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Abstract

We develop an approach for reconstruction of high resolution multispectral images from

blurry and noisy scenes. This problem arises in the study of hurricanes, among other phys-

ically deforming phenomena. Hurricanes are imaged using microwave sensors, which fly

aboard research planes and spacecraft and are designed to penetrate through thick clouds

to see the structure of a storm. Such images may represent distribution of temperature,

water vapor, and cloud liquid water and are valuable for evaluating the storm’s internal

processes and its strength. Imagery generated using microwave sensors is blurry, noisy,

and of low resolution.

1. Introduction

Hurricanes cause catastrophic floods and landslides leading to the loss of property and

life. On the other hand, these tropical cyclones are sources for replenishment of the fresh-

water supply, which is important for the marine life and the ecological environment. How-

ever, many aspects of hurricane formation and strength prediction are still unknown. While

scientists can usually estimate the location where a powerful storm will hit the land, it is

far more difficult to forecast the storm strength. Reconstructed high resolution images will

be of value to science, where hurricane formation and strength prediction are major chal-

lenges, and to society, which could benefit from more accurate information being used in

forecasts of storm strength and development.

2. Notation

We consider m× n images with l channels represented as a vector, such as

u =







u(1)

...

u(l)






∈ R

lmn,
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where u(1), . . . , u(l) represent l channels of u.

As in [7, 8, 9], we let D(1), D(2) ∈ R
mn×mn be the first-order forward finite difference op-

erators in the horizontal and vertical directions, respectively. Matrix Di ∈ R
2×mn contains

the ith rows of D(1) and D(2) as its first and second rows, respectively. The total finite

difference operator and the discrete gradient of u(c), 1 ≤ c ≤ l, at pixel i are given by

D =

[

D(1)

D(2)

]

∈ R
2mn×mn,

Diu
(c) =

[
(

D(1)u(c)
)

i
(

D(2)u(c)
)

i

]

∈ R
2, i = 1, . . . , mn, c = 1, . . . , l,

respectively. Denote vectors d1, d2 ∈ R
lmn, and d =

[

d1
d2

]

∈ R
2lmn. For each pixel i =

1, . . . , mn, denote di =

















(d
(1)
1 )i

(d
(1)
2 )i
...

(d
(l)
1 )i

(d
(l)
2 )i

















∈ R
2l. Similarly, b1, b2 ∈ R

lmn, b =

[

b1
b2

]

∈ R
2lmn,

and bi =

















(b
(1)
1 )i

(b
(1)
2 )i
...

(b
(l)
1 )i

(b
(l)
2 )i

















∈ R
2l.

3. Split Bregman Multispectral Deconvolution

Degradation Model. An observed image f ∈ R
lmn is written as

f = Ku+ κ, (1)

where u ∈ R
lmn is an unknown clean image and κ ∈ R

lmn is the noise function. K is the

convolution kernel of the form

K =











K11 K12 · · · K1l

K21 K22 · · · K2l
...

...
. . .

...

Kl1 Kl2 · · · Kll











∈ R
lmn×lmn,

where Kij ∈ R
mn×mn, each matrix Kii is the blurring operator within the ith channel, and

each matrix Kij , i 6= j, is the blurring operator across channels i and j.

We use total variation based regularization in order to recover image u from (1). The

bounded variation (BV) norm, measuring the total variation (TV) was originally proposed

for image denoising in [6], and had since been used to solve a variety of problems in image
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processing and computer vision. The effectiveness of the BV norm stems from its ability

to preserve edges in an image.

Total Variation in Grayscale Case. The total variation (TV) of a grayscale image u can

be defined as

TV (u) =

∫

Ω

||∇u||dx, (2)

where || · || is a norm in R
2. A discrete form of (2) is given by

TV (u) =
∑

i

||Diu||. (3)

If || · || is the 2-norm, (2) defines isotropic TV with a discrete form:

TV (u) =
∑

i

√

(

D(1)u
)2

i
+
(

D(2)u
)2

i
.

If || · || is the 1-norm, (2) defines anisotropic TV with a discrete form:

TV (u) =
∑

i

∣

∣

(

D(1)u
)

i

∣

∣+
∣

∣

(

D(2)u
)

i

∣

∣.

We will assume || · || denotes the 2-norm.

Multispectral Deconvolution. Letting matrix Mi ∈ R
2l×lmn to contain l2 blocks of size

2 ×mn, with each diagonal block containing a matrix Di, and non-diagonal blocks filled

with zeros:

Mi =











Di 0 · · · 0

0 Di
. . .

...
...

. . .
. . . 0

0 · · · 0 Di











∈ R
2l×lmn,

the total variation for multichannel images in the discrete form is given as

MTV (u) =
∑

i

||Miu|| =
∑

i

√

||Diu(1)||22 + · · ·+ ||Diu(l)||22. (4)

The minimization problem for multichannel deconvolution with L1-norm fidelity term is

given as

min
u

∑

i

||Miu||+
µ

2
||Ku− f ||1, (5)

where µ > 0 is a parameter. Here, Miu ∈ R
2l. Matrix Mi contains the ith rows of M (j),

1 ≤ j ≤ 2l, as its rows, where

M =











M (1)

...

...

M (2l)











=











D 0 · · · 0

0 D
. . .

...
...

. . .
. . . 0

0 · · · 0 D











∈ R
2lmn×lmn, with D =

[

D(1)

D(2)

]

∈ R
2mn×mn.
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In [7], the authors proposed the alternating minimization algorithm for solving TV-

L2 single-channel deconvolution problems. The algorithm was extended to solve TV-L2

multichannel deconvolution problems in [8]. In [9], the authors proposed the alternating

minimization variable-splitting algorithm for minimizing (5). Also, the Split Bregman al-

gorithm for denoising grayscale images with L2-norm fidelity term was proposed in [3].

These formulations are related to problems that arise frequently in compressed sensing

[1, 2].

Inspired by these methodologies, we will minimize the multispectral deconvolution prob-

lem (5), within the Split Bregman minimization framework. We consider the following

minimization problem, which is based on a half-quadratic approximation of (5), and where

an additional variable z ∈ R
lmn is introduced to approximate Ku− f :

min
u,d,z

∑

i

||di||2 +
λ

2

∑

i

||di −Miu− bi||
2
2 + µ||z||1 +

α

2
||z − (Ku− f)− w||22. (6)

Here, λ and α are nonnegative parameters, and variables bi and w are chosen through

Bregman iterations [10, 5]:

bi ← bi + (Miu− di),

w ← w + (Ku− f − z).

For a fixed u, the minimization problem for di is

d
∗

i = argmin
di

∑

i

||di||2 +
λ

2

∑

i

||di −Miu− bi||
2
2.

We can explicitly solve the minimization problem for di using a generalized shrinkage

formula [7]:

di = max
(

||Miu+ bi||2 −
1

λ
, 0
) Miu+ bi

||Miu+ bi||2
.

The minimization problem for z is

z∗ = argmin
z

µ||z||1 +
α

2
||z − (Ku− f)− w||22,

with a minimizer given by the one-dimensional shrinkage:

z = max
{

|Ku− f + w| −
µ

α
, 0
}

sign(Ku− f + w).

For a fixed d and z, the minimization problem (6) for u is quadratic in u:

u∗ = argmin
u

∑

i

||di −Miu− bi||
2
2 +

α

λ
||z − (Ku− f)− w||22,

and the minimizer is given by the normal equations:

(

MTM +
α

λ
KTK

)

u = MT (b− d) +
α

λ
KT (f + z − w),
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Figure 1. One of the microwave channels of a simulated multispectral hurricane image.

Figure 2. The sinc kernel K(x, y) = sinc(x)sinc(y).

which are solved using the fast Fourier transform.

An efficient formulation for solving multichannel TV-L2 deconvolution

min
u

∑

i

||Miu||+
µ

2
||Ku− f ||22

within the Split Bregman framework, can similarly be obtained.

4. Results

We tested the method described above on 402 by 402 grayscale hurricane image in Fig-

ure 1. This data was simulated using cloud resolving numerical weather prediction model

[4]. We used 101 by 101 sinc kernel, defined as K(x, y) = sinc(x)sinc(y) and shown

on Figure 2 to blur the image. The sinc kernel K takes both positive and negative values

and closely characterizes point spread functions of microwave aperture synthesis systems.

Compared with out-of-focus and Gaussian blurs, the sinc kernel is significantly more diffi-

cult to deconvolve. If images convolved with out-of-focus, Gaussian, and sinc kernels have

identical signal-to-noise ratios (SNR), we expect deconvolution result of a sinc-convolved

image to have a smaller SNR compared to deconvolutions from other kernels.

Figures 3(a) and (c) show effects of degrading image in Figure 1 with the sinc blur as well

as impulse and Gaussian noise, respectively. Figures 3(b) and (d) display deconvolution

results obtained with the efficient TV-L1 and TV-L2 Split Bregman models, respectively.
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(a) Image in Figure 1 corrupted (b) Recovered image from (a)

with sinc(x)sinc(y) kernel and

impulse (salt and pepper) noise

(c) Image in Figure 1 corrupted (d) Recovered image from (c)

with sinc(x)sinc(y) kernel and

Gaussian noise

Figure 3. TV-L1 and TV-L2 Split Bregman deconvolution of a simulated hurricane image. Images

(a) and (b) show a deconvolution result for Figure 1 image corrupted with sinc blur and impulse

noise. Images (c) and (d) show a deconvolution result for Figure 1 image corrupted with sinc blur

and Gaussian noise.
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