R`(d(xk)) = T . Thus,

σ(s,`)(d(xk)) = T −As(d(xk))− d(s,`)(x
k) ≥ T −A`(d(xk)) > ε

Thus again by non-critical indifference (4.2), it follows that limk∈K ṽ
k
` (xk) = 0.

Finally we prove Property (4.5a) in the limit. First we show that wki (d(xk)) → 0 for all i ∈ N . As
a means to show this, denote by N+ the set of all nets i ∈ N such that there exists some ε > 0 such
that wki (d(xk)) > ε for all k ∈ K sufficiently large. Further, let N0 = N \N+.

Suppose temporarily that N+ 6= ∅. Then given an arbitrarily small 0 < δ1 < ε and letting δ =
min{δ1, ξ}, we can find an index q and a point y ∈ F0 such that

||y − xq|| < δ

wqi (d(y)) < δ ∀i ∈ N

q and y can be found by first selecting an M sufficiently large and y ∈ F0 sufficiently close to x∗ so
that xk ∈ F0 and

∣∣∣∣xk − y
∣∣∣∣ < δ for all k > M , then fixing y and increasing q > M until wqi (d(y)) < δ

12

for all i ∈ N . Then we have

Nq(xq) >
∑
i∈N

hi(x
q) + ε

∑
j∈N+

hj(x
q)

=
∑
i∈N

hi(x
q) + δ

∑
j∈N+

hj(x
q) + (ε− δ)

∑
j∈N+

hj(x
q)

≥
∑
i∈N

hi(x
q) + δ

∑
j∈N+

hj(x
q) + (ε− δ) |N+|κ

(4.7)

Now by Lipschitz continuity, there exists some constant L such that |hi(x)− hi(z)| ≤ L ||x− z|| for
all i ∈ N and x, z ∈ F. Thus |hi(y)− hi(xq)| ≤ Lδ, so

hi(y) ≤ hi(xq) + Lδ

for all i ∈ N . Then we have:

Nq(y) <
∑
i∈N

[
hi(x

q) + Lδ
]

+ δ
∑
j∈N+

[
hj(x

q) + Lδ
]

+ δ
∑
j∈N0

H

=
∑
i∈N

hi(x
q) + δ

∑
j∈N+

hj(x
q) + δ |N |L+ δ2 |N+|L+ δ |N0|H

(4.8)

where H = max{hi(x) : i ∈ N ,x ∈ F} is a positive real number, independent of q or y. Thus it
follows from (4.7) and (4.8) that we can choose δ1 sufficiently small to obtain q and y such that
Nq(y) < Nq(xq) for ||y − xq|| < ξ, a contradiction of the fact that xq is a local minimizer of Nq(x).
We conclude that N+ = ∅ so that wki (d(xk))→ 0 for all i ∈ N .

Next, let us restate our definition of the weighted objective Nk(x) in a slightly modified form:

Nk(x) =
∑

nets i∈N

(
1 + wki (d(x))

)
hi(x)

Taking the gradient of this, we get

∇Nk(x) =
∑
i∈N

(
1 + wki (d(x))

)
∇hi(x) +

∑
i∈N

[∑
e∈E

∂wki (d(x))
∂de

∇de(x)

]
hi(x)

=
∑
i∈N

(
1 + wki (d(x))

)
∇hi(x) +

∑
e∈E

[∑
i∈N

∂wki (d(x))
∂de

hi(x)

]
∇de(x)

=
∑
i∈N

(
1 + wki (d(x))

)
∇hi(x) +

∑
e∈E

λ̃ke(x)∇de(x)

(4.9)

Now, since wki (d(xk)) → 0 for all i ∈ N and since ∇Nk(x) = 0, it follows from (4.9) that Property
(4.5a) is satisfied in the limit. As all KKT conditions are satisfied, we conclude that x∗ is a KKT
point of (4.4).

The following corollary shows that we need not find local minimizers of the weighted objectives Nk(x)
exactly, but may instead use approximations.

Corollary 4.2. Suppose that xk approximates a local minimizer xkmin of the weighted objective Nk(x)
for each k = 1, 2, . . ., in that

∣∣∣∣xk − xkmin

∣∣∣∣ → 0 and
∣∣∣∣∇Nk(xk)

∣∣∣∣ → 0 as k → ∞. If xk ∈ F0 and
xkmin ∈ F for all k sufficiently large, then every limit point of {xk} is a KKT point of the problem
(4.4).

Proof. The proof proceeds as that for Theorem 4.1 with a few modifications. We discuss Property
(4.5a) fully.

13

First we show that wki (d(xk)) → 0 for all i ∈ N . Suppose temporarily that N+ 6= ∅. Then given an
arbitrarily small 0 < δ1 < ε and letting δ = min{δ1, ξ2}, we can find an index q and a point y ∈ F0

such that

||y − xq|| < δ

||∇Nq(xq)|| < 1

||xq − xqmin|| < δ

wqi (d(y)) < δ ∀i ∈ N

y and q can be found by first selecting an M sufficiently large and y sufficiently close to x∗ so that
xk ∈ F0, xkmin ∈ F,

∣∣∣∣y − xk
∣∣∣∣ < δ,

∣∣∣∣∇Nk(xk)
∣∣∣∣ < 1, and

∣∣∣∣xk − xkmin

∣∣∣∣ < δ for all f ∈ K such that
k > M , then fixing y and increasing q > M until wqi (d(y)) < δ for all i ∈ N .

Now note that it follows from Taylor’s theorem and the Cauchy-Schwarz inequality that

|Nq(xq)−Nq(xqmin)| =
∣∣(xq − xqmin)T∇Nq(χq)

∣∣ ≤ ||xq − xqmin|| ||∇N
q(χq)|| (4.10)

for some χq = ψxq + (1− ψ)xqmin, where ψ ∈ (0, 1). Then we have that χq ∈ F0 by convexity of the
delay function. Thus since χq ∈ BF(xqmin, ξ), it follows from non-jaggedness and from ||∇Nq(xq)|| < 1
and ||∇Nq(xqmin)|| = 0 that ||∇Nq(χq)|| < 1. Thus, using (4.10) and ||xq − xqmin|| < δ, we get

|Nq(xq)−Nq(xqmin)| < δ

so that, in particular, Nq(xqmin) > Nq(xq)− δ.

Then we have

Nq(xqmin) > Nq(xq)− δ

>
∑
i∈N

hi(x
q) + ε

∑
j∈N+

hj(x
q)− δ

=
∑
i∈N

hi(x
q) + δ

∑
j∈N+

hj(x
q) + (ε− δ)

∑
j∈N+

hj(x
q)− δ

≥
∑
i∈N

hi(x
q) + δ

∑
j∈N+

hj(x
q) + (ε− δ) |N+|κ− δ

(4.11)

Now by Lipschitz continuity, there exists some constant L such that |hi(x)− hi(z)| ≤ L ||x− z|| for
all i ∈ N and x, z ∈ F. Thus |hi(y)− hi(xq)| ≤ Lδ, so

hi(y) ≤ hi(xq) + Lδ

for all i ∈ N . Then we have:

Nq(y) <
∑
i∈N

[
hi(x

q) + Lδ
]

+ δ
∑
j∈N+

[
hj(x

q) + Lδ
]

+ δ
∑
j∈N0

H

=
∑
i∈N

hi(x
q) + δ

∑
j∈N+

hj(x
q) + δ |N |L+ δ2 |N+|L+ δ |N0|H

(4.12)

where H = max{hi(x) : i ∈ N ,x ∈ F} is a positive real number, independent of y and q. Thus it
follows from (4.11) and (4.12) that we can choose δ1 sufficiently small to obtain y and q such that
Nq(y) < Nq(xqmin) for ||y − xqmin|| ≤ ||y − xq|| + ||xq − xqmin|| < ξ, a contradiction of the fact that
xqmin is a local minimizer of Nq(x). We conclude that N+ = ∅ so that wki (d(xk))→ 0 for all i ∈ N .

Next, taking the gradient of the weighted objective Nk(x) exactly as above in (4.9), we obtain

∇Nk(x) =
∑
i∈N

(
1 + wki (d(x))

)
∇hi(x) +

∑
e∈E

λ̃ke(x)∇de(x) (4.13)

Now, since wki (d(xk))→ 0 for all i ∈ N and since ∇Nk(x)→ 0, it follows from (4.13) that Property
(4.5a) is satisfied in the limit.

14

4.3 Extension to Generalized Density Equality Constraints

As in the global convergence proof, we will show extensibility of Theorem 4.1 to generalized density
equality constraints. We find that in handling these constraints by a standard penalty function, the
framework does not change in a fundamental manner.

With the introduction of generalized density equality constraints the problem (4.4) becomes:

min
x,a

G(x)

subject to:

as + de(x) ≤ at ∀ edges e ∈ E , where e = (s, t)

0 ≤ aj ∀ pins j ∈ PI
a` ≤ T ∀ pins ` ∈ PO
Dr(x) = 0 ∀r = 1, . . . , R

(4.14)

We introduce the new Lagrange multiplier τ , and the Lagrangian becomes

L̆(x,a,u,v,λ, τ) =
∑

nets i∈N
hi(x)−

∑
pins j ∈ PI

ujaj −
∑

pins ` ∈ PO

v`(T − a`)

−
∑

edges e=(s,t)∈E

λe(at − as − de(x))−
R∑
r=1

τrDr(x)

The KKT conditions (4.5) remain unchanged, with the exception that condition (4.5a) becomes

∑
e∈E

λ̄e∇de(x̄) = −
∑
i∈N
∇hi(x̄) +

R∑
r=1

τ̄r∇Dr(x̄) (4.15)

and we have the additional condition of feasibility with respect to the density constraints:

Dr(x) = 0, r = 1, . . . , R (4.16)

We introduce a modified form of the penalty function as compared to (3.5):

N̆k(x) = G(x) + Ψk(x) +
R∑
r=1

µkp̆r (Dr(x))

Here the penalty terms have the form p̆kr = µkp̆r, where µk is a sequence of positive real numbers such
that µk ↗∞. The functions p̆r are nonnegative, continuously differentiable, and have the properties

p̆r(D) = 0 ⇐⇒ D = 0 (4.17)

(p̆r)
′(D) = 0 =⇒ D = 0 (4.18)

Corollary 4.3. Suppose that xk is a local minimizer of the function N̆k(x) for each k = 1, 2, . . . ,
and that xk ∈ F0 for all k sufficiently large. Then every limit point of the sequence {xk} at which the
linear independence constraint qualification (LICQ) [14] holds is a KKT point of the problem (4.14).

Proof. First we show Property (4.16). Corresponding to (4.9) we have

∇N̆k(x) =
∑
i∈N

(
1 + wki (d(x))

)
∇hi(x) +

∑
e∈E

λ̃ke(x)∇de(x) + µk
R∑
r=1

(p̆r)
′ (Dr(x))∇Dr(x)

15

Since each xk is a local minimizer of N̆k(x), we have that ∇N̆k(xk) = 0. Thus for each k ∈ K,

R∑
r=1

(p̆r)
′ (Dr(x

k)
)
∇Dr(x

k) =
1

µk

[
−
∑
i∈N

(
1 + wki (d(xk))

)
∇hi(xk)−

∑
e∈E

λ̃ke(xk)∇de(xk)

]
Taking the limit of both sides, we get

R∑
r=1

(p̆r)
′ (Dr(x

∗))∇Dr(x
∗) = 0

so that, provided the LICQ holds at x∗, we have that (p̆r)
′ (Dr(x

∗)) = 0 for all r = 1, . . . , R. Thus
it follows from (4.18) that Dr(x

∗) = 0 for all r = 1, . . . , R, so that Property (4.16) is satisfied in the
limit.

To show Property (4.15), we introduce the Lagrange multiplier estimate τ̃ k(x), in addition to those
in (4.6):

τ̃kj (x) = −µk(p̆r)
′ (Dr(x)) ∀r = 1, . . . , R (4.19)

It readily follows from the proof of Theorem 4.1 and the fact that ∇N̆k(xk) = 0 for every k that
Property (4.15) is satisfied. Note in particular that we may choose y ∈ D in addition to the properties
outlined in the proof of Theorem 4.1 as a consequence of the fact that F∩D is in the closure of F0∩D.

The remaining KKT conditions can be shown to be satisfied as a straightforward extension of the
proof of Theorem 4.1. We conclude that x∗ is a KKT point of (4.14).

We may also extend Corollary 4.2 to account for the generalized density constraints.

Corollary 4.4. Suppose that xk approximates a local minimizer xkmin of the weighted objective N̆k(x)
for each k = 1, 2, . . ., in that

∣∣∣∣xk − xkmin

∣∣∣∣ → 0 and
∣∣∣∣∇Nk(xk)

∣∣∣∣ → 0 as k → ∞. If xk ∈ F0 and
xkmin ∈ F for all k sufficiently large, then every limit point of {xk} at which the LICQ holds is a KKT
point of the problem (4.14).

Proof. The extension of Corollary 4.2 to the above is nearly identical to that in the proof of Corollary
4.3. We choose the new Lagrange multiplier estimate (4.19) as above and use it to show that Property
(4.15) is satisfied. Similarly, we may use the same limit argument as above using the LICQ to show
that Property (4.16) is satisfied in the limit. It is a straightforward extension of the proofs of Theorem
4.1 and Corollary 4.2 to show that the remaining KKT conditions are satisfied.

4.4 Non-instantaneous Weighting Updates

We present one final result that relates to the practical implementation of this net weighting framework.
Until now, we have made the assumption that the net weights are continuously updated according
to the current placement x. Normally in practice, we rely on a previous placement y to compute a
set of net weights, then minimize using those fixed weights. Symbolically, we minimize the modified
objective function

N̆k
d(y)(x) =

∑
i∈N

(
1 + wki (d(y))

)
hi(x) +

R∑
r=1

µkp̆r (Dr(x))

over x. Using the previous iterate y = xk−1 to set the net weights, we get the following result. Note
that this is a revised version of Theorem 4.2 in [5].

Corollary 4.5. Given any x0, suppose that xk is a local minimizer of the weighted objective N̆k
d(xk−1)(x)

for each k = 1, 2, . . . and that
∣∣∣∣xk − xk−1

∣∣∣∣→ 0. Then {xk} converges to a KKT point of the problem
(4.14), provided that point is in F0 and satisfies the LICQ.

16

Proof. It follows from the asymptotic slack control (2.9), from
∣∣∣∣xk − xk−1

∣∣∣∣ → 0, and from the

fact that xk−1 must eventually become strictly timing feasible that we can write N̆k
d(xk−1)(x) as∑

i(1 + θki)hi(x) +
∑
r µ

kp̆r (Dr(x)), where θki ≤ θk for all nets i and θk → 0. Now using analogous
variables and Lagrange multiplier estimates to those given above, we get ãm(d(x)) and τ̃kj (x) as

defined in in (4.6) and (4.19), respectively, and λ̃ke(x) = 0, ũkj (x) = 0, and ṽk` (x) = 0. Using these
Lagrange multiplier estimates, it is straightforward to verify that all KKT conditions are satisfied in
the limit.

The practical implication of Theorem 4.5 is that, given a placer that can find approximate local
minimizers for the unconstrained subproblems minxN

k(x), for k = 1, 2, . . ., we can use the previous
placement xk−1 as initial guess for the next unconstrained local minimization. Then the placements
xk will converge to a very likely local minimum of the constrained problem (4.14). Note that we must
ensure that the placements eventually become strictly timing feasible.

5 Implementation

Motivated by the results in Sections 3 and 4, to solve the problem (4.14), we can iteratively perform
unconstrained minimization of Nk

d(xk−1)(x) using the previous solution x← xk−1 as a starting point.

In each outer iteration, we set xk ← x if x approximates a local minimizer within some tolerance τk,
where τk ↘ 0. This framework is described in Algorithm 5.1.

Algorithm 5.1 Example, iterative placement with net weighting.

Choose initial placement x0, tolerances {τk} such that τk ↘ 0, and convergence tolerance ρ > 0.
k ← 0
while k ≤ 1 or

∣∣∣∣xk − xk−1
∣∣∣∣ > ρ do

k ← k + 1
x← xk−1

while
∣∣∣∣∣∣∇Nk

d(xk−1)(x)
∣∣∣∣∣∣ > τk do

iterate x in unconstrained minimization of Nk
d(xk−1)(x)

end while
xk ← x

end while

We implement each of the weighted objectives described in Section 2.3 in the state-of-the-art placer
mPL [4]. Although significantly more sophisticated than the example given in Algorithm 5.1, similar
principles are followed in mPL. We update the weighting parameter once every outer loop iteration,
using the previous iterate to calculate net weights, then solve the inner loop subproblems using the
Uzawa algorithm [1] for smoothed density equality constraints. A decreasing schedule of tolerances
for cell overlap is used to determine sufficient convergence of the iterates. We use the log-sum-exp
wire length approximation [15, 9] and a quadratic delay model, which satisfy all conditions for hi and
de required in this framework.

6 Experimental Results

In Table 6.1, we measure the efficacy of each method implemented in mPL on selected MCNC bench-
marks [18]. These circuits were used because they contained the necessary timing information; the
ISPD ’05 and ’06 contest examples could not be used due to lack of such information. The Cadence
RTL compiler was used to synthesize the circuits with the Nangate 45nm open cell library. The results
represent the best result obtained for each scheme in 8 runs, measured by shortest max delay after

17

Table 6.1: Comparison of weighting schemes in mPL.
Global Placement Detailed Placement

Circuit Weight HPWL Delay HPWL Delay CPU
ex5p None 1 (1.61E+07)* 1 (27.87) 1 (1.65E+07) 1 (28.41) 1 (5.9)

VPR-c 1.14 0.86 1.04 0.88 1.61
PATH-c 1.07 0.95 1.01 0.93 2.16
APlace-c 1.13 0.88 1.03 0.89 3.81

alu4 None 1 (1.98E+07) 1 (29.55) 1 (2.00E+07) 1 (29.63) 1 (7.3)
VPR-c 1.02 0.82 1.02 0.85 1.31
PATH-c 1.19 0.92 1.10 0.93 2.16
APlace-c 1.02 0.95 1.01 0.95 1.93

apex2 None 1 (2.57E+07) 1 (29.91) 1 (2.61E+07) 1 (30.13) 1 (9.3)
VPR-c 1.05 0.85 1.02 0.89 1.49
PATH-c 1.17 0.98 1.12 0.96 1.77
APlace-c 1.12 0.83 1.03 0.91 2.26

pdc None 1 (11.3E+07) 1 (54.56) 1 (11.9E+08) 1 (55.35) 1 (27.1)
VPR-c 1.09 0.80 1.03 0.82 1.48
PATH-c 1.11 0.89 1.06 0.88 1.81
APlace-c 1.08 0.78 1.03 0.82 7.22

apex4 None 1 (2.60E+07) 1 (29.80) 1 (2.64E+07) 1 (28.58) 1 (7.4)
VPR-c 1.04 0.87 1.01 0.95 1.42
PATH-c 1.10 0.88 1.06 0.91 1.72
APlace-c 1.02 0.88 1.00 0.97 2.47

des None 1 (5.55E+07) 1 (32.59) 1 (5.60E+07) 1 (32.52) 1 (17.7)
VPR-c 1.02 0.91 1.00 0.93 1.29
PATH-c 1.05 0.95 1.03 0.98 1.48
APlace-c 1.01 0.92 1.00 0.93 2.64

ex1010 None 1 (2.79E+07) 1 (32.25) 1 (2.83E+07) 1 (32.27) 1 (8.6)
VPR-c 1.07 0.82 1.03 0.87 1.34
PATH-c 1.08 0.84 1.06 0.85 1.72
APlace-c 1.05 0.86 1.02 0.89 2.52

misex3 None 1 (1.74E+07) 1 (27.36) 1 (1.78E+07) 1 (26.22) 1 (6.9)
VPR-c 1.07 0.85 1.02 0.95 1.42
PATH-c 1.05 0.92 1.03 0.96 1.63
APlace-c 1.08 0.82 1.03 0.93 2.09

seq None 1 (3.25E+07) 1 (30.34) 1 (3.28E+07) 1 (30.53) 1 (10.2)
VPR-c 1.04 0.82 1.03 0.84 1.32
PATH-c 1.11 0.84 1.08 0.87 1.55
APlace-c 1.05 0.81 1.03 0.86 1.83

spla None 1 (1.11E+08) 1 (53.84) 1 (1.11E+08) 1 (53.33) 1 (23.6)
VPR-c 1.01 0.84 1.01 0.90 1.32
PATH-c 1.16 0.84 1.13 0.85 1.70
APlace-c 1.04 0.85 1.01 0.91 5.17

Average None 1.00 1.00 1.00 1.00 1.00
VPR-c 1.05 0.85 1.02 0.89 1.40
PATH-c 1.11 0.90 1.07 0.91 1.77
APlace-c 1.06 0.86 1.02 0.91 3.19

*units are in microns

detailed placement; statistics are given for the placement after both global and detailed placement.
The net weights were updated once every outer iteration in the mPL placer, which occurred approx-
imately 50-70 times before sufficient convergence was attained. Note that net weightings were only
applied during the global placement phase, so some degradation in the delays can be observed after
the global placement phase. Column “HPWL” gives the half-perimeter wire length, “Delay” gives the
max path delay of the circuit, and “CPU” is a measure of the computation time necessary to complete
the placement. The values are scaled against those obtained using the regular, non-weighted mPL
placer. On average, the VPR-c scheme yields the best improvement in delay, the smallest increase in
CPU time compared to non-weighted mPL, and matches the APlace-c weights in smallest increase in
wire length compared to non-weighted mPL.

In Table 6.2, we compare the VPR-c weighting method against the original method in [11], which
we term “VPR.” The difference between the two schemes is that the VPR scheme is flat, without
increasing net weighting parameter, and the max delay is set dynamically to be the current max delay
at every static timing analysis (VPR). The entries in the table are arranged as those in Table 6.1,
with the exception that computation time has been omitted, as it did not vary significantly between
the two methods (static timing analysis and re-calculation of net weights are carried out at every
outer iteration in both methods). As in Table 6.1, the best result over 8 runs for each method is
shown, measured by the shortest max delay after detailed placement. After detailed placement, the
VPR-c scheme nearly matched the VPR scheme in wire length while outperforming it in delay on all
10 benchmarks, 4% on average. Thus, the modifications necessary for theoretical convergence yield

18

Table 6.2: Comparison of VPR-like methods in mPL.
Global Placement Detailed Placement

Circuit Weight HPWL Delay HPWL Delay
ex5p VPR-c 1.04 0.90 1.01 0.90

VPR 1.01 0.93 1.01 0.93
alu4 VPR-c 1.02 0.82 1.02 0.85

VPR 1.01 0.91 1.02 0.92
apex2 VPR-c 1.05 0.85 1.02 0.89

VPR 1.01 0.95 1.02 0.95
pdc VPR-c 1.09 0.80 1.03 0.82

VPR 1.04 0.87 1.01 0.87
apex4 VPR-c 1.04 0.87 1.01 0.95

VPR 1.01 0.87 1.01 0.96
des VPR-c 1.02 0.91 1.00 0.93

VPR 1.03 0.91 1.02 0.94
ex1010 VPR-c 1.07 0.82 1.03 0.87

VPR 1.01 0.88 1.01 0.91
misex3 VPR-c 1.07 0.85 1.02 0.95

VPR 1.01 0.89 1.01 0.97
seq VPR-c 1.04 0.82 1.03 0.84

VPR 1.01 0.89 1.01 0.89
spla VPR-c 1.01 0.84 1.01 0.90

VPR 1.00 0.92 1.00 0.91

Average VPR-c 1.05 0.85 1.02 0.89
VPR 1.01 0.90 1.01 0.93

an improvement over the method in [11].

7 Conclusions and Future Work

In this work, we determined a set of criteria defining a class of net weighting schemes that were
shown to converge to optimal placements for the original timing-constrained problem. When a global
minimizer to the unconstrained weighted objective can be found, the essential property for convergence
of a weighting algorithm is the asymptotic slack control. In the more practical case when only an
approximate local minimizer to the unconstrained weighted objective can be found, a weighting must
also be nondecreasing, non-critically indifferent, and path consistent. Several schemes satisfying these
properties were identified and implemented in the mPL placer on the MCNC benchmarks. The VPR-c
scheme outperformed all others, improving delay by an average of 11% while increasing wire length by
2% and increasing computation time by 40%, as compared to unweighted placement. Further, VPR-
c outperformed the original VPR weighting scheme with improved delay in all MCNC benchmarks
tested, an average of 4%; additionally, minimal increase in wire length and no change in computation
time was observed.

In the future, we plan to implement Lagrangian schemes for comparison with our net weighting
methodology. It can be shown that, using a scheme with projection of the multipliers as in [6],
the method can be viewed as a net weighting that satisfies many of the required properties in the
framework. We would like to further investigate this and the potential insights it can provide. In
addition, we plan to extend the net weighting methodology to handle the timing-driven sizing and
placement problem.

8 Acknowledgments

The authors gratefully acknowledge Guojie Luo and Kirill Minkovich of the UCLA Computer Science
Department, and John Lee and Prof. Lieven Vandenberghe of the UCLA Electrical Engineering
Department.

19

A Notation

A summary of the notation used throughout this paper is provided for reference in Table A.1.

Table A.1: Notation
Symbol Definition
x The vector of pin locations of the circuit
T The desired upper timing bound for the circuit
N The set of all nets in the circuit
P The (finite) set of all pins in the circuit
PI The set of all input pins in the circuit
PO The set of all output pins in the circuit
PM P \ (PI ∪ PO)
Π The set of all paths in the circuit
Πe The set of all paths containing edge e
Πi The set of all paths passing through net i
E The set of all edges in the circuit
S |Π|, i.e. the number of paths in the circuit
M |E|, i.e. the number of edges in the circuit
hi(x) Function measuring estimated wire length of net i (see Sec. 2.1)
de(x) Function measuring delay of edge e (see Sec. 2.1)
d(x) [d1(x) . . . dM (x)]T

wki (d(x)) Weighting function for net i and index k (see Sec. 2.2)
G(x)

∑
i∈N hi(x)

Ψk(x)
∑
i∈N w

k
i (d(x))hi(x)

Nk(x) G(x) + Ψk(x)
σπ(d(x)) The slack of path π (see (2.3))
At(d(x)) Arrival time of pin t (see (2.4))
Rs(d(x)) Required arrival time of pin s (see (2.5))
σe(d(x)) The slack of edge e (see (2.6))
σi(d(x)) The slack of net i, defined as mine∈i σe(d(x))
F {x| σπ(d(x)) ≥ 0 ∀ paths π ∈ Π}
F0 {x| σπ(d(x)) > 0 ∀ paths π ∈ Π}
Dr(x) Generalized density constraint (see Sec. 3.2)
R Number of generalized density constraints
pkr (Dr(x)) Penalty function for generalized density constraint (see Sec. 3.2)

N̂k(x) G(x) + Ψk(x) +
∑R
r=1 p

k
r (Dr(x))

D {x : Dr(x) = 0, r = 1, . . . , R}
κ Lower bound for hi(x) (see Sec. 4.1.1)
ξ “Jaggedness” bounding constant for Nk(x) (see Sec. 4.1.2)
aj Variable in (4.4) and (4.14); upper bound on the arrival time of pin j
a (a1, . . . , an)
L(x,a,u,v,λ) Lagrangian for the problem (4.4)
u, v, λ Lagrange multipliers corresponding to timing constraints
ã(d(x)) Variable a based on a placement x (see (4.6))

ũk(x), ṽk(x), λ̃
k
(x) Lagrange multiplier estimates based on a placement x (see (4.6))

L̆(x,a,u,v,λ, τ) Lagrangian for the problem (4.14)
τ Lagrange multipliers corresponding to density constraints
τ̃kj (x) Lagrange multiplier estimate for τj (See 4.19)

N̆k(x) G(x) + Ψk(x) +
∑R
r=1 µ

kp̆r (Dr(x))
p̆kr Penalty function for generalized density constraint (see Sec. 4.3)
µk Penalty coefficient in p̆kr , i.e. p̆kr = µkp̆r (see Sec. 4.3)
p̆r Index-independent component of penalty function p̆kr (see Sec. 4.3)

N̆k
d(y)(x) G(x) +

∑
i∈N w

k
i (d(y))hi(x) +

∑R
r=1 µ

kp̆r (Dr(x))

20

References

[1] K. Arrow, L. Huriwcz and H. Uzawa, Studies in Nonlinear Programming, Stanford University
Press, Stanford, CA, 1958.

[2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge,
UK, 2004.

[3] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “mPL6: enhanced multilevel mixed-size
placement,” Proc. 2006 Int’l Symp. on Phys. Design, pp. 212-214, 2006.

[4] T. F. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed method for circuit place-
ment,” Proc. 2005 Int’l Symp. on Phys. Design, pp. 185-192, April 2005.

[5] T. F. Chan, J. Cong, and E. Radke, “A Rigorous Framework for Convergent Net Weight-
ing Schemes in Timing-Driven Placement,” Proc. 2009 Int’l Conf. on Computer Aided Design,
November 2009.

[6] C.-P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous gate and wire sizing
by Lagrangian relaxation,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 18, No. 7, pp. 1014-1025, July 1999.

[7] J. Cong , T. Kong , J. Shinnerl , M. Xie, and X. Yuan, “Large-scale circuit placement,” ACM
Trans. Des. Automat. Electron. Syst., vol. 10, no. 2, pp. 389-430, Apr. 2005.

[8] H. Eisenmann and F. M. Johannes, “Generic global placement and floorplanning,” Proc. 35th
ACM/IEEE Design Automation Conference, pp. 269-274, 1998.

[9] A. B. Kahng and Q. Wang, “Implementation and extensibility of an analytic placer,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 5, pp. 1-14,
May 2005.

[10] T. Kong, “A novel net weighting algorithm for timing-driven placement,” Proc. 2002 IEEE/ACM
Int’l Conf. on Computer-aided Design, pp. 172-176.

[11] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FPGAs,” Proc. 2000
ACM/SIGDA Eighth Int’l Symp. on Field Programmable Gate Arrays, pp. 203-213, February
2000.

[12] G.-J. Nam and J. Cong (eds.), Modern Circuit Placement: Best Practices and Results, Springer,
2007.

[13] S. G. Nash and A. Sofer. Linear and Nonlinear Programming, McGraw-Hill, 1996.

[14] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, NY, 1999, pp. 490-525.

[15] W. Naylor, R. Donelly, and L. Sha, “Non-linear optimization system and method for wire length
and delay optimization for an automatic electronic circuit placer,” US Patent 6671859, 2003.

[16] R. S. Tsay and J. Koehl, “An analytic net weighting approach for performance optimization in
circuit placement,” Proc. Design Automation Conf., pp. 620-625, 1991.

[17] M. H. Wright, “Interior methods for constrained optimization,” Acta Numerica 1992, pp. 341-407.

[18] S. Yang, “Logic synthesis and optimization benchmarks, version 3.0,” tech. report, Microelec-
tronics Center of North Carolina, Research Triangle Park, NC, 1991.

21

