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Abstract

Wavelet frame based models for image restoration have been extensively studied for the past
decade [1, 2, 3, 4, 5, 6]. The success of wavelet frames in image restoration is mainly due to
their capability of sparsely approximating piecewise smooth functions like images. Most of the
wavelet frame based models designed in the past are based on the penalization of the ¢1 norm of
wavelet frame coefficients, which, under certain conditions, is the right choice, as supported by
theories of compressed sensing [7, 8, 9]. However, the assumptions of compressed sensing may
not be satisfied in practice (e.g. for image deblurring and CT image reconstruction). Recently in
[10], the authors propose to penalize the £y “norm” of the wavelet frame coefficients instead, and
they have demonstrated significant improvements of their method over some commonly used ¢1
minimization models in terms of quality of the recovered images. In this paper, we propose a new
algorithm, called the mean doubly augmented Lagrangian (MDAL) method, for £op minimizations
based on the classical doubly augmented Lagrangian (DAL) method [11, 12]. Our numerical
experiments show that the proposed MDAL method is not only more efficient than the method
proposed by [10], but can also generate recovered images with even higher quality. This study
reassures the feasibility of using the o “norm” for image restoration problems.
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1 Introduction

In this paper, we propose a new algorithm solving the wavelet frame based £y minimization model
proposed by [10] for image restoration problems. We start with a brief introduction of some concepts
of image restoration, wavelet frames, and some of the wavelet frame based models proposed in the
literature.

1.1 Image Restoration

Image restoration is often formulated as a linear inverse problem:

f=Au+n, (1.1)

where f is the observed image, n denotes additive Gaussian white noise with variance o2, and A is
some linear operator that differs for different image restoration scenarios. The objective of image
restoration is to find the unknown true image u from the observed image f. Typically, the linear
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operator A in (1.1) is a convolution operator for image deblurring problems, a projection operator
for image inpainting and partial Radon transform for computed tomography. To obtain a reasonable
approximated solution from (1.1), various regularization based methods have been proposed in the
literature. Among all regularization based models for image restoration, variational methods and
wavelet frames based approaches are rather successful and widely used in practice.

The trend of variational methods for image processing started with the refined Rudin-Osher-
Fatemi (ROF) model [13] which penalizes the total variation (TV) of u. The ROF model is especially
effective on restoring images that are piecewise constant such as binary images (texts and barcodes).
Other types of variational models were also proposed after the ROF model. Many of the current
PDE based methods for image denoising, deblurring and decomposition utilize TV regularization
for its beneficial edge preserving property. We refer the interested readers to [14, 15, 16, 17, 18, 19|
and the references therein for further details.

Wavelet frame based approaches, on the other hand, utilized the observation that images can
often be sparsely approximated by properly designed wavelet frames. Therefore, the regularization
that is normally used for wavelet frame based models is the ¢1-norm of the wavelet frame coefficients.
It was shown in e.g. [1, 2, 6, 20, 21, 22] that wavelet frame based approaches are superior than some
of the variational models such as ROF model, due to the multiresolution structure and redundancy
of wavelet frames. In addition, connections between the wavelet frame based approach and the
variational methods are recently established in [22]. Such connections explain why wavelet frame
based approaches are superior to some of the variational models because they can adaptively choose
proper differential operators in different regions of a given image according to the order of the
singularity of the underlying solutions.

1.2 Wavelet Frame Based Models for Image Restoration

We now introduce some notations of wavelet frames in the discrete setting and review some of
the wavelet frame based image restoration models. Interested readers should consult [23, 24, 25| for
theories of frames and wavelet frames, [5] for a short survey on theory and applications of frames,
and [6] for a more detailed survey on both theoretical developments of wavelet frames and their
recent applications to image restoration and image analysis.

In the discrete setting, we will use W to denote the fast tensor product framelet decomposition
and use W' to denote the fast reconstruction. Then by the unitary extension principle (UEP) [23],
we have a perfect reconstruction: u = W T Wu for any image v since W W = I. The construction
of wavelet frames can be obtained by the UEP as well. In our numerical simulations, we will use the
piecewise linear B-spline framelets constructed by [23]. We denote an L-level framelet decomposition
of u as

Wu={W,u: 0<I<L-1,j€T},

where Z denotes the index set of all framelet bands and W ju is the wavelet frame coefficients of u
in band j at level [. We will also use « to denote the wavelet frame coefficients, i.e., « = Wu, where

Oé:{O[lJ‘I OglgL—l,jéz}, withalJ:Wl}ju.

More details on discrete algorithms of framelet transforms can be found in [6].

There are several different wavelet frame based models proposed in the literature including the
synthesis based approach [26, 27, 28, 29, 30], the analysis based approach [2, 3, 4], and the balanced
approach [1, 31, 32]. Theses approaches are generally different due to the redundancy of wavelet
frame systems. What these models have in common is that they all penalize the ¢; norm of the
wavelet frame coefficients one way or another. This is because wavelet frame systems can sparsely
approximate piecewise smooth functions such as images, and theories developed in compressed sens-
ing [7, 8, 9, 33, 34] guarantee a reliable recovery of the unknown clean image as long as certain
conditions are satisfied.



We start with the analysis based approach (e.g. [2, 3, 4]) solving the image restoration problem

(1.1)

1/q

1 L—1
min [ Au = I3+ |1 | D MW ul : (1.2)
1=0 \jez
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Note that if we choose ¢ = 1 for the second term of (1.2), it is known as the anisotropic ¢; norm of the
frame coefficients, which is the norm used for earlier frame based image restoration models. When
we choose ¢ = 2, the second term of (1.2) is called the isotropic ¢; norm, which was proposed in [22]
and was shown to be superior than the anisotropic ¢; norm. Therefore, we pick ¢ = 2 throughout
the rest of the paper.

The balanced approach and synthesis based approach are generally different from the analysis
based approach. However, numerical simulations in [6, 10] showed that the quality of the restored
images by these two approaches is comparable to that of the analysis based approach. Therefore, in
this paper, we only consider the analysis based approach (1.2).

As suggested by [7], the analysis based approach is able to produce a reliable recovery of the
true solution of (1.1), denoted as @, as long as proper conditions are satisfied by A, W and 4.
However, for some practical problems including image deblurring and CT image reconstruction,
these conditions are not necessarily satisfied. Therefore, the analysis based approach (1.2) cannot
always produce high quality recoveries for those cases. This motivated the work of [10], where the
authors proposed to solve the following analysis based approach based on the £y “norm” of the
wavelet frame coefficients instead of the ¢; norm

1
min o | Au = fI3+ 3 Aal(Wa)ilo. (13)

The £y “norm” ||wl||o is defined to be the number of nonzero entries of w. Here, we are using the
multi-index ¢ and denote (Wwu); (similarly for A;) the value of Wu at a given pixel location within
a certain level and band of wavelet frame transform.

The only difference between (1.2) and (1.3) is the norms used for the wavelet frame coefficients.
Although using the ¢y “norm” causes some trouble in designing fast numerical algorithms solving
the underlying optimization problem, it was shown by [10] that it is beneficial to use the ¢y “norm”
for various cases. In [10], an algorithm called the penalty decomposition (PD) method, based on the
earlier work of [35], was introduced to solve (1.3), and their numerical studies showed the advantage
of the ¢y “norm” over the /1 norm for some image restoration problems. However, the drawback
of the PD method is that its computational cost is relatively high because of nonconvexity and
noncontinuity of the ¢y “norm”. Even though this trade-off is hard to avoid, we still hope to design
more efficient numerical algorithms that can produce higher quality recoveries as well. This is the
main objective of this paper.

Finally, we note that another way to place more emphasis on sparsity of the wavelet frame
coefficients is to use the ¢, quasi-norm with 0 < p < 1. This was considered by [36, 37, 38] where the
advantages of the £, quasi-norm over the ¢; norm were discussed and efficient numerical algorithms
were developed. However, the proximal operator (see e.g. [39]) of the ¢, quasi-norm, which is usually
needed to design a fast algorithm, does not have a closed form solution in contrast to the £y and ¢4
norm. To remedy this, one needs to introduce a proper approximation to the ¢, quasi-norm [38].

The rest of the paper is organized as follows. In the next section, we first review some of the
existing algorithms designed for nonsmooth convex optimization problems. Then we discuss a new
algorithm based on one of the existing algorithm to solve the ¢; minimization (1.3). In Section 3,
we provide comprehensive tests of the performance of the proposed algorithm for image deblurring;
and compare it with the penalty decomposition method proposed by [10] and the split Bregman
algorithm [40, 2] solving the ¢; minimization (1.2). We end this paper in Section 4 where we provide
a summary of this paper and state some possible future work.



2 Efficient Algorithms

For simplicity of notation, we combine and rewrite the optimization models (1.2) and (1.3) as
follows

!
min 2 Au = f[5 + | A Wl (2.1)

with p = 0 or p = 1 corresponding to (1.3) and (1.2) respectively. Now, if we let « = Wu and
substitute it into (2.1), we can rewrite (2.1) as follows

1
min —[|Au — f|3+|X-al, st. a=Wu. (2.2)
u,a 2
It is obvious that (2.1) and (2.2) are equivalent.

2.1 Algorithms for the ¢; Minimization (1.2)

When p = 1, the optimization problem (2.1) (i.e. the ¢; minimization (1.2)) can be efficiently
solved by the split Bregman algorithm. The split Bregman algorithm was first proposed in [40]
and was shown to be powerful in [40, 41] for solving various variational models, e.g. ROF and
nonlocal variational models. Convergence analysis of the split Bregman and its application to solve
the analysis based approach (1.2) were given in [2].

It was recently realized that the split Bregman algorithm is equivalent to the alternating direction
method of multipliers (ADMM) [42, 43, 44] applied to the augmented Lagrangian [45, 46, 47] of the
problem (2.2):

1
L, a,v) = Sl Au = fl5+ A~ el + (0, Wu —a) + gIIWU —al3.

The augmented Lagrangian (AL) method solving the problem (2.2) can be described as iterations
of the following two steps:

uF 1 of ) = argmin L(u, a, v*
{ ) = argmin £(u, 0,4 .

Rl = ok + 5(Wuk+1 _ ak+1)

for some § > 0. If one approximates the solutions (u**! a#*1) of the first step of (2.3) by one
iteration of the following two steps

k+1

uFt = argmin £(u, oF, v")
u

aftl = arg mgn L(uFY o, vF)
we then have the split Bregman algorithm for the ¢; minimization (1.2). After some simple manip-
ulations of the augmented Lagrangian L(u, «,v) and choosing 6 = u (see e.g. [48, 49, 6]), we have
the split Bregman algorithm described as follows, 7. (-) is the soft-thresholding operator [50, 51, 22].
Although the convergence of Algorithm 1 as well as the AL method has been extensively studied
in the literature for convex problems, we can only guarantee the convergence of the dual variable
v* but not the primal variables (u*, a*) which in principle could be divergent. This is one of the
motivations of the introduction of the so-called doubly augmented Lagrangian (DAL) method [11]
(see [12] for a more general DAL method and a comprehensive convergence analysis).
The doubly augmented Lagrangian of problem (2.2), with p = 1, is defined as:

. 1
L(u, 0,1, 6) = S| Au = fI3+ A~ el + (0, Wu - a) + %I\Wu—aH%

2 ~ i ~
+ Zlu—al + 2l - i3



Algorithm 1 The Split Bregman Algorithm [40, 2]

Given an observed image f, initialize a® = % = 0.
while stopping criteria is not met do

1. Update u:
WM = (ATA+ ul) ™ (AT f 4+ pW T (@F —0F))

2. Update a:

o =Ty (Wbt 4 ok),
3. Update v:

P ok Tt Rt
4. k=k+1.

end while

The DAL method can be described as iterations of the following two steps:

(uF 1, oF 1) = arg min £(u, o, vF, uF, o)
v (2.4)

vk+1 _ vk + 5(Wuk+71 N ak+1)

for some ¢ > 0. Similar as the split Bregman algorithm, we can approximate the solution (u**!, o*+1)
of the first step of (2.4) by one iteration of the following two steps

k+1

m k Kk k)

= argmin L(u, o, v, u¥, oF
u

k+1 k ,k k).

k+1
y X, U, U,

ot = argmin £(u

«
Then, after some simple manipulations of Z(u, a,v, U, @) (similar as the derivation of the split Breg-
man algorithm), we have the following inexact version of the DAL method:

uFH = argmin | Au — f|3 + §[Wu — oF + 0¥ |3 + Fllu —u¥|3
oftt = argmin | A~ afly + §lla — (Wur + 0" 3+ Flla - o3 (2.5)

VRl = ok 4 kL gkt

We note that both of the subproblems in (2.5) have close form solutions. The parameter v controls
the regularity of the sequence (u*, a*) and when v = 0, (2.5) is exactly the split Bregman algorithm.
Throughout the rest of this paper, we shall refer to (2.5) simply as the DAL method.

There are many other efficient algorithms solving (1.2) (or through (2.2) with p = 1) that are
recently developed. Since different algorithms for (1.2) mostly affect efficiency instead of quality, we
will not test on other algorithms for (1.2) here. We refer the interested readers to [52, 53, 54, 55,

56, 57] and the references therein for further details.

2.2 The proposed Algorithm for the ¢, Minimization (1.3)

Now, we return to the main objective of this paper, which is to find an efficient algorithm for
the ¢y minimization (1.3). It is very natural, although has not yet been done before, to apply the
DAL method (2.5) to handle the ¢y minimization by replacing || - ||1 by || - [|o in (2.5), i.e.

uttt = argmin 3| Au — f[3 + §[Wu — o + "5 + Jllu— w3
ot = argmin [A-aflo + §la — (Wur T+ o")[5 + Flla — o3 (2.6)

VRl = ok 4 kL gkt



Since each of the subproblem of (2.6) has a closed form solution, we have the following DAL method
for the £y minimization (1.3):

Pt = (ATA+ (n+ )17 (AT f 4+ yuf + pW T (aF —oF))
Mt = Hy oy (Wub 4ok k) (2.7)
DL — b kL okt

Here, the operator H is a generalized hard-thresholding operator defined componentwisely as

ot || < /B
(Haun(2:9)); = I .
= otherwise.

It is easy to see that u**! is indeed a minimizer of the first subproblem of (2.6) and o**! a minimizer

of the second subproblem of (2.6) (see e.g. [35, 58]). In addition, we note that when v = 0, the
operator H is the standard hard-thresholding operator [59].

Although applying the DAL method (2.7) to solve the ¢y minimization (1.3) seems to be rea-
sonable, simple numerical experiments show that the DAL method (2.7) does not seem to converge,
or at least converges very slowly. We present such phenomenon of the DAL method (2.7) in Figure

1, where the blue curves show the decay of the quantities 12 =% ll2 (left) and [Wu—a®ll; (right)
’ v d IHE IEE ght)-

The sequence o* has a similar behavior as u*. The image we used for this test was the image “lena”
shown in Figure 2. We note that choosing different parameters p and v will make the curves become
steady at different values, but does not affect the convergence of the sequence (u*, o).
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Figure 1: Decay curves for the DAL method (blue curve) and the MDAL method (green curve).
Even though the sequence (u*, ") does not seem to converge, they are still bounded. In fact,
the curves shown in Figure 1 suggest that the sequence is oscillating. This motivated us to consider
ak = k+r1 Z?:o uF and aF = k+r1 Z?:o a¥ as the outputs, instead of the sequence (u¥, ) itself.
Our numerical experiments indicate that the new sequence (", @*) does converge and it satisfies the
constraint Wu = « asymptotically. The green curves in Figure 1 show that both of the quantities

lla* —a* 1 [Wak—ak> (. ~ : i
WQ (left) and W (right) decay nicely. Note that the convergence of the arithmetic

means of the sequence is known as the ergodic convergence in the literature of optimization (see
e.g. [12, 60, 61, 62]). However, the existing analysis are mostly for convex problems and cannot be
directly applied here. In addition, ergodic convergence are usually used as certain weak convergence
of the original sequence. The arithmetic means of the sequence are seldom treated as the actual
outputs. This makes the observations we are giving here very interesting.



Now, we are ready to present our algorithm for the ¢y minimization (1.3) (Algorithm 2). Since
we treat the arithmetic means of the solution sequence of DAL method as the actual outputs, we
shall call this algorithm the mean doubly augmented Lagrangian (MDAL) method.

Algorithm 2 The Mean Doubly Augmented Lagrangian (MDAL) Method
Given an observed image f, initialize a® = % = 0 and u® = @° = 0. Set k = 0.
while topping criteria is not met do

1. Update u:
W = (ATA+ (p+9)D) 7 (ATF + b + uW T (o —0F)).
2. Update a:
o = Hy o (WP 0k ok,

3. Update v:

VR L ok g gt gL
4. Update u:

k+1 1

Skl _ _k k+1

u T19 n 2u + P n 2u .
5. k=k+1.

end while

Before we end this section, we briefly recall the penalty decomposition (PD) method solving
(1.3). The PD method was first introduced for general £, minimizations by [35]. It was later applied
to solve the £y minimization (1.3) in [10] where more theoretical analysis of the PD method was also
provided. The PD method starts with the problem (2.2) (with p = 0) and considers the following
penalty function:

1 P
pplu, ) = 5[l Au — FI3 + 11X - allo + S IWu— al3. (2.8)

The idea of the PD method is to find minimizers of the penalty function p, with a gradually increasing
p so that the constraint Wu = « will eventually be satisfied. Now, we summarize the PD method in
Algorithm 3. Note that the subproblem in step 1 of Algorithm 3 is solved by the block coordinate
descend method of [35]. Interested reader should consult [10, 35] for further details.

Algorithm 3 The Penalty Decomposition (PD) Method [10]

Given an observed image f, choose § > 1; and initialize p° > 0, a® = 0 and u® = 0. Set k = 0.
while topping criteria is not met do
1. Update (u, o):

(uk+1, ak+1) = arg IqI}ioI}ppk (u7 Oé)-

2. Update p: . .
Pt =6k,

3. k=k-+1.
end while

3 Numerical Simulations

In this section, we provide comparisons of the split Bregman algorithm (Algorithm 1) for the
¢1 minimization (1.2), the PD method (Algorithm 3) and the proposed MDAL method (Algorithm



2) for the ¢y minimization (1.3). The specific image restoration problem that we consider is image
deblurring, and we have selected 6 different images for the tests. We compare both the quality of
the recoveries and the computational costs of all the three algorithms. We also test the stability of
all the three algorithms by increasing the amount of noise added to the observed images. We now
summarize our findings here and leave the details to the rest of this section.

Summary:

(i) The MDAL method has better performance than the other two methods in term of the PSNR
values of the recovered images.

(ii) Both the MDAL method and the PD method are better than the split Bregman algorithm
in term of the PSNR values of the recovered images, which shows the advantage of the ¢y
minimization (1.3) over the ¢; minimization (1.2).

(iii) The MDAL method is more efficient (by a factor of two in average) than the PD method.
However, it is still slower than the split Bregman algorithm in general.

3.1 Design of the Experiments and Choices of Parameters

We select 6 test images as shown in Figure 2 (first row) which are “lena”, “girl”, “plate”,
“peppers”, “building” and “bowl”. We consider 7 different noise levels: o = 3, 3.5, 4, 4.5, 5, 5.5
and 6. We generate the blur kernel using the MATLAB function “fspecial(’gaussian’,9,1.5)”. The
blurry and noisy images with ¢ = 4 and 5 are shown in Figure 2 (second and third row) as examples.
The quality of the recovered images is measured by the PSNR value defined as

[l — alls

PSNR := —20log;, 9EEn

Note that we will not only test the efficiency and the quality of the recovered images of all the
three algorithms, but will also test the stability of the algorithms when noise level increases. All the
computations are in MATLAB on a desktop with Intel Core i7 (3.4 GHz) CPU and 16.0GB RAM
running Window 7.

Throughout the numerical experiments, we choose the following stopping criterion for the split
Bregman algorithm:

i { L [
Ifllz 7 WLz
We choose the following stopping criterion for the MDAL method:

}<5>< 107°.

i { I 8 [

Il 7 (Wl

We choose the same stopping criteria for the PD method as described in [10] with €; = ep = 1077
(see [10] for details).

For all the cases tested, we fix p = 0.05 for the split Bregman algorithm, and fix ¢ = 0.01,
v = 0.003 for the MDAL method, and fix p° = 0.001, § = 10 for the PD method. For simplicity,

we take the parameter A = {(%)l A:1=0,1,...,L — 1} with some carefully chosen scalar A. Note
that for different algorithms and images, best performance may be achieved by different values of
A. Therefore, for each of the 6 images and the 7 different noise levels, we select the best A for each
of the three algorithms for optimal image recoveries (i.e. optimal PSNR values). We believe our
comparison will be fair under these specific settings.

Also, we observed from our numerical tests that having the bound {0 < u < 255} on the solution

sequence u* can some time improve the quality of the recoveries. Therefore, in all the numerical

}<5x10€



experiments, we add one step projecting u* onto {0 < u < 255} after step 1 of both Algorithm 1
and 2. Also, we add such constraint to the subproblem of step 1 of Algorithm 3 (see [10] for details
on how the subproblem is solved with the constraint).

Figure 2: Test images: original and observed.

3.2 Results

In Table 1, we summarize the results of all the three algorithms for all the 6 images with noise
level 0 = 4 and 5. We observe that both the PD method and the MDAL method have an overall
better performance than the split Bregman algorithm in terms of PSNR values. This shows the
advantage of considering the ¢y minimization (1.3) over the ¢; minimization (1.2). On the other
hand, the MDAL method is generally better than the PD method in terms of both PSNR values
and computation efficiency. We note that the image “lena” gives the biggest PSNR difference
between the PD/MDAL method and the split Bregman algorithm. The reason is that a significant
portion of the image formed by barcode-like patterns (binary bars) which is ideal for the £y “norm”.
The only drawback of the MDAL method is that it is more time consuming than the split Bregman
algorithm. However, this is a price that one normally needs to pay when handling the ¢, “norm”.
We believe the processing time of the MDAL method is still acceptable, while we gain significantly
from the improved quality of the recovered images.

Also, we show the recovered images of the cases listed in Table 1 in Figure 3 (for ¢ = 4) and Figure
4 (for o = 5). We observe that the visual quality of the recovered images by the MDAL method
is superior to the other two methods in terms of both the sharpness of edges and smoothness of
homogenous regions.

It is worth noticing that the recovered image “lena” by the split Bregman algorithm has lots of
artifacts which is not visually optimal. The reason is that the parameters are chosen for optimal
PSNR values. Since a significant portion of the image is formed by barcode-like patterns, to obtain an
optimal PSNR value, the recovered image should have very sharp edges in those regions. Therefore,
a relatively small )\ is needed in order not to introduce too much smoothness in the recovered image.
However, since A is small, the recovered image is lack of smoothness in the homogeneous regions. If
we increase the value A\, then we will have less artifacts in the homogenous regions while the edges
start to become blurry. Our observations are supported by Figure 5, where one can see that when A



increases, the regularity of the recovered image increases while the edges become less sharp and the
PSNR value decreases. This shows that the ¢y minimization (1.3) balances the smoothness of the
homogenous regions and sharpness of edges better than the /1 minimization (1.2) (as what has been
observed in [10]). We note that such dilemma for ¢; might be overcome by choosing a A that varies
in different regions of the image. However, given a blurry and noisy image, it is generally hard to
predetermine the regions where a relatively large or small A should be used.

Another explanation for this is that when one has an image like “lena”, the magnitudes of the
sorted wavelet frame coefficients Wu have a relatively fast decay than those of the other test images
(as shown in Figure 6). A similar phenomenon was observed earlier by [56], where the authors
showed that the £, norm with p < 1 prefers signals with fast drops in magnitudes. Therefore, in
general, if the sorted wavelet frame coefficients of an image have a fast drop in magnitude, the £
minimization (1.3) should generally outperform the ¢; minimization (1.2).

Table 1: Comparisons: image deconvolution

oc=4 Split Bregman PD Method MDAL Method
Name Size Time (s) PSNR | Time (s) PSNR | Time (s) PSNR
lena 232 x 240 15.28 22,77 25.20 26.97 11.82 27.68
girl 256 x 256 4.83 32.37 22.54 32.60 12.65 33.72

plate 245 x 350 9.44 25.35 31.55 25.61 14.88 25.61
peppers 256 X 256 6.11 26.42 22.38 26.94 13.53 28.44
building 415 x 461 17.24 27.43 77.16 27.53 80.29 27.62

bowl 256 x 256 2.70 29.65 23.80 29.66 11.83 29.85
oc=5 Split Bregman PD Method MDAL Method
Name Size Time (s) PSNR | Time (s) PSNR | Time (s) PSNR
lena 232 x 240 13.88 21.83 24.83 26.45 12.82 26.98
girl 256 x 256 5.15 31.85 23.31 31.55 13.17 32.75

plate 245 x 350 7.83 24.96 30.04 25.20 15.55 25.18
peppers 256 X 256 5.79 26.13 21.73 26.73 14.38 28.38
building 415 x 461 14.93 27.05 78.68 27.11 85.75 27.28
bowl 256 x 256 2.82 29.21 21.40 29.16 12.03 29.49

In order to better compare the performances of all the three algorithms for all the cases, we
provide two sets of curves: one set is the curves of PSNR values v.s. noise level; the other is the
computation time v.s. noise level. The two sets of curves are shown in Figure 7 (PSNR values)
and Figure 8 (computation time). Now, it is more obvious that the MDAL method has an overall
better performance than both the PD method and the split Bregman algorithm in terms of PSNR
values. Also, the MDAL method is generally more efficient than the PD method. On the other hand,
judging from these figures, when the noise level is increased, both the PD method and the MDAL
method are quite stable and the degradation of image quality for both algorithms seems linear. In
addition, for “building” and “bowl”, the degradation of the MDAL method is slower than both the
PD method and the split Bregman algorithm because the slopes of the PSNR curves of MDAL seem
to be less steep than those of the PD method and split Bregman algorithm. This suggests that the
higher is the noise level the bigger is the advantage of the MDAL method over the others.

4 Conclusions and Future Work

In this paper, we proposed a new method solving the ¢y minimization (1.3) for image restoration.
The proposed method took arithmetic means of the sequence generated from the classical doubly
augmented Lagrangian (DAL) method [11] as the new outputs. Numerical simulations showed that
the proposed algorithm was superior to the PD method proposed recently by [10] in terms of both

10



efficiency and the quality of the restored images. In addition, both the proposed method and the PD
method were able to generate recovered images with higher quality than the split Bregman algorithm
solving the ¢; minimization (1.2). These findings reassured the feasibility of penalizing the £y “norm”
of the wavelet frame coefficients, rather than the ¢; norm, for certain image restoration problems
such as image deblurring.

The next step along the same line of research is to provide convergence analysis for the proposed
method. More importantly, it will be interesting to prove that the limit of the sequence generated
from the proposed method is indeed a local minimizer of (1.3). It will also be interesting to see that if
a properly weighted average of the solution sequence of DAL method can generate better results and
converge faster than the standard arithmetic mean. On the other hand, there are other algorithms
that are convergent for convex optimization problems but may not be convergent or converge very
slowly for some nonconvex optimization problems. It will be interesting to explore whether taking
means of the solution sequences generated from these algorithms will help with the convergence and
the quality of the solutions.
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Figure 4: Image deblurring results of the split Bregman algorithm (left column), the PD method
(middle column) and the MDAL method (right column). Noise level: o = 5.

13



Figure 5: Recovered “lena” by the split Bregman algorithm with A = 0.1,0.2 and 0.3 respectively,
and the corresponding PSNR values are 22.26, 20.42 and 18.25.
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