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Abstract

Remote sensing data often contains multiple layers. Many applications require layers

to be decomposed before further analysis. One such application is the study of different

types of clouds. Clouds affect visibility, cause turbulence, and remain the largest source

of uncertainty in climate projections. In this paper, we propose a novel method for layer

separation and apply it to separate multiple layers of clouds. The method is formulated

as a nonlinear energy minimization problem and is solved using computationally efficient

operator-splitting methods.

1. Introduction

Decomposition of two-dimensional images into a piece-wise smooth component (car-

toon) and high-oscillatory component (texture) has been a rapidly developing field in recent

years. Variety of proposed total variation-based methods for image decomposition rely on

different metrics for modeling textures [1, 2, 12, 18, 13, 14, 6, 3, 9]. Robust models for

image segmentation, many of which are variational methods [5, 11, 7], have also been ef-

fective for solving other types of classification problems in many applications. However,

unlike image decomposition and segmentation problems, layer separation allows a given

area (or a pixel) in an image to be attributed to none, one, or both layers. Another aspect

that distinguishes the layer separation problem from image decomposition approach is the

fact that one of the layers may obstruct another layer in large parts of an image, thus block-

ing features in an obstructed layer. An application considering multiple layers of clouds is

an example where such challenges occur.

The atmosphere often consists of two or more layers of clouds. The upper clouds vary

slowly in space (low oscillatory) and are strongly stratified and optically thin. On the other

hand, the lower convective clouds are characterized by large optical thicknesses and have

relatively sharp boundaries. They either are high oscillatory or prominently occupy large
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contiguous areas. Due to their inherent brightness, the lower convective clouds optically

overwhelm the upper clouds (Figure 1a).

We propose to solve layer separation problem within the energy minimization frame-

work. Our formulation is related to problems that arise frequently in compressed sensing

[4, 8]. We define an energy functional and propose to minimize it using efficient variable-

splitting methods.

2. Notation

We consider m × n grayscale images, represented as a vector, such as u ∈ Rmn. Let

D(1), D(2) ∈ Rmn×mn be the first-order forward finite difference operators in the horizontal

and vertical directions, respectively. Matrix Di ∈ R2×mn contains the ith rows of D(1) and

D(2) as its first and second rows, respectively. The total finite difference operator and the

discrete gradient of u at pixel i are given by

D =

[
D(1)

D(2)

]
∈ R

2mn×mn, Diu =

[ (
D(1)u

)
i(

D(2)u
)
i

]
∈ R

2, i = 1, . . . , mn,

respectively. Denote vectors d1, d2 ∈ Rmn, and d =

[
d1
d2

]
∈ R2mn. For each pixel

i = 1, . . . , mn, denote di =

[
(d1)i
(d2)i

]
∈ R2. Similarly, b1, b2 ∈ Rmn, b =

[
b1
b2

]
∈ R2mn,

and bi =

[
(b1)i
(b2)i

]
∈ R2.

3. Multilayer Separation

Let f ∈ Rmn represent an observed m × n grayscale image containing multiple layers.

We propose a general variational framework for decomposition of image f into images u

and v containing the two layers. Image u will contain a low-oscillatory layer, and image

v = f−u will have a layer that prominently occupies large contiguous areas and obstructs,

or optically overwhelms, the low oscillatory layer in region D with boundary ∂D. We

propose to consider the energy minimization problem for scale separation and disocclusion:

min
u

R(u) + µ||f − u||∗ +
β

2
||u− u∂D||

2
2, (1)

where R(u) is the regularization term, or a penalty on high-oscillatory components; the

term ||f − u||∗ models high-oscillatory components; ||u− u∂D||
2
2 is the disocclusion term,

where u∂D denotes the value of u on ∂D. Parameters µ and β are nonnegative, with β > 0
inside D and β = 0 outside D. The region D is determined by segmenting the image

v = f − u, containing the high-oscillatory layer. This can be achieved, for example, via

minimization problem [7]:

min
c1,c2,∂D

∫

D

(v − c1)
2 +

∫

Ω\D

(v − c2)
2 + γ

∫

∂D

ds, (2)
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where c1 and c2 are averages of v inside and outside D, respectively. The third term in (2)

is the regularizer in the form of the length of the boundary ∂D, and γ > 0 is a parameter.

Equation (2) can be re-written using level set [17, 16] formulation.

There are a variety of choices for a norm || · ||∗ modeling high oscillatory components,

which include H−1, BMO−1, L1, [12, 18, 9, 1], among others. The regularizing functional

R(u) can be in the form of bounded variation (BV) norm, measuring the total variation

(TV), or can take a form of Besov norm. In particular, BV norm, originally proposed

for image denoising in [19], had since been used to solve a variety of problems in image

processing and computer vision. The effectiveness of the BV norm stems from its ability

to preserve edges in an image.

Our choice of R(u) was ||u||TV , defined as ||u||TV =
∑mn

i=1 ||Diu||, where Diu ∈ R2 is

the discrete gradient of u at pixel i. The choice of || · ||∗ was || · ||1. Hence, minimization

problem in (1) can be written as

min
u

mn∑

i=1

||Diu||+ µ||f − u||1 +
β

2
||u− u∂D||

2
2. (3)

This formulation is related to problems that arise frequently in compressed sensing, where

function u is reconstructed from a small subset of its Fourier coefficients [4, 8].

Alternating minimization algorithms, which are derived using variable-splitting tech-

niques in optimization, were proposed in [20, 21] and [22] for TV-L2 and TV-L1 decon-

volution problems, respectively. Also, the Split Bregman method was proposed in [10] for

solving TV-L2 denoising problems. In order to minimize (3), similar to alternating mini-

mization and the Split Bregman methods, an additional variable di ∈ R2 is introduced to

transfer Diu out of nondifferentiable terms at each pixel, and ||di −Diu||
2
2 is penalized in

Bregman sense. Since L1 term in equation (3) is not quadratic in u, the original Split Breg-

man method needs to be generalized to solve TV-L1 minimization subproblem. Similar to

the non-Bregman alternative minimization formulation for deconvolution in [22], we ex-

tend the Split Bregman method to solve TV-L1 subproblem in (3) as follows. We consider

the following minimization problem where an additional variable z ∈ Rmn is introduced to

approximate u− f in Bregman sense. Hence, we rewrite the minimization problem for (3)

as

min
u,d,z

∑

i

||di||2 +
λ

2

∑

i

||di −Diu− bi||
2
2

+µ||z||1 +
α

2
||z − (u− f)− w||22 +

β

2
||u− u∂D||

2
2, (4)

where λ and α are nonnegative parameters, and variables bi and w are chosen through

Bregman iterations [23, 15]:

bi ← bi + (Diu− di),

w ← w + (u− f − z).

For a fixed u, the minimization problem for di is

d
∗
i = argmin

di

∑

i

||di||2 +
λ

2

∑

i

||di −Diu− bi||
2
2,

3



which can be explicitly solved for di using a generalized shrinkage formula [20]:

di = max
(
||Diu+ bi||2 −

1

λ
, 0
) Diu+ bi

||Diu+ bi||2
.

The minimization problem for z is

z∗ = argmin
z

µ||z||1 +
α

2
||z − (u− f)− w||22,

with a minimizer given by the one-dimensional shrinkage:

z = max
{
|u− f + w| −

µ

α
, 0
}

sign(u− f + w).

For a fixed d and z, the minimization problem (4) for u is quadratic in u:

u∗ = argmin
u

∑

i

||di −Diu− bi||
2
2 +

α

λ
||z − (u− f)− w||22 +

β

λ
||u− u∂D||

2
2.

The minimizer for u is given by the normal equations:

(
(D(1))TD(1) + (D(2))TD(2) +

α− β

λ
I
)
u = (D(1))T (b1 − d1) + (D(2))T (b2 − d2)

+
α

λ
(f + z − w)−

β

λ
u∂D,

which, similar to [20], can be solved using the fast Fourier transform:

u =

(
D̂(1) · (b̂1 − d1) + D̂(2) · (b̂2 − d2) +

α

λ
( ̂f + z − w)−

β

λ
û∂D

D̂(1) · D̂(1) + D̂(2) · D̂(2) +
α− β

λ

)∨

,

where
∧

denotes Fourier transform,
∨

denotes inverse Fourier transform, and I ∈ Rmn×mn

is an identity matrix.

4. Results

There is a rich source of multi-angle multispectral data, containing a wide variety of

scenes, which is available to test our methodology. The data is acquired by the Multi-

Angle Imaging Spectro-Radiometer (MISR), which has nine digital cameras, pointing at

different angles, and gathering data in four different spectral bands of the visible spectrum.

Each region on Earth’s surface is successively captured by all nine cameras in blue, green,

red, and near-infrared wavelengths.

We consider a single-channel multilayer image shown on Figure 1(a). This image was

generated by combining red, green, and blue channels of a real multichannel image to create

a grayscale image. As noticeable on this image, the upper cirrus clouds vary slowly in space

and are optically thin. On the other hand, the lower convective clouds are optically thick,

have relatively sharp boundaries, and optically overwhelm the upper clouds. Figures 1(b,c)

show results obtained after decomposing this image into low-oscillatory cirrus layer, u, and

optically thick convective cloud layer, v.
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(a) Original image f (in grayscale)

(b) Low-oscillatory cirrus layer u

(c) Convective cloud layer v

Figure 1. Layer separation of (a) a single-channel single-angle image f into (b) low-oscillatory

cirrus layer u and (c) optically thick convective clouds v.
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