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Abstract of the Dissertation

Computational Quasiconformal Geometry and

its Applications on Medical Morphometry

and Computer Graphics

by

Tsz Wai Wong

Doctor of Philosophy in Mathematics
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Professor Tony F. Chan, Chair

Conformal geometry has been widely applied in medical imaging and computer

graphics, such as in brain registration and texture mapping, where the mappings

are constructed to be as conformal as possible to reduce geometric distortions.

In reality, most registrations and surface mappings are not conformal and involve

non-conformal distortions, which require more general theories to study. A direct

generalization of conformal mapping is quasiconformal mapping, where the map-

ping is allowed to have bounded conformality distortions. In this dissertation, we

develop computational algorithms from theories of quasiconformal mappings and

quasicoformal geometry and apply them in two directions. First, we propose to

study the distortions of surface mappings using the Beltrami coefficient. Second,

we propose to represent surface mappings using their Beltrami coefficients for fur-

ther adjustments. We apply these theories on areas where conformal geometry is

used traditionally. These include registration of biological surfaces, shape anal-

ysis, medical morphometry, compression and refinement of texture mappings,

xviii



and the representation and inpainting of surface diffeomorphisms. Our results

demonstrate that quasiconformal geometry is effective in solving shape analysis

and surface mapping problems in medical morphometry and computer graphics.
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CHAPTER 1

Introduction

Rapid development of computing technology has made possible many computa-

tions that were considered complicated or unpractical. This is especially true

for the processing of biological surfaces in medical imaging. Surface processing

is an important aspect of medical imaging for analyzing thousands of biological

shapes for further diagnosis. Several important topics include the detection of

abnormality on surfaces, the computation of surface registrations and the rep-

resentation of surface diffeomorphisms, where many theories have been used to

develop new techniques. Besides, surface processing is also important in com-

puter graphics where 3D surfaces are modeled and textured. These areas put

classical differential geometry into practical use.

To facilitate these applications, it is necessary to understand the geometry

of 3D surfaces. An important tool that can be used is Riemannian geometry,

which studies surfaces by considering them as Riemann surfaces admitting a

conformal structure. On commonly occurring domains such as a genus zeros

surface or a simply connected surface patch, this amounts to parameterize the

domain conformally onto the complex plane, the Riemann sphere or the unit

disk. In medical imaging, recent development of computational conformal geom-

etry has produced efficient algorithms for parameterizing cortical surfaces con-

formally onto regular 2D or 3D domains (such as disks or spheres) for further

study [AHT99][GWC04][HS09][JSR04][WLG07]. Registration techniques were
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also proposed to maximize conformality as much as possible to minimize distor-

tions [LWC07b][LTW08][LTW10][WLC05].

Conformal mappings are well known to preserve angles, and therefore pre-

serve the geometry of surfaces by a scalar factor under the mappings. However,

the strong emphasis on preserving local geometry up to a scalar constant places

a global limitation of the resulting mappings. Some areas may be enlarged by a

large magnification, while some areas are severely shrinked, making it difficult to

compare areas which are scaled by different factors. Although conformal regis-

tration techniques aim at constructing surface mappings as conformal as possible

[LWC07b][LTW08][LTW10][WLC05], the resulting mappings are not conformal

most of the time as other constraints are also required to be satisfied, such as the

matching of anatomical landmark lines or feature curves. In view of this, this

dissertation introduces the use of the more general quasiconformal geometry for

medical morphometry and computer graphics.

The organization of this dissertation is as follows. In Chapter 2, we briefly

describe the mathematical background related to our work. This includes the

definition of conformal and quasiconformal mappings, how to measure the quasi-

conformality of surface mappings using Beltrami coefficients and how to construct

surface mappings with a given Beltrami coefficient.

In Chapter 3, we describe how the Beltrami coefficient can be used to detect

abnormalities in biological surfaces. In this application, we register biological

surfaces and measure the Beltrami coefficients of the resulting registrations. The

abnormalities on the surfaces are modeled as areas with large distortions as given

by the Beltrami coefficients. In this way, surface deformities are easily detected.

In Chapter 4, we describe how the Beltrami holomorphic flow (BHF) algo-

rithm can be used to optimize and finely adjust surface registrations. We pro-
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pose a framework for representing registrations and surface diffeomorphisms using

their Beltrami coefficients. Adjusting the Beltrami coefficient is then equivalent

to adjusting the corresponding surface diffeomorphism.

In Chapter 5, we propose to compress surface registrations using Beltrami

coefficients. Using the framework in Chapter 4, the compression is performed in

the space of Beltrami coefficients by Fourier compression. This greatly lifts the

limits imposed by the Jacobian of the diffeomorphisms, requiring it to be positive

everywhere.

In Chapter 6, we propose a new registration model by incorporating shape-

based features into the minimizer of the L2-norm of the Beltrami coefficient.

By adding geometric features such as the mean and Gaussian curvatures, we

propose an algorithm for hippocampal registration by minimizing a new energy

function using BHF. Our results show that we can identify areas of statistically

significant changes in hippocampi between patients with Alzheimer disease and

normal controls.

In Chapter 7, we extend the use of BHF into video processing and com-

puter graphics. With the exact integration of the perturbation given by BHF, we

develop an exact algorithm for accurate adjustments of diffeomorphisms on tri-

angular meshes. By working in the space of Beltrami coefficients, our algorithm

is further applied on inpainting of missing regions in surface diffeomorphisms and

refinement of texture mappings.
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CHAPTER 2

Mathematical Background

In this chapter, we briefly describe the mathematical background of our work

in this dissertation. First we introduce the basic definitions of Riemann sur-

faces and Riemannian geometry, which are our main tools to model biological

surfaces. Next we introduce the notion of conformality and how Riemann sur-

faces can be parameterized conformally onto 2D domains. Then we generalize

the concept to quasiconformal mappings and define the Beltrami coefficient and

the Beltrami equation, which will be the main tool to study mappings between

Riemann surfaces. Finally we introduce the Beltrami holomorphic flow method,

which we use to reconstruct surface diffeomorphisms satisfying different Beltrami

equations. The details of these definitions and theories will be explained in sub-

sequent chapters when they are applied in real applications.

2.1 Riemann Surfaces and Their Conformal Mappings

To study surfaces in medical imaging and computer graphics effectively, one needs

a good mathematical model of the surfaces. A well studied class of objects that

fits such use are Riemann surfaces, which are surfaces with a conformal structure.

Mathematically speaking, a Riemann surface is a real differentiable manifold S

of dimension 2 equipped with a smooth varying Riemannian metric g. g can be
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represented as a family of inner products {gp}p∈S for every point of S:

gp : TpS × TpS → R, p ∈ S. (2.1)

The smoothness of the metric means that for all differentiable vector fields X, Y

on S, the function p 7→ gp(X(p), Y (p)) is smooth.

As a differentiable manifold, a Riemann surface S is equipped with an atlas,

which is a family of charts {Uα, φα}, where {Uα} forms an open covering of S,

and for any two charts (Uα, φα) and (Uβ, φβ) of S where Uα ∩ Uβ 6= ∅, the atlas

transition function φαβ defined as follows is smooth:

φαβ = φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ). (2.2)

The conformal structure condition on S implies that there exists an atlas of

S where all atlas transition functions are also conformal. Such atlas is called

a conformal atlas. Two conformal atlases are compatible if their union is still a

conformal atlas. This relation forms a equivalence relation on the set of conformal

atlases on S, and each equivalence class is called a conformal structure.

We can also define conformal mappings between two Riemann surfaces M and

N . A mapping f : M → N is conformal if for all p ∈M , and charts (Uα, φα) and

(Uβ, φβ) with p ∈ Uα and f(p) ∈ Uβ respectively, the function f̃ = φβ ◦ f ◦ φ−1
α

defined near φα(p) is conformal. In terms of metrics, it means locally, f preserves

the surface metrics of M and N up to a multiplicative factor called the conformal

factor. This also means that conformal mappings preserve angles.

A fundamental theorem in conformal geometry is the uniformization theorem,

which states that any simply connected Riemann surface is conformally equivalent

to one of the three domains: the open unit disk, the complex plane, or the

Riemann sphere. We will make use of this theorem to study the quasiconformal
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geometry of these surfaces, which is a generalization of conformal geometry. In

the next section, we illustrate the basic definitions of quasiconformal mappings.

2.2 Quasiconformal Mappings and the Beltrami Coeffi-

cient

A generalization of conformal mapping is quasiconformal mapping. Let f : C→

C be a complex-valued function defined on the complex plane. We define the

complex derivatives ∂
∂z

and ∂
∂z

as follows:

∂f

∂z
=

1

2

(∂f
∂x
− i∂f

∂y

)
,

∂f

∂z
=

1

2

(∂f
∂x

+ i
∂f

∂y

)
. (2.3)

We define a quasiconformal mapping as a function f : C → C satisfying the

Beltrami equation:
∂f

∂z
= µ(z)

∂f

∂z
, (2.4)

where µ : C → C, called the Beltrami coefficient, is Lebesgue measurable and

satisfies ‖µ‖∞ < 1. If f is conformal at z ∈ C, then the Cauchy-Riemann

equations implies that ∂f
∂z

= 0 at z, and the Beltrami coefficient µ is 0 at z. If

f is quasiconformal at z ∈ C, then the Beltrami coefficient µ measures the local

non-conformal distortion at z.

The definition of quasiconformality can be extended to mappings between two

Riemann surfaces. Suppose f : M → N is a quasiconformal mapping between two

Riemann surfaces. Then the effect of the pullback under f of the usual Euclidean

metric ds2
N is given by

f ∗(ds2
N) = |∂f

∂z
|2|dz + µ(z)dz|2, (2.5)

where the nonconformal distortion is given by the Beltrami coefficient µ.
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Figure 2.1: Illustration of how Beltrami coefficient µ measures the distortion by
a quasi-conformal mapping that maps a small circle to an ellipse with dilation
K.

An illustration of how the Beltrami coefficient µ measures non-conformal dis-

tortion is shown in Figure 2.1, which shows how a disk is mapped onto an ellipse

by the quasiconformal mapping f : C → C given by f(z) = z + µz, which has

Beltrami coefficient µ. Then the dilation of the ellipse is given by

K =
1 + |µ|
1− |µ|

, (2.6)

and the direction of maximal stretching is given by arg(µ)/2.

In the next section, we consider the theoretical background for us to recon-

struct a diffeomorphism from its Beltrami coefficient.

2.3 The Beltrami Holomorphic Flow

To apply tools in quasiconformal geometry on medical morphometry and com-

puter graphics, we need a good theory for quasiconformal mappings on surfaces

in 3D. In this dissertation, we are mainly concerned with simply connected 3D

surfaces. According to the uniformization theorem, these surfaces are conformally

equivalent to either the complex plane C or the Riemann sphere C. Therefore,

every diffeomorphism between a pair of simply connected open or closed surfaces

can be considered as a diffeomorphism f of C or C. On one hand, we can com-
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pute the Beltrami coefficient of f . On the other hand, there are correspondences

between the space of diffeomorphisms on C or C, and the space of Beltrami coef-

ficients on C or C. The correspondence for C is given by the following theorem:

Theorem 2.3.1 (Beltrami Holomorphic flow on S2). There is a one-to-one cor-

respondence between the set of quasiconformal diffeomorphisms of S2 that fix the

points 0, 1, and ∞ and the set of smooth complex-valued functions µ on S2 for

which sup |µ| = k < 1. Here, we have identified S2 with the extended complex

plane C. Furthermore, the solution fµ to the Beltrami equation fz = µfz depends

holomorphically on µ. Let {µ(t)} be a family of Beltrami coefficients depending

on a real or complex parameter t. Suppose also that µ(t) can be written in the

form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (2.7)

for z ∈ C, with suitable µ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such that

‖ (ε(t) ‖∞→ 0 as t→ 0. Then

fµ(t)(w) = fµ(w) + tḟµ[ν](w) + o(|t|) (2.8)

locally uniformly on C as t→ 0, for w ∈ C, and where

ḟ [ν](w) = −f
µ(w)(fµ(w)− 1)

π

∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy. (2.9)

Proof. This theorem is due to Bojarski. For detailed proof, please refer to [2].

This theorem provides the theoretical foundation for us to work on the space

of Beltrami coefficients for adjustments of diffeomorphisms on simply connected

closed surfaces. In fact, Theorem 2.3.1 can be extended to the unit disk D, which

allows us to do the same for simply connected open surfaces. The statement of

the theorem is as follows:
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Theorem 2.3.2 (Beltrami Holomorphic flow on D). There is a one-to-one cor-

respondence between the set of quasiconformal diffeomorphisms of D that fix the

points 0 and 1 and the set of smooth complex-valued functions µ on D for which

sup |µ| = k < 1. Furthermore, the solution fµ to the Beltrami equation fz = µfz

depends holomorphically on µ. Let {µ(t)} be a family of Beltrami coefficients

depending on a real or complex parameter t. Suppose also µ(t) can be written in

the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (2.10)

for z ∈ D, with suitable µ in the unit ball of C∞(D), ν, ε(t) ∈ L∞(D) such that

‖ (ε(t) ‖∞→ 0 as t→ 0. Then:

fµ(t)(w) = fµ(w) + tḟµ[ν](w) + o(|t|) (2.11)

locally uniformly on C as t→ 0, for w ∈ C, and where

ḟ [ν](w) = −f
µ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy

)
.

(2.12)

Proof. The proof of this theorem will be presented in details in Chapter 4.

These two theorems will be used extensively in subsequent chapters to repre-

sent and adjust surface diffeomorphisms. A detailed discussion of this framework

will be given in Chapter 4. At this point, we have illustrated the main theoretical

background of this dissertation, which prepares us to explore the applications of

quasiconformal geometry in medical morphometry and computer graphics.
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CHAPTER 3

Detection of Shape Deformities Using Yamabe

Flow and Beltrami Coefficients

3.1 Introduction

Detecting abnormal changes on surfaces is a central problem in shape analy-

sis, especially in medical research. For example, neuroscientists commonly aim

to identify abnormal deformations of cortical and subcortical structures in the

brain in order to detect systematic patterns of alterations in brain diseases. In

cardiac imaging and oncology, physicians commonly need to track changes or

abnormalities in biological organs or tumors, to evaluate the effectiveness of dif-

ferent treatments, or monitor disease progression. Detecting and examining ab-

normalities with the human eye is inefficient and often inaccurate, especially on

complicated surfaces such as the cerebral cortex of the brain. Therefore, it is

of great importance to develop automatic methods to detect abnormalities and

track abnormal geometric changes over time.

In this chapter, we propose a framework for detecting abnormal changes on

elastic surfaces using quasiconformal geometry. Two issues arise in solving this

problem. First, we want to find good registrations between surfaces with enforced

landmark-correspondences. Second, we want to define a robust measure of de-

formity, which is invariant under normal (non-rigid) deformations that preserve
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local geometry, so that quantitative analysis can be carried out. These goals are

related, since good registrations allow accurate detection of abnormalities, while

good measures of deformity can be used to set criteria for desirable registrations.

We propose to model deformities between elastic shapes as non-conformal de-

formations, whereas normal deformations that preserve the local geometry are

formulated as conformal deformations. This is a generalization of existing work

by Lord et al. and Unal et al. [LHV07b] [US05], which modeled deformities be-

tween shapes as non-isometric diffeomorphisms. Using the isometric indicator,

the authors proposed to detect abnormalities that are invariant under rigid trans-

formations. Our proposed method is an extension of their approaches, in that

we are trying to detect deformities on elastic surfaces that are invariant under

non-rigid normal deformations. This is a more general and accurate definition

in some situations. For example, we may consider the growth processes of the

human body, which is a key area of study in medical imaging and face recog-

nition. As a person grows, different parts of the human body grow locally and

the growth rate is somewhat uniform locally [TGW00]. The same organs of two

healthy individuals tend to have similar shapes, although they may not be ex-

actly isometric to each other. In other words, local geometry is well preserved

under the normal growth process. Conformal maps are well-known to preserve

local geometry. Therefore, a good registration between two organs of the same

or different individuals should not be far from conformal. This motivates us to

define good registrations as conformal registrations, and measure deformities as

regions of non-conformality.

The key contribution in this chapter is the use of Beltrami coefficient to detect

shape abnormalities. Suppose we are given a registration between a normal and a

deformed surface of the same or different subjects. We can compute the Beltrami
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coefficient of the registration map, which is a complex-valued function measuring

the non-conformal deformation at each point of the map. In our examples, we

show that the Beltrami coefficient is an effective measure of shape deformities on

elastic surfaces.

To complete our framework for the automatic detection of shape deformities,

we propose the following registration algorithm. We first generate a quasicon-

formal map between the original 3D surface and the surface to be compared

with it. The surfaces are first conformally flattened onto 2D rectangles using a

novel Yamabe flow method, which computes accurate conformal parameteriza-

tions of surfaces. Then, a quasiconformal map is computed to match landmark

features between both flattened surfaces. By formulating abnormal changes as

non-conformal deformations, we detect abnormalities by computing the Beltrami

coefficient, which is uniquely associated with the quasiconformal map. By con-

sidering the norm of the Beltrami coefficient, we detect regions with abnormal

changes, which are invariant under conformal deformation. Furthermore, by con-

sidering the argument of the Beltrami coefficient, we can capture abnormalities

induced by local rotational changes. We propose a quantity called the Beltrami

index, which allows us to quantitatively describe the degree of abnormality in

each region. Experiments applying our algorithm to synthetic surfaces, 3D hu-

man face data and real MRI-derived brain surfaces show that our algorithm can

effectively detect abnormalities and capture local rotational alterations. The al-

gorithm is also robust under added noise, and it is successful in detecting altered

gyrification patterns on cortical surfaces. Quantitative comparisons of the size

of abnormality with the Beltrami index show that the detected sizes of abnor-

malities correspond positively with the sizes of abnormalities. A comparison of

the Beltrami coefficient with other commonly used measures like the isometric

indicator and gradient show that these measures are not as effective as Beltrami
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coefficient and may tend to give misleading results when the compared surfaces

undergo normal changes that preserve the local geometry.

This chapter is organized as follows: prior work on related topics is presented

in section 2. The basic mathematical theory is discussed in section 3. In Section

4, the details of our proposed model are discussed. In Section 5, our computer

algorithm is summarized. Experimental results are discussed in Section 6, and

some conclusions and future work are discussed in section 7.

3.2 Previous Work

Many different approaches have been proposed to detect changes in shapes. Most

of them take into account properties that depend on the embedding of the shape in

space. Tosun et al. [TRL06] proposed the use of three different shape measures

– the shape index, curvedness, and L2 norm of mean curvature – to quantify

cortical gyrification and complexity. While the curvature measure is an important

geometric measure of surface properties, it is also affected by healthy changes like

normal growth, which increases surface size and decreases curvature. Moreover,

since the curvature is a second order geometric measure, it is more sensitive to

noise in data, especially in triangular meshes. Extra preprocessing is required

to guarantee the robustness of the measure. In contrast, the Beltrami coefficient

we use is a first order geometric measure. This leads to less perturbation due

to noise. By computing surface Jacobian and applying statistical inference via

random field theory on cortical surfaces processed by diffusion smoothing, Chung

et al. [CWR03] studied changes in cortical surface area, thickness, and curvature,

as well as the change of the total gray matter volume over time. While surface

Jacobian can detect area changes caused by abnormalities, it can also be affected

by healthy deformations like normal growth, which also causes area changes of
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surface registrations. By looking at the Beltrami coefficients, we are able to

minimize the effects caused by such changes. We are also able to detect rotational

distortions caused by abnormalities. Shi et al. [SRL07] suggested the use of

Hamilton-Jacobi skeletons on cortical surfaces to study gyrification patterns in

Williams syndrome. In this approach, the degree of gyrification is measured by

the number of branches in the Hamilton-Jacobi skeleton. While this method is

easily computable and gives a fast measure of complexity of the cortical surface,

subtle changes could occur within a branch of the cortical surface, which require

a finer measure to detect. To overcome this problem, our approach provides an

local and intrinsic measure of surface distortion to detect such changes.

Registration is broadly used in medical imaging and face recognition. It aims

to produce a desirable registration for obtaining good correspondences or per-

forming further analysis. Grenander et al. [GM98] surveyed existing methods of

computational anatomy and proposed a framework to compute deformation maps

and empirical probability laws for disease testing. Early work such as Gaser et

al. [GVK99] compute an initial correspondence field between surfaces to ease the

detection of abnormalities. Such applications often involve models of the human

face or organs of the human body. Some existing methods model deformities

between shapes in terms of nonrigid or non-isometric diffeomorphisms [LHV07b]

[US05]. This may make their algorithms classify normal growth in living organ-

isms as abnormal. This motivates us to model abnormalities as non-conformal

diffeomorphisms, and good registrations as ones that are as conformal as possible.

We support our view with the following points. First, normal changes such as

growth in humans tend to preserve local geometry well, and hence are conformal.

Second, by modeling good registrations as those that are conformal, we are still

able to get a correct registration when the proper registration is indeed isometric.
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In most methods for detecting shape changes, an accurate registration be-

tween two shapes has to be computed. The area has been extensively studied.

Unal et al. [US05] proposed the use of coupled PDEs for joint segmentation

and registration. However, technique does not support the matching of user-

defined landmarks. Pohl et al. [PFG06] proposed an expectation maximization-

based method to solve the problem, which takes into account of image artifacts,

anatomical labelmaps, and a structure-dependent hierarchical mapping from the

atlas to the image space. This allows some controls over the matched areas, but

user-defined landmark constraints may not be matched. Lord et al. [LHV07b]

[LHV07a] proposed to match hippocampal surfaces by finding maps minimizing

the deviation from isometry under the constraints of piecewise deformation ho-

mogeneity, with local asymmetry quantified. The authors defined asymmetries

between paired shapes as non-rigid diffeomorphisms between shapes. However,

under normal conditions, like growth, non-rigid shape changes naturally occur.

In one of our examples, it is shown that the maps of a correctly matched pair

of surfaces can be non-isometric in normal as well as abnormal regions. Such

occasions call for a more flexible definition of shape abnormality.

It has become increasingly popular to study shape changes by computing dif-

feomorphisms with desired properties, as they give one-to-one correspondences of

shapes for local comparisons. Using control theory and large-deformation contin-

uum mechanics, variational metrics have been developed on the space of diffeo-

morphisms [GM98] [VMY04]. In computing diffeomorphisms, one of the goals is

to preserve local geometry as far as possible while consistently aligning important

anatomical features lying within a surface. Gu et al. [GWC04] proposed to find

an optimal Möbius transformation between two surfaces to minimize a landmark

mismatch error. Wang et al. [WLC05][LWC07b] defined a new energy functional

based on harmonic energy to optimize the conformal parameterization of cortical
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surfaces, while fixing landmark correspondences. The harmonic energy method

was applied by Shi et al. [STD07] to match implicitly-defined surfaces by solving

PDEs on them using level set methods. Using integral flows of smooth vector

fields, Lui et al. [LTW08] further proposed to compute a landmark-matching

diffeomorphism with shape-based correspondences between landmark curves.

Recently, conformal geometry has been used for 3D non-rigid surface match-

ing and registration. Harmonic maps have been used to track non-rigid motions

of 3D surfaces, which requires tracking of boundary correspondences. This chal-

lenge was addressed in [ZZW08][WLG07], where different conformal mappings

induced by different holomorphic differentials were combined to achieve accurate

and robust matching results. Even so, holomorphic differentials cannot handle

surfaces with complicated topology; the Ricci flow method is much more flexi-

ble and general. The surface-based Ricci flow was introduced in [Ham88]. The

theory of discrete surface Ricci flow was introduced in [CL03]. Euclidean Ricci

flow has been applied to 3D shape analysis in [ZSG10], where all the Gaussian

curvatures of the surface are concentrated on several singularities. To remove

these singularities, the discrete hyperbolic Ricci flow was introduced in [ZYZ08],

which improves the accuracy and robustness of the matching and registration.

In practice, the Ricci flow method imposes constraints on the triangulation of

the discrete surface, whereas the discrete Yamabe flow can handle much more

general triangulations. Furthermore, the Yamabe flow can achieve a higher level

of conformality than the Ricci flow. The theory of discrete Yamabe flow is estab-

lished in [Luo04], where the existence, uniqueness and stability of the solution is

rigorously proven.
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3.3 Theoretical Background

In this section, we describe some basic mathematical concepts relevant to de-

scribing our algorithm.

A surface S with a conformal structure is called a Riemann surface. Given

two Riemann surfaces M and N , a map f : M → N is conformal if it preserves

the surface metric, up to a multiplicative factor called the conformal factor.

An immediate consequence is that every conformal map preserves angles. With

the angle-preserving property, a conformal map effectively preserves the local

geometry of the surface structure.

A generalization of conformal map is called the quasiconformal map which

is an orientation-preserving homeomorphism between Riemann surfaces with

bounded conformality distortion, in the sense that the first order approxima-

tion of the quasiconformal homeomorphism takes small circles to small ellipses

of bounded eccentricity. Thus, a conformal homeomorphism that maps a small

circle to a small circle can also be regarded as quasiconformal. Mathematically,

f is quasiconformal provided that it satisfies the Beltrami’s equation:

∂f

∂z
= µ(z)

∂f

∂z
(3.1)

for some complex-valued Lebesgue-measurable µ satisfying |µ|∞ < 1. In terms

of the metric tensor, consider the effect of the pullback under f of the usual

Euclidean metric ds2
E; the resulting metric is given by:

f ∗(ds2
E) = |∂f

∂z
|2|dz + µ(z)dz)|2 (3.2)

which, relative to the background Euclidean metric dz and dz, has eigenvalues (1+

|µ|)2 ∂f
∂z

and (1−|µ|)2 ∂f
∂z

. µ is called the Beltrami coefficient, which is a measure of

conformality. In particular, the map f is conformal around a small neighborhood
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of p when µ(p) = 0. Also, the gradient and the Beltrami coefficient of the map

are closely related. Suppose f = (f1, f2) under the conformal parameter domains.

The Jacobian matrix J of f can be written as (∇f1,∇f2) which is a 2×2 matrix.

The Jacobian is closely related to |µf |. Mathematically,

det(J) = (1− |µf |2)(|∇f1|2 + |∇f2|2 + det(J))/4

While | det(J)| gives us information about the area distortion under the map f ,

|µf | gives us information about the conformality distortion. In other words, |µf |

measures the regions of deformations that do not preserve local geometry.

Infinitesimally, around a point p, f may be expressed with respect to its local

parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z)
(3.3)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter

domain, f may be considered as a map composed of a translation of f(p) together

with a stretch map S(z) = z+µ(p)z, which is postcomposed by a multiplication of

fz(p) which is conformal. All the conformal distortion of S(z) is caused by µ(p).

S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),

we can determine the angles of the directions of maximal magnification as well as

the amount of maximal magnification and maximal shrinking. Specifically, the

angle of maximal magnification is argµ(p)/2 with magnifying factor 1 + |µ(p)|;

the angle of maximal shrinking is the orthogonal angle (argµ(p) − π)/2 with

shrinking factor 1− |µ(p)|. The distortion or dilation is given by:

K =
1 + |µ(p)|
1− |µ(p)|

(3.4)

Thus, the Beltrami coefficient µ gives us all the information about the confor-

maity of the map (See Figure 5.1). This motivates its use as a measure of ab-
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Figure 3.1: Illustration of how Beltrami coefficient µ measures the distortion by
a quasiconformal mapping that maps a small circle to an ellipse with dilation K.

normal deformation, as abnormalities tend to cause significant distortions in the

conformality of the deformation map.

It is often convenient to conformally map 3D surfaces to planar domains, to

simplify subsequent computations. Yamabe flow offers a rigorous and efficient

way to do this. Suppose S is a surface embedded in the 3D Euclidean space R3,

then it has the induced Euclidean metric denoted by g = (gij). Let u : S → R

be a function on S, then ḡ = e2ug is another Riemannian metric of S, which is

conformal to g. If the Gaussian curvatures induced by g and ḡ are K and K̄,

then they are related by the following Yamabe equation

K̄ = e2u(−∆gu+K), (3.5)

where ∆g is the Laplace-Beltrami operator under the original metric g.

It is fundamentally important to design a Riemannian metric ḡ with a pre-

scribed curvature K̄, which is equivalent to solving the Yamabe equation. The

surface Yamabe flow (or equivalently the Ricci flow) is a powerful tool for solving

it. Intuitively, the surface Yamabe flow deforms the metric in proportion to the

Gaussian curvature, such that the Gaussian curvature evolves according to a heat
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diffusion process.
dgij
dt

= (K̄ −K)gij. (3.6)

It has been proven [Luo04] that if K̄ ≡ 0 everywhere and the total area is

preserved during the flow, the Yamabe flow converges and leads to a metric

with constant Gaussian curvature. Note that, for higher-dimensional Riemannian

manifolds, the Ricci flow and Yamabe flow are different. On discrete surfaces,

the discrete Yamabe flow produces better conformality than the discrete Ricci

flow.

3.4 Our Proposed Model

In our method, we propose to use the Beltrami coefficient to detect abnormalities

on surfaces. This is done by formulating abnormal changes as non-conformal de-

formations. Conversely, a conformal deformation is considered as normal. This

definition is based on the fact that the local geometries of shape are well-preserved

under normal changes, such as biological shape deformations. Conformal maps

are well known to preserve local geometry and thus it is plausible to use them

to characterize normal deformation. When shapes undergo abnormal changes,

significant local distortions in conformality are often observed. This motivates us

to consider the Beltrami coefficient, which measures the degree of conformality

distortion, for abnormality detection. Our proposed algorithm has three main

steps. First, the original 3D surface and the deformed surface are conformally

parameterized onto 2D rectangles using the Yamabe flow method. This simplifies

the problem by transforming the 3D surface problem into a 2D problem. Sec-

ond, a quasiconformal map is obtained between the two surfaces by computing a

harmonic map between their conformal parameter domains, which also accommo-

dates constraints to match internal landmarks based on their shapes. This gives
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a one-to-one correspondence (registration) between the two surfaces. Finally, the

Beltrami coefficient associated with the quasiconformal map is computed as an

index of abnormal changes. We describe each step in detail next.

3.4.1 Conformal Parameterization Using the Yamabe Flow

To detect regions with abnormalities, the first step is to find a one-to-one corre-

spondence (registration) between the original and deformed surfaces. With this

registration, we can detect the distortion in conformality of the deformation at

each point by computing the associated Beltrami coefficient. Computing the sur-

face registration directly on surfaces is difficult, especially on complicated surfaces

such as the cortical surface of the brain. Therefore, it is advantageous for us to

first parameterize the surfaces conformally onto the 2D parameter domain. This

simplifies the process by transforming the surface problem into a 2D problem.

Under the conformal parameterizations, determining conformality distortion be-

tween surfaces is equivalent to determining it between their conformal parameter

domains. Of course, the computation of conformal parameterizations has to be

accurate in order to effectively detect changes in conformality. The Yamabe flow

(3.6) provides us with an efficient and accurate way to compute these conformal

maps.

In practice, all surfaces are approximated by piecewise linear triangular meshes

M(V,E, F ), where V , E and F represent the vertex, edge and face set of the

mesh. We use vi to denote the i-th vertex, [vi, vj] the edge connecting vi and vj,

[vi, vj, vk] the face connecting vi, vj, vk. The discrete metric is the edge length

function ` : E → R+ satisfying triangle inequality. The vertex discrete curvature
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is defined as angle deficiency,

Ki =

 2π −
∑

[vi,vj ,vk]∈F θ
jk
i vi 6∈ ∂M

π −
∑

[vi,vj ,vk]∈F θ
jk
i vi ∈ ∂M

where θjki is the corner angle at vi in the face [vi, vj, vk], ∂M is the boundary of

M . Let u : V → R be the discrete conformal factor. The edge length of [vi, vj] is

defined as

`ij := exp(ui) exp(uj)`
0
ij,

where `0
ij is the original edge length in R3. The discrete Yamabe flow is defined

as
dui
dt

= K̄i −Ki,

with the constraint
∑

i ui = 0. The discrete Yamabe flow converges, and the final

discrete metric induces the prescribed curvature; a detailed proof can be found in

[Luo04]. The discrete Yamabe flow is the negative gradient flow of the following

Yamabe energy,

E(u) =

∫ u

u0

∑
i

(K̄i −Ki)dui,

where u0 = (0, 0, · · · , 0). This energy is convex and has a unique global minimum,

which corresponds to the desired metric. Using Newton’s method, the Yamabe

energy can be optimized very efficiently. The Hessian matrix H = (hij) of the

Yamabe energy has an explicit form. If [vi, vj] is an edge on the mesh, [vi, vj, vk]

and [vj, vi, vl] are the two faces adjacent to [vi, vj], then hij = cot θijk + cot θijl , θijk

is the corner angle at vk in the face [vi, vj, vk]. The diagonal element hii equals

to
∑

j 6=i hij.

To compute a conformal mapping of a simply connected surface S, we set the

target curvature to be zeros for all interior vertices, and the total curvature of

boundary vertices to be 2π. For example, in order to map a human face surface
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Figure 3.2: Conformal mappings of a real human face and a real brain cortical
surface, using Yamabe flow method. Four corners are picked, whose target cur-
vatures are set to be π

2
, and the target curvatures are set to be zeros everywhere.

to a rectangle, we select four corner vertices, and set their target curvatures to be

π
2
. The target curvatures for all other vertices are zeros. Using the Yamabe flow,

we can obtain the desired metric. Then we flatten the mesh isometrically face

by face using the resulting metric. Figure 3.2 shows two examples of conformal

surface mappings using Yamabe flow method. The conformality is demonstrated

using checkerboard texture mapping.

3.4.2 Quasiconformal Map between Surfaces

After parameterizing the surfaces conformally, the next step is to determine a qua-

siconformal registration between the conformal parameter domains. There may

be important curves on the surfaces representing landmark features[LWC07a], so

we look for the optimized harmonic diffeomorphism that exactly matches land-

mark features via a variational approach. However, minimizing the energy func-
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tional over the search space of landmark-matching surface diffeomorphisms is

difficult. Following [LTW08], we formulate our problem as a variational energy

defined on a search space of smooth vector fields
−→
V . The diffeomorphism may

then be generated through the integral flow of
−→
V .
−→
V are restricted only to those

that do not flow across the landmark curves (to enforce exact landmark corre-

spondence). Our energy has 2 terms: (1) a harmonic energy term to optimize

the harmonicity of the parametrization maps; (2) a smoothness energy term to

ensure the smoothness of the vector field.

Denote the conformal parameter domains of S1 and S2 by D1 and D2 respec-

tively. We look for harmonic diffeomorphisms f̃1 : D1 → Ω and f̃2 : D2 → Ω that

match landmark curves to a consistent location C. The composition map f̃−1
2 ◦ f̃1

is a landmark-matching harmonic diffeomorphism from D1 to D2. To start with,

we compute any arbitrary maps f01 : D1 → Ω and f02 : D2 → Ω. We then

iteratively look for the smooth vector field ~Xi on Ω such that the composition

map f̃i = Φ
~Xi ◦ f0i : Di → Ω is the landmark matching harmonic diffeomorphism

(i = 1, 2). Here, Φ
~Xi : Ω → Ω is the time-1 integral flow of the vector field

~Yi = PC ~Xi satisfying the integral flow equation:

∂Φ

∂t

~Xi

(x, t) = ~Xi(Φ
~Xi(x, t)),

Φ
~Xi(x, 0) = x.

~Y is the projection of the vector field ~Xi such that it is tangential to C. This

ensures the exact landmark matching property of f̃i.

The vector fields ~Xi = ai
∂
∂x

+ bi
∂
∂y

minimizes the following energy functional:

J [ai, bi] =

∫
Ω

|∇f̃1|2 + |∇f̃2|2 dx+ λ

∫
C

(
κ1(f̃1)− κ2(f̃2)

)2
dsD (3.7)

+β

∫
Ω

|∇ ~X1|2 + |∇ ~X2|2 dx
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Figure 3.3: How quasiconformal registration is constructed between two surfaces.

The variational problem is then formulated to be defined over the space of C1

smooth vector fields on Ω. The last integral in the energy is the smoothness term

for the vector fields ~Xi. The first two integrals are the harmonic terms, which aim

to preserve the harmonicity of the parameterization as much as possible. The

second term is a symmetric shape term defined as an arc length integral, where

the shape measure is defined according to the curvature. The proposed energy

functional can be minimized by modifying the vector field iteratively according

to the following Euler-Lagrange equation:

dai
dt

=

∫ 1

0
Bi(φ

~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ
~Yi
s , s) PC~e1 |Dφ

~Yi
s | ds− β∆ai (3.8)

dbi
dt

=

∫ 1

0
Bi(φ

~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ
~Yi
s , s) PC~e2 |Dφ

~Yi
s | ds− β∆bi, (3.9)

where:

Bi := −∆f̃i Df0,i + λχA
(
(−1)i−1

(
κ1(f̃1)−κ2(f̃2)

)
∇κi−∇·Ci

)
Df0,i |∇H(φ)|;

Ψi is the orthogonal fundamental matrix for the homogeneous system of

∂

∂t
Pi(x, t) = ηPC~e1 (Φ

~Yi(x, t)) +D~Yi(Φ
~Yi(x, t)) Pi(x, t),

Pi(x, 0) = 0.

25



Figure 3.4: (A) shows the vector field defined on the domain. The vector field on
the landmark is tangential to the curve. (B) shows the grid lines on the domain.
Several points are labeled on the landmark to visualize its displacement under
the integral flow. (C) shows the result of the integral flow of the vector field.
A diffeomorphism with exact landmark matching is obtained. Note that points
slide along the landmark curve, instead of flowing across the curve.
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Figure 3.5: Illustration of the result of matching the cortical surfaces with several
sulcal landmarks. (A) shows brain surface 1. It is mapped to brain surface 2
under the conformal parameterization as shown in (B). (C) shows the result of
matching under our proposed parameterization.

Figure 3.3 shows a schematic diagram of our quasiconformal map construction.

Figure 3.4 shows how the constraint vector field can be used to obtain the de-

sired registration with exact landmark matching based on the shape information.

Figure Figure 3.5 illustrates the matching results for cortical surfaces with sev-

eral sulcal landmarks labeled. Figure 3.5(A) shows brain surface 1 with several

landmarks labeled. It is mapped to brain surface 2 under the conformal param-

eterization as shown in Figure 3.5(B). The sulcal landmarks on Brain 1 are only

mapped approximately to the sulcal regions on Brain 2. Figure 3.5(C) shows

the matching result under the parameterization we proposed. The corresponding

landmarks are mapped exactly. Also, the correspondence between the landmark

curves follows the shape information (corners to corners; see the black dot).

Using harmonic maps for registration is beneficial as they tend to preserve

conformality as much as possible. They effectively capture the region of confor-

mal deformation and help to identify regions of non-conformal deformation. By

computing the Beltrami coefficient µ of the registration, we can detect abnor-

malities. In cases where the deformed surface does not undergo any abnormal
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(non-conformal) deformations, the harmonic map obtained will be close to con-

formal and µ will approximately be zero.

3.4.3 Computing the Beltrami Coefficient

Given the conformal parameterizations together with the registration between the

conformal parameter domains, we can detect the abnormal region by computing

the Beltrami coefficient. The Beltrami coefficient measures the change in confor-

mality. Suppose the conformal parameterizations of So and Sd are φo : So → D1,

φd : Sd → D2 respectively. Denote the registration between the parameter do-

mains by F : D1 → D2. The composition map F̃ = φ−1
d ◦F ◦φo : So → Sd will give

a landmark matching harmonic registration between the original and deformed

surface. By computing the Beltrami coefficient µF̃ of F̃ , we can detect which

point on the surface undergoes abnormal (non-conformal) deformation. The Bel-

trami coefficient is invariant under conformal maps. In other words, |µf◦g| = |µg|

and |µg◦f | = |µf | if g is conformal. Since φo and φd are both conformal diffeo-

morphisms, we have:

|µF̃ | = |µφ−1
d ◦F◦φo

| = |µF | (3.10)

Thus, to compute µF̃ , it suffices to compute µF . Since F is a map defined on the

2D complex plane, we can compute its Beltrami coefficient easily by:

µF =
Fz
Fz

=

∂F
∂x

+ i∂F
∂y

∂F
∂x
− i∂F

∂y

(3.11)

The Beltrami coefficient is a complex-valued function. When the deformation

near a point p is conformal, then µF̃ (p) = 0. At the point where abnormal de-

formation happens around its immediate neighborhood, µF̃ will be non-zero. We

can easily detect regions of abnormality by computing the norm of the Beltrami

coefficient |µF̃ |.
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To measure the degree of abnormality quantitatively, we introduce a measure

called Beltrami Index (BI) which measures the average of the Beltrami coefficient

over a certain region. Mathematically, it is defined as:

BI(D) =

∫
D

|µ(z)|dz/
∫
D

|dz| (3.12)

The Beltrami Index can effectively measure the degree of abnormalities in differ-

ent regions on the surface (see Figure 3.17).

Also, as described in section 3, the argument of µF̃ measures the angle of

complex dilation. This can be used to describe any local rotational change of

the abnormal shape. By representing µF̃ as a vector field ~V = (Re(µF̃ ), Im(µF̃ ))

on the parameter domain, we can easily visualize the rotational change of the

abnormal shape (see Figure 3.9).

3.5 Computer Algorithm

The computer algorithm can be summarized as follows:

1 Compute the conformal parameterizations of the original surface So and

deformed surface Sd: φo : So → D1 and φd : Sd → D2;

2 Compute the landmark-matching harmonic registration between the con-

formal domains: F̃ : D1 → D2;

3 Compute the Beltrami coefficient µF̃ of F̃ . Compute |µF̃ | to detect re-

gions of abnormality. The rotational change of the abnormal shape can

be visualized by the vector field ~V = (Re(µF̃ ), Im(µF̃ )) on the parameter

domain.
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3.6 Experimental Results

We tested our proposed algorithm on synthetic surfaces, 3D human face data and

MRI-derived models of human brain cortical surfaces, to detect abnormalities.

In Figure 3.6, we tested our proposed algorithm using synthetic data. Figure

3.6(A) shows the original surface. Figure 3.6(B) shows the deformed surface with

both conformal and non-conformal deformations. Figure 3.6(C) shows the plot

of |µ|. It effectively detect the deformity on the surface. Figure 3.6(D) shows

the plot of the isometric indicator |f ∗(ds2
E) − Identity|. It is equal to 0 if f is

isometric. Figure 3.6(E) shows the gradient norm of the deformation field. Note

that both the isometric indicator and the gradient of the deformation field are

not good measures for detecting deformities. Figure 3.7 shows another example

on synthetic surfaces. Figure 3.7(A) shows the original surface. Figure 3.7(B)

shows the deformed surface with both conformal and non-conformal deformations.

Figure 3.7(C) shows the plot of |µ|. Figure 3.7(D) shows the distribution of µ

as a complex number. It represents a vector field on the conformal parameter

domain- this can be used to visualize the rotational change of the abnormal shape.

Again, it is observed that µ can be used effectively as an indicator to segment the

abnormal regions on the surface (see the shaped segmented region on the surface

in Figure 3.7(B)).

In Figure 3.8, we illustrate our idea on a human face. Figure 3.8(A) shows

the original human face without abnormality. Figure 3.8(B) shows the deformed

human face with abnormal swollen area. Figure 3.8(C) shows the the plot of |µ|

versus the conformal parameter domain. Figure 3.8(D) shows the distribution of

|µ| by color. Observe that µ can effectively reflect the swollen area on the human

face.
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Figure 3.6: (A) shows the original surface. (B) shows the deformed surface with
both conformal and non-conformal deformations. (C) shows the plot of |µ|. (D)
shows the plot of the isometric indicator |f ∗(ds2

E)− Identity|. It is equal to 0 if
f is isometric. (E) shows the gradient norm of the deformation field. Note that
both the isometric indicator and the gradient of the deformation field are not
good measures for detecting deformities.
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Figure 3.7: (A) shows the original surface. (B) shows the deformed surface with
both conformal and non-conformal deformations. (C) shows the plot of |µ|. (D)
shows the distribution of µ as a complex number. It represents a vector field on
the conformal parameter domain. Observe that µ can be used effectively as an
indicator to segment the abnormal regions on the surface.

Figure 3.8: (A) shows the original human face and (B) shows a deformed version
of the human face with an abnormally swollen area. (C) shows the plot of |µ|
versus the parameter domain. (D) shows the distribution of |µ| by color.
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Figure 3.9: (A) shows a human face with an abnormal swollen area. In (B), the
swollen area is rotated. (C) plots the Beltrami coefficients µ on the parameter
domain. (D) shows a zoomed-in region. The green and red colors represent the
Beltrami coefficients for (A) and (B) respectively. Observe that the Beltrami
coefficients effectively reflects the rotational change of the swollen area.
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Figure 3.10: (A) shows the original clean human face. (B) shows the deformed
human face with noise. (C) shows the original human face with noise. (D) shows
the plot of µ computed under noise.

Figure 3.9 shows how the complex-valued Beltrami coefficient µ can be used to

detect rotational change of abnormal shape. It is done by visualizing µ as a vector

field ~V = (Re(µF̃ ), Im(µF̃ )) on the parameter domain. Figure 3.9(A) shows a

human face with an abnormally swollen area. In Figure 3.9(B), the swollen area

is rotated. Figure 3.9(C) plots the complex-valued Beltrami coefficients µ on the

parameter domain. Figure 3.9(D) shows the same area zoomed in. The green

and red colors represent the Beltrami coefficients for (A) and (B), respectively.

Observe that the Beltrami coefficients effectively reflect the rotational change of

the swollen area. The abnormal shape is generally rotated by 90 degrees.

In Figure 3.10, we test our proposed algorithm on noisy data. Figure 3.10(A)

shows the original clean human face. Figure 3.10(B) shows the deformed human

face with noise. Figure 3.10(C) shows the original human face with noise. (D)

shows the plot of µ computed under noise. Note that our method is stable under
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Figure 3.11: (A) shows the original human face. (B) shows the deformed human
face. The deformed face is fatter and abnormality is observed. The local geometry
is well preserved (except for the abnormal region), although the face has become
fatter. (C) shows the plot of the isometric indicator. (D) shows the plot of |µ|.

noise and can effectively detect deformities on noisy surface data.

In Figure 3.11, 3.13 and 3.14, we illustrate our proposed algorithm on a human

brain cortical surface. Figure 3.11 shows the original brain surface (Brain 1) and

the deformed brain surface (Brain 2) with abnormal gyral thickening. The gyral

thickening can be observed inside the circled region. Figure 3.13 shows a zoom-in

of the abnormal region. Gyral thickening is clearly observed. Figure 3.13(A)

shows the plot of |µ| versus the parameter domain. Figure 3.13(B) shows the

distribution of |µ| in color. Again, the Beltrami coefficient µ can effectively

detect the gyral thickening region.

Figure 3.15 shows another example of detecting abnormalities on brain sur-

faces. Figure 3.15(A) shows the original brain surface. Figure 3.15(B) shows

the deformed brain surface with gyral thickening in the circled regions. Figure

3.15(C) shows the distribution of |µ|. The Beltrami coefficient µ again clearly

reflects the region of abnormal changes on the human brain cortical surface.
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Figure 3.12: The figure shows the original brain surface (Brain 1) and the de-
formed brain surface (Brain 2) with an abnormal thickening of the gyri, which
can be observed inside the circled region.

Figure 3.13: The figure shows a zoomed-in version of the abnormal region. Gyral
thickening can be clearly observed.
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Figure 3.14: (A) shows the plot of |µ| versus the parameter domain of the brain
surfaces. (B) shows the distribution of |µ| by color.

Figure 3.15: The figure shows another example of detecting abnormalities on
brain surfaces. (A) shows the original brain surface. (B) shows the deformed
brain surface with gyral thickening inside the circled regions. (C) shows the
distribution of |µ|.
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Figure 3.16: (A) shows a real human brain cortical surface. (B) shows the de-
formed cortical surface. The brain has undergone different degrees of gyrification
in different regions. (C) shows the colormap of the brain determined by the Bel-
trami coefficient. Red color indicates a high value of the Beltrami coefficient,
whereas blue colors mean low values of Beltrami coefficient. (D) shows the col-
ormap on the conformal parameter domain.

Figure 3.17: The top shows a series of brain surfaces undergoing more and more
gyri thickening. The bottom shows how the Beltrami Index (BI) can effectively
measure the gyrification.
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Figure 3.16 illustrates how we can use Beltrami coefficient to capture the

gyrification pattern on the human brain surface. Figure 3.16(A) shows a real

human brain cortical surface. Figure 3.16(B) shows the deformed cortical surface.

The brain has undergone different degrees of gyrification at different regions.

Figure 3.16(C) shows the colormap of the brain determined by the Beltrami

coefficient. Red color means high value of Beltrami coefficient whereas blue color

means low value of Beltrami coefficient. Figure 3.16(C) shows the colormap on

the conformal parameter domain. Observe that the colormap of the Beltrami

coefficient effectively captures the gyrification pattern on the brain surface.

Figure 3.17 shows how we can qualitatively measure the degree of abnormali-

ties using the Beltrami Index (BI). The top shows a series of brain surfaces which

are undergoing more and more gyral thickening. The bottom shows the plot of

the Beltrami Index (BI) of each deformed brain surfaces. Observe that the value

of the Beltrami Index becomes bigger as the gyral thickening becomes more se-

vere. It shows that the Beltrami Index (BI) can effectively measure the degree of

the abnormal changes.

3.7 Conclusion

In conclusion, we developed an effective algorithm to detect abnormalities on

surfaces using quasiconformal geometry. To do this, we computed a landmark-

matching harmonic registration between the original and deformed 3D surfaces,

together with its associated Beltrami coefficient, µ. Experimental results show

that the Beltrami coefficient can effectively detect regions with abnormalities,

which are invariant under normal (conformal) deformation. By visualizing µ as

a vector field defined on the parameter domain, we can capture the rotational

change of the abnormal shape. In future, we will apply our algorithm to study
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human brain diseases such as Williams syndrome, which results from genetically-

mediated developmental abnormalities in cortical folding. We will also develop

more efficient numerical schemes to speed up the computation.

3.8 Appendix

Numerical Implementation of the Quasiconformal Registration Algo-

rithm

We describe how the quasiconformal registration algorithm can be implemented.

In practice, all surfaces are represented by meshes which consists of vertices, edges

and triangular faces. The functions and their partial derivatives in the iterative

scheme are defined on each vertex and linearly interpolated to define the value

on each triangular face. They can be computed as follows:

• Laplacian of a function F can be computed as: ∆F =
∑

[u,v]∈Nv kuv(F (v)−

F (u)), where: Nv is a set of triangles around v that forms a neighborhood

of v; kuv = (cotα + cot β)/2, where α and β are the opposite angles of the

edge [u, v]. For detail, please see [PP93].

• Gradient ∇κi can be computed as: ∇κi =
∑

[u,v,w]∈Nv
∇[u,v,w]κi

n
, where

∇[u,v,w]κi is the gradient of κi on the triangle [u, v, w]. The value of κi

on [u, v, w] is linearly interpolated. n is the number of faces in Nv.

• Df0,i is defined as Df0,i = (∇f 1
0,i,∇f 2

0,i) which is a 2 × 2 matrix, where

f0,i = (f 1
0,i, f

2
0,i). Similarly, DYi := (∇~Y 1

i ,∇~Y 2
i ), where ~Yi = (Y 1

i , Y
2
i )

• The orthogonal fundamental matrix Ψi(~x, s) is defined as:

Ψi(~x, s) := exp(
∫ s

0
D~Yi(Φ

~Yi(~x, t))dt). Suppose the interval [0, 1] is dis-

cretized as: s0 = 0 < s1 < ... < sn = 1. Ψi(~x, s) can be computed as:
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Ψi(~x, sk) := exp(
∑k

j=1 D
~Yi(Φ

~Yi(~x, sj))(sj − sj−1)).

• The function δε is defined to be a positive function that is compactly sup-

ported in (−ε, ε) and can be computed mathematically as:

δε(x) = 1
a(ε)
√
π
exp(− x2

a(ε)2
)

• ηep is a smooth function on Ω such that ηep = 0 at the endpoints of the

open curves Γk ⊂ C, k = 1, 2, ..N . It can be computed mathematically as:

ηep = 1 −
∑2N

i=1 δ
i
ε(x), where δiε(x) = exp(−(x − ai)/ε

2) and a1, a2, ..., a2N

are the set of end points of the landmark curves.

• The initial map f0i maps the landmark curves Ci to the common curve

Cstandard,i. It can be computed as follows: Given a set of landmark curves

Ci(t) on the parameter domain and a set of corresponding common curves

Cstandard,i(t). Starting from the initial map f0 = Id, we can iteratively flow

the map to get a diffeomorphism which matches Ci(t) to Cstandard,i(t) as

follow. We can define a vector fields on fn(Ci(t)) as ~V n(t) = Cstandard,i(t)−

fn(Ci(t)) and smoothly extend to the parameter domain by Gaussian con-

volution G ∗ ~V n(t). The iterative scheme can then be written as: fn+1 =

fn + dt~Vn(fn).
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CHAPTER 4

Optimization of Surface Registrations Using

Beltrami Holomorphic Flow

4.1 Introduction

Surface registration is a process of finding an optimal 1-1 correspondence between

surfaces. It is of great importance in different research areas, such as computer

graphics and medical imaging. For example, in medical imaging, surface registra-

tion is always needed for statistical shape analysis, morphometry and processing

of signals on brain surfaces (e.g., denoising or filtering). In many such applica-

tions, a surface must be non-rigidly aligned with another surface, while matching

various features that lie within the two surfaces. Finding an optimal surface

registration that best matches the required constraints is difficult, especially on

complicated surfaces such as human brains. It is therefore necessary to develop

an effective algorithm to compute the best surface registration.

In order to obtain the best 1-1 correspondence between two surfaces, an opti-

mization of surface registrations is often required. Optimization of surface regis-

trations refers to a process of selecting an optimal surface diffeomorphism within

a large class of admissible smooth mappings, that best satisfies certain properties.

Mathematically, it can usually be formulated as a variational problem:

min
f∈FDiff

E0(f) (4.1)
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where FDiff = {f : S1 → S2 : f is a diffeomorphism} is the space of all surface

diffeomorphisms from S1 to S2.

Solving this type of variational problem is generally difficult, since the space of

all surface diffeomorphisms FDiff is a complicated functional space. For example,

FDiff is inherently infinite dimensional and has no natural linear structure. Con-

structing an efficient optimization scheme that guarantees to obtain a minimizer

in the search space of diffeomorphisms becomes a big challenge. For example, a

loss of bijectivity of the surface map (overlapping) is often observed during the

optimization process. To solve this problem, it is necessary to develop a simple

representation of surface diffeomorphisms, which helps to simplify the optimiza-

tion procedure.

In this chapter, we propose a simple representation of surface diffeomorphisms

using Beltrami coefficients (BCs). The BCs are any complex-valued functions

defined on the surface with L∞-norm strictly less than 1. Fixing any 3 points on

a pair of surfaces, there is a one-to-one correspondence between the set of surface

diffeomorphisms and the set of BCs. Hence, every bijective surface map can be

represented by a unique BC. Conversely, given a BC, we can reconstruct the

unique surface map associated to it, using the Beltrami Holomorphic flow (BHF)

method introduced in this chapter. The BHF formulates the variation of the

associated map under the variation of BC. Hence, the variational problem over

the space of surface diffeomorphisms can be easily reformulated into a variational

problem over the space of BCs:

min
µ∈FBC

E(µ) (4.2)

where FBC = {µ : S1 → D : |µ|∞ < 1} is the set of BCs.

The space of BCs is a much simpler functional space, which captures many

essential features of a surface map. There are no restrictions on the BC that it has
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to be 1-1, surjective or satisfy some constraints on the Jacobian. By adjusting

BCs, we can adjust the surface registration accordingly to obtain the desired

properties of the map. This makes the minimization procedure much easier.

More importantly, a bijective surface map is guaranteed to be obtained during the

optimization process. We applied our proposed algorithm on synthetic examples

and real medical applications for surface registration, which demonstrate the

effectiveness of our proposed method.

In summary, our work contributes to the following three aspects:

• We propose a simple representation of surface diffeomorphisms, which fa-

cilities the optimization of surface registrations;

• We develop a reconstruction algorithm of the surface diffeomorphism from

a given BC, using the Beltrami holomorphic flow method. This completes

the representation scheme and allows us to move back and forth between

BCs and surface diffeomorphisms.

• We formulate the variation of the associated surface map under the variation

of BC. It allows us to reformulate the variational problem over the space of

surface diffeomorphisms into a variational problem over the space of BCs.

It greatly simplifies the optimization procedure.

A flow chart summarizing the framework proposed in this chapter is shown

in Figure 4.1

4.2 Previous Work

Surface registration has been studied extensively by different research groups.

Most methods compute the optimal surface registration by minimizing certain
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Figure 4.1: A flow chart summarizing the framework proposed in this chapter.

kinds of energy functionals. We will briefly describe some related methods that

are commonly used.

Conformal surface registration has been widely studied to obtain a smooth 1-1

correspondence between surfaces, that minimizes the angular distortion [AHT99]

[GWC04][HS09][JSR04][LPR02][WLG07]. Conformal maps are usually computed

variationally by optimizing some energy functionals, such as the harmonic energy

[GWC04] or the least square energy based on the Cauchy-Riemann equation

[LPR02]. A 1-1 correspondence between surfaces can be obtained at the optimal

state. However, the above registration is not guaranteed to map anatomical

features, such as sulcal landmarks, consistently from subject to subject.

To obtain a surface registration that matches important landmark features,

landmark-based diffeomorphisms are often used. Optimization of surface dif-

feomorphisms by landmark matching has been extensively studied. Gu et al.

[GWC04] improves the conformal parameterization by composing an optimal

Möbius transformation so that it minimizes a landmark mismatch energy. The

resulting parameterization remains conformal, although features cannot be per-

fectly matched. Wang et al. [WLC05][LWC07b] proposed a variational framework

to compute an optimized conformal registration which aligns landmarks as good
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as possible. Landmarks are not matched exactly and diffeomorphisms cannot

be guaranteed when there is a a large amount of landmark features. Glaunès

et. al [GVM04] proposed to generate large deformation diffeomorphisms of the

sphere onto itself, given the displacements of a finite set of template landmarks.

The diffeomorphism obtained can better match landmark features. Lui et al.

[LTW10] proposed to compute the shape-based landmark matching registration

between brain surfaces, using the integral flow method. The one parameter sub-

group within the set of all diffeomorphisms are considered and represented by

smooth vector fields. Landmarks can be perfectly matched and the correspon-

dence between landmark curves are based on the shape information. Leow et

al. [LYL05] proposed a level set-based approach for matching different types of

features, including points and 2D or 3D curves represented as implicit functions.

These matching fields in the parameter domain were then pulled back onto the

surfaces to compute a correspondence field. Later, Shi et al. [STD07] computed

a direct harmonic mapping between two surfaces by embedding both surfaces

as the level set of an implicit function, and representing the mapping energy as

a Dirichlet functional in the 3D volume domains. Although such an approach

can incorporate landmark constraints, it is not proven to yield diffeomorphic

mappings.

In case there is no well-defined landmarks on surfaces, some authors have

proposed driving features into correspondence based on shape information. Lyt-

telton et al. [LBR07] computed surface parameterizations that match surface

curvature. Fischl et al. [FST99] improved the alignment of cortical folding pat-

terns by minimizing the mean squared difference between the average convexity

across a set of subjects and that of the individual. Wang et al. [WCT05] com-

puted surface registrations that maximize the mutual information between mean

curvature and conformal factor maps across subjects. Lord et al. [LHV07b]
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matched surfaces by minimizing the deviation from isometry. In most situations,

extra attention has to be paid to ensure the optimal map computed is diffeomor-

phic. Hence, developing an effective optimization algorithm that guarantees to

give a diffeomorphic surface registration is necessary. This motivates us to look

for a simple representation of surface diffeomorphisms which helps to simplify the

optimization procedure.

4.3 Theoretical Background

In this section, we describe some basic mathematical concepts related to our

algorithms. For details, we refer readers to [GL00] and [SY94].

A surface S with a conformal structure is called a Riemann surface. Given

two Riemann surfaces M and N , a map f : M → N is conformal if it pre-

serves the surface metric up to a multiplicative factor called the conformal fac-

tor. An immediate consequence is that every conformal map preserves angles.

With the angle-preserving property, a conformal map effectively preserves the

local geometry of the surface structure. A generalization of conformal maps is

the quasi-conformal maps, which are orientation-preserving diffeomorphisms be-

tween Riemann surfaces with bounded conformality distortion, in the sense that

their first order approximations takes small circles to small ellipses of bounded

eccentricity [GL00]. Thus, a conformal homeomorphism that maps a small circle

to a small circle can also be regarded as quasi-conformal. Figure 4.2 illustrates

the idea of conformal and quasiconformal maps.

Mathematically, f : C → C is quasi-conformal provided that it satisfies the

Beltrami equation:
∂f

∂z
= µ(z)

∂f

∂z
. (4.3)
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Figure 4.2: Illustration of conformal map and quasiconformal map. (A) shows a
human face. A circle packing pattern is plotted in (B). (C) shows the conformal
parameterization, which maps circles to circles. (D) shows the quasiconformal
parameterization, which maps circles to ellipses.

for some complex valued Lebesgue measurable µ satisfying ||µ||∞ < 1. In terms

of the metric tensor, consider the effect of the pullback under f of the usual

Euclidean metric ds2
E; the resulting metric is given by:

f ∗(ds2
E) = |∂f

∂z
|2|dz + µ(z)dz|2. (4.4)

which, relative to the background Euclidean metric dz and dz, has eigenvalues

(1 + |µ|)2 ∂f
∂z

and (1 − |µ|)2 ∂f
∂z

. µ is called the Beltrami coefficient, which is a

measure of non-conformality. In particular, the map f is conformal around a

small neighborhood of p when µ(p) = 0. Infinitesimally, around a point p, f may

be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(4.5)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter

domain, f may be considered as a map composed of a translation to f(p) together

with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication

of fz(p), which is conformal. All the conformal distortion of S(z) is caused by
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Figure 4.3: Illustration of how the Beltrami coefficient µ measures the distortion
of a quasi-conformal mapping that maps a small circle to an ellipse with dilation
K.

µ(p). S(z) is the map that causes f to map a small circle to a small ellipse. From

µ(p), we can determine the angles of the directions of maximal magnification and

shrinking and the amount of them as well. Specifically, the angle of maximal

magnification is arg(µ(p))/2 with magnifying factor 1+ |µ(p)|; The angle of max-

imal shrinking is the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor

1− |µ(p)|. The distortion or dilation is given by:

K = (1 + |µ(p)|)/(1− |µ(p)|). (4.6)

Thus, the Beltrami coefficient µ gives us important information about the prop-

erties of the map (See Figure 4.3).

Now, suppose µ and σ are the Beltrami coefficients of the quasiconformal

maps fµ and fσ respectively. Then the Beltrami coefficient τ of the composition

map f τ = fσ ◦ (fµ)−1 can be computed as:

τ =

(
σ − µ
1− µσ

1

θ

)
◦ (fµ)−1, (4.7)

where θ = p
p

and p = ∂
∂z
fµ(z). In particular, if fσ is the identity, that is, if σ = 0,
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then

τ = −(µ
p

p
) ◦ (fµ)−1. (4.8)

4.4 Main Algorithms

In this section, we discuss in detail the main algorithms in this chapter. Our goal

is to look for a simple representation scheme for the space of surface diffeomor-

phisms, with least constraint as possible, to simplify the optimization process.

4.4.1 Beltrami Holomorphic Flow

In this subsection, we describe two theorems about the Beltrami Holomorphic

Flow on the sphere S2 and the unit disk D. All the algorithms developed in this

chapter are based solely on these two theorems.

Theorem 4.4.1 (Beltrami Holomorphic flow on S2). There is a one-to-one cor-

respondence between the set of quasiconformal diffeomorphisms of S2 that fix the

points 0, 1, and ∞ and the set of smooth complex-valued functions µ on S2 for

which sup |µ| = k < 1. Here, we have identified S2 with the extended complex

plane C. Furthermore, the solution fµ to the Beltrami equation depends holo-

morphically on µ. Let {µ(t)} be a family of Beltrami coefficients depending on a

real or complex parameter t. Suppose also that µ(t) can be written in the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (4.9)

for z ∈ C, with suitable µ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such that

‖ (ε(t) ‖∞→ 0 as t→ 0. Then

fµ(t)(w) = fµ(w) + tḟµ[ν](w) + o(|t|) (4.10)
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locally uniformly on C as t→ 0, for w ∈ C, and where

ḟ [ν](w) = −f
µ(w)(fµ(w)− 1)

π

∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy.

(4.11)

Proof. This theorem is due to Bojarski. For detailed proof, please refer to [2].

Theorem 4.4.1 simply states that any diffeomorphism of S2 that fixes 0, 1 and

∞ can be represented uniquely by a Beltrami coefficient. In fact, the 3-point

correspondence can be arbitrary, instead of fixing 0, 1 and ∞ only. This can be

done easily by composing Mobius transformations to the diffeomorphism. Let

f : S2 → S2 be any diffeomorphism of S2 and given any 3-point coresspondence

{a, b, c ∈ S2} ↔ {f(a), f(b), f(c) ∈ S2}. We can look for Mobius transformations

φ1 and φ2 that map {a, b, c} and {f(a), f(b), f(c)} to 0, 1,∞ respectively. φ1

and φ2 are uniquely determined. The composition map f̃ := φ2 ◦ f ◦ φ−1
1 is a

diffeomorphism of S2 that fixes 0, 1 and ∞ and can be represented by a unique

Beltrami coefficient. In other word, given a diffeomorphism f of S2 and any

3-point correspondence, we can represent f uniquely by a Beltrami coefficient.

The theorem also gives the variation of the diffeomorphism under the variation

of the Beltrami coefficient. In order to adjust the diffeomorphism, we can simply

adjust the Beltrami coefficient by using the variational formula.

Theorem 4.4.1 can be further extended to diffeomorphisms of the unit disk D.

Theorem 4.4.2 (Beltrami Holomorphic flow on D). There is a one-to-one cor-

respondence between the set of quasiconformal diffeomorphisms of D that fix the

points 0 and 1 and the set of smooth complex-valued functions µ on D for which

sup |µ| = k < 1. Furthermore, the solution fµ depends holomorphically on µ.

Let {µ(t)} be a family of Beltrami coefficients depending on a real or complex

51



parameter t. Suppose also µ(t) can be written in the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (4.12)

for z ∈ D, with suitable µ in the unit ball of C∞(D), ν, ε(t) ∈ L∞(D) such that

‖ (ε(t) ‖∞→ 0 as t→ 0. Then:

fµ(t)(w) = fµ(w) + tḟµ[ν](w) + o(|t|) (4.13)

locally uniformly on C as t→ 0, for w ∈ C, and where

ḟ [ν](w) = −f
µ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy

)
.

(4.14)

Proof. The proof of this theorem can be found in the Appendix.

Theorem 4.4.2 states that any diffeomorphism of D that fixes 2 points (i.e.

0 and 1) can be represented uniquely by a Beltrami coefficient. Again, the 2-

point correspondence can be arbitrary. Let g : D → D be a diffeomorphism of

D and given any 2-point correspondence {a, b ∈ D} ↔ {g(a), g(b) ∈ D}. We

can find two unique Mobius tranformations of D, φ1 and φ2, that map {a, b}

and {g(a), g(b)} to {0, 1} respectively. The composition map g̃ := φ2 ◦ g ◦ φ−1
1

is a diffeomorphism of D that fixes 0 and 1 and can be represented by a unique

Beltrami coefficient. Theorem 4.4.2 also gives the variation of the diffeomorphism

of D under the variation of the Beltrami coefficient. Therefore, we can again

adjust the diffeomorphism of D by adjusting the Beltrami coefficient, which is a

much simpler functional space.

Theorem 4.4.1 and Theorem 4.4.2 can be extended to genus 0 closed sur-

faces and open surfaces with disk topology. Therefore, they can be applied to
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representing general surface diffeomorphisms, which will be discussed in Section

4.4.2.

4.4.2 Representation of Surface Homeomorphisms Using BCs

As mentioned earlier, it is crucial to look for a simple representation for the

space of all surface diffeomorphisms so that the optimization procedure can be

simplified. Surface registration is commonly represented by 3D coordinate func-

tions in R3. This representation requires lots of storage space and is difficult to

manipulate. For example, the 3D coordinate functions have to a satisfy certain

constraint on the Jacobian J (namely, J > 0) in order to preserve the 1-1 cor-

respondence of the surface maps. Enforcing this constraint adds extra difficulty

in manipulating and adjusting surface maps. It is therefore important to have a

simpler representation with as few constraints as possible.

Theorem 4.4.1 and 4.4.2 allow us to represent surface diffeomorphisms of S2

and D by Beltrami coefficients. The theorems can be further extended to genus

0 closed surfaces and open surfaces with disk topology.

Let S1 and S2 be two genus 0 closed surfaces, and given 3 points correspon-

dence between them: {p1, p2, p3 ∈ S1} ↔ {q1, q2, q3 ∈ S2}. By Riemann mapping

theorem, S1 and S2 can both be uniquely parameterized by conformal maps

φ1 : S1 → S2 and φ2 : S2 → S2 respectively, such that φ1(p1) = 0, φ1(p2) =

1, φ1(p3) = ∞ and φ2(q1) = 0, φ2(q2) = 1, φ2(q3) = ∞. Given any surface diffeo-

morphism f : S1 → S2. The composition map f̃ := φ2 ◦ f ◦ φ−1
1 : S2 → S2 is

a diffeomorphism from S2 to itself fixing 0, 1 and ∞. By Theorem 4.4.1, f̃ can

be uniquely represented by a Beltrami coefficient µ̃ defined on S2. Hence, f can

be uniquely represented by a Beltrami coefficient µ := µ̃ ◦ φ−1
1 defined on S1. In

other words, we have proven the following Corollary:
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Corollary 4.4.3. Let S1 and S2 be two genus 0 closed surfaces. Suppose f : S1 →

S2 is a surface diffeomorphism from S1 and S2 . Given 3 points correspondence

{p1, p2, p3 ∈ S1} ↔ {f(p1), f(p2), f(p3) ∈ S2}. f can be represented by a unique

Beltrami coefficient µ : S1 → C.

Similarly, theorem 4.4.2 can be extended to open surfaces with disk topology.

Let M1 and M2 be two genus 0 open surfaces. Given two points correspondence

between them: {p1, p2 ∈ M1} ↔ {q1, q2 ∈ M2}. We can again uniquely pa-

rameterize M1 and M2 conformally that map the corresponding points to 0 and

1. Denote them by φ1 : M1 → D and φ2 : M2 → D. The composition map

f̃ := φ2 ◦ f ◦ φ−1
1 : D→ D is a diffeomorphism of D fixing 0 and 1. Again, f̃ can

be uniquely represented by a Beltrami coefficient µ̃ defined on S2. Hence, f can

be uniquely represented by a Beltrami coefficient µ := µ̃◦φ−1
1 defined on M1. So,

we have the following Corollary.

Corollary 4.4.4. Let M1 and M2 be two genus 0 open surfaces with disk topology.

Suppose f : M1 → M2 is a surface diffeomorphism from M1 and M2 . Given 2

points correspondence {p1, p2 ∈M1} ↔ {f(p1), f(p2) ∈M2}. f can be represented

by a unique Beltrami coefficient µ : M1 → C.

Corollary 4.4.3 and 4.4.4 allows us to represent diffeomorphisms of genus 0

closed surfaces or open surfaces with disk topology by Beltrami coefficients. Thus,

we can use the Beltrami coefficient µf associated uniquely to f to represent

f . We first compute the Beltrami coefficient µ̃f̃ of the composition map f̃ =

φ2 ◦ f ◦ φ−1
1 : D → D. Mathematically, µ̃f̃ is given by the following formula:

µ̃f̃ =
∂f̃

∂z
/
∂f̃

∂z
=

1

2
(
∂f̃

∂x
+
√
−1

∂f̃

∂y
)/

1

2
(
∂f̃

∂x
−
√
−1

∂f̃

∂y
). (4.15)

The Beltrami coefficient µf can then be computed by µf := µ̃f̃ ◦φ
−1
1 : S1 → C.

µf is a complex-valued functions defined on S1 with sup |µf | < 1. There are no
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restrictions on µf that it has to be 1-1, surjective or satisfy some constraints

on the Jacobian. With this representation, we can easily manipulate and adjust

surface maps.

In practice, surfaces are commonly approximated by discrete meshes com-

prising of triangular or rectangular faces. The parameterizations map the surface

meshes onto the mesh D in C. The partial derivatives (or gradient) can be dis-

cretely approximated on each face of D. By taking average, the partial derivatives

and hence the Beltrami coefficient can be computed on each vertex. The detailed

numerical implementation can be found in the Appendix.

The Beltrami coefficient consists of two real functions only, namely the real

and imaginary parts. Compared to the representation using 3D coordinate func-

tions, this representation reduces 1/3 of the original storage space.

The computational algorithm can be summarized as follow:

Algorithm 4.1. Beltrami Representation of Surface Diffeomorphisms

Input: Surface diffeomorphism f : S1 → S2; points correspondence {pi} ↔ {qi =

f(pi)}.

Output: Beltrami representation µf : S1 → C of f : S1 → S2.

1. Compute the conformal parameterizations of S1 and S2 that map {pi} and

{qi} to consistent locations on the parameter domain D. Denote them by

φ1 : S1 → D and φ2 : S2 → D

2. Set f̃ = φ2 ◦ f ◦ φ−1
1 : D → D and compute the Beltrami coefficient µ̃f̃ by

Equation 4.15.

3. Compute the Beltrami coefficient µf : S1 → C by µf := µ̃f̃ ◦ φ
−1
1 .
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Figure 4.4: Beltrami representation and reconstruction of a surface diffeomor-
phism f on the brain surface. The top left shows a surface diffeomorphism
between two different brain surfaces. The top right shows the Beltrami rep-
resentation µ of f . The colormap of |µ| is shown. The bottom row shows the re-
constructed map at different iterations N during the BHF reconstruction. When
N = 20, the map closely resembles to the original map (the black dots shows the
exact positions under the original map)
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Figure 4.5: Beltrami representation and reconstruction of a surface diffeomor-
phism f on the hippocampal surface. The top left shows a surface diffeomorphism
between two different hippocampal surfaces. The top right shows the Beltrami
representation µ of f . The colormap of |µ| is shown. The bottom row shows
the reconstructed map at different iterations N during the BHF reconstruction.
When N = 20, the map closely resembles to the original map (the black dots
shows the exact positions under the original map)

4.4.3 Reconstruction of Surface Diffeomorphisms from BCs

Given the Beltrami coefficient µ defined on S1. It is important to have a recon-

struction scheme to compute the associated quasi-conformal diffeomorphism fµ.

This allows us to move back and forth between BCs and surface diffeomorphisms.

We propose the Beltrami Holomorphic flow (BHF) method to reconstruct the sur-

face diffeomorphism fµ : S1 → S2 associated with µ. The BHF iteratively flows

the identity map to fµ. In this subsection, we describe the BHF method in detail.

The variation of fµ under the variation of µ can be expressed explicitly. Sup-
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pose µ̃(z) = µ(z) + tν(z) + O(t2) (z = x + iy). Then, f µ̃(z)(w) = fµ(w) +

tV (fµ, ν)(w) +O(t2), where

V (fµ, ν)(w) =

∫
D

K(z, w)dxdy. (4.16)

where:

K(z, w) =


−fµ(w)(fµ(w)−1)

π

(
ν(z)((fµ)z(z))2

fµ(z)(fµ(z)−1)(fµ(z)−fµ(w))

)
if D = S2;

−fµ(w)(fµ(w)−1)
π

(
ν(z)((fµ)z(z))2

fµ(z)(fµ(z)−1)(fµ(z)−fµ(w))

+ ν(z)((fµ)z(z))2

fµ(z)(1−fµ(z))(1−fµ(z)fµ(w))

)
if D = D.

(4.17)

We can also write V (fµ, ν)(w) as:

V (fµ, ν)(w) =

∫
D

 G1ν1 +G2ν2

G3ν1 +G4ν2

 dxdy. (4.18)

where ν = ν1 + iν2 and G1, G2, G3, G4 are real-valued functions defined on D.

Using this fact, we propose the BHF method to iteratively flow the identity

map to fµ. Given the parameterizations φ1 : S1 → D and φ2 : S2 → D, we look for

the map f̃µ = φ2◦fµ◦φ−1
1 : D → D associated uniquely with µ̃ = µ◦φ−1

1 : D → C.

fµ can then be obtained by fµ = φ−1
2 ◦ f̃µ ◦ φ1.

We start with the identity map Id of which the Beltrami coefficient is equal

to 0. Let N be the number of iterations. Define µ̃k = kµ̃/N , k = {0, 1, 2, ..., N}.

Let f̃ µ̃k be the map associated with µ̃k. Note that f̃ µ̃0 = Id and f̃ µ̃N = f̃µ.

Equation 5.5 allows us to iteratively compute f̃ µ̃k and thus obtain a sequence of

maps flowing from Id to f̃µ. Mathematically, the iterative scheme is given by:

f̃ µ̃k+1 = f̃ µ̃k + V (f̃ µ̃k ,
µ̃

N
); f̃ µ̃0 = Id (4.19)

The computational algorithm of the reconstruction scheme can be summa-

rized in Algorithm 4.2. The detailed numerical implementation can be found in

Appendix.
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Algorithm 4.2. Reconstruction of surface diffeomorphisms from BCs

Input: BC µ on S1; Conformal parameterizations of S1 and S2: φ1 and φ2;

Iterations N

Output: Surface diffeomorphism fµ : S1 → S2 associated to µ

1. Set k = 0; f̃ µ̃0 = Id

2. Set µ̃k := kµ̃/N ; Compute f̃ µ̃k+1 = f̃ µ̃k + V (f̃ µ̃k , µ̃
N

); k = k + 1

3. Repeat Step 2 until k = N ; Set fµ := φ−1
2 ◦ f̃µ ◦ φ1 : S1 → S2.

Figure 4.4 and 4.5 illustrate the idea of reconstructing surface diffeomorphisms

from BCs on human brain surfaces and hippocampal surfaces respectively. BHF

computes a sequence of surface maps {f̃ µ̃k} converging to f̃µ. The approximation

of f̃ µ̃k is more accurate with a smaller time step or equivalently a larger number

of iterations N . Figure 4.6 shows the error the the reconstructed map fRe versus

different number of iterations N used in the BHF process. The error is defined

as Error = sup ||fRe − f ||, where f is the original map. As expected, the error

decreases as N increases. In practice, the approximations are very accurate when

N ≥ 15. In our experiments, we set N = 20.

4.4.4 BHF Optimization of Surface Registrations

We have described a simple representation scheme for surface diffeomorphisms

using BCs. The space of BCs is a simple functional space with least amount

of constraints. The commonly used representation using coordinate functions

requires the enforcement of the Jacobian constraints to ensure the bijectivity of

the surface maps. The Jacobian constraint is a complicated partial differential

inequality, which adds extra difficulty for the optimization problem. In contrary,

there are no restrictions on the BC that it has to be 1-1, surjective or satisfy
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Figure 4.6: The error of the reconstructed map fRe versus the number of itera-
tions used in the BHF process.

some constraints on the Jacobian. With BCs, we can easily manipulate and

adjust surface maps.

Theorem 4.4.1 and 4.4.2 give us the variation of the surface map under the

variation of its BC (Equation 5.5 and 4.17). This allows us to perform the

optimization on the space of BCs, instead of working directly on the space of

surface diffeomorphisms.

Given an energy functional E defined on the space of surface diffeomorphisms,

we can easily reformulate E to be defined on the space of BCs. With the BHF

variation, we can derive the Euler-Lagrange equation to optimize BCs iteratively.

To demonstrate the idea, we consider a simple example to optimize surface maps

between two human brain surfaces.

Example 4.1 Consider two different human brain surfaces S1 and S2 as shown

in Figure 4.7. Denote the conformal parameterizations of them by φ1 : S1 → D

and φ2 : S2 → D. In surface registration, it is often important to find an optimal
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Figure 4.7: Illustration of BHF optimization scheme on brain surfaces. This
example shows the optimization result matching functions F1 and F2 defined on
the two brain surfaces. The blue grid represents the initial map. The black grid
represents the optimized map.

1-1 correspondence that matches the intensities defined on each surfaces. Let

F1 : S1 → R and F2 : S2 → R be two intensities (functions) defined on S1

and S2 respectively. Here, we define F1 and F2 as F1 := φ−1
1 (5.2x2 + 3.3y2);

F2 := φ−1
2 (6.8x2 + 2.8y). We propose to find f : S1 → S2 minimizing E(f) =∫

S1
(F1(w)−F2(f(w)))2dw. We can formulate the energy functional to be defined

on the space of BCs over the conformal parameter domain D. That is,

E(µ) =

∫
D

(F1(w)− F2(fµ))2dw (4.20)

The Euler-Lagrange equation can be derived as follow:

d

dt
|t=0E(µ+ tν) =

∫
D

d

dt
|t=0(F1(w)− F2(fµ+tν(w)))2dw

= −
∫
D

2(F1 − F2(fµ))∇F2(fµ)
d

dt
|t=0f

µ+tνdw

= −
∫
D

∫
D

 A

B

 ·
 G1ν1 +G2ν2

G3ν1 +G4ν2

 dzdw

= −
∫
D

∫
D

 AG1 +BG3

AG2 +BG4

 dw

 ·
 ν1

ν2

 dz

(4.21)

where

 A

B

 = 2(F1 − F2(fµ))∇F2; ν = ν1 + iν2.
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So, the descent direction for µ = µ1 + iµ2 is

dµ1

dt
=

∫
D

(AG1 +BG3)dw;
dµ2

dt
=

∫
D

(AG2 +BG4)dw; (4.22)

We can iteratively optimize the energy E as follow:

µn+1 = µn + dt

 ∫
D

(AnGn
1 +BnGn

3 )dw∫
D

(AnGn
2 +BnGn

4 )dw

 (4.23)

Figure 4.7 shows the experimental result of this example. (A) shows the

standard grid on Brain 1. The standard grid is mapped by the initial map

to Brain 2, which is shown as the blue grid. We optimize the map such that it

minimizes the energy and the resulting map is plotted as the black grid. (C) shows

the energy at each iteration. It decreases as iteration increases, which means our

BHF optimization algorithm can iteratively optimize the energy functional.

Therefore, with the BHF method, we can perform the optimization over the

space of BCs and simplify the procedure significantly.

4.5 Applications

In this section, we outline the applications of our proposed optimization algorithm

to surface registration. These applications are motivated from practical problems

we encountered in medical imaging.

4.5.1 Optimized Conformal Parameterization with Landmark Match-

ing

With the BHF method, we first develope an algorithm to effectively compute

landmark-matching optimized conformal maps between surfaces. A landmark-

matching optimized conformal map refers to a map that matches corresponding
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landmarks across surfaces, while preserving the conformality as much as possible.

It is important in different areas such as computer graphics and medical imaging.

For example, in Human Brain Mapping, neuroscientists are often interested in

finding an 1-1 correspondence between brain surfaces that matches sulcal/gyral

landmark curves, which are important anatomical features. Besides matching

these brain features, they also want the map to preserve the local geometry as

much as possible. Conformal maps are best known as local geometry preserving

and so they are commonly used. However, landmark matching cannot be guar-

anteed under the conformal map. Therefore, it is of interest to look for a map

which is close to conformal while matching landmarks consistently.

Most existing algorithms to compute the landmark-matching optimized con-

formal maps cannot ensure exact landmark matching. Some existing algorithms

can algin landmarks consistently, but bijectivity is usually not guaranteed es-

pecially when a large number of landmark constraints are imposed [LWC07b].

Here, we introduce a variational approach to compute the optimized conformal

map iteratively by minimizing the L-2 norm of the Beltrami coefficient µ. Since

µ is a measure of local conformality distortion, our proposed model are actually

looking for the best map closest to conformal that matches landmarks. Also,

a map is bijective as long as |µ| < 1, we can easily control and guarantee the

bijectivity of the maps computed in each iteration.

Given two surfaces S1 and S2 with the same topology. Denote the corre-

sponding landmark curves on S1 and S2 by {C̃1
k} and {C̃2

k} respectively. We first

parameterize S1 and S2 conformally to the common parameter domain D (= D

or S2 ∼= C). Let φ1 : S1 → D and φ2 : S2 → D be the parameterizations. We

proposed to look for two maps ϕ1 : D → D and ϕ2 : D → D such that ϕ−1
i (

i = 1, 2) maps {φi(C̃k)} to the consistent location {Ck} on D (See Figure 4.8),
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Figure 4.8: This figure shows the framework of the landmark-matching optimized
conformal parameterization algorithm.

and that it minimizes the following energy functional:

E(ϕi) =

∫
D

|µϕi|2 (4.24)

Equation 4.24 ensures the landmark-matching parametrization ϕi to have the

least conformality distortion. Hence, the local geometry distortion under ϕi is

minimized. A landmark-matching map f between S1 and S2 can then be obtained

by the composition map: f := φ−1
1 ◦ ϕ−1

2 ◦ ϕ1 ◦ φi. We can compute the Euler-

Lagrange equation of Equation 4.24 with respect to µϕi as follow:

d

dt
|t=0E(µϕi + tv) =

∫
D

d

dt
|t = 0|µϕi + tv|2

= 2

∫
D

[Re(µϕi)Re(v)) + Im(µϕi)Im(v))]

(4.25)

The derivative in Equation 4.25 is negative when v = −2µϕi . Hence, we can

iteratively minimize E(µϕi) by the following iterative scheme:

µn+1
ϕi
− µnϕi = −2µnϕidt (4.26)

. The detailed computational algorithm can be described as follow:
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Figure 4.9: Landmark-matching optimized conformal parameterization of sur-
faces with 1 landmark. The blue curves on (A) and (B) represent the landmarks
on the two surfaces. Under the conformal map, the landmark on Surface A cannot
be mapped to the landmark on Surface B (black curve in (B)). With optimized
conformal parameterization, the corresponding landmarks on each surface can be
exactly matched, as shown in (C). (D) and (E) plot the percentage change in
energies of the optimized conformal parameterizations for Surface A and B.
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Algorithm 4.3. Optimized conformal parameterization with landmark matching

Input: Surfaces S1 and S2; Landmark curves C̃1
k on S1; Landmark curves C̃2

k on

S2

Output: Optimized conformal parameterization ϕ1 and ϕ2 of S1 and S2 with

landmark matching

1. Compute the initial map ϕ0
i that align landmark curves {φi(C̃i

k)} to {Ck}

on D. Set n = 0

2. Compute the Beltrami coefficient µnϕi of ϕni . Let µn+1
ϕi

= µnϕi − 2µnϕidt.

3. Compute ~Vn = V (ϕni ,−2µnϕi)F (µn+1
ϕi
− µnϕi) using the BHF formula..

4. Let ϕn+1
i (p) = ϕni (p) + δ(p)~Vn(p) , where δ is a smooth delta function on

D that is equal to zero around {Ci
k} and one elsewhere. This ensures the

landmark-matching in each iteration. Set n = n+1.

5. Repeat Step 2 to Step 5. If |E(µn+1
ϕi

)− E(µnϕi)| < ε, Stop.

We test our proposed method on synthetic data as well as real medical data.

Figure 4.9 shows the result of matching two synthetic surfaces with one landmark

on each surface. The blue curves on (A) and (B) represent the landmarks on the

two surfaces. Under the conformal map, the landmark on Surface A cannot be

mapped exactly to the landmark on Surface B (See black curve in (B)). Using our

proposed method, the corresponding landmarks on each surface can be exactly

matched, as shown in (C). (D) and (E) plot the percentage change in energies

of the optimized conformal parameterizations for Surface A and B. The energies

decrease as iteration increases. which indicates the decrease in the conformalilty

distortion. Figure 4.10 shows the Beltrami coefficient of each optimized conformal

parameterizations. The colormap shows the norm of the Beltrami coefficient.
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Figure 4.10: The Beltrami coefficient of each optimized conformal parameteriza-
tions of surfaces with 1 landmark. The norm of the Beltrami coefficient is very
small except near the landmark curve, which means the conformality distortion
is accumulated around the landmarks.

Note that the norm of the Beltrami coefficient is very small except near the

landmark curve. It means the conformality distortion is accumulated around the

landmarks as expected.

We also test our algorithm on synthetic surfaces with five landmarks as shown

in Figure 4.11. Again, landmarks cannot be exactly matched under the conformal

map (See black curves in (B)). They are exactly matched using our proposed al-

gorithm. As shown in (D) and (E), the percentage change in energies decreases as

iteration increases, meaning that conformality distortion is progressively reduced.

Figure 4.12 shows the Beltrami coefficients of the optimized conformal parame-

terizations. Again, the norm of the Beltrami coefficient is very small except near

the landmark curves.

Finally, we test our algorithm on real brain cortical hemispheric surfaces ex-

tracted from brain MRI scans, acquired from normal subjects at 1.5 T (on a GE

Signa scanner). (A) and (B) shows two different brain surfaces with 3 major

sulcal curves labeled on each of them (See the blue curves). Under the confor-
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Figure 4.11: Landmark-matching optimized conformal parameterization of sur-
faces with 5 landmarks. The blue curves on (A) and (B) represent the landmarks
on the two surfaces. Under the conformal map, the landmark on Surface A cannot
be mapped to the landmark on Surface B (black curves in (B)). With optimized
conformal parameterization, the corresponding landmarks on each surface can be
exactly matched, as shown in (C). (D) and (E) plot the percentage change in
energies of the optimized conformal parameterizations for Surface A and B.
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Figure 4.12: The Beltrami coefficient of each optimized conformal parameteriza-
tions of surfaces with 5 landmarks. The norm of the Beltrami coefficient is very
small except near the landmark curve, which means the conformality distortion
is accumulated around the landmarks.

mal map, landmarks on Brain 1 and Brain 2 are not exactly matched (See black

curve in (B)). They are, however, exactly matched using our proposed algorithm

as shown in (C). (D) and (E) shows the percentage change in the energies of the

optimized conformal parameterizations for each surface. The energy is decreasing

as iteration increases and hence the conformality distortion is gradually reduced.

Figure 4.14 shows the Beltrami coefficient of the optimized conformal parame-

terizations for each brain surface. Again, the norm of the Beltrami coefficient is

very small except near the sulci curves.

4.5.2 Hippocampal Registration with Geometric Matching

In medical imaging, there are cases when anatomical landmark features cannot

be easily defined on some brain structures. In such cases, landmark-matching

constraint cannot be used as a criteria to establish good correspondences be-

tween surfaces. Finding the best 1-1 correspondence between these structures

becomes challenging. One typical example is the hippocampus(HP) which is a

major component of the brains of humans. It belongs to the limbic system and
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Figure 4.13: Landmark-matching optimized conformal parameterization of brain
cortical hemispheric surfaces with 3 major sulcal landmarks. The blue curves on
(A) and (B) represent the landmarks on the two surfaces. Under the conformal
map, the landmark on Surface A cannot be mapped to the landmark on Surface
B (black curves in (B)). With optimized conformal parameterization, the corre-
sponding landmarks on each surface can be exactly matched, as shown in (C).
(D) and (E) plot the percentage change in energies of the optimized conformal
parameterizations for Surface A and B.
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Figure 4.14: The Beltrami coefficient of each optimized conformal parameteriza-
tions of brain cortical hemispheric surfaces with 3 major sulcal landmarks. The
norm of the Beltrami coefficient is very small except near the landmark curve.
As expected, the conformality distortion is accumulated around the landmarks.

Figure 4.15: Shape registration with geometric matching using Beltrami Holo-
morphic flow (BHF).
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plays important roles in long-term memory and spatial navigation. Surface-based

shape analysis is commonly used to study local changes of HP surfaces due to

pathologies such as Alzheimer disease (AD), schizophrenia and epilepsy [THZ04].

On HP surfaces, there are no well-defined anatomical landmark features. High-

field structural or functional imaging, where discrete cellular fields are evident

[ZET03], is still not routinely used. Finding meaningful registrations between HP

surfaces becomes challenging. It is thus important to develop methods to look

for good registrations between different HP surfaces without landmarks. Here

we developed an algorithm to automatically register HP surfaces with complete

geometric matching, avoiding the need to manually label landmark features. This

is done by optimizing a compounded energy, which minimizes the L-2 norm of

the Beltrami coefficient and matches curvatures defined on each surface. Given

two hippocampal surfaces S1 and S2. The compounded energy Eshape is defined

mathematically as:

Eshape(µ) =

∫
D

|µ|2 +

∫
D

(H1 −H2(fµ))2 +

∫
D

(K1 −K2(fµ))2 (4.27)

where H1, H2 are the mean curvatures on S1 and S2 respectively defined on the

common parameter domain D; and K1, K2 are the Gaussian curvatures. The

first integral minimizes the conformality distortion of the surface registration.

The second and the third integrals ensure the optimized registration matches the

curvatures as much as possible. It turns out Eshape is a complete shape index

which measures the dissimilarity between two surfaces. Specifically, Eshape = 0

if and only if S1 and S2 are geometrically equal up to a rigid motion. Therefore,

surface map minimizing Eshape is the best registration that matches the geometric

information as much as possible. We can minimize Eshape in Equation 4.27

iteratively, using the proposed BHF optimization algorithm. The Euler-Lagrange

72



Figure 4.16: BHF registration between two normal subjects. The shape index
Eshape is plotted on the right, which captures local shape differences.

Figure 4.17: BHF registration between normal subjects and subjects with Al-
zheimer’s disease. Their local shape differences are captured by Eshape.

Figure 4.18: Temporal hippocampal shape changes of normal and subjects with
Alzheimer’s disease.
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equation of Equation 4.27 can be computed as follow:

d

dt
|t=0Eshape(µ) =

∫
D

d

dt
|t=0|µ+ tv|2 +

∫
D

d

dt
|t=0(H1 −H2(fµ+tv))2

+

∫
D

d

dt
|t=0(K1 −K2(fµ+tv))2

= 2

∫
D

µ · v − 2

∫
D

(H1 −H2(fµ))∇H2(fµ) · df
µ+tv

dt
|t=0

− 2

∫
D

(K1 −K2(fµ))∇K2(fµ) · df
µ+tv

dt
|t=0

(4.28)

= 2

∫
w

{µ(w)−
∫
z

[(H̃ + K̃) ·

 G1

G2

 , (H̃ + K̃) ·

 G3

G4

]} · v(w)

where
∫
w
• :=

∫
D
• dw and

∫
z
• :=

∫
D
• dz is defined as the integral over the

variable w and z respectively; H̃ := (H1 − H2(fµ))∇H2(fµ); K̃ := (K1 −

K2(fµ))∇K2(fµ); Gi is as defined in Equation 4.18.

The derivative in Equation 4.28 is negative when v = −2(µ(w)−
∫
z
[(H̃+ K̃) ·

G,det(H̃ + K̃,G)] ). Hence, we can iteratively minimize E(µ) by the following

iterative scheme:

µn+1 − µn = −2(µn −
∫
z

[(H̃n + K̃n) ·Gn,det(H̃n + K̃n, Gn)] )dt (4.29)

The detailed computational algorithm can be described as follow:

Algorithm 4.4. BHF Surface Registration

Input: Hippocampal surfaces S1 and S2, step length dt, threshold ε

Output: Geometric matching registration fµ and the shape index E(fµ)

1. Compute the conformal parameterizations of S1 and S2. Denote them by

φ1 : S1 → D and φ2 : S2 → D

2. Set ϕ0 := Id : D → D and n = 0.
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3. Compute the Beltrami coefficient µnϕ of ϕn (e.g. µ0
ϕ = 0). Update µn+1

ϕ by

Equation 4.29.

4. Compute: ~Vn = V (ϕn, µn+1
ϕ − µnϕ) using Equation 5.5. Let ϕn+1 = ϕn + ~Vn.

Set n = n+1.

5. Repeat Step 3 to Step 5. If |E(µn+1
ϕ )− E(µnϕ)| < ε, Stop.

We tested our algorithm on 212 HP surfaces automatically extracted from

3D brain MRI scans with a validated algorithm [MTA08]. Scans were acquired

from normal and diseased (AD) elderly subjects at 1.5 T (on a GE Signa scan-

ner). Experimental results show our proposed algorithm is effective in regis-

tering HP surfaces with geometric matching. The proposed shape energy can

also be used to measure local shape difference between HPs. Figure 4.15(A)

shows two different HP surfaces. They are registered using our proposed BHF

algorithm with geometric matching. The registration is visualized using a grid

map and texture map, which shows a smooth 1-1 correspondence. The opti-

mal shape index Eshape is plotted as colormap in (B). Eshape effectively cap-

tures the local shape difference between the surfaces. (C) shows the shape en-

ergy in each iteration. With the BHF algorithm, the shape energy decreases as

the number of iterations increases. (D) shows the curvature mismatch energy

(E =
∫
β(H1 − H2(f))2 + γ(K1 −K2(f))2). It decreases as the number of iter-

ations increases, meaning that the geometric matching improves. (E) shows the

Beltrami coefficient of the map in each iteration, which shows the conformality

distortion of the map. Some conformality is intentionally lost to allow better

geometric matching.

Figure 6.3 shows the BHF registration between two normal HPs. The com-

plete shape index Eshape is plotted as colormap on the right. Again, Eshape can
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accurately capture local shape differences between the normal HP surfaces.

Figure 4.17 shows the BHF hippocampal registrations between normal el-

derly subjects and subjects with Alzheimer’s disease. The BHF registrations

give smooth 1-1 correspondences between the HP surfaces. We can use the com-

plete shape index Eshape to detect local shape differences between healthy and

unhealthy subjects.

We also study the temporal shape changes of normal and AD HP surfaces, as

shown in Figure 4.18. For each subject, we compute the deformation pattern of

its HP surfaces measured at time = 0 and time = 12 Months (see [MTA09] for

longitudinal scanning details). The left two panels show the temporal deformation

patterns for two normal subjects. The middle two panels show the temporal

deformation patterns for two AD subjects. The last column shows the statistical

significance p-map measuring the difference in the deformation pattern between

the normal (n=47) and AD (n=53) groups, plotted on a control HP. The deep

red color highlights regions of significant statistical difference. This method can

be potentially used to study factors that influence brain changes in AD.

4.6 Conclusion

In this chapter, we proposed a simple representation of bijective surface maps

using Beltrami coefficients(BCs), which helps the optimization process of surface

registrations. To complete the representation scheme, we develop a reconstruc-

tion algorithm of the surface diffeomorphism from a given BC, using the Beltrami

holomorphic flow method. This allows us to move back and forth between BCs

and surface diffeomorphisms. By formulating the variation of the associated

surface map under the variation of BC, we can reformulate the variational prob-
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lem over the space of surface diffeomorphisms into a variational problem over the

space of BCs. It greatly simplifies the optimization procedure. More importantly,

a bijective surface map is always guaranteed during the optimization process. Ex-

perimental results on synthetic examples and real medical applications show the

effectiveness of our proposed algorithm for surface registration.

4.7 Appendix

I. Numerical Implementation

We will give the detailed numerical implementation about how the proposed

algorithms can be computed. In practice, all surfaces are represented by meshes

which consist of vertices, edges, and triangular/rectangular faces. The functions

and their partial derivatives in the iterative scheme are defined on each vertex

and linearly interpolated to define the value inside each triangular/rectangular

face.

1. Computation of the Beltrami coefficient

Let f = (f1, f2) be the diffeomorphism defined on the parameter domain D.

The Beltrami coefficient µf associated uniquely to f can be computed as follow

(See Equation 4.15):

µf = [(
∂f1

∂x
− ∂f2

∂y
) + i(

∂f2

∂x
+
∂f1

∂y
)]/[(

∂f1

∂x
+
∂f2

∂y
) + i(

∂f2

∂x
− ∂f1

∂y
)] (4.30)

In order to compute µf , we simply need to approximate the partial derivatives

at each vertex: Dxfi(v) ≈ ∂fi
∂x

(v) and Dyfi(v) ≈ ∂fi
∂y

(v). We first approximate the

gradient ∇Tfi on each face T by solving: ~v1 − ~v0

~v3 − ~v2

∇Tfi =

 fi(~v1)−fi(~v0)
|~v1−~v0|

fi(~v3)−fi(~v2)
|~v3−~v2|

 (4.31)
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where [~v0, ~v1] and [~v2, ~v3] are two edges on T . After the gradient ∇Tfi have been

computed for each face T , Dxfi(v) and Dyfi(v) can be computed as follow: Dxfi(v)

Dyfi(v)

 =
∑
T∈Nv

∇Tfi/|Nv| (4.32)

whereNv is the set of all faces around the vertex v. Hence, the Beltrami coefficient

µf (v) can be computed by:

µf (v) =
(Dxf1(v)−Dyf2(v)) + i(Dxf2(v) +Dyf1(v))

(Dxf1(v) +Dyf2(v)) + i(Dxf2(v)−Dyf1(v))
(4.33)

2. Computation of the BHF reconstruction

For the BHF reconstruction algorithm, the most important step is the com-

putation of the variation V (fµ, ν) of fµ under the variation of µ. We will discuss

the computation of V (fµ, ν) for D = D. The computation for D = S2 ≡ C∗ is

similar. From Equation 5.5 and 4.17,

V (fµ, ν)(w) =

∫
D

K(z, w)dxdy.

where:

K(z, w) = −f
µ(w)(fµ(w)− 1)

π(
ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
+

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))

)

Now, fµ and ν are both defined on each vertex. Also, (fµ)z(v) can be ap-

proximated as:

(fµ)z(v) ≈ (Dxf1(v)−Dyf2(v)) + i(Dxf2(v) +Dyf1(v))

2
(4.34)

For each pair of vertices (v, w), K(v, w) can be easily approximated. In case

K(v, w) is singular, we set K(v, w) = 0. Now, for each vertex v, we define Av as

Av =
∑
T∈Nv

Area(T )/NT (4.35)
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where NT is the number of vertices on T . That is, NT = 3 if T is a triangle and

NT = 4 if T is a rectangle. Then, V (fµ, ν) can be approximated by:

V (fµ, ν)(w) =
∑
v

K(v, w)Av (4.36)

II. Proof of Theorem 4.4.2 :

To prove the theorem, we need the following lemma.

Lemma 4.7.1. Let f : D→ D be a diffeomorphism of the unit disk fixing 0 and

1, and satisfies the Beltrami equation fz = µfz with µ defined on D. Let f̃ be the

extension of f to C defined as

f̃(z) =


f(z), if |z| ≤ 1,

1

f(1/z)
, if |z| > 1.

(4.37)

Then f̃ satisfies the Beltrami equation

f̃z = µ̃f̃z (4.38)

on C, where the Beltrami coefficient µ̃ is defined as

µ̃(z) =


µ(z), if |z| ≤ 1,

z2

z2
µ(1/z), if |z| > 1.

(4.39)

Proof. First of all, we prove f̃ satisfies the Beltrami equation:

f̃z = µ̃f̃z (4.40)

Clearly, f̃ satisfies equation (4.38) on D. Outside D, we consider f and f̃ as

functions in z and z. Note that:

∂

∂z
f(z, z) =

∂

∂z
f(z, z) (4.41)
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We have:

∂f̃(z, z)

∂z
=

∂

∂z

1

f(1/z, 1/z)
= −f(1/z, 1/z)

−2 ∂

∂z
f(1/z, 1/z)

= −f(1/z, 1/z)
−2 ∂

∂z
f(1/z, 1/z) = −f(1/z, 1/z)

−2
(−1/z2)fz(1/z, 1/z)

= z−2f(1/z, 1/z)
−2
fz(1/z, 1/z).

(4.42)

Therefore,

∂f̃(z, z)

∂z
=

∂

∂z

1

f(1/z, 1/z)
= −f(1/z, 1/z)

−2 ∂

∂z
f(1/z, 1/z)

= −f(1/z, 1/z)
−2 ∂

∂z
f(1/z, 1/z) = −f(1/z, 1/z)

−2
(−1/z2)fz(1/z, 1/z)

= z−2f(1/z, 1/z)
−2
fz(1/z, 1/z) = z−2f(1/z, 1/z)

−2
µ(1/z)fz(1/z, 1/z)

(4.43)

Now,

fz(1/z, 1/z) = z2f(1/z, 1/z)
2∂f̃(z, z)

∂z
. (4.44)

Thus, we have,

∂f̃(z, z)

∂z
= z−2f(1/z, 1/z)

−2
µ(1/z)fz(1/z, 1/z)

= z−2f(1/z, 1/z)
−2
µ(1/z)z2f(1/z, 1/z)

2∂f̃(z, z)

∂z

=
z2

z2µ(1/z)
∂f̃(z, z)

∂z
= µ̃(z)

∂f̃(z, z)

∂z
.

(4.45)

Proof of Theorem 4.4.2 According to Quasiconformal Teichmuller Theory,

there is an one-to-one correspondence between the set of quasiconformal homeo-

morphisms of C fixing 3 points and the set of measurable complex-valued func-

tions µ on D for which sup |µ| = k < 1. If a diffeomorphism f on C satisfies

80



equation (4.38), then 1/f(1/z) also satisfies the same equation. By the unique-

ness of the solution according to Theorem 4.4.1, we must have f(z) = 1/f(1/z).

On ∂D, z = 1/z. This implies f(z) = 1/f(z), and hence |f(z)| = 1 on ∂D.

Therefore, by restricting the solution of equation (4.38) on C fixing 0, 1 and ∞

to D, we can get a diffeomorphism of D fixing 0 and 1. Equation (4.11) can then

be applied on D to get diffeomorphisms of D fixing 0 and 1 that satisfy differ-

ent Beltrami coefficients. To get the corresponding flow on D, we evaluate the

integral in equation (4.11). For simplicity, we consider f̃ = f , then∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
C\D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy.

(4.46)

Now, outside the disk D,

ν(z) =
z2

z2ν(1/z) and
∂f̃(z)

∂z
= z−2f(1/z, 1/z)

−2
fz(1/z, 1/z) (4.47)
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We have:∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
C\D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
C\D

(z2/z2)ν(1/z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
D

(z2/z2)ν(z)((fµ)z(1/z))2

fµ(1/z)
−1

(fµ(1/z)
−1
− 1)(fµ(1/z)

−1
− fµ(w))

1

|z|4
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy

(4.48)

Substituting Equation 22 into Equation 4.11, we get an integral flow equation

on D which is given by

ḟ [ν](w) =− fµ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy

)
.

(4.49)
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CHAPTER 5

Compression of Surface Registrations using

Beltrami Coefficients

5.1 Introduction

In computer vision and medical imaging, it is crucial to look for 1-1 correspon-

dences between surfaces for further analysis. Such process is called surface reg-

istration. There are many approaches of surface registration. A widely used

method is to find surfaces maps satisfying certain constraints, such as matching

landmarks, and minimizing distortions, such as that given by harmonic energy

[LTW10, LWC07b]. Surface maps computed from registration processes can be

highly convoluted and are usually represented and stored as 3D functions in R3.

As such, a huge storage memory is required, especially when a large set of fine

surface are to be analyzed. It causes problems for data transmission and storage.

This problem is particularly common in medical imaging, in which a large set of

data has to be considered. Usually, a great amount of memory and bandwidth

are needed to store and transmit the data of surface maps. In fact, this research

was initially motivated by an actual situation in Brain Mapping research. In a

project to analyze the hippocampal shape difference in patients with or without

Alzheimer’s disease, a thousand of hippocampal surfaces have to be registered. In

order to study their time-dependent shape changes, each initial surface has to be
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mapped onto several other surfaces taken at different future times. Furthermore,

several maps have to be constructed between each surface pair to satisfy different

matching criteria. With a typical surface mesh size of 50k vertices, the storage

requirement could easily exceed 10 gigabytes, making storing and sharing surface

map data a great inconvenience. Nevertheless, very little work has been done on

the compression of bijective surface maps. This motivates us to look for a simple

representation of surface diffeomorphisms that significantly reduces the required

storage memory.

In this chapter, we propose a simple representation of surface maps using the

Beltrami coefficients. The Beltrami coefficient is a complex-valued function de-

fined on surfaces with supreme norm strictly less than 1. It measures the local

conformality distortion of surface maps. Every surface map is associated with a

Beltrami coefficient. According to the Quasi-conformal Teichmüller theory, fixing

any 3 points, there is an 1-1 correspondence between the set of surface diffeomor-

phisms and the set of Beltrami coefficients on the source domain. In other words,

every surface map can be represented by a unique Beltrami coefficient. Con-

versely, given a Beltrami coefficient, we can reconstruct the unique surface map

associated to it. The Beltrami coefficient is a simple representation that cap-

tures many important information of the map. In this chapter, we propose the

Beltrami Holomorphic flow (BHF) method to iteratively reconstruct the surface

map associated with a given Beltrami coefficient. Using this representation, 1/3

of the required storage space is saved. Also, the Beltrami coefficient has very lit-

tle constraints. The only constraint is that its supreme norm is strictly less than

1. It does not have any requirement of injectivity nor subjectivity. This allows us

to further compress the Beltrami coefficient using Fourier approximations, which

can further reduce the storage requirement by 90%. Fourier compression is not

possible for other representations such as 3D coordinate functions, as the diffeo-
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morphic property (1-1 and onto) of the resulting maps cannot be guaranteed (see

Figure 5.4, 5.10).

There are three contributions in this chapter: 1. We propose the computation

of Beltrami coefficients to represent bijective surface maps; 2. We propose the

Beltrami Holomorphic flow (BHF) method to reconstruct surface maps from their

Beltrami coefficients; 3. We propose the further compression of Beltrami coeffi-

cients by Fourier approximations, which further reduce the storage requirement

by 90%.

While this chapter focuses on the compression of surface diffeomorphisms, the

methodology we introduced has much broader applications than solely mapping

compression. Firstly, our method allows us to have a smaller subspace for model-

ing and let us do statistics on the Fourier coefficients. We can also estimate new

registration fields using the reduced basis, which would be more robust to noise.

Thirdly, with the proposed algorithm, we can further make a statistically guided

registration method, which is helpful to get a better 1-1 correspondence between

surfaces. Furthermore, the Beltrami representation tells us a lot of geometric

information of the surface maps, such as conformality distortion. This can be

used for shape analysis between registered surfaces [LWZ10, ZLG08]. Finally,

our results show that surface diffeomorphisms can be smoothly restored using

only a small number of Fourier coefficients. Hence our method also has a good

potential for applications in texture mapping.

This chapter is laid out as follows. In Section 2, we describe the relevant

works closely related to this research. In Section 3, we describe some basic math-

ematical concepts related to our algorithms. In Section 4, we describe in detail

the main algorithms we use to represent and compress surface diffeomorphisms

with Beltrami coefficients. We also describe how surface maps can be recon-
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structed from Beltrami coefficients. Experimental results are shown in Section 5.

In Section 6, we draw a conclusion and describe possible future work.

5.2 Related Work

Surface registration has been studied extensively and different representations

of surface maps have been proposed. Conformal parameterizations have been

widely used [FST99, GWC04, GY02, HAT00, HS09, WLG07]. For example, Gu

et al. [GWC04, GY02, WLG07] proposed to compute the conformal parameteri-

zations of human brain surfaces for registration using harmonic energy minimiza-

tion and holomorphic 1-forms. Hurdal et al. [HS09] proposed to compute the

conformal parameterizations using circle packing and applied it to registration

of human brains. To obtain landmark matching surface registrations, Wang et

al. [WLC05, LWC07b] proposed to compute the optimized conformal param-

eterizations of brain surfaces by minimizing a compounded energy. All of the

above algorithms represent surface maps with their 3D coordinate functions. Lui

et al. [LTW10] proposed the use of vector fields to represent surface maps and

reconstruct them through integral flow equations. They obtained shape-based

landmark matching harmonic maps by looking for the best vector fields mini-

mizing a shape energy. The use of vector fields to represent surface maps makes

optimization easier, but they cannot describe all surface maps. Time dependent

vector fields can be used to represent the set of all surface maps. For example,

Joshi et al. [JM00] proposed the generation of large deformation diffeomorphisms

for landmark point matching, where the registrations are generated as solutions

to the transport equation of time dependent vector fields. The time dependent

vector fields facilitate the optimization procedure, although it may not be a good

representation of surface maps since it requires more memory.
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Compression of mappings has also been studied. Chai et al. [CSS04] proposed

the depth map compression algorithm by encoding mapppings as a simplified

triangular meshes. Lewis [LE95] described a technique for compressing surface

potential mapping data using transform techniques. All these methods deal with

the compression of real-valued functions defined on 2D domains. For vector-

valued functions, Stachera et al. [SR08] developed an algorithm to compress

normal maps by decomposing them in the frequency domain. Ioup [IGL00] also

proposed to compress vector map data in the frequency domain. Kolesnikov et al.

[KA07] proposed an algorithm for distortion-constrained compression of vector

maps, based on optimal polygonal approximations and dynamic quantizations

of vector data. All these methods do not deal with preverving bijective maps

between surfaces. The bijectivity (1-1, onto) of the maps can be easily lost due

to lossy compression.

5.3 Theoretical Background

In this section, we describe some basic mathematical concepts related to our

algorithms. For details, we refer the readers to [GL00, LV73, SY94]

A surface S with a conformal structure is called a Riemann surface. Given

two Riemann surfaces M and N , a map f : M → N is conformal if it preserves

the surface metric up to a multiplicative factor called the conformal factor. An

immediate consequence is that every conformal map preserves angles. With the

angle-preserving property, a conformal map effectively preserves the local geom-

etry of the surface structure.

A generalization of conformal maps is the quasi-conformal maps, which are

orientation-preserving homeomorphisms between Riemann surfaces with bounded
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conformality distortion, in the sense that their first order approximations takes

small circles to small ellipses of bounded eccentricity [GL00]. Thus, a conformal

homeomorphism that maps a small circle to a small circle can also be regarded

as quasi-conformal. Mathematically, f : C→ C is quasi-conformal provided that

it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (5.1)

for some complex valued Lebesgue measurable µ satisfying ||µ||∞ < 1. In terms

of the metric tensor, consider the effect of the pullback under f of the usual

Euclidean metric ds2
E; the resulting metric is given by:

f ∗(ds2
E) = |∂f

∂z
|2|dz + µ(z)dz|2. (5.2)

which, relative to the background Euclidean metric dz and dz, has eigenvalues

(1 + |µ|)2 ∂f
∂z

and (1 − |µ|)2 ∂f
∂z

. µ is called the Beltrami coefficient, which is a

measure of non-conformality. In particular, the map f is conformal around a

small neighborhood of p when µ(p) = 0. Infinitesimally, around a point p, f may

be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(5.3)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter

domain, f may be considered as a map composed of a translation to f(p) together

with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication

of fz(p), which is conformal. All the conformal distortion of S(z) is caused by

µ(p). S(z) is the map that causes f to map a small circle to a small ellipse. From

µ(p), we can determine the angles of the directions of maximal magnification and

shrinking and the amount of them as well. Specifically, the angle of maximal
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Figure 5.1: Illustration of how the Beltrami coefficient µ measures the distortion
of a quasi-conformal mapping that maps a small circle to an ellipse with dilation
K.

magnification is arg(µ(p))/2 with magnifying factor 1+ |µ(p)|; The angle of max-

imal shrinking is the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor

1− |µ(p)|. The distortion or dilation is given by:

K = 1 + |µ(p)|/1− |µ(p)|. (5.4)

Thus, the Beltrami coefficient µ gives us all the information about the properties

of the map (See Figure 5.1). According to Teichmüller Quasiconformal theory,

there is a 1-1 correspondence between the set of Beltrami differentials and the

set of diffeomorphisms f : S1 → S2 fixing three points. In other word, Beltrami

coefficients give us a simple way to represent surface maps.

5.4 Main Algorithms

In this section, we describe in detail the main algorithms we use to represent and

compress surface diffeomorphisms with Beltrami coefficients. We also describe

how a surface map can be reconstructed from its Beltrami coefficient. A flow

chart representing the ideas of our algorithms is illustrated in Figure 5.2.
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Figure 5.2: A flow chart representing the ideas of our algorithms.

5.4.1 Surface Map Representation Using Beltrami Coefficients

In computer vision and medical imaging, it is crucial to look for an 1-1 corre-

spondence between surfaces for further analysis. Surface registration is commonly

represented by 3D coordinate functions in R3. This representation requires lots

of storage space and is difficult to manipulate. For example, the 3D coordinate

functions have to a satisfy certain constraint on the Jacobian J (namely, J > 0)

in order to preserve the 1-1 correspondence of the surface maps. Enforcing this

constraint adds extra difficulty in manipulating and adjusting surface maps. It

is therefore important to have a simpler representation with as few constraints

as possible.

Given two surfaces S1 and S2 with the same topology. According to the

Teichmüller Quasiconformal theory, there is a 1-1 correspondence between the set

of Beltrami differentials and the set of diffeomorphisms f : S1 → S2 fixing three

points [GL00]. In other words, given any surface diffeomorphism fµ : S1 → S2

and 3-point correspondence, we can represent fµ with a uniquely determined

Beltrami differential µdz
dz

. Beltrami differential is defined on every coordinate
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patch. For genus 0 closed surfaces or simply connected open surfaces, they can be

conformally parameterized with a single global patch [GWC04, GY02, WLG07].

Beltrami coefficients can then be used instead of Beltrami differentials. The

Beltrami coefficient µ is a complex-valued functions defined on S1 with sup |µ| <

1. There are no restrictions on µ that it has to be 1-1, surjective or satisfy some

constraints on the Jacobian. With this representation, we can easily manipulate

surface maps.

Suppose S1 and S2 are both either genus 0 closed surfaces or simply connected

open surfaces. Let f : S1 → S2, and suppose 3 points {p1, p2, p3} on S1 correspond

to 3 points on S2 by {p1, p2, p3} ↔ {q1 = f(p1), q2 = f(p2), q3 = f(p3)} (for open

surfaces with disk topology, only 2-point correspondence is needed). S1 and S2

can be conformally parameterized with a global patch [GWC04, JKL08]. Denote

the parameterizations by φ1 : S1 → D and φ2 : S2 → D, where D is either a

unit sphere S2 or a 2D rectangle. We fix {p1, p2, p3} and {q1, q2, q3} to consistent

locations on the parameter domain. For example, in the case thatD = S2, we map

{p1, p2, p3} and {q1, q2, q3} to 0 (north pole), 1 and ∞ (south pole) respectively.

Here, we have identified S2 with the extended complex plane C∗. Now, we can

compute the Beltrami coefficient µf associated uniquely to f to represent f . The

Beltrami coefficient µf can be computed by considering the composition map

f̃ = φ2 ◦ f ◦ φ−1
1 : D → D. Mathematically, µf is given by the following formula:

µf =
∂f̃

∂z
/
∂f̃

∂z
=

1

2
(
∂f̃

∂x
+
√
−1

∂f̃

∂y
)/

1

2
(
∂f̃

∂x
−
√
−1

∂f̃

∂y
).

In practice, surfaces are commonly approximated by discrete meshes com-

prising of triangular or rectangular faces. The parameterizations map the surface

meshes onto the mesh D in C. The partial derivatives (or gradient) can be dis-

cretely approximated on each face of D. By taking average, the partial derivatives

and hence the Beltrami coefficient can be computed on each vertex.
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The Beltrami coefficient consists of two real functions only, namely the real

and imaginary parts. Compared to the representation using 3D coordinate func-

tions, this representation reduces 1/3 of the original storage space.

5.4.2 Reconstruction of Surface Maps

Given the Beltrami coefficient µ defined on S1. We propose the Beltrami Holo-

morphic flow (BHF) method to reconstruct the surface diffeomorphism fµ : S1 →

S2 associated with µ. The BHF iteratively flows the identity map to fµ. In this

subsection, we describe the BHF method in detail.

The variation of fµ under the variation of µ can be expressed explicitly. Sup-

pose µ̃(z) = µ(z)+tν(z)+O(t2). Then, f µ̃(z)(w) = fµ(w)+tV (fµ, ν)(w)+O(t2),

where

V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π
×∫

D

ν(z)(fµz (z))2dxdy

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
.

(5.5)

Using this fact, we propose the BHF method to iteratively flow the identity

map to fµ. Given the parameterizations φ1 : S1 → D and φ2 : S2 → D, we look for

the map f̃µ = φ2◦fµ◦φ−1
1 : D → D associated uniquely with µ̃ = µ◦φ−1

1 : D → C.

fµ can then be obtained by fµ = φ−1
2 ◦ f̃µ ◦ φ1.

We start with the identity map Id of which the Beltrami coefficient is equal

to 0. Let N be the number of iterations. Define µ̃k = kµ̃/N , k = {0, 1, 2, ..., N}.

Let f̃ µ̃k be the map associated with µ̃k. Note that f̃ µ̃0 = Id and f̃ µ̃N = f̃µ.

Equation 5.5 allows us to iteratively compute f̃ µ̃k and thus obtain a sequence of

maps flowing from Id to f̃µ. Mathematically, the iterative scheme is given by:

f̃ µ̃k+1 = f̃ µ̃k +
1

N
V (f̃ µ̃k , µ̃); f̃ µ̃0 = Id (5.6)
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BHF computes a sequence of surface maps {f̃ µ̃k} converging to f̃µ. The

approximation of f̃ µ̃k is more accurate with a smaller time step or equivalently a

larger number of iterations N . In practice, the approximations are very accurate

when N ≥ 15 (see Figure 5.9). In our experiments, we set N = 20.

5.4.3 Fourier Compression of Beltrami Coefficients

The Beltrami coefficient can be further compressed using Fourier approxima-

tions to reduce the storage space. An important consideration is to preserve

the diffeomorphic property of the surface map after the compression. Under the

representation by coordinate functions, the Jacobian has to be greater than 0 in

order to ensure the diffeomorphic property. This constraint is equivalent to an

inequality in the partial derivatives of the coordinate functions. Enforcing this

constraint is difficult during compression and the diffeomorphic property is easily

lost (see Figure 5.4, 5.10). The representation by Beltrami coefficient, however,

is advantageous because it does not have any requirement for injectivity and sub-

jectivity, making the Jacobian constraint unnecessary. The only requirement for

the Beltrami coefficient µ is that it has to be a complex-valued function defined

on the surface with supreme norm less than 1. We can therefore compress µ using

Fourier approximations without losing the diffeomorphic property.

The Beltrami coefficient µ can be approximated as follow:

µ(x, y) =
N∑

j,k=−N

cj,ke
√
−1πjx/T e

√
−1πky/T ,

where

cj,k =
1

4T 2

∫ T

−T

∫ T

−T
µ(x, y)e−

√
−1πjx/T e−

√
−1πky/Tdxdy.

We can use fast Fourier transform to compute the coefficients cj,k efficiently.

In practice, we set N = 20 and the approximation is already very accurate (see
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Figure 5.9). The Fourier compression significantly reduces the storage required

to 10% of the original data size. Experimental results show that the compression

of µ is stable and effective.

5.5 Experimental Results

We test our algorithm on synthetic surface data, real human brain surfaces and

real hippocampal surfaces. Experimental results show that our algorithm is ef-

fective and stable.

Figure 5.3 shows the representation of a diffeomorphism from the unit square

to itself using the Beltrami coefficient. (A) shows the original diffeomorphism.

(B) shows the norm of the Beltrami coefficient representing the map. (C) shows

the reconstructed map from the Beltrami coefficient. The dots represent the exact

values of the original map. Note that the reconstructed map closely matches the

original map. (D) shows the errors of the reconstructed maps versus the number

of iterations under the Beltrami Holomorphic flow (BHF), which are defined as

Error = sup ||fRe − f ||, (5.7)

where fRe is the reconstructed map. After 20 iterations, the BHF reconstructed

map closely approximates the original map.

Figure 5.4(A) shows the Fourier compression result of the Beltrami coefficient

µ. We take N = 15 in the Fourier series approximation. The reconstructed

map closely matches the original map (see dots) as well. (B) shows the Fourier

compression result of the coordinate functions. The Jacobian constraint is not

satisfied under the compression. The diffeomorphic property is lost. Figure 5.5

shows the Fourier compression result of µ with N = 5, 10, 15, 20 respectively. The

accuracy improves rapidly with increasingly larger N ’s.
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We also test our algorithm on real cortical hemispheric surfaces extracted

from brain MRI scans, acquired from normal and unhealthy subjects at 1.5 T

(on a GE Sigma scanner). Figure 5.6(A) shows two different brain surfaces and a

surface map between them. The surface map can be represented by the Beltrami

coefficient. (B) shows the colormap of the norm of the Beltrami coefficient. (C)

shows the reconstructed surface map from the Beltrami coefficient. The black

dots represent the exact values of the original surface map. The result shows

that the reconstruction of the surface map from the Beltrami coefficient is very

accurate. The reconstructed map accurately approximates the original map (see

black dots). Figure 5.7 shows the Fourier compression results of µ for the brain

surfaces with N = 5, 10, 15 and 20 respectively. The error reduces rapidly as N

increases.

In Figure 5.8, we test our algorithm on real hippocampal surfaces, which is

an important brain structure for the study of Alzheimer’s disease. (A) shows

two different hippocampal surfaces and a surface diffeomorphism between them.

We represent the surface map with the Beltrami coefficient and the colormap of

its norm is shown in (B). (C) shows the reconstructed map from the Beltrami

coefficient. Again, the black dots represent the exact location under the origi-

nal map. The error as defined in Equation 5.7 versus the number of iterations

during the Beltrami Holomorphic Flow (BHF) is as shown in (D). The Fourier

compression results of the Beltrami coefficient for the hippocampal surfaces with

N = 5, 10, 15, 20 are shown in Figure 5.9. The error of the reconstructed maps

decreases rapidly as N increases.

However, the compression of 3D coordinate functions does not give satisfac-

tory results. Figure 5.10(A) and 5.10(B) show the results of Fourier compression

of 3D coordinate functions for the brain and hippocampal surfaces respectively.
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In both cases, the diffeomorphic property is completely disrupted. In compar-

ison, Beltrami compression gives accurate results with just a small number of

coefficients.

To analyze quantitatively how well the diffeomorphic property is preserved

under our algorithm, we compute a measure called the inverse Jacobian mea-

sure. It is defined as: Inv(J) = sup |1 − J
JRe |, where JRe is the Jacobian of the

reconstructed map and J is the Jacobian of the original map. JRe is small when

overlapping occurs. Thus, a large value of Inv(J) means an occurrence of over-

lapping in fRe and a big deviation of fRe from f . Figure 5.11 shows the values

of Inv(J) versus the number of coefficients used under the Fourier compression

of the coordinate functions and the Beltrami coefficient respectively. The red

curve shows the values of Inv(J) under the Fourier compression of the coordinate

functions versus the number of Fourier coefficients used. Note that the values of

Inv(J) are quite big, meaning that overlapping occurs in fRe and the diffeomor-

phic property is seriously distorted. The blue curve shows the values of Inv(J)

under the Fourier compression of the Beltrami coefficient versus the number of

Fourier coefficients used. The values of Inv(J) are very small, meaning that fRe

preserves the diffeomorphic property well and reconstructs the original map f

accurately.

5.6 Conclusion

In this chapter, we address the problem of finding a simple representation of sur-

face maps that significantly reduces the required storage memory. It is especially

important in medical imaging, in which a large set of surfaces have to be regis-

tered. A great amount of storage capacity and bandwidth are needed to store

and transmit the surface map data. Hence, an algorithm for compressing surface

96



Figure 5.3: Reconstruction of the diffeomorphism of a 2D domain from the Bel-
trami coefficient using Beltrami Holomorphic flow (BHF).

Figure 5.4: (A) shows the Fourier compression result of the Beltrami coefficient;
(B) shows the Fourier compression result of the coordinate functions

97



Figure 5.5: The results from Fourier compression of µ with N = 5, 10, 15 and 20.
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Figure 5.6: Reconstruction of a surface diffeomorphism between real human brain
surfaces from its Beltrami coefficient.

Figure 5.7: The results of Fourier compression of µ for a brain surface diffeomor-
phism with N = 5, 10, 15 and 20.
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Figure 5.8: (A) shows two different hippocampal surfaces and a surface diffeomor-
phism between them. We represent the surface map with its Beltrami coefficient
and the colormap of its norm is shown in (B). (C) shows the reconstructed map
from the Beltrami coefficient. (D) shows the errors of the intermediate maps
during Beltrami Holomorphic Flow (BHF).
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Figure 5.9: The Fourier compression results of the Beltrami coefficient for a
hippocampal surface diffeomorphism with N = 5, 10, 15 and 20

Figure 5.10: The mapped images (represented by the red and blue lines) of the
reconstructed maps from the Fourier compression of 3D coordinate functions on
(A) cortical surface and (B) hippocampus. Diffeomorphic properties are com-
pletely disrupted.
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Figure 5.11: The values of Inv(J) under the Fourier compression of the coordinate
functions and the Beltrami coefficient.

maps is of utmost importance. We propose a novel representation of surface maps

using Beltrami coefficients. Fixing any 3 points, there is a 1-1 correspondence be-

tween the set of surface diffeomorphisms and the set of Beltrami coefficients. We

propose the Beltrami Holomorphic flow (BHF) method to iteratively reconstruct

the surface map with a given Beltrami coefficient. Using the Beltrami coefficient

to represent the surface map reduces 1/3 of the required storage space. We can

further compress the Beltrami coefficient using the Fourier approximation, which

significantly reduces the storage required by 90% further. Experimental results

on synthetic data, real human brain data and real hippocampus surfaces show

that our method is stable and effective in accurately representing surface maps

and requires less storage memory. In the future, we will further explore more

potential applications of our method, such as doing statistics on the Beltrami

representation for shape analysis and developing a statistically guided registra-

tion method based on the Beltrami coefficient.
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CHAPTER 6

Shape-Based Diffeomorphic Registration on

Hippocampal Surfaces Using Beltrami

Holomorphic Flow

6.1 Introduction

The hippocampus(HP) is an important subcortical structure of the human brain

that plays a key role in long-term memory and spatial navigation. Surface-based

shape analysis is commonly used to study local changes of HP surfaces due to

pathologies such as Alzheimer disease (AD), schizophrenia and epilepsy[THZ04].

When comparing data on two anatomical surfaces, a 1-1 correspondence must

be computed to register one surface nonlinearly onto the other. On HP surfaces,

there are no well-defined anatomical landmark features that can be used as a

constraint to establish good correspondences. High-field structural or functional

imaging, where discrete cellular fields are evident [ZET03], is still not routinely

used. Finding meaningful registrations between HP surfaces becomes challenging.

Inaccuracies in shape analysis are often introduced due to incorrect registrations.

In fact, shape analysis and surface registration are closely related. The results of

shape analysis can be highly affected by the registration, but a good registration

depends largely on the appropriate choice of shape measure that captures dis-

similarities between surfaces. Therefore, it is of utmost importance to combine

103



the two processes and define a suitable shape measure to drive the registration.

Here we developed an algorithm to automatically register HP surfaces with

complete geometric matching, avoiding the need to manually label landmark fea-

tures. We first propose a complete shape index using the Beltrami coefficient

(BC) and curvatures, which measures subtle local differences. The shape en-

ergy is identically zero if and only if two shapes are equal up to a rigid motion.

We then minimize the shape energy to obtain the best surface registration with

complete geometric matching. We propose a simple representation of surface dif-

feomorphisms using BCs, which simplifies the optimization. We then optimize

the shape energy using the Beltrami Holomorphic flow (BHF) method. The op-

timal shape energy obtained may also be used to measure local shape differences

across subjects or time.

Figure 6.1: Representation of surface registration using Beltrami Coefficients

6.2 Related Work

Surface registration has been studied extensively. Conformal or quasi-conformal

surface registration is commonly used [GWC04, HS09, WLG07], and gives a pa-

rameterization minimizing angular distortions. However, it cannot guarantee the

matching of geometric information such as curvature across subjects. Landmark-
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based diffeomorphisms are often used to compute, or adjust, cortical surface

parameterizations [GVM04, LYL05, TT96]. These methods provide good regis-

trations when corresponding landmark points on the surfaces can be labeled in

advance. It is, however, difficult for HP surfaces on which there are no well-

defined anatomical landmarks. Some authors have proposed driving features into

correspondence based on shape information. Lyttelton et al. [LBR07] computed

surface parameterizations that match surface curvature. Fischl et al. [FST99]

improved the alignment of cortical folding patterns by minimizing the mean

squared difference between the average convexity across a set of subjects and

that of the individual. Wang et al. [WCT05] computed surface registrations that

maximize the mutual information between mean curvature and conformal factor

maps across subjects. Lord et al. [LHV07b] matched surfaces by minimizing the

deviation from isometry. The shape indices that drive the registration process

in these approaches are not complete shape measurements and do not capture

shape differences completely. There are cases when two different surfaces might

have the same shape value. This could lead to inaccurate registration results.

6.3 Theoretical Background

Given two Riemann surfaces M and N , a map f : M → N is conformal if it

preserves the surface metric up to a multiplicative factor. One generalization of

conformal maps is the quasi-conformal maps, which are orientation-preserving

homeomorphisms between Riemann surfaces with bounded conformality distor-

tion, in the sense that their first order approximations takes small circles to small

ellipses of bounded eccentricity [GL00]. Thus, a conformal homeomorphism that

maps a small circle to a small circle may also be regarded as quasi-conformal.

Mathematically, f : C→ C is quasi-conformal if it satisfies the Beltrami equation:
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∂f
∂z

= µ(z)∂f
∂z

, for some complex valued function µ satisfying ||µ||∞ < 1. µ is called

the Beltrami coefficient (BC), which is a measure of non-conformality. In partic-

ular, the map f is conformal around a small neighborhood of p when µ(p) = 0.

From µ(p), we can determine the angles of the directions of maximal magnification

and shrinking and the amount of them as well. Specifically, the angle of maximal

magnification is arg(µ(p))/2 with magnifying factor 1+ |µ(p)|; The angle of max-

imal shrinking is the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor

1− |µ(p)|. The distortion or dilation is given by: K = (1 + |µ(p)|)/(1− |µ(p)|).

6.4 Proposed Model

6.4.1 A Complete Shape Index

A good registration depends greatly on the appropriate choice of a shape measure

to capture dissimilarities between surfaces. We propose a complete shape index

Eshape using the Beltrami coefficient and curvatures, which measures subtle local

changes completely. Given two HP surfaces S1 and S2. Let f : S1 → S2 be

a registration between S1 and S2. The complete shape index Eshape is defined

as follow: Eshape(f) = α|µ|2 + β(H1 − H2(f))2 + γ(K1 − K2(f))2 where µ is

the Beltrami coefficient of f ; H1, H2 are the mean curvatures on S1 and S2

respectively; and K1, K2 are the Gaussian curvatures. The first term measures

the conformality distortion of the surface registration. The second and third

terms measure the curvature mismatch. It turns out Eshape is a complete shape

index that measures subtle shape differences between two surfaces. It can be

proven that Eshape(f) = 0 if and only if S1 and S2 are equal up to a rigid motion.

For HP shape analysis, it is good because clinically we are more interested in

shape changes than their orientation. Also, by adjusting the parameters (i.e.,

106



α, β and γ), Eshape can be made equivalent to other existing shape indices. For

example, when β = 0, Eshape is equivalent to the isometric shape index; when

α = 0, Eshape is equivalent to the curvature index; when β = γ = 0, Eshape

measures the conformality distortion. In our work, we set α = 1 and β = γ = 2

to measure complete shape changes.

We can now minimize Eshape to obtain the optimized surface map f̃ that best

matches the geometry. One advantage of using Eshape is that it can be defined

in the space of BCs. The space of BCs is a simple functional space, which makes

the optimization much easier.

6.4.2 Surface Map Representation Using Beltrami Coefficients

Surface registration is commonly parameterized using 3D coordinate functions in

R3. This representation is difficult to manipulate. For example, the 3D coordinate

functions have to satisfy certain constraints on the Jacobian J (namely, J > 0),

to preserve the 1-1 correspondence of the surface maps. Enforcing this constraint

adds extra difficulty in optimizing surface maps. The diffeomorphic property

is often lost during the optimization. We propose a simple representation of

surface diffeomorphisms using Beltrami coefficients (BCs). Fixing any 3 points

on a pair of surfaces, there is a 1-1 correspondence between the set of surface

diffeomorphisms between them and the set of BCs on the source domain.

Suppose S1 and S2 are both either genus 0 closed surfaces or simply connected

open surfaces. S1 and S2 can be conformally parameterized with a global patch

D[GWC04, WLG07]. Let f : S1 → S2, and given 3 point correspondences. In

this chapter, we chose the 3 corresponding points based on the initial conformal

registration. But we can easily generalize our method by incorporating a Mobius

transformation that will help us to automatically detect optimal 3-point corre-
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spondences. Denote the parameterizations by φ1 : S1 → D and φ2 : S2 → D.

Now, we can compute the Beltrami coefficient µf associated uniquely to f to

represent f (See Figure 6.1). The Beltrami coefficient µf can be computed by

considering the composition map f̃ = φ2 ◦ f ◦ φ−1
1 : D → D. Mathematically, µf

is given by the following formula: µf = ∂f̃
∂z
/∂f̃
∂z

= 1
2
(∂f̃
∂x

+
√
−1∂f̃

∂y
)/1

2
(∂f̃
∂x
−
√
−1∂f̃

∂y
).

The space of BCs is a simple functional space. There are no restrictions on µ

that it has to be 1-1, surjective or satisfy some constraints on the Jacobian. Using

the Beltrami representation makes the optimization process of surface maps much

easier.

6.4.3 Optimized Surface Registration Matching the Geometry

Eshape gives us a complete shape index which measures local dissimilarities be-

tween two surfaces. Specifically, Eshape(f) = 0 if and only if S1 and S2 are equal

up to a rigid motion. Therefore, the surface map f minimizing Eshape(f) is the

best registration that best matches the geometric information. Given two HP sur-

faces S1 and S2. We propose to find f : S1 → S2 that minimizes E =
∫
EShape(f).

To simplify the computation, we can conformally parameterize S1 and S2 onto

the parameter domain D. So, all computations are carried out on the simple

domain D. By representing surface maps with Beltrami coefficients µ, we can

define the energy on the space of BCs - a much simpler functional space for the

optimization process. Mathematically, the compound energy E can be written

with respect to µ as: E(µ) =
∫
D
α|µ|2 + β(H1 − H2(fµ))2 + γ(K1 − K2(fµ))2.

The variation of fµ under the variation of µ can be expressed explicitly. Suppose

µ̃(z) = µ(z) + tν(z) + O(t2). Then, f µ̃(z)(w) = fµ(w) + tV (fµ, ν)(w) + O(t2),

where V (fµ, ν)(w) = −fµ(w)(fµ(w)−1)
π

∫
D

ν(z)(fµz (z))2dxdy
fµ(z)(fµ(z)−1)(fµ(z)−fµ(w))

Using the varia-

tional formula, we can derive the Euler-Lagrange equation of E(µ) easily. Specif-
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ically, we can minimize E(µ) by the following iterative scheme:

µn+1 − µn = −2(αµn −
∫
z
[(βH̃n + γK̃n) ·Gn,det(βH̃n + γK̃n, Gn)] )dt,

where
∫
w
• :=

∫
D
• dw and

∫
z
• :=

∫
D
• dz is defined as the integral over the

variable w and z respectively; H̃ := (H1 − H2(fµ))∇H2(fµ); K̃ := (K1 −

K2(fµ))∇K2(fµ); det(a, b) is the determinant of the 2 by 2 matrix or equiv-

alently, the norm of the cross product of a and b.

We call this iterative algorithm the Beltrami Holomorphic flow (BHF). Note

that starting with a conformal map with µ = 0, the first term of the energy

ensures µ to satisfy ||µ||∞ < 1. Hence, during the BHF process, the maps are

guaranteed to be diffeomorphic and are holomorphic in t.

Figure 6.2: Shape registration with geometric matching using Beltrami Holomor-
phic flow.
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6.5 Experimental Results

We tested our algorithm on 212 HP surfaces automatically extracted from 3D

brain MRI scans with a validated algorithm [MTA08]. Scans were acquired from

normal and diseased (AD) elderly subjects at 1.5 T (on a GE Signa scanner).

Experiments have been carried out on a laptop with a 2.4 GHz DUO CPU. The

algorithm takes about 4-5 minutes to compute a registration between meshes

with 40K vertices.

Figure 6.1 shows the Beltrami representations of bijective surface maps. The

left column shows a bijective surface map between the HP surfaces. The middle

column shows the Beltrami (BC) representations of the maps. The right column

shows the reconstruction of surface maps from their BCs. The reconstructed maps

closely resemble the original maps, meaning that BCs can effectively represent

bijective surface maps. Figure 6.2(A) shows two different HP surfaces. They

are registered using our proposed BHF algorithm with geometric matching. The

registration is visualized using a grid map and texture map, which shows a smooth

1-1 correspondence. The optimal shape index Eshape is plotted as colormap in

(B). Eshape effectively captures the local shape difference between the surfaces.

(C) shows the shape energy in each iteration. With the BHF algorithm, the shape

energy decreases as the number of iterations increases. (D) shows the curvature

mismatch energy (E =
∫
β(H1 −H2(f))2 + γ(K1 −K2(f))2). It decreases as the

number of iterations increases, meaning that the geometric matching improves.

(E) shows the Beltrami coefficient of the map in each iteration, which shows the

conformality distortion of the map. Some conformality is intentionally lost to

allow better geometric matching.

Figure 6.3 shows the BHF registration between two normal HPs. The com-

plete shape index Eshape is plotted as colormap on the right. Again, Eshape can
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Figure 6.3: BHF registration between two normal subjects. The shape index
Eshape is plotted on the right, which captures local shape differences.

accurately capture local shape differences between the normal HP surfaces.

Figure 6.4 shows the BHF hippocampal registrations between normal elderly

subjects and subjects with Alzheimer’s disease. The BHF registrations give

smooth 1-1 correspondences between the HP surfaces. We can use the com-

plete shape index Eshape to detect local shape differences between healthy and

unhealthy subjects.

We also study the temporal shape changes of normal and AD HP surfaces, as

shown in Figure 6.5. For each subject, we compute the deformation pattern of

its HP surfaces measured at time = 0 and time = 12 Months (see [MTA09] for

longitudinal scanning details). The left two panels show the temporal deformation

patterns for two normal subjects. The middle two panels show the temporal

deformation patterns for two AD subjects. The last column shows the statistical

significance p-map measuring the difference in the deformation pattern between

the normal (n=47) and AD (n=53) groups, plotted on a control HP. The deep

red color highlights regions of significant statistical difference. This method can

be potentially used to study factors that influence brain changes in AD.
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Figure 6.4: BHF registration between normal subjects and subjects with Alzhei-
mer’s disease. Their local shape differences are captured by Eshape.

Figure 6.5: Temporal hippocampal shape changes of normal and subjects with
Alzheimer’s disease.
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6.6 Conclusion

We developed an algorithm to automatically register HP surfaces with complete

geometric matching, avoiding the need for manually-labeled landmark features.

We did this by defining a complete shape index to drive the registration. Ex-

perimental results on 212 HP surfaces from normal and diseased(AD) subjects

show our proposed algorithm is effective in registering HP surfaces over time and

across subjects, with complete geometric matching. The proposed shape energy

can also capture local shape differences between HPs for disease analysis. In

future, we will use the BHF algorithm to systematically study the local shape

differences and factors that affect deformation patterns between normal and AD

subjects.
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CHAPTER 7

Parallelizable Inpainting and Refinement of

Diffeomorphisms Using Beltrami Holomorphic

Flow

7.1 Introduction

In computer graphics and medical imaging, a great deal of effort is spent on

processing surface diffeomorophisms. For example, in computer-aided design, fine

diffeomorphisms are important for high quality texture mapping of 3D models. In

brain imaging, they are crucial for the registration of cortical surfaces. However,

under some situations, some parts of the surfaces may not be properly registered

due to noise or highly convoluted surfaces like the cortical surface. This may

make certain regions not able to register at all or result in highly distorted and/or

overlapping regions. To fix this problem, we need to properly restore the missing

region using existing data as much as possible.

For other situations such as video compression and computer games, the stor-

age allowed is limited for practical reason. For example, in video compression,

consecutive frames may be related by a smoothly varying diffeomorphisms, which

allows further compression. In computer games, it is not practical to store the

precise texture maps of thousands of in-game objects. To save storage, texture

maps are often stored in a piecewise linear way with every triangle in simplified
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triangular meshes. This causes unnatural distortions when objects are zoomed

in too closely. To achieve the finest restoration, we need to restore the desired

quality of the texture maps, like the degree of distortion and smoothness, from a

compact representation as above.

Dealing with diffeomorphisms is more difficult than dealing with images, be-

cause diffeomorphisms have to be non-overlapping, which requires the Jacobian

to be positive everywhere. In modifying diffeomorphisms, we must preserve these

properties so that they remain smooth and bijective. This adds extra difficulty

in processing them.

Motivated by the above discussion, we are interested in developing effective

algorithms to either ’inpaint’ the missing or distorted regions of a diffeomorphism,

or refine a diffeomorphism with low resolution to higher resolution. In this chap-

ter, we propose a novel approach to solve these two problems. The basic idea is to

represent a diffeomorphism by its Beltrami coefficient. Then we may inpaint or

refine it by interpolating its Beltrami coefficients instead of its coordinate func-

tions. A new diffeomorphism can then be constructed from the inpainted/refined

Beltrami coefficient, by the exact Beltrami holomorphic flow (BHF) algorithm

proposed in this chapter. Compared with other methods, such as linear interpo-

lation and adjusting its coordinate functions using existing inpainting algorithms,

our method guarantees smoothness and diffeomorphic property. In the original

missing region, the restored diffeomorphism follows the property of the original

diffeomorphism on the non-occluded region. We apply our proposed algorithms

to three practical applications, including (i) super-resolution of texture maps to

sharpen and smoothen surface textures, (ii) parallelizable landmark-matching

surface mapping to parameterize complicated surfaces efficiently, and (iii) in-

painting of image sequences of deforming shapes. Experimental results confirm

115



the effectiveness and efficacy of our proposed algorithms.

7.2 Previous Work

Image inpainting and super-resolution have been extensively studied. Inpaint-

ing refers to the process of reconstructing lost or deteriorated parts of images.

Image super-resolution aims to produce an aesthetically pleasing high resolution

image from a low resolution image. Both image inpainting and super-resolution

are related to image interpolation. Recently, different approaches for this sub-

ject have been proposed. Belahmidi [BG04] proposed a PDE-based approach

to zoom images by solving anisotropic heat diffusion equations. Bertalmı́o et

al. [BBS01] proposed to apply Navier-Stokes equations and fluid dynamics for

image and video inpainting. Shen et al. [CS02] proposed mathematical models

for local inpaintings of non-texture images based on the classical total variation

(TV) denoising model. Later, Cha et al. [CK06] applied the PDE form of the

TV energy for image zooming. Multiscale approach was also proposed. Carey

et al. [KCH97] proposed an image interpolation approach based on wavelets.

Although image interpolation has been well-studied, the interpolation of surface

diffeomorphisms preserving bijectivity has been rarely studied. In this chapter,

we focus on the interpolation of surface diffeomorphisms.

Surface registration has also been widely studied. Gu et al. [WLG07] pro-

posed to obtain conformal surface registration by minimizing some energy func-

tionals. Lévy et al. [LPR02] proposed a least square method to obtain conformal

maps for texture mapping. To obtain a surface registration that matches im-

portant landmark features, Durrleman et al. [DPT08] developed a framework

using currents, a concept from differential geometry, to match landmarks within

surfaces across subjects, for the purpose of inferring the variability of brain struc-
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ture in an image database. Lui et al. [LTW10] proposed to compute shape-based

landmark matching registrations between brain surfaces using the integral flow

method. The one-parameter subgroup within the set of all diffeomorphisms was

considered and represented by smooth vector fields. Landmarks can be perfectly

matched and the correspondence between landmark curves is based on shape in-

formation. Leow et al. [LYL05] proposed a level-set-based approach for matching

different types of features, including points, 2D and 3D curves represented as im-

plicit functions. Computing surface registration is generally difficult, especially

on complicated surfaces. In this chapter, we propose a parallelizable method for

efficient surface registration.

This chapter is mainly based on the representation of diffeomorphisms by

Beltrami coefficients. Studying diffeomorphisms by Beltrami coefficient was first

proposed by Lui et al. [LWZ10] for medical shape analysis. They further pro-

posed to compute geometric matching surface registration by adjusting Beltrami

coefficients [LWG10].

7.3 Theoretical Background

7.3.1 Quasiconformal Mappings and Beltrami Coefficients

A surface S with a conformal structure is called a Riemann surface. Given two

Riemann surfaces M and N , a map f : M → N is conformal if it preserves

the surface metric up to a multiplicative factor called the conformal factor. A

generalization of conformal maps is quasi-conformal maps, which are orientation-

preserving diffeomorphisms between Riemann surfaces with bounded conformal-

ity distortion, in the sense that their first order approximation takes small circles

to small ellipses of bounded eccentricity. Thus, a conformal homeomorphism that

117



maps small circles to small circles is also quasiconformal.

Mathematically, f : C→ C is quasiconformal if it satisfies the Beltrami equa-

tion ∂f
∂z

= µ(z)∂f
∂z

, for some complex valued functions µ with ||µ||∞ < 1. µ is called

the Beltrami coefficient, which is a measure of non-conformality. In particular, f

is conformal around a small neighborhood of p when µ(p) = 0. Equivalently, f

is not conformal if and only if µ(p) 6= 0 at p. Inside the local parameter domain,

f may be considered as a map composed of a translation to f(p) together with a

stretch map S(z) = z+µ(p)z, which is postcomposed by a multiplication of fz(p),

which is conformal. All the conformal distortion of S(z) is caused by µ(p). S(z)

is the map that causes f to map small circles to small ellipses. From µ(p), we can

determine the angles of the directions of maximal magnification and shrinkage

and the amount of them as well. Specifically, the angle of maximal magnification

is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; the angle of maximal shrinkage

is the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. The

distortion or dilation is given by K = (1 + |µ(p)|)/(1− |µ(p)|)

Thus, the Beltrami coefficient µ gives us important information about the

properties of a map.

7.3.2 Adjusting Diffeomorphisms by Beltrami Holomorphic Flow

Let f : C→ C be a diffeomorphism. We say that f fixes 0, 1 and ∞ if f(0) = 0,

f(1) = 1 and limz→∞ f(z) = ∞. Suppose f fixes 0, 1 and ∞ and satisfies

the Beltrami equation ∂f
∂z

= µ∂f
∂s

. If we set µ(t) = µ + tν, then fµ(t)(w) =

f(w) + tḟ(w) + o(t2), where

ḟ(w) = − 1

π

∫∫
ν(z)R(f(z), f(w))(fz(z))2 dx dy, (7.1)
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with

R(z, w) :=
1

z − w
− w

z − 1
+
w − 1

z
. (7.2)

This formula gives the variation of f with respect to the variation of µ. Ap-

parantly, the integrand has singularities at z = 0, z = 1 and z = w. However,

the integrand can be written as 3 terms, where every term has just a simple pole.

Therefore, integrating them on R2 always give a finte answer and will not cause

any singularity. We call this formula the Beltrami holomorphic flow formula.

Using this formula, we may adjust any diffeomorphism fµ0 to any other diffeo-

morphism fµ, with Beltrami coefficients µ0 and µ respectively. When the initial

µ = 0, this amounts to computing fµ from the identity map f 0 = Id. Setting

ν = µ− µ0, we compute the BHF for fµ(t), where µ(t) = µ0 + tν. Theoretically,

the approximation of fµ is given by setting t = 1, i.e., fµ(w) ≈ f(w) + ḟ(w, t).

However, when ν is not small enough, we may face the problem of overlapping in

fµ(1). We will discuss how to choose an optimal t in Subsection 7.4.2.

7.3.3 TV Inpainting of 2D Image Data

Inpainting can be regarded as a process of interpolating data on the occluded

region from the known data on its neighborhood. To inpaint an occluded 2D

image, we can fill in the missing region by solving the Perona-Malik diffusion

model:  ∂u
∂t

= div(g(|∇u|)∇u) on D;

u0 = v on Dc,

where D is the occluded region, v : Dc → R is the original image with occlusion,

u is the approximated (inpainted) image, and g : R→ R is an increasing function

such that g(0) = 0 and g(∞) = ∞. Note that if we replace g by 1
∇u , we get

the familiar TV smoothing model, which is well-known to preserve edges and
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commonly called the TV inpainting model.

Image inpainting has been extensively studied. But very often, the inpainting

of diffeomorphisms with occluded regions is also needed. For example, when

surface registration cannot be done on some regions of the surface, inpainting of

the registration will be necessary. However, as far as we know, no work has been

done on the inpainting of 2D/3D diffeomorphisms. In this chapter, we extend

the TV inpainting algorithm to inpaint diffeomorphisms with occluded regions.

7.4 Our Proposed Algorithms

In this section, we propose several algorithms to deal with the inpainting and

refinement of diffeomorphisms using BHF. Although BHF deals with diffeomor-

phisms of 2D domains, our algorithms can be easily extended to processing sur-

face diffeomorphisms by reparameterization onto 2D domains, such as conformal

parameterizations [WLG07].

7.4.1 Exact Computation of the Beltrami Holomorphic Flow

Let f : D → D be a diffeomorphism on D = [−1, 1]2 with f(0) = 0 and f(1) = 1.

Denote the triangulation of D by Tri(D). For the discretized f , its value is

known on every vertex of D. It is natural to assume that the actual f can be

well approximated piecewise linearly on each face in Tri(D). On each face, the

Beltrami coefficient of f is constant. We may also assume that ν, the adjustment

to µ, is also piecewise constant on each face of Tri(D). Then µ(t) = µ + tν is

a piecewise constant function on D. For every T ∈ Tri(D), denote the value of

ν on T as νT , and the value of fz on T as fz,T . The direction of BHF in (7.1)
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becomes

ḟ(w) =
∑

T∈Tri(D)

ḟ(w, T ), (7.3)

where

ḟ(w, T ) := − 1

π
νTf

2
z,T

∫∫
z∈T

R(f(z), f(w)) dx dy. (7.4)

Note that R(f(z), f(w)) can be written as a sum of 3 simple fraction terms. Since

f(w) is constant in the integral, we may pull the factors f(w) and f(w)−1 in the

last two terms out of the integral. Therefore to compute ḟ(w, t, T ), it suffices to

compute integrals of the form
∫∫

z∈T
1

f(z)−c dx dy and sum. Note that f(z)− c is a

linear function in the integral. It turns out that all reciprocals of linear functions

can be integrated exactly. This allows us to find the exact direction given by

BHF.

With exact integration, our algorithm always give the exact derivative of f

with respective to the adjustment ν in µ. The only source of error comes from the

discretization of f , which is unavoidable for computations on triangular meshes.

In the next subsection, we discuss the optimal step size to take after the direction

given by BHF is computed.

7.4.2 Adjusting Diffeomorphisms Using BHF with Adaptive Step Size

Given a diffeomorphism f : C → C with Beltrami coefficient µ0 fixing 0, 1 and

∞. Suppose we want to adjust its Beltrami coefficient to µ on D = [−1, 1]2.

After setting ν = µ − µ0, µ(t) = µ0 + tν and computing ḟ(w) using the exact

BHF algorithm, it may be tempting to update f by setting t = 1 to get the

required diffeomorphism. However, although exact integration of (7.1) gives the

exact flowing direction of f with respect to the change in µ, the accuracy of this

first order approximation depends on ‖ν‖∞. If t is too large, overlapping may
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occur and prevent the algorithm from converging. In this subsection, we propose

a method which allows us to find the optimal step size t.

After computing ḟ(w) for every vertex in Tri(D) = (V , E ,F), the new map-

ping h(w) = f(w)+tḟ(w) satisfies the Beltrami equation with Beltrami coefficient

σ(t), which is piecewise constant on every T ∈ F . When t is small, σ(t) is approx-

imately µ0 + tν. As t gets larger, the approximation gets worse. We propose to

adjust f with a value of t that will not cause overlapping in h and such that σ(t)

is the best approximation to the target Beltrami coefficient µ. On every triangle

T ∈ F , we compute the smallest time tT > 0 such that Jacobian of h on T will

be zero. As h(z1), h(z2) and h(z3) move linearly as t increases, the Jacobian of h

on T is quadratic in T . Therefore tT is a root of this quadratic equation. If the

Jacobian is positive for all t > 0, we set tT to +∞. The threashold value of t,

tthreshold, is such at the Jacobian of h on at least one triangle reaches 0:

tthreshold := min
T∈F

tT (7.5)

For the algorithm to work, t must be strictly less than tthreshold. We always choose

t such that t < tthreshold/2 and σ(t) best approximates µ. Using Newton’s method,

we find the optimal t that minimizes the L2-norm of σ(t)− µ:

toptimal := arg min
0<t<tthreshold/2

‖σ(t)− µ‖2 (7.6)

One may also want to use other criteria for the closeness of approximation other

than the L2-norm. In our experiments, the above choice of toptimal gives rapid

convergence within 25 iterations most of the time, and toptimal could be much

larger than 1 towards the end of the algorithm.

In the next 2 subsections, we make use of the exact BHF algorithm discussed

thus far on the problems of inpainting and super-resizing diffeomorphisms.
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7.4.3 Beltrami Inpainting of Diffeomorophisms

In this subsection, we propose an algorithm to inpaint a surface diffeomorphism

on any region defined by a user. Such algorithm is extremely useful in various

situations. For example, in medical imaging, part of a biological surface (e.g.

cortical surface) may not be registered properly with another biological surface

and shows abnormal distortions, or in video compression, where one stores the

most important correspondence between 2 frames and fills in the occluded parts

during playback.

To inpaint a surface diffeomorphism, we parameterize it as a diffeomorphism

on C fixing 0, 1 and ∞, where f restricted to D = [−1, 1]2 corresponds to the

surface diffeomorphism. We are interested to adjust the value f takes on D.

Suppose we want to inpaint a diffeomorphism f0 : C → C on a region Ω ⊂ D,

and only the value of f0 on D\Ω is known, as if a partial registration is obtained

from the non-occluded region. Our target is to smoothly reconstruct the original

f0, given that f = f0 on D\Ω.

We propose to restore f by smoothly interpolating the Beltrami coefficient µ

in the occluded region, while ensuring f = f0 on D\Ω. Let µ0 be the Beltrami

coefficient of f0 on D\Ω. Using existing algorithms on vectorial TV inpainting,

we propose to define our target Beltrami coefficient µ as

µ := arg min
µ=µ0onD\Ω

∫∫
Ω

(
|(∇Re(µ))(x+

√
−1y)|2

+|(∇Im(µ))(x+
√
−1y)|2

)1/2

dx dy. (7.7)

After computing the target Beltrami coefficient µ, we iteratively use the exact

BHF with adaptive time step algorithm to find a diffeomorphism f minimizing
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the following energy functional:

f = arg min
f=f0onD\Ω

∫∫
D\Ω
|µ(f)− µ|2 dx dy (7.8)

The resulting map is the diffeomorphism that preserves the value of f0 on D\Ω

and smoothly interpolates the Beltrami coefficient µ0 of f0 into Ω using its value

on D\Ω. This may also be considered as the diffeomorphism which extends f0

into Ω in the least distorted way.

In the process of iterating with BHF, it may be possible that the condition

f = f0 on D\Ω is violated because a change in Beltrami coefficient may affect

the entire map. We solve this problem by adjusting f back to f0 on D\Ω and

smoothly interpolating the adjustment of f on ∂Ω into Ω. Now, we summarize

the whole algorithm in Algorithm 7.1.

Algorithm 7.1 Inpaint a Diffeomorphism f0 into Ω from its Beltrami Coefficient

Using BHF

Require: A diffeomorphism f0 : D → D ⊂ C where its values on Ω ⊂ C is

unknown or need to be inpainted, represented piecewise linearly on D;

Compute the target Beltrami coefficient µ according to (7.7);

Initialize f by setting f = f0 on D\Ω and extending it into a piecewise linear

diffeomorphism on D;

repeat

Compute the Beltrami coefficient µ(f) of f ;

Update f using exact BHF with adaptive step for ν = µ− µ(f);

Adjust f such that f = f0 on D\Ω;

until f converges.

In order to obtain a faster convergence, it is recommended to adjust f to

satisfy f = f0 on D\Ω only once in a few iterations, or when f(∂Ω) begins to
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deviate mildly from f0(∂Ω). The results of this algorithm and its applications

are shown in Section 7.5.

7.4.4 Super-Resolution of Diffeomorphisms

In this subsection, we propose a novel algorithm by modifying the inpainting

algorithm in Subsection 7.4.3 to deal with the super-resolution of surface diffeo-

morphisms. In computer graphics, it is standard to map textures onto an object

(in games or CAD programs) by specifying the position on the texture every ver-

tex is mapped to. Then every face of the object mesh is colored by interpolating

this vertex correspondence. This greatly limits the quality of texture maps by

the resolution of triangular meshes. Even with bilinear or trilinear filtering, it is

still unnatural if an object is zoomed in too closely. To solve this problem, our

algorithm allows us to refine a diffeomorphism with high detail under the same

limited vertex correspondence.

To start with, we assume that the diffeomorphism or texture mapping is

reparameterized as f0, a diffeomorphism on C fixing 0, 1 and ∞, where we are

interested to refine the value it takes on D = [−1, 1]2 ⊂ C. Define SL to be the

grid point set {sL,ij = −1−
√

(− 1) + ih +
√

(− 1)jh|i, j = 0, 1, . . . , L}, where

hL = 2/L. Suppose only the value of f0 on a low resolution grid point set SL

is available. We seek to refine this diffeomorphism by reconstructing f0 with its

Beltrami coefficient interpolated to a fine point set SH , where H is divisible by

L.

First we compute the Beltrami coefficient µ0 of f0 on every grid element of SL.

Then we construct the target Beltrami coefficient µ by refining µ0 using cubic

interpolation. Using BHF, we construct a diffeomorphism f identical to f0 on S0
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and minimizes the L2-norm of µ(f)− µ:

f = arg min
f=f0onSL

∫∫
D\Ω
|µ(f)− µ|2 dx dy (7.9)

This results in a diffeomorphism with smoothly varying distortions due to the

refined Beltrami coefficient µ.

In the process of iterating with BHF, it may be possible that the condition

f = f0 on SL is violated. Noting that each grid element of SL is mapped by f

onto areas like quadrilaterals, we may fix this condition by mapping values of

f inside each quadrilateral {f(sL,ij, f(sL,(i+1)j), f(sL,(i+1)(j+1)), f(sL,i(j+1))} back

onto the quadrilateral {f0(sL,ij, f0(sL,(i+1)j), f0(sL,(i+1)(j+1)), f0(sL,i(j+1))} using a

bilinear map preserving the diffeomorphic property of f . Now, we summarize the

while algorithm in Algorithm 7.2.

Algorithm 7.2 Refine a Diffeomorphism f0 with Known Value on a Coarse Grid

from its Beltrami Coefficient Using BHF

Require: A diffeomorphism f0 : D → D ⊂ C where only its value on a coarse

grid SL is known; A finer grid SH where its refined values are to be computed,

where H is divisible by L;

Compute the Beltrami coefficient µ0 of f0 on SL;

Smoothly interpolate µ0 into µ defined on grid elements of SH using the cubic

method;

Initialize f as the identity function;

repeat

Compute the Beltrami coefficient µ(f) of f ;

Update f using exact BHF with adaptive step for ν = µ− µ(f);

Adjust f such that f = f0 on SL;

until f converges.

To obtain a faster convergence, we may also adjust f to satisfy f = f0 on SL
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only once in a few iterations, or when f(SL) begins to deviate mildly from f0(SL).

In the next section, we show our results by applying algorithms in this section

on the inpainting and super-resolution of texture mappings and diffeomorphisms,

on both 2D and 3D examples and applications in brain imaging.

7.5 Results and Discussion

In this section, we present the results of our BHF inpainting and refinement

algorithms on 2D and 3D examples and demonstrate their effectiveness of our

proposed algorithms.

7.5.1 BHF Inpainting of a Highly Distorted Diffeomorphism

In this subsection, we apply the BHF inpainting algorithm on a diffeomorphism

f : [−1, 1]2 → [−1, 1]2, shown in Figure 7.1, with the inpainting region Ω ⊂

[−1, 1]2 highlighted. From the plot of its Beltrami coefficient, f is highly dis-

torted. The inpainting region lies on its most distorted area, making the inpaint-

ing problem challenging.

Applying the BHF inpainting algorithm on Ω, we restore the lost region of f by

constructing a diffeomorphism with a smoothly inpainted Beltrami coefficient. As

shown in Figure 7.2(a), the texture in the inpainting region smoothly blends into

the surrounding texture, giving a natural diffeomorphism with continuous varying

distortion. On the other hand, the result of inpainting using linear interpolation of

coordinate functions of f shows only continuation on 3 sides of Ω due to the non-

convexity of f−1(Ω). The texture also shows a sudden jump near the boundary

of Ω, giving a very unnatural mapping. The result shows that to reconstruct a

diffeomorphism correctly, a careful consideration has to be given to the higher
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(a) (b)

(c)

Figure 7.1: A highly distorted diffeomorphism f of [−1, 1]2. (a) shows the domain
of f textured with a regular grid pattern. (b) shows how the texture is mapped
under f onto [−1, 1]2, with the inpainting region highlighted. (c) shows a plot of
the modulus of its Beltrami coefficient µ, indicating the high distortion of f .
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(a) (b)

Figure 7.2: A comparison of the result of the BHF inpainting algorithm (a)
and the failed result using linear interpolation (b), with the inpainting region
highlighted.

order changes of the diffeomorphism, which is achieved by smoothly inpainting

the Beltrami coefficient using our algorithm.

7.5.2 BHF Inpainting of Image Sequences of Deforming Shapes

In this subsection, we demonstrate how the BHF inpainting algorithm can be

applied to process image sequences of deforming shapes, which has many appli-

cations in areas such as video processing and shape analysis of medical images

over time. In this example, we aim at restoring the correspondence of 2 frames

in an image sequence of a gingerbread man figure, where the second frame is dis-

torted and occluded by unknown foreground object represented by a black region

(see Figure 7.3). This is challenging for conventional image inpainting algorithms

due to the size of the occluded region and the additional distortions.

First of all, we independently register the top and bottom non-occluded re-

gions between the first and second frames. As illustrated in Figure 7.4, this can

be done by marking a number of correspondences between 2 frames in each re-

gion, and registering each region separately using existing algorithms [LTW10].

After this, the Beltrami coefficient of the registration in the non-occluded regions
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(a) (b)

Figure 7.3: An image sequence of a gingerbread man showing the initial frame
(a) and the second frame with distortion and occlusion (b).

(a) (b)

Figure 7.4: The highlighting of feature points and the registration between the
top and bottom parts of frame 1 and 2.

can be computed. Using the BHF inpainting algorithm, we inpaint the Beltrami

coefficient in the occluded region and construct the whole registration between

the first and second frames, preserving the already registered top and bottom

parts. The final diffeomorphism is shown in Figure 7.5(a). As can be seen, the

complete diffeomorpism follows the pattern and geometry of the local registra-

tions, and continues smoothly into the middle occluded region. Figure 7.5(b)

shows the complete gingerbread man with the occluded region filled from the

first frame using the complete diffeomorphism.
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(a) (b)

Figure 7.5: The result of registering frames 1 and 2 using the BHF inpainting
algorithm. (a) shows the final registration. (b) shows the complete gingerbread
man with the occluded region filled.

(a) (b)

Figure 7.6: Application of the BHF refinement algorithm on a 2D diffeomorphism.
(a) shows a coarse diffeomorphism represented with 17 by 17 points. (a) shows
the refinement result to 129 by 129 points using the BHF refinement algorithm.

7.5.3 Super-Resolution of Diffeomorphisms Using the BHF Refine-

ment Algorithm

In this subsection, we apply the BHF refinement algorithm on the super-resolution

of diffeomorphisms. In our first test, a coarse version of the highly distorted dif-

feomorphism in Subsection 7.5.1 is used, which is represented with 17 by 17

points. As shown in Figure 7.6(a), the use of such sparse data causes unnatural

jaggy visualization, which is similar to a texture mapping onto a coarse triangular

mesh.
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Using the BHF refinement algorithm, we refine the coarse mapping into a

fine diffeomorphism of 129 by 129 points by interpolating the original 16 by 16

Beltrami coefficient on each face to a 128 by 128 version, and reconstructing a 129

by 129 diffeomorphism, fixing its values on the coarse 17 by 17 grid. The result

of the refinement is shown in Figure 7.6(b), which is very smooth and almost

looks identical to the original high resolution diffeomorphism. This shows that

our algorithm can smoothly refine a diffeomorphism even only a tiny fraction of

data is available.

Next we demonstrate the effectiveness of the algorithm in a real 3D texture

mapping example. In this test, initially we have a face model represented by a

33 by 33 regular triangular mesh and textured with a highly convoluted texture

mapping. As we can see in Figure 7.7(a) and 7.7(b), the coarse triangulation

resulted in a poor visualization of the texture. Using the BHF refinement algo-

rithm for surfaces, we refine this coarse texture map into a fine 129 by 129 texture

map using only the initial coarse data. The result shown in Figure 7.7(c) and

7.7(d) is very smooth, as if textured using a much higher resolution mapping.

This illustrates the effectiveness of our algorithm to represent texture maps in

much higher details than the triangular mesh used.

7.5.4 Application in Cortical Surface Parameterization

Finally, we apply the BHF inpainting algorithm to efficiently compute a landmark-

matching surface parameterization of the cortical surface. In brain imaging, it

is often necessary to map feature landmark lines, such as the sulcal and gyral

lines highlighted by doctors, onto consistent locations of a parameter domain,

where further analysis takes place. On convoluted surfaces such as the cortical

surface, this involves mapping a large number of landmark curves onto consistent
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(a) (b)

(c) (d)

Figure 7.7: Application of the BHF refinement algorithm on 3D texture mapping.
(a) shows a normally visualized texture mapping on a coarse 33 by 33 mesh. (b)
shows a zoom-in version to illustrate its low quality. (c) shows the refined texture
mapping on the same mesh after BHF refinement. (d) shows a zoom-in version
to illustrate its fine details.
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(a) (b)

Figure 7.8: Breaking down a parameterization problem of the cortical surface
into 2 subproblems and solve all problems simultaneously. (a) shows the first
subproblem involving 3 feature curves. (b) shows the second subproblem involv-
ing 2 feature curves.

locations, making the solution infeasible.

We demonstrate the use of the BHF inpainting algorithm to solve this prob-

lem efficiently. Instead of solving the problem with all feature curves at once, we

first compute consistent parameterizations of a few landmarks lines at a time.

As shown in Figure 7.8, we divide a problem involving 5 feature curves on a

cortical surface into 2 subproblems involving 2 and 3 feature curves respectively,

and solve each subproblem with existing registration algorithms [LTW10]. This

breaks down the large problem into easier subproblems which can be solved si-

multaneously.

After each subproblem is solved, we place the local parameterizations into a

larger parameter domain. Then a global parameterization that extends the two lo-

cal parameterizations is computed using the BHF inpainting algorithm, as shown

in Figure 7.9. The resulting global parameterization is a landmark-matching

parameterization that smoothly extends the existing local parameterizations.
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(a) (b)

Figure 7.9: The final result for the large parameterization problem. (a) shows a
global parameter domain containing 2 local parameter domains. (b) shows the
global parameterization computed using the BHF inpainting algorithm.

7.6 Conclusion

In this chapter, we derived an exact formula for the adjustment of diffeomor-

phisms using BHF, under the practical assumption that the diffeomorphism is

piecewise linear on a triangular mesh. Using this exact algorithm, we further pro-

posed 2 algorithms for the inpainting and refinement of diffeomorphisms. We ap-

plied these algorithms on the inpainting of a highly distorted diffeomorphism, the

inpainting of image sequences of deforming shapes, the super-resolution of diffeo-

morphisms and the global parameterization of cortical surfaces by combining local

parameterizations. The results show that our algorithms could always reproduce

fine details from diffeomorphisms with missing parts or with very low resolution,

where other methods produced unnatural or overlapping results. This demon-

strates the great versatility of our proposed algorithms on areas from texture

mapping to video processing, and from computer graphics to medical imaging.

In the future, we plan to improve the efficiency of algorithms by implementing

them on GPUs and propose more areas in which they could be used.
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