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Abstract

Total variation regularization is usually applied with L2 data fidelity assuming an additive
white Gaussian noise model [24, 25]. However, better results are possible when the noise model
accurately describes the noise distribution in the given image. Total variation denoising has
already been developed with the Laplace noise model [2, 12] (L1 data fidelity) and the Poisson
noise model [19, 26]. In this paper, we develop two variational methods for total variation regu-
larization using the Rician noise model. Our first model uses the Rician probability distribution
function directly in the fidelity term, leading to a slightly nonconvex objective function. We
give existence and comparison results for this model and investigate the validity of the model
on three dimensional synthetic magnetic resonance imaging (MRI) data corrupted with Rician
noise and Gaussian blur, both with known standard deviations. In this case, the numerical solu-
tions are obtained using the L2 and Sobolev H1 gradient descent methods. In our second model,
we develop a variational method for total variation regularization that closely approximates the
Rician noise model. A key challenge is to find a convex approximation of the slightly nonconvex
objective function. The variational problem is efficiently solved using the split Bregman method
[16], and numerical examples are performed on the MRI data described above. Comparison of
both models is presented.

1 Introduction

In this paper, we propose two variational models to denoise and deblur magnetic resonance imaging
(MRI) data corrupted by Rician noise and Gaussian blur, both with known standard deviations.
These variational models consist of total variation (TV) regularization using the Rician noise model
(inherent in MR acquisitions), possibly in the presence of blur. Basu, Fletcher and Whitaker [7]
applied anisotropic diffusion in diffusion tensor MRI data, using a correction term derived from a
maximum a posteriori (MAP) estimate of the Rice distribution. Descoteaux and Wiest-Daessle et
al. [13] and Wiest-Daessle, Prima et al. [30] applied a non-local means filter to Rician denoising.
Wang and Zhou [28] perform MRI denoising with a combination of total variation and wavelet
based regularization and a Gaussian noise model. The difference in this work is that we solve the
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MAP estimate problem with the Rician noise model directly using the total variation as a prior,
and we propose two formulations that we analyze theoretically and discretize in practice.

We begin this paper by reviewing the connection between the Rudin-Osher-Fatemi model (ROF)
and MAP estimates in Section 2. In Section 3, the reformulation of ROF with the Rician noise
model gives the basis of our two variational methods. In Section 4, we formulate our first variational
method, which incorporates the Rician noise model directly, and give existence and comparison
results for the purely denoising case (i.e., Gaussian blur is not present); this is inspired from
prior work by Aubert-Aujol [5] on a non-covex variational model for multiplicative noise removal.
We compute numerical solutions using the L2 and Sobolev H1 gradient descent methods and
describe the numerical implementation details. In Section 5, we develop a convex approximation
to the objective function and use this approximation in the formulation of our second model;
implementation details are given for the application of split Bregman in solving for the numerical
solutions of the resulting variational problem. In Section 6, we describe a method for estimating
the parameter σ that represents the standard deviation of Rician noise of the observed data. We
conclude the paper with numerical examples in Section 7 performed on three dimensional synthetic
MRI data corrupted with Rician noise and Gaussian blur and compare the restoration results of
the two methods.

2 Rudin-Osher-Fatemi model as a MAP Estimate

Maximum a posteriori (MAP) estimation is a Bayesian statistics technique that can be used to
design denoising methods that take into account the distribution of the noise. As in [7], we apply
MAP estimation to noise with Rician distribution.

Let f be a known degraded image and u the underlying clean image. The MAP estimate of u is
the most likely value of u given f :

û = arg max
u

P(u|f).

Applying Bayes’ theorem obtains

max
u

P(u|f) = max
u

{
P(u)P(f |u)

}
= min

u

{
− logP(u)− logP(f |u)

}
.

The first term is called the prior on u; this term acts as a regularization or assumption on what u
is likely to be. The second term describes the degradation process that produced f from u.

The Rudin-Osher-Fatemi (ROF) restoration model [24, 25] is

min
u∈BV (Ω)

{∫
Ω
|Du|+ λ

2

∫
Ω

(Ku− f)2dx
}
, (1)

where Ω ⊂ Rn is open and bounded. The observed image f is assumed to be related to the unknown
restored image u (of bounded variation, in BV (Ω)) by

f = Ku+ n, (2)
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where K is a linear blurring operator and n is white Gaussian noise. ROF can be seen to be a
MAP estimate using the prior P (u) = exp(−α

∫
|Du|):

− logP(f |u) = −
∫

Ω
logP

(
f(x)|u(x)

)
dx

= −
∫

Ω
log

[
1√

2πσ2
exp

(−(f(x)−Ku(x)
)2

2σ2

)]
dx

=
1

2σ2

∫
Ω

(f(x)−Ku(x)
)2
dx+ |Ω|

2 log(2πσ2),

so with λ = 1/(σ2α) we recover (1),

max
u

P(u|f) = min
u

{
− logP(u)− logP(f |u)

}
= min

u
α

∫
Ω
|Du|+ 1

2σ2

∫
(Ku− f)2 dx.

Through this connection between ROF and MAP estimates, ROF can be reformulated to use other
degradation models. Suppose that the probability density of f(x) conditioned on u(x) is

P
(
f(x)|u(x)

)
= exp

[
−H

(
Ku(x); f(x)

)]
and that the f(x) are mutually independent over x. Then we obtain

min
u∈BV (Ω)

α

∫
Ω
|Du|+

∫
Ω
H(Ku; f) dx. (3)

Benning and Burger [8] discuss problems of this form (and more general ones) and develop stability
results using the Bregman distance.

3 ROF with Rician Noise

The Rice or Rician distribution has probability density

P(r; ν, σ) =
r

σ2
exp

(
−(r2 + ν2)

2σ2

)
I0

(rν
σ2

)
(4)

where r, ν, σ > 0 and I0 is the modified Bessel function of the first kind with order zero. If
X ∼ N(ν cos θ, σ2) and Y ∼ N(ν sin θ, σ2) are independent normal random variables for any θ ∈ R,
then R =

√
X2 + Y 2 has Rician distribution, R ∼ Rician(ν, σ).

Thus we have

Hσ

(
Ku(x); f(x), σ

)
= − logP

(
f(x)|u(x)

)
=
f(x)2 +

(
Ku(x)

)2
2σ2

− log I0

(
f(x)Ku(x)

σ2

)
+ constant .
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3.1 Bessel Functions

The Rician probability density (4) involves the modified Bessel function I0, so developing a Rician
noise model entails manipulating I0 and its derivatives. The modified Bessel functions are the
solutions of the modified Bessel differential equation

t2
d2y

dt2
+ t

dy

dt
− (t2 + n2)y = 0. (5)

This equation has two linearly independent solutions In(t) and Kn(t), which are respectively the
modified Bessel functions of the first and second kind.

t
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I4

t

0 1 2 3 4
0

1

2

3

K0 K1 K2 K3 K4

Figure 1: Modified Bessel functions.

The functions In(t) are exponentially increasing while Kn(t) are exponentially decreasing, see
Figure 1. Some properties (from Abramowitz and Stegun [1]) of In(t) are

In(t) = i−nJn(it)

=
1

π

∫ π

0
et cos θ cos(nθ) dθ

= (1
2 t)

n
∞∑
k=0

(1
4 t

2)k

k!(n+ k)!
,

d
dtI0(t) = I1(t),

d
dtI1(t) = I0(t)− 1

t
I1(t).

4 TV-Regularized Restoration with the Rician Noise Model

Let Ω be an open, bounded, and connected subset of Rn. We propose the following minimization
method

inf
u∈BV (Ω)

{
F (u) =

∫
Ω
|Du|+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(Ku)

σ2
) +

f2 + (Ku)2

2σ2

]
dx
}
, (6)
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where λ > 0 is a tuning parameter.

Although we deal with a nonconvex data fidelity term in (6), we obtain the following existence and
comparison results in the purely denoising case (K = I).

Inspired by the work of G. Aubert and J.-F. Aujol in [5], we show the existence of a minimizer for
(6) with K = I.

Theorem 1. Assume that infΩ f(x) = α > 0, and f ∈ L∞(Ω). Then the minimization problem
(6) for K = I admits at least one solution u ∈ BV (Ω) satisfying

0 ≤ u ≤ sup
Ω
f. (7)

Proof. Let {un} ⊂ BV (Ω) be a minimizing sequence for (6). Such a sequence exists since
F (u ≡ 1) = C < ∞. Therefore, without loss of generality, we can assume that F (un) ≤ C for
all n.

We denote the integrand of the Rician fidelity term by

G(u) = − log
f

σ2
− log I0(

fu

σ2
) +

f2 + u2

2σ2
, (8)

and its derivative by

G′(u) = −
I1(fu

σ2 )

I0(fu
σ2 )

f

σ2
+

u

σ2
. (9)

Step 1 : We show that without loss of generality, 0 ≤ un ≤ supΩ f ≡ β can be assumed for all n.

This is shown by demonstrating that the sequence {φ0,β(|un|)} satisfies

F (φ0,β(|un|)) ≤ F (un), (10)

where φ0,β : R→ [0, β] is a cut-off function defined by

φ0,β(y) =


β for y > β

y for 0 ≤ y ≤ β
0 for y < 0.

(11)

Replacing un with φ0,β(|un|) results in an equal or more optimal energy. Therefore, {φ0,β(|un|)}
is a minimizing sequence in [0, β] that we may use in place of the original minimizing sequence {un}.

First, we can and should consider only non-negative minimizing sequences {un}. Intuitively, one
expects to have ∫

Ω
|D|un|| ≤

∫
Ω
|Dun|, (12)
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which is shown in [15]. Since I0(fu/σ2) is an even function in u (see [9]), G is also an even function,
so ∫

Ω
G(|un|)dx =

∫
Ω
G(un)dx. (13)

Together with (12), this gives for each n

F (|un|) ≤ F (un). (14)

Hence, we can consider only non-negative minimizing sequences.

t
−25 −20 −15 −10 −5 0 5 10 15 20 25

I1(t)

I0(t)

−1

0

1

Figure 2: The function I1(t)/I0(t).

Now we show F (φ0,β(|un|)) ≤ F (|un|). Noting that |I1(t)/I0(t)| < 1 (Fig. 2) for all t ∈ R, we obtain

G′(u) ≥ 1

σ2
(−β + u) (15)

for any value of u ∈ R. Since G′(u) > 0 for u > β, we can conclude that G is increasing on the
interval (β,∞). From this fact, it is easy to see that

G(min(|un(x)|, β)) ≤ G(|un(x)|) (16)

for any x ∈ Ω. This gives
G(φ0,β(|un(x)|)) ≤ G(|un(x)|), (17)

and therefore ∫
Ω
G(φ0,β(|un(x)|))dx ≤

∫
Ω
G(|un(x)|)dx. (18)

In addition, we expect ∫
Ω
|Dφ0,β(|un|)| ≤

∫
Ω
|D|un|| (19)

to hold for un ∈ BV (Ω); a proof of a general form of this result can be found in Appendix C of
[18]. Combining this with (18) and our previous result gives for each n

F (φ0,β(|un|)) ≤ F (|un|) ≤ F (un). (20)
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Step 2 : Let {un} be a minimizing sequence; we can assume that 0 ≤ un ≤ β thanks to Step 1.
Also, as mentioned previously, we can assume that F (un) ≤ C <∞ for all n. Hence,∫

Ω
|Dun|+ λ

∫
Ω
G(un)dx ≤ C. (21)

In addition,

G(un) = − log
f

σ2
− log I0(

fun
σ2

) +
f2 + u2

n

2σ2
≥ − log(

β

σ2
)− log I0(

β2

σ2
) = C ′ > −∞, (22)

which allows us to conclude that ∫
Ω
|Dun|dx ≤ C ′′ <∞, (23)

for all n. Thus, {un} is a uniformly bounded sequence in BV (Ω), and there exists a subsequence
{unk

} and u ∈ BV (Ω) such that unk
→ u in BV − w∗ and unk

→ u in L1(Ω) ([14]). Hence, we
must have u ∈ [0, β], and by the lower semi-continuity of the total variation and Fatou’s lemma,
we obtain

F (u) ≤ lim inf F (unk
). (24)

Therefore, we can conclude that u is a solution of (6). �

Remark: For the deblurring problem, we can obtain existence of a minimizer by restricting u to
[0, β]. In other words, we consider the modified problem

inf
u∈BV (Ω),0≤u≤β

∫
Ω
|Du|+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(k ∗ u)

σ2
) +

f2 + (k ∗ u)2

2σ2

]
dx, (25)

where k is a blurring kernel. With the usual properties on k (a smoothing kernel, such as Gaussian
or average kernel), it is easy to conclude that k ∗u ∈ [0, β]. Thus, a proof of existence is obtainable
using the ideas in step 2.

Using again techniques from G. Aubert and J.-F. Aujol’s work in [5], we obtain the following
comparison theorem.

Theorem 2. Let f1 and f2 be L∞(Ω) functions such that 0 < α1 ≤ f1 ≤ β1 < ∞ and 0 < α2 ≤
f2 ≤ β2 <∞. If we assume f1 < f2, then u1 ≤ u2 where u1 and u2 are solutions to (6) with K = I
corresponding to f = f1 and f = f2 respectively.

Proof. First, denote

J(u) =

{∫
Ω |Du| if u ∈ BV (Ω)

+∞ if u ∈ L
n

n−1 (Ω)\BV (Ω).
(26)

The solutions u1 and u2 exist thanks to Theorem 1. Since u1 and u2 are minimizers for their
respective problems, it should be easy to see that

J(min(u1, u2)) +

∫
Ω

[
− log I0

(
f1 min(u1, u2)

σ2

)
+

(min(u1, u2))2

2σ2

]
dx
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≥ J(u1) +

∫
Ω

[
− log I0

(
f1u1

σ2

)
+

u2
1

2σ2

]
dx,

and

J(max(u1, u2)) +

∫
Ω

[
− log I0

(
f2 max(u1, u2)

σ2

)
+

(max(u1, u2))2

2σ2

]
dx

≥ J(u2) +

∫
Ω

[
− log I0

(
f2u2

σ2

)
+

u2
2

2σ2

]
dx.

Adding these two inequalities, we get

J(min(u1, u2)) + J(max(u1, u2)) +

∫
Ω

[
− log I0

(
f1 min(u1, u2)

σ2

)
− log I0

(
f2 max(u1, u2)

σ2

)]
dx

+

∫
Ω

[(min(u1, u2))2

2σ2
+

(max(u1, u2))2

2σ2

]
dx

≥ J(u1) + J(u2) +

∫
Ω

[
− log I0

(
f1u1

σ2

)
+

u2
1

2σ2

]
dx+

∫
Ω

[
− log I0

(
f2u2

σ2

)
+

u2
2

2σ2

]
dx.

Rearranging terms and using the property J(min(u1, u2)) + J(max(u1, u2)) ≤ J(u1) + J(u2) (see
[10] and [15]), we obtain∫

Ω

[
log

I0

(f2u2
σ2

)
I0

(f1 min(u1,u2)
σ2

) − log
I0

(f2 max(u1,u2)
σ2

)
I0

(f1u1
σ2

) +
(max(u1, u2))2

2σ2
− u2

1

2σ2
+

(min(u1, u2))2

2σ2
− u2

2

2σ2

]
dx

≥ J(u1) + J(u2)− (J(min(u1, u2)) + J(max(u1, u2))) ≥ 0.

Consider Ω+ = {x ∈ Ω, u1(x) > u2(x)}, then from above, we arrive at∫
Ω+

−

(
log

I0(f2u1
σ2 )

I0(f1u1
σ2 )

− log
I0(f2u2

σ2 )

I0(f1u2
σ2 )

)
dx ≥ 0.

We have that

g(y) = log
I0(c2y)

I0(c1y)
= log I0(c2y)− log I0(c1y)

is a monotonically increasing function for y ≥ 0 if c2 > c1 > 0 since

g′(y) = c2
I1(c2y)

I0(c2y)
− c1

I1(c1y)

I0(c1y)
= c1

(
c2

c1

I1(c2y)

I0(c2y)
− I1(c1y)

I0(c1y)

)
> c1

(
I1(c2y)

I0(c2y)
− I1(c1y)

I0(c1y)

)
> 0

for y > 0. The last inequality is true because I1(z)
I0(z) is a monotonically increasing function for z ≥ 0

(see Fig. 2).

Hence, the integrand must be negative, implying that the Lebesgue measure of Ω+ is 0, and
therefore u1 ≤ u2 on Ω. �

For numerical purposes, we consider an approximation

Fε(u) =

∫
Ω

√
ε2 + |∇u|2 dx+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(Ku)

σ2
) +

f2 + (Ku)2

2σ2

]
dx (27)
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to F (u) to remove the singularity of |∇u| = 0 encountered in the Euler-Lagrange equation of F (u).

In order to solve the proposed minimization problem in practice, we use and compare the L2 and
Sobolev (H1) gradient descent methods (see [21]), as presented below.

In general, gradient descent methods involve the evolution problem

∂u(x, t)

∂t
= −∇Fε(u),

where ∇Fε(u) is dependent on the function space considered. We consider the L2 and Sobolev
H1 spaces and denote the gradients by ∇L2Fε(u) and ∇H1Fε(u) respectively. These gradients are
defined by

F ′ε(u)v = 〈∇L2Fε(u), v〉L2 , ∀v ∈ L2

and
F ′ε(u)h = 〈∇H1Fε(u), h〉L2 , ∀h ∈ H1,

where F ′ε(u)v and F ′ε(u)h are the directional derivatives of Fε at u in the direction of v ∈ L2 and
h ∈ H1 respectively. Furthermore, it can be shown in [21] that the L2 and H1 gradients are related
in the following way

∇H1Fε(u) = (I −4)−1∇L2Fε(u).

In the numerical examples section, we compare the results of these methods with those of the
proposed method described below.

4.1 L2 Gradient Descent

For our application, the L2 gradient descent method used to compute the minimizer involves the
partial differential equation

∂u

∂t
= λ

(
− K∗Ku

σ2
+K∗

(
I1(fKu

σ2 )

I0(fKu
σ2 )

· f
σ2

))
+∇ · ∇u√

ε2 + |∇u|2
.

Defining

wni,j,k :=
1

h2

1√
ε2 +

(
uni+1,j,k−u

n
i,j,k

h

)2
+
(
uni,j+1,k−u

n
i,j,k

h

)2
+
(
uni,j,k+1−u

n
i,j,k

h

)2
,

we can describe the discretization we implemented by

un+1
i,j,k − u

n
i,j,k

dt
= λ

(
−
K∗Kuni,j,k

σ2
+K∗

(
I1(

fKuni,j,k
σ2 )

I0(
fKuni,j,k

σ2 )
· f
σ2

))
− λ

σ2
(un+1
i,j,k − u

n
i,j,k)

+wni,j,k(u
n
i+1,j,k − un+1

i,j,k)− wni−1,j,k(u
n+1
i,j,k − u

n
i−1,j,k) + wni,j,k(u

n
i,j+1,k − un+1

i,j,k)

−wni,j−1,k(u
n+1
i,j,k − u

n
i,j−1,k) + wni,j,k(u

n
i,j,k+1 − un+1

i,j,k)− wni,j,k−1(un+1
i,j,k − u

n
i,j,k−1),
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with Neumann boundary condition ∂u
∂~n |∂Ω = 0, where ~n is the unit normal to the boundary ∂Ω.

Furthermore, we use the initial condition u0 = f . Note that the second term on the right-hand-side
rescales the timestep and is added for numerical purposes. A larger timestep may be used as a
result of adding this term.

4.2 Sobolev Gradient Descent

For the gradient descent method using the Sobolev gradient, we consider the PDE

∂u

∂t
= (I − c4)−1

(
λ

(
− K∗Ku

σ2
+K∗

(
I1(fKu

σ2 )

I0(fKu
σ2 )

· f
σ2

))
+∇ · ∇u√

ε2 + |∇u|2

)
,

for some c > 0. Note that for c = 1, the right hand side is equal to the negative of the Sobolev
gradient. The addition of c > 0 may lead to better results than when fixing c = 1, and for this
reason, we add this parameter.

We implement the method using

Gni,j,k = λ

(
−
K∗Kuni,j,k

σ2
+K∗

(
I1(

fKuni,j,k
σ2 )

I0(
fKuni,j,k

σ2 )
· f
σ2

))
+wni,j,k(u

n
i+1,j,k − uni,j,k)− wni−1,j,k(u

n
i,j,k − uni−1,j,k) + wni,j,k(u

n
i,j+1,k − uni,j,k)

−wni,j−1,k(u
n
i,j,k − uni,j−1,k) + wni,j,k(u

n
i,j,k+1 − uni,j,k)− wni,j,k−1(uni,j,k − uni,j,k−1).

and

Wi,j,k =
un+1
i,j,k − u

n
i,j,k

dt
where Wi,j,k is the steady-state solution of the semi-implicit scheme:

W l+1
i,j,k−c

{
W l
i+1,j,k − 2W l+1

i,j,k +W l
i−1,j,k

h2
w

+
W l
i,j+1,k − 2W l+1

i,j,k +W l
i,j−1,k

h2
w

+
W l
i,j,k+1 − 2W l+1

i,j,k +W l
i,j,k−1

h2
w

}
= Gni,j,k.

The scheme becomes
un+1
i,j,k = uni,j,k + dt ·Wi,j,k

with initial conditions u0 = f and W 0 = 0 for the first iteration and W 0 equal to the previous W
for all other iterations. For the boundary, we apply Neumann boundary condition ∂W

∂~n |∂Ω = 0.

5 Convex Approximation of the Rician Noise Model and Imple-
mentation with Split Bregman

5.1 Nonconvexity

Our objective functional is nonconvex, but we need a convex objective function for the application
of a fast iterative method, the split Bregman method [16], to be described later. Another challenge

10



is the numerical approximation of the involved Bessel functions. This section investigates the
nonconvexity and develops a convex approximation.

For notational convenience, let z = Ku and consider f as a fixed parameter. Then

Hσ(z) =
f2 + z2

2σ2
− log I0( fz

σ2 ),

H ′σ(z) =
z

σ2
− f

σ2

I1( fz
σ2 )

I0( fz
σ2 )

, H ′σ(0) = 0,

H ′′σ(z) =
1

σ2
+

f

zσ2

I1( fz
σ2 )

I0( fz
σ2 )

+
f2

σ4

(
I1( fz

σ2 )

I0( fz
σ2 )

)2

− f2

σ4
, H ′′σ(0) =

1

σ4
(σ2 − 1

2f
2).

z
1 2 3

H ′′1 (z; f)

−2

−1

0

1
f = 1

f =
√

2

f = 2

f = 4

Figure 3: Plot of H ′′1 for different values of f .

In our implementation, we approximate I1/I0 by a cubic rational implementation,

I1(t)

I0(t)
≈ t3 + α1t

2 + α2t

t3 + α3t2 + α4t+ α5
≡ A(t).

This approximation is explained in more detail in a later section. By this change, Hσ is first
approximated by another (still non-convex) function denoted H̃σ. Substituting A(t), we obtain

H̃ ′σ(z) =
z

σ2
− f

σ2
A( fz

σ2 ), H̃ ′σ(0) = 0,

H̃ ′′σ(z) =
1

σ2
− f2

σ4
A′( fz

σ2 ), H̃ ′′σ(0) =
1

σ4
(σ2 − α2

α5
f2),

where

A′(t) =
(α3 − α1)t4 + 2(α4 − α2)t3 + (3α5 − α2α3 + α1α4)t2 + (2α1α5)t+ α2α5

(t3 + α3t2 + α4t+ α5)2
.

For the minimization by split Bregman, it is important to substitute Hσ(z) by a convex approxi-
mation. Since Hσ(z; f) = H1( zσ ; fσ ), we may focus without loss of generality on the case σ = 1.

Unfortunately, H ′′1 (0) is negative (and hence also H ′′1 (z) for z sufficiently small) if f >
√

2. This
boundary case and other values of f are shown in Figure 3. It appears that H ′′1 increases mono-
tonically, which suggests H1 is nonconvex if and only if f >

√
2 and similarly H̃1 is nonconvex if

and only if f >
√

α5
α1
≈ 1.3955.
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c
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Figure 4: Inflection point c v.s. f .

Let c be the inflection point of H1, the point such that H ′′1 (c) = 0. Similarly, let c̃ be the inflection
point of H̃1. We can approximate c with numerical root finding (closed-form expression for c̃ is
possible as it is a root of a quartic polynomial). As shown in Figure 4, the maximum value of c is
approximately 0.8246 at f = 3. The maximum value c̃ is slightly less at approximately 0.8224.

Let c̄ ≡ maxf c
<
≈ 0.8246 such that c and c̃ are always less than c̄. Then we can make convex

approximations as

G1(z) =

{
H1(z) if z ≥ c̄,
H1(c̄) +H ′1(c̄)(z − c̄) if z ≤ c̄,

G̃1(z) =

{
H̃1(z) if z ≥ c̄,
H̃1(c̄) + H̃ ′1(c̄)(z − c̄) if z ≤ c̄.

Define Gσ(z; f) = G1( zσ ; fσ ), then we can see that Gσ is convex and differs from Hσ for z ≤ c̄σ,

Gσ(z) =

{
Hσ(z) if z ≥ c̄σ,

Hσ(c̄σ) +H ′σ(c̄σ)(z − c̄σ) if z ≤ c̄σ,
G̃σ(z) =

{
H̃σ(z) if z ≥ c̄σ,

H̃σ(c̄σ) + H̃ ′σ(c̄σ)(z − c̄σ) if z ≤ c̄σ.

In practice for moderate noise levels, σ is quite small compared to the intensity range. Furthermore,
very small intensities in MRI images correspond to void space, so z in this range is less important.
Thus it appears reasonable to use G̃σ as a convex approximation of Hσ.

5.2 Bessel Approximation

Aside from nonconvexity, the Rician model also has the challenge of numerical approximation of
the Bessel functions. In our approach we only need to approximate the ratio I1(t)/I0(t). This
function is illustrated in Fig. 5.

We approximate I1/I0 by a cubic rational approximation,

I1(t)

I0(t)
≈ A(t) :=

t3 + α1t
2 + α2t

t3 + α3t2 + α4t+ α5
(28)

12



t
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I1(t)

I0(t)

0

1
∼ 1 for large t

∼ 1
2
t for small t

Figure 5: The function I1(t)/I0(t).

where the coefficients are

α1 = 0.950037, α2 = 2.38944,

α3 = 1.48937, α4 = 2.57541, α5 = 4.65314.

The approximation has the property that it exactly satisfies A(0) = 0 and A(+∞) = 1. The
coefficients α1, . . . , α5 are selected to minimize the L∞ error.

t

10−3 10−2 10−1 100 101 102 103

I1(t)
I0(t) −A(t)

−10−3

0

+10−3

Figure 6: Error with cubic rational approximation (28).

The approximation error of (28) is shown in Figure 6. The exact value of I1/I0 is approximated
with the highly accurate Bessel software by Amos [3].

Another approximation of I1/I0 is

I1(t)

I0(t)
≈ A2(t) :=


1

2

t(1− t/2.74957)

1− t/3.48574
if t < 1.64,

0.76272− t
0.23610− t

if t ≥ 1.64.

(29)

This approximation has similar accuracy to (28) and the advantage of using lower-degree polynomi-
als. Unfortunately its piecewise definition would further complicate solving the variable subproblem
(30) described below, which is why we don’t pursue it further here.
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t
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I1(t)
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−4× 10−3

0

+4× 10−3

Figure 7: Error with piecewise approximation (29).

5.3 Solving the Variable Subproblem

For the split Bregman method described in the next section for our convex formulation, we will
need to solve the variable subproblem

arg min
z≥0

G̃σ(z; f) +
γ

2
(z − y)2, (30)

where γ > 0 is a parameter and G̃σ is the convex approximation of Hσ from Sec. 5.1,

G̃′σ(z; f) =


z

σ2
− f

σ2
A( fz

σ2 ) if z ≥ c̄σ,

c̄

σ2
− f

σ2
A(fc̄σ ) if z ≤ c̄σ.

The objective is strictly convex, thus it has exactly one minimizer z? and its derivative

G̃′σ(z?; f) + γ(z? − y)

is strictly monotone increasing. By this monotonicity, we can use the sign of G̃′σ(c̄σ; f) + γ(c̄σ− y)
to conclude {

z? =
(
y − 1

γ G̃
′
σ(c̄σ; f)

)+
if G̃′σ(c̄σ; f) + γ(c̄σ − y) ≥ 0,

z? > c̄σ if G̃′σ(c̄σ; f) + γ(c̄σ − y) < 0,
(31)

where (x)+ := max{x, 0}. In the latter case, we must then solve

( 1
σ2 + γ)z − f

σ2
A( fz

σ2 ) = γy, z > c̄σ. (32)

Equation (32) may be solved by Newton’s method,

zk+1 = zk +
y − (1 + 1

γσ2 )zk + f
γσ2A(fz

k

σ2 )

1 + 1
γσ2 − f2

γσ4A′(
fzk

σ2 )
. (33)

Newton’s method is guaranteed to converge by convexity. Alternatively, (32) may be solved directly
as the root of a quartic polynomial. Another possibility is to precompute the solution in a two-
dimensional look-up table indexed by f and y.
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5.4 Implementing Split Bregman

The split Bregman method [16] solves a minimization problem by operator splitting and then
applying Bregman iteration [22, 23] to solve the split problem. A splitting of the generalized ROF
model (3) is

min
~d,z,u

α

∫
Ω

∣∣~d(x)
∣∣ dx+

∫
Ω
H
(
z(x), f(x)

)
dx

subject to ~d = ∇u, z = Ku

(34)

For our application we use the convex approximation of the Rician noise model, H = G̃σ. The
advantage of this splitting is that the first term α

∫
|~d| only depends directly on ~d and the second

term
∫
H(z, f) only on z. Variables ~d and z are still related indirectly through the constraints

~d = ∇u, z = Ku.

Bregman iteration is used to solve the split problem. In each iteration, Bregman iteration calls for
the solution of the following problem:

min
~d,z,u

α

∫
Ω
|~d| dx+

∫
Ω
H(z, f) dx

+
γ1

2
‖~d−∇u−~b1‖22 +

γ2

2
‖z −Ku− b2‖22

(35)

where the additional terms are quadratic penalties enforcing the constraints and ~b1 and b2 are
variables related to the Bregman iteration algorithm.

The joint minimization over ~d, z, u, is approximated by alternatingly minimizing one variable at
a time, that is, fixing z and u and minimizing over ~d, then fixing ~d and u and minimizing over z,
and so on. This leads to three variable subproblems:

• The ~d subproblem, with z and u fixed, is

min
~d
α

∫
|~d| dx+

γ1

2
‖~d−∇u−~b1‖22.

Its solution decouples over x and is expressed in closed form as a vectorial shrinkage [29]:

~d(x) =
∇u(x) +~b1(x)

|∇u(x) +~b1(x)|
(
|∇u(x) +~b1(x)| − α/γ1

)+
.

• The z subproblem, with ~d and u fixed, is

min
z

∫
Ω
H(z, f) dx+

γ2

2
‖z −Ku− b2‖22 .

The solution decouples over x to

min
z
H(z, f) +

γ2

2
(z −Ku− b2)2.

In our case with H = G̃σ, the optimal z is given by equations (31) and (33) with y = Ku+ b2
as developed in section 5.3.
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• The u subproblem, with ~d and z fixed, is

min
u

γ1

2
‖∇u− ~d+~b1‖22 +

γ2

2
‖Ku− z + b2‖22 .

For pure denoising, K is identity and the optimal u satisfies

γ2
γ1
u−∆u = γ2

γ1
(z − b2)− div(~d−~b1).

In this case, u can be efficiently approximated by Gauss-Sidel iteration as proposed in [16].

Generally, the optimal u satisfies

(γ2γ1K
∗K −∆)u = γ2

γ1
K∗(z − b2)− div(~d−~b1),

where K∗ is the adjoint of K. If Ku is a convolution, Ku := ϕ∗u, the equation can be solved
in the Fourier domain as

û =

γ2
γ1

¯̂ϕ · (z − b2)̂ −
(
div(~d−~b1)

)̂
γ2
γ1

¯̂ϕ · ϕ̂− ∆̂
,

whereˆdenotes Fourier transform and multiplies and divisions are pointwise. To avoid bound-
ary artifacts, the volume should be doubled along each dimension with its symmetric exten-
sion, though this has the drawback of a high cost in memory.

Martucci [20] developed how convolution with symmetric boundary handling can be done
through discrete cosine transforms (DCTs). If ϕ is even in each dimension, then convolution
with symmetric boundary handling can be computed as

ϕ ∗ f = C−1
2e

(
C1e(ϕ) · C2e(f)

)
,

where C1e and C2e are the DCT-I and DCT-II transforms of the same period length as defined
in [20]. Unlike with the discrete Fourier transform, the data does not need to be padded;
symmetric boundaries are implied by the transforms. Noting also that the transformed data
is real, the memory cost for 3D convolution is reduced by factor 2 · 23 = 16. So if ϕ is even
in each dimension, a computationally efficient strategy to obtain u is

u = C−1
2e

[
C2e

(γ2
γ1
ϕ ∗ (z − b2)− div(~d−~b1)

)
C1e

(γ2
γ1
ϕ ∗ ϕ−∆

) ]
.

The split Bregman algorithm solves the minimization (3) with the following iteration:

Initialize u = f, ~d = ~b1 = 0, z = b2 = 0
while “not converged”

Solve the ~d subproblem
Solve the z subproblem
Solve the u subproblem
~b1 := ~b1 +∇u− ~d
b2 := b2 +Ku− z.

(36)

When solving the subproblems, the xth subproblem solution is computed from the current values
of all other variables and overwrites the previous value of variable x. Convergence may be checked
by testing the difference of u from the previous iterate, for example ‖ucur − uprev‖2 < Tol .
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6 Estimating σ

For practical applications, it is desirable to have few parameters or strategies that set parameters
automatically. Here we develop a method to estimate the σ parameter of the Rician noise from the
observed data.

In a typical MRI image, there is void space around the object of interest. Let f1, . . . , fN be
voxel intensities sampled near one of the volume corners. Supposing these voxels are in the void
space, their true intensity values are zero. This implies f1, . . . , fN are i.i.d. samples of Rayleigh
distribution, which has probability density

P(r;σ) =
r

σ2
exp

(
−r2

2σ2

)
. (37)

The maximum likelihood estimator of σ is

σ̂ = arg max
σ
L(σ|f1, . . . , fN ) :=

∏
n

fn
σ2

exp

(
−f2

n

2σ2

)
=
√

1
2N

∑
n f

2
n.

(38)

The maximum value of the likelihood, L(σ̂|f1, . . . , fN ), quantifies how well the data is modeled as
Rayleigh. A small value indicates that the data is unlikely to be Rayleigh distributed. In this way
we can possibly detect and avoid corners that are actually not void space.

Our strategy for estimating σ is

1. Extract a window of size S × S × S from each of the 8 corners of the volume.

2. Separately for each corner, compute σ̂ and L(σ̂|f1, . . . , fS3).

3. For the corner where L(σ̂|f1, . . . , fS3) is largest, select its σ̂ as the final estimate.

In simulations, we find that this strategy reliably ignores corners that are not actually void. Thanks
to the maximum likelihood estimation, the estimated σ value can be made very accurate by choosing
moderately large S.

7 Numerical Examples

We perform restoration experiments on a synthetic T1 MRI volume (see Fig. 8) obtained from
BrainWeb.1 The L2 and Sobolev gradient methods were implemented with Matlab, and the
proposed split Bregman method was implemented in C. The FFTW library (www.fftw.org) was
used to compute DCT transforms in all methods. Furthermore, in each scheme, the data is restored
using the same K and σ used in producing the input data (but σ can also be estimated as described
above).

1BrainWeb: Simulated Brain Database, http://mouldy.bic.mni.mcgill.ca/brainweb
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7.1 Denoising Experiment

First, we show restoration results using L2 and Sobolev gradient descent methods for images cor-
rupted with Rician noise but not blur. Here, we take K = I and σ = 0.08 for the standard deviation
of the noise. With both methods, we stop at iteration k + 1 once the following tolerance is met:∣∣∣∣Ek+1 − Ek

Ek

∣∣∣∣ < TOL = 10−4,

where energy Ek = Fε(u
k) (see (27)) calculated in the discrete sense. For L2 gradient descent,

the data is restored in 33 iterations using parameters λ = 0.1, h = 1, and fixed timestep dt = 0.1
(Fig. 9). For Sobolev gradient descent, the data is restored in 16 iterations using parameters
λ = 0.15, c = 1.5, hw = 1, and fixed timestep dt = 0.05 (Fig. 10). Fig. 11 gives plots of the energy
versus iterations. We also show for denoising comparisons with the Rudin-Osher-Fatemi model [24]
in Figs. 12 (entire volume) and 13 (cube inside the brain region only). For the ROF model, the
data is restored using 14 iterations, λ = 15, fixed dt = 0.1. In both cases, we see that it is better to
use the Rician denoising model. Also, the Sobolev gradient descent implementation gives the best
results. Table 1 summarizes the denoising results.

7.2 Denoising and Deblurring Experiments

We consider experiments on two data sets corrupted with Rician noise and Gaussian blur. In the
first experiment (Fig. 14, Fig. 16, Fig. 18), we have σ = 0.02 and Gaussian blur with standard
deviation of 1.5 voxels. In the second experiment, (Fig. 15, Fig. 17, Fig. 19), we have σ = 0.08 and
Gaussian blur with standard deviation of 0.6 voxels. Implementation details and a table of results
(Table 2) is given below.

7.2.1 L2 Gradient Descent

In the first experiment (Fig. 14), the data is restored with 28 iterations of L2 gradient descent using
parameters λ = 0.4, h = 1, and fixed timestep dt = 0.1.

In the second experiment (Fig. 15), the data is restored with 21 iterations of L2 gradient descent
with parameters λ = 0.2, h = 1, and fixed timestep dt = 0.1.

7.2.2 Sobolev Gradient Descent

In the first experiment (Fig. 16), the data is restored with 30 iterations of Sobolev gradient descent
using parameters λ = 1.1, c = 5, hw = 1, and fixed timestep dt = 0.001.

In the second experiment (Fig. 17), the data is restored with 17 iterations of Sobolev gradient
descent with parameters λ = 0.25, c = 1.25, hw = 1, and fixed timestep dt = 0.05.

18



Figure 8: Three slices of the clean synthetic T1 MRI volume.

7.2.3 Split Bregman

In the first experiment (Fig. 18), the data is restored using 40 Bregman iterations using the pa-
rameters λ = 10, γ1 = γ2 = 2. The run time is 214 seconds on a recent laptop.2

In the second experiment (Fig. 19), the data is restored using 40 Bregman iterations using the
parameters λ = 0.6, γ1 = γ2 = 2.

Input data f Restored u, run time 1091 s

Error histogram

uexact − f
−0.25 0 0.25

Freq.

Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 9: Denoising experiment with σ = 0.08 using L2 gradient descent. The RMSE of f is
0.093702 and the RMSE of u is 0.039935.

2Run times are on a 2.40GHz Intel R© CoreTM 2 Duo T7700 with 2GB RAM.
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Input data f Restored u, run time 833 s

Error histogram

uexact − f
−0.25 0 0.25

Freq.

Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 10: Denoising experiment with σ = 0.08 using Sobolev gradient descent. The RMSE of f is
0.093702 and the RMSE of u is 0.034541.

Iteration
3 6 9 12 15 18 21 24 27 30 33

Energy (×105)

−2.5

−1.0

0.5

2.0

Iteration
2 4 6 8 10 12 14 16

Energy (×106)

−1.25

−1.05

−0.85

−0.65

Figure 11: Plot of energy versus iteration for denoising experiments using L2 and Sobolev gradient
descent methods. Left: L2 gradient descent. Right: Sobolev gradient descent.

8 Conclusions

TV-based restoration can be formulated for the Rician noise model as a maximum a posteriori
estimate. Our first proposed variational method incorporates the Rician noise model directly, and
we solve for numerical solutions to the resulting minimization problem using the L2 and Sobolev
(H1) gradient descent methods. As noted, the objective function is slightly nonconvex, which
is inconvenient as it limits the choice of applicable minimization methods. To obtain a convex
problem, we determined a region in which the objective can be nonconvex and replaced it with
a convex approximation. We then solved this convex TV-Rician minimization problem using the
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Input data f Restored u, run time 82.4 s

Error histogram

uexact − f
−0.25 0 0.25

Freq.

Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 12: Denoising experiment with σ = 0.08 using the Rudin-Osher-Fatemi model [24]. The
RMSE of f is 0.093702 and the RMSE of u is 0.071503.

ROF

L2

H1

Figure 13: Second denoising comparison on a 80x80x80 cube inside the brain region only (cube
[71:150,51:130,51:130]). RMSE noisy data f = 0.079473; RMSE u, L2 gradient descent = 0.029803
(37.5%); RMSE u, H1 gradient descent = 0.027669 (34.8%); RMSE u, ROF = 0.031080 (39.1%).

21



Method (entire volume) Time (s) RMSE

L2 Gradient Descent 1091 0.039935
H1 Gradient Descent 833 0.034541

ROF 82.4 0.071503

Method (cube brain region) RMSE

L2 Gradient Descent 0.029803
H1 Gradient Descent 0.027669

ROF 0.031080

Table 1: Summary of results and comparisons in the denoising experiments. Left: entire volume
with background. Right: cube inside the brain region.

Input data f Restored u, run time 950 s

Error histogram

uexact − f
−0.25 0 0.25

Freq.

Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 14: Restoration experiment using L2 gradient descent. The RMSE of f is 0.046872 and the
RMSE of u is 0.024279.

split Bregman method. Numerical experiments are performed on three dimensional synthetic MRI
data corrupted with Rician noise and Gaussian blur and restoration results of the two proposed
methods are compared.

9 Appendix

For u ∈ BV (Ω), we show ∫
Ω
|D|u|| ≤

∫
Ω
|Du|.

Using the property J(max {u, v}) + J(min {u, v}) ≤ J(u) + J(v) (see [10] and [15]) where J(u) is
defined in (26), we obtain for u ∈ BV (Ω),

J(|u|) = J(max {u(x), 0}−min {u(x), 0}) ≤ J(max {u(x), 0})+J(min {u(x), 0}) ≤ J(u)+J(0) = J(u).

The result follows easily from the definition of J(u). �
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Input data f Restored u, run time 791 s

Error histogram

uexact − f
−0.25 0 0.25

Freq.

Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 15: Restoration experiment using L2 gradient descent. The RMSE of f is 0.094718 and the
RMSE of u is 0.037068.

Input data f Restored u, run time 1419 s

Error histogram

uexact − f
−0.25 0 0.25

Freq.

Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 16: Restoration experiment using Sobolev gradient descent. The RMSE of f is 0.046872
and the RMSE of u is 0.029659.
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Input data f Restored u, run time 929 s

Error histogram
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