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Robust 1-bit Compressive Sensing using Adaptive
Outlier Pursuit

Ming Yan, Yi Yang and Stanley Osher

Abstract—In compressive sensing (CS), the goal is to recover potentially infinite range) to a discrete value over somedini
signals at reduced sample rate compared to the classic Shamm  range, which will induce error on the measurements. The
Nyquist rate. However, the classic CS theory assumes the mea g ,antization of CS measurements has been studied recently

surements to be real-valued and have infinite bit precisionThe . ,
quantization of CS measurements has been studied recentyna and several new algorithms are proposed [7], (8], [91.I [10],

it has been shown that accurate and stable signal acquisitio [11], [12].
is possible even when each measurement is quantized to only Furthermore, for some real world problems, severe quanti-
one single bit. There are many algorithms proposed for 1- zation may be inherent or preferred. For example, in analog-

bit compressive sensing and they work well when there is no to-digital conversion (ADC), the acquisition of 1-bit meas-
noise in the measurements, e.g., there are no sign flips, wail !

the performance is worsened when there are a lot of sign MeNts of an analog signal only requires a comparator to zero,
flips in the measurements. In this paper, we propose a robust Which is an inexpensive and fast piece of hardware that is
method for recovering signals from 1-bit measurements usim robust to amplification of the signal and other errors, ag lon

adaptive outlier pursuit. This method will detect the posiions gg they preserve the signs of the measurements, see[1B], [14

where sign flips happen and recover the signals using *corrét ., yic’ haner we will focus on the CS problem when 1-bit
measurements. Numerical experiments show the accuracy ofs !

flips detection and high performance of signal recovery for ar ~ duantizer i_s used. _ _ _
algorithms compared with other algorithms. The 1-bit compressive sensing framework proposed_ in [13]

i i N
Index Terms—1-bit compressive sensing, adaptive outlier pur- IS as follows. Measurements of a signat R™ are computed
suit via

y = A(z) := sign(®z). )

HE theory of compressive sensing (CS) enables rec Therefore, the measurement operatigr) is a mapping from

. : ) N to the Boolean cubd BM := {—1,1}*. We have to
struction of sparse or compressible signals from a small . \er signal € 3% = {o € SN=1 : ||z]lo < K} where
number of linear measurements relative to the dimensioné) 1. {2 ¢ RV -Iﬁx.HQ — 1} is the 'unit (r)lyTaer-sphere of
the signal space [1]. 2], [3]L[4]L[5]. In this setting, wewe dimensionN. Since the scale of the signal is lost during the

y = dx, (1) quantization process, we can restrict the sparse signdie to
on the unit hyper-sphere. Jacques et al. provided two flavors
of results for the 1-bit CS framework [[15]: 1) a lower bound is
_ provided on the best achievable performance of this 1-bit CS
the set of linear measurements. It was demonstratedihat framework, and if the elements @ are drawn randomly from

sparse signals, i.er, € X whereXy := {x € R : |[z]o:= 4 Gaussian distribution or its rows are drawn unifoyml
supfz)| < K}, can be reconstructed exactlylifsatisfies the g, the unit sphere, then the solution will have boundedrerr

restricted isometry property (RIF)I[6]. It was also showatth 5 e order of the optimal lower bound. 2) A condition on the

random_ matrices will satisfy the RII? with high proba_bilify.i mapping 4, binary e-stable embedding @BE), that enables
the entries are chosen according to independent and idépticap e reconstruction is given to characterize the recoctson

distributed (i.i.d.) Gaussian distribution. performance even when some of the measurement signs have
Classic compressive sensing assumes that the measurenmﬁged (e.g., due to noise in the measurements).

are real valued and have infinite bit precision. However, ince this problem was introduced and studied by
In practice, (ish me?subrements rgufst be quanltlze(lj, 1€, e@%%founos and Baraniuk in 2008 [13], it has been studied by
measurement has fo be mapped from a real value (ovangny people and several algorithms have been develbped [13]
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|I. INTRODUCTION

wherez € RY is the signal,® € RM*N with M < N
is an underdetermined measurement system,;aadRM is
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(BIHT) performs better when there are only a few errors, aryy the noisy measurements. There is no method to detect the
the one-sided’s objective (BIHTY2) performs better when sign flips in the measurements, but adaptively finding tha sig
there are significantly more errors, which implies that BIHTflips and reconstructing the signals can be combined togethe
{5 is useful when the measurements contain significant nose in [22] to obtain better performance.

that might cause a large number of sign flips. i ) ,

In practice, there will always be noise in the measurements-€t US assume firstly that the noise level (the ratio of
during acquisition and transmission, therefore, a roblgsi-a the number of sign flips over the number of measurements
rithm for 1-bit compressive sensing when the measuremeff§ 1-Pit compressive sensing) is provided. Based on this
flip their signs is strongly needed. One possible way to builgformation, we can choose a proper integérsuch that
this robust algorithm is to introduce an outlier detectioft MOStL elements of the total measurements are wrongly
technique. detected _(havmg sign flips). For measurem@ndss{—l, 1M,

There are many applications where the accurate detectior'of R is a binary vector denoting the “correct” data:
outliers is needed. For example, when an image is corrupted A 1, if y; is “correct’,
by random-valued impulse noise, the corrupted pixels are i:{ 0, otherwise. ®)
useless in image denoising. There are some methods (e.g.,

adaptive center-weighted median filter (ACWME) [21]) fo%ccording to the assumption, we ha\%(l —A;) < L.
detecting the damaged pixels. But these methods will miss i=1 N

quit a lot of real noise and false-hit some noise-free pixelslntroducingA into the old problem solved by BIHT, we have

when the noise level is high. In_[22], we proposed a methqfe following new problem with unknown variabjeand A:
to adaptively detect the noise pixels and restore the image

with ¢ minimization. In_stead of de_tectmg the damaged plxels min S Aid(yi, (9z);)
before recovering the image, we iteratively restore thegiena z A i

) - Y
and_ detect the_ damaged p|xels._ Th|s_|dea Works_ really V\_/eII st. S (1-A) <L, (6)
for impulse noise removal. In this 1-bit compressive semsin =
framework, when there is a sign flip in one measurement, this A, €{0,1} i=1,2,---, M,
measurement will worsen the reconstruction performarfce. | lzll2 =1, |zl < K.

we can detect all the measurements with sign flips, then we
can change the signs for these measurements and improvéhe above model can also be interpreted in the following
the reconstruction performance a lot. However, it is muachkay. Let us consider the noisy measuremgrats the sign of
more difficult than detecting impulse noise and there is nbz with additive unknown noise, i.e. y = sign(®z + n).
method for detecting sign flips, but we can still utilize th&hough the binary measurement is robust to noise as long as
idea in [22] to adaptively find the sign flips. In this paper, wéhe sign does not change, there exist sotyie such that the
will introduce a method for robust 1-bit compressive segsircorresponding measurements change. In our problem, only a
which can detect the sign flips and reconstruct the signdls wiew measurements are corrupted, and only these corresgpndi
very high accuracy even when there are a large number of sigf's are important. Therefore; can be considered as sparse
flips. noise with nonzero entries at these locations, and we have to
This paper is organized as follows. We will introduce selereecover the signat from sparse corrupted measurements [23],
algorithms for reconstructing the signal and detectingsige [24], even when the measurements is acquired by taking the
flips in sectiorll. Sectiofi Tl studies the case when the @oisign of ®x + n. This equivalent problem is
information is not given. The performance of these algangh M
is illustrated in sectiori IV with comparison to BIHT and min Y o(yi, (Px); + ny)
x,n i

BIHT-45. We will end this work by a short conclusion. =1 7
: y st inflo < L. )
1. ROBUST 1-BIT COMPRESSIVESENSING USING lzllz =1, lzflo < K.
ADAPTIVE OUTLIER PURSUIT The equivalence is described in the appendix.

Binary iterative hard thresholding (BIHT or BIH#&)

in [15] is the algorithm for solving The problem defined in[16) is non-convex and has both

continuous and discrete variables. It is difficult to solve i
, M together, thus we use alternating minimization methodctvhi
e Z; (i, (D)) (3) separates the energy minimization o¥eandA into two steps:
subject to: ||z]2 =1, || <K,

where¢ is the one-sided; (or ¢3) objective: o Fix A and solve forz:
|0, if x-y>0, . M i _
P(z,y) = { |z -y (or |z - y|2/2)’ otherwise. (4) mm l; Ao (yi, (Pz);) (8)

The high performance of BIHT is demonstrated when all the st llzfz=1, [lzllo < K.
measurements are noise-free. However when there are a lot of This is the same a§](3) with revisdd andy. We only
sign flips, the performance of BIHT and BIHE-is worsened need to use théh rows of ® andy whereA; = 1.



YAN et al.: ROBUST 1-BIT COMPRESSIVE SENSING USING ADAPTIVE OUTLIERURSUIT 3

o Fix z and update\: about the noise is given. It is chosen smaller or larger than
M the true value, the performance of these algorithms will get
min Y Aoy, (Px);) worse. As shown numerically in sectignllV, whénis less
A v ©) than the true value, even if the detections are completely

correct, some sign flips still stay in the measurements. @n th
i=1 ) other hand, some correct measurements will be loktiff too
Aie{0,1} =12, M large, and the problem will have more solutions if the number
This problem is to choosé/ — L elements with least of total measurements is not large enough, which will affect
sum from M elements{¢(y;, (®z);)}},. Given anz the accuracy of the algorithm. Therefore, in this scenamo w

estimated from[{§8), we can updatein one step: have to apply anl detection skill to find anL which is not
. far from the true value.
0 if iy [0} i) > , . . . . . .
A= { 1: otﬁéf{wigefc) )27 (10)  When no noise information is given, the following proce-

dure can be applied to prediét The first-phase preparation
wherer is the L'" largest term of{¢(y;, (®x);)}M,. If is to do extensive experiments on simulated data with known
the L" and (L + 1)'" larges terms are equal, then wel, and record the Hamming distances betwelém) and noisy

can choose anyt such thatzfil A;=M - L and y of BIHT-¢5 and AOP. Here we can simply use the results
. in our first experiment in section ]V. The average of the
P oy, (Px)i) = Py vt oyi, (Dx)i). results describes nicely the behavior of these two algmsth

at different noise levels. Hence a formula can be derived to
predict the Hamming distance of AOP based on the results
Sobtained by BIHTE;. This could be a fair initial guess for
the noise level, and we can derive anbased on the result,
labeled asL,. Then we calculatd.; = ||A(x) — yl||o using
Algorithm 1 AOP the resultz gained by AOP withL, as the input forL. If L,

is greater thanly, which means thaf, is too small while

L, is too large, we sef.; as the upper bound,,., and Lg

as the lower bound ,,;,. Otherwise, ifL; is smaller than or
equal toL,, which means., may be too large, we uselL,

(0 < p < 1) as the newlL, to look for new L;. We will
keep doing this untill, is greater tharly. Then the previous

Since for each step, the updat&ddentifies the outliers, this
method is named as adaptive outlier pursuit (AOP). Whena
0, this is exactly the BIHT proposed ih [15]. Our algorithm i
as follows:

Input: ® € RM*N e {11} K >0,L>0,a>0,
Miter > 0

Initialization: z° = ®Ty/||®Ty||, k = 0, A = 1 € RM,
Loc =1: M, tol = inf, TOL = inf.

while & < Miter and L < tol do

Compute gFtt = 2% 4+ a®(Loc,:)"(y(Loc) — L, is defined as the upper bourdd.. and the newL, is
sign®(Loc, :)z%)). defined as the lower bounl,;,. This is just one method for
Updatez®+1 = g (BF+1), finding lower and upper bounds fdr, and there are certainly
Set tol= [y — A(z"1)]o. other possible ways to decide the bounds. Then we use the
if tol <TOL then, bisection method to find a bettdr. The mean ofL,,., and
ComputeA with (10). Luin (Lmean) is then used as input to derivie, with AOP.
Update Loc to be the location dfentries ofA. If L, is greater thanL,,cqn, We updateL i, With L,can.
Set TOL = tol. Otherwise, L,,can IS S€t asLyax. This bisection method is
end if applied to update these two bounds uttjax — Lmin < 1.
k=Fk+1. The final L,;,, is our inputL.
end while

return =% /||2*||.

IV. NUMERICAL RESULTS

Nk (v) computes the besk'-term approximation ofv by  |n this section we use several numerical experiments to
thresholding. Sincg; € {—1, 1}, once we find the locations demonstrate the effectiveness of AOP algorithms. Here AOP
of the errors, instead of deleting these data, we can aigdmplemented in the following four ways: 1) AOP with one-
“correct” them by flipping their signs. Hence can also be sided¢; objective (AOP); 2) AOP with flips and one-sidéd
updated with® and this new measurements. This algorithrgpjective (AOP-f); 3) AOP with one-side objective (AOP-
with changing signs is called AOP with flips. (5); 4) AOP with flips and one-sidet} objective (AOP#,-f).

Remark: Similar to BIHT-/2, we can also choose the oneThe four algorithms, together with BIHT and BIHE; are
Sidedég Objective instead Otl ObjeCtive and obtain two Otherstudied and Compared in the fo”owing experiments_

algorithms. The setup for our experiments is as follows. We first
generate a matrie € RM>*YN whose elements follow i.i.d.
lIl. THE CASE WITH L, UNKNOWN Gaussian distribution. Then we generate the origiiadparse
In previous section, we assume that the number of signalz* € R”. Its non-zero entries are drawn from standard
corrupted measurements, is known in advance. However@aussian distribution and then normalized to have narm
real world applications there are cases when no pre-kngeled,* € {—1,1}* is computed byA(z*).
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the average Hamming distances betwedn) and the noisy
measurementg for all algorithms. If the sign flips can be
found correctly, then the Hamming distance betwdén) and

y should be equal to noise level. The result shows that average
Hamming distances for AOP and AOP-f are slightly above
the noise levels, which means that AOP with one-sided
objective performs better in consistency than other allyors

in noisy cases.

In order to show that our algorithms can find the positions
of sign flips with high accuracy, we measure the probahilitie
of correct detections of sign flips in the noisy measurements
for different noise levels from 0.5% to 10% in Figuké 2
(M = N = 1000, K = 10). The exact number of sign flips is
used ad. in the algorithms and we compare the exact locations
of sign flips in measuremeniswith those detected from the
algorithms for all 100 trials, then the average probabilities
of correct detections are shown for different algorithms at
2 meshromention i © o different noise levels. From this figure, we can see that all
(c) Hamming error betweer (z) andd) Hamming distance betweed(z) four algorithms have high accuracy in detecting the sigrsflip
A(z*) andy When the noise level is lown<{4%), the accuracy of AOP and
C . . I AOP-f can be as high as 95%, even when the noise level is
Fig. 1: Algorithm comparison on corrupted data with diffietre h?h (.., 10%), the accuracy of AOP and AOP-f is still above
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noise levels. (a) average SNR vs noise level, (b) averag %. Comparing to algorithms with one-sidéd objective,

angular error vs noise Ieve_l, (c) average Hamming grra gorithms with one-sided, objective have lower accuracy.
betweenA(z) and A(xz*) vs noise level, (d) average HammlngThe accuracy for AOR, and AOP4y- is around 80%.

distance betweem(x) and noisy measurementsvs noise
level. AOP proves to be more robust to measurement sign ;
flips compared with BIHT.

A. noise levels test

In our first experiment, we se/ = N = 1000, K = 10,
and examine the performance of these algorithms on data with
different noise levels. Here in each test, we choose a few
measurements at random and flip their signs. The noise Evetig, 2: The probabilities of correct detections of sign flfps
between)% and10% and we assume it is known in advancegifferent noise levels ranging from 0.5% to 10%. AOP and
For each level, we perform00 trials and record the averageaop-f have very high accuracy (great than 90%) in detecting

signal-to-noise ratio (SNR), average reconstruction &Ergutne sign flips, while AOP% and AOP#,-f have relatively
error for each reconstructed signal with respect tox™, |ower accuracy (around 80%).

average Hamming error betwedixz) and A(z*) and average

Hamming distance betweef(z) and the noisy measurements

y. Here SNR is denoted by log, o (||z|?/||z—2*||?), angular

error is defined asrccos(z, z*) /m, Hamming error stands for B. M/N test

||[A(z)—A(x*)||o/M and the Hamming distance betweé ) In the second experimenty = 1000, KX = 10 and
and y, defined as|A(xz) — yllo/M, is used to measure thethe noise level3% are fixed, and we chang&//N within
difference betweeni(z) and the noisy measurementsThe the range(0,2]. 40 different M/N are considered and we
results are depicted in Figuté 1. The plots demonstrate tiparform 300 tests for each value. The results are displayed
in these comparisons four AOP algorithms outperform BIHIR five different ways: the average SNR, average angular
and BIHT; for all noise levels, significantly so when moreerror, average Hamming error betweet(z) and A(z*),
than 2% of the measurements are corrupted. Compared wilierage Hamming distance betweéfx) andy and average
BIHT, BIHT-/5 tends to give worse results when there are onyercentage of coefficient “misses”. Here “misses” stands fo
a few sign flips iny and better results if we have high noisghe coefficients where:} # 0 while z; = 0. According to
level. This has been shown and studied_in [15]. Of all the AOHgure[3, although all the algorithms show the same trend
series, AOP and AOP-f give better results compared with AOBs M/N increases, AOP and AOP-f always obtain a much
¢ and AOP#,-f. We can also see that there is a lot of overlapmaller angular error (higher SNR) than BIHT and BIK:T-
between the results obtained by AOP and the ones acquifidtere are also fewer coefficient misses in the results aeguir
by AOP with flips, especially when one-sidég objective is by AOP series. Furthermore, we see that even wB&n
used, the results are almost the same. Figlire 1(d) comparkshe measurements are corrupted, AOP can still recover a

correct detection probability
o
®
&

2 4 6 8 10
% measurement sign flip
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Fig. 4: Hamming error vs angular error with different. AOP gives the most consistent results #idr= 0.7N andM = 1.5N.

In these two cases we can see a linear relationgfjip ~ C'+¢x between the average angular ergt,, and average Hamming
erroreg, whereC' is constant. For really small M\{ = 0.1N) BIHT returns almost the same results as AOP since AOP may
fail to find the exact sign flips in the noisy measurements. d&ghed line1g90 + € IS @ upper bound for 1000 trials.

signal with SNR greater tha20 using less thar.5 bits per
coefficient of z*. In Hamming error comparison, AOP and
AOP-f beat other algorithms significantly whéd/N > 0.15.
Moreover, we see that the average Hamming error of AOP
and AOP-f is extremely close to zero whéd/N > 0.5.
When M /N < 0.15, the seemingly failure of AOP and AOP-
f compared with BIHT is due to the fact that there are usually
more than one solution t¢](6) for really smalf, and with
high probability our method will return one solution with
sign flips, which may not be the actual ones. Hence we may
not be able to detect the actual errors in the measurements.
We also try to explore the relationship between the Ham-
ming error betweem(z) and A(z*) and the reconstruction
angular error. WithV = 1000, K = 10 and the noise level
3% fixed, we plot the Hamming error vs angular error for
i three differentM in Figure[4. Since AOP and AOP with flips
Foma tend to return almost the same results if we use the same
e : e , Objective (one-sided,; or one-sided) for = update, we only
o _ M compare the results acquired by BIHT, BIHT- AOP and
gd'ﬁr;g'”g distance between ()(d) Hamming error between(z) and - Aqp s, We can see clearly that almost all the blue (+) points
Y stay in the lower left part of the graph faW¥ = 0.7N and
M = 1.5N, which proves that AOP gives more consistent
results compared with other three algorithms. For these two
M, the average angular error is close to a linear function of
average Hamming error, which is predicted bySE property
in [15]. We also plot an empirical upper bound for AOP
of €1000 + €y defined in [15], wheres1ggp is the largest
angular error of AOP andy is the Hamming distance. For
5 ) especially “under-sampled” case likef = 0.1N, none of
these algorithms is able to return consistent reconstmsti
as we can see the points scatter almost randomly over the
Fig. 3: Algorithm comparison on corrupted data with differe domain. In this case the results obtained by BIHT stay really
M/N. (a) average SNR va//N, (b) average angular error vsclose to those gained by AOP. As mentioned above, this is
M/N, (c) average Hamming error betweelfr) and A(z*) because AOP may not be able to detect the exact sign flips in
vs M/N, (d) average Hamming distance betweé(r) and the noisy measurements whe is too small.
y VS M/N, (e) average percentage of coefficient misses vs
M/N. AOP yields a remarkable improvement in reducing the .
Hamming and angular error and achieving higher SNR.  C. high noise levels
In this subsection, we study the performance of AOP and
AOP-{5 when a large number of measurements are corrupted.

average angular err
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average Hamming distance with noisy y
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Two settings are considered. In the first experiment, we fiigresses from its true value. According to this plot, wewno
N = 1000, K = 10, and change thé//N ratio between that in order to obtain good performance for our method, we
0.05 and 2. Four different noise levels are considered frorshould choose a propér as input.

0.1 to 0.4 and we record the average angular error and correct

detection probability from100 tests. In the second setting,
we fix M = 2000, N = 1000 and changek from 1 to 30.
Still, four noise levels are considered and the mean resul; .,
from 100 tests are recorded. From Figdre 5 (a) and (b), W'g
can see similar trend for the behavior of angular error angos
correct detection probability as we have discovered in ifeigu

0.25 0.11

average

0.1

average Hamming error
o
(=3
<]

According to (c), (d), for all the noise levels the perforroan ' 0.0

of these two algorithms tends to get worse fsincreases. 005 , 1 oak 1 i)
We also have another interesting discovery that when theenoi Wi ' ' Wi '
level is greater thaf.2, AOP-, turns out to be a better choice (@) Angular Error (b) Hamming Error

than AOP. This is because when the noise level is extrem%g_ 6: AOP performance with different inputs. Z has to

hlgh,_ev_en with outlier detection technique, lots _Of sigpsii stay close to its true value in order to get good performance.
remain in the recovered measurements, and this new “noise

level” is still relatively high. According to [[15], BIHT.

outperforms BIHT when the measurements contain lots of sign

flips. Therefore, when the noise level is high enough, AQP-E. unknown L

is considered as a better choice compared with AOP. To show that our method works even whdn is not
given, we use the method described in Section Il to find an
approximation of L, and compare the results of AOP with
different L. Here M = N = 1000, K = 10 are fixed, and

10 different noise levels (from 1% to 10%) are tested. Three
inputs for L: the initial Ly predicted from the result of BIHT-
/5, L obtained from bisection method, exakt are used in

o
©

o
o

o
s

average Angular error

correct detection percentage

3 AOP to obtain the results. The following figuré 7 is depicted
338 [ 02 AR with the average results fror00 trials. Even with the initial
LEABR 9944 Lo, the results are comparable to those with exActand
0 T e % Y 2 bisection method can provide a better approximation Kor
(@) Angular Error vs M/N (b) Correct Detection vs M/N with longer time for predicting_.
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Fig. 5: AOP and AOP% performance under different noise
levels. (a) average angular error vs M/N with different eoisFig. 7: Comparison of results by differeptat different noise
levels, (b) correct detection percentage vs M/N with difer levels from 1% to 10%. (a) average angular error vs noise
noise levels, (c) average angular error vs K with differesisa  level, (b) average Hamming distance betwetn) and noisy
levels, (d) correct detection percentage vs K with differesy VS noise level. By choosing appropriateas the input, we
noise levels. The performance gets better when we incre&8é still obtain the results comparable to those with exact
M/N or decreaséx.

V. CONCLUSION

D. L mismatch In this paper, we propose a method based on adaptive outlier
In Figure[®, we analyze the influence of incorrect selectigoursuit for robust 1-bit compressive sensing. By iterdyive
of L on AOP. Here we choosll = N = 1000, K = 10, noise detecting the sign flips in measurements and recovering the
level 5%, and change the input value frofr5L to 1.5L. 100  signals from “correct” measurements, this method can nbtai
tests are conducted and the mean results are recorded. lbédier results in both finding the noisy measurements and
easily seen that the error will become larger when the idputrecovering the signals, even when there are a lot of sign
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flips in the measurements. Four algorithms (AOP, AOP-f0]
AOP-¢, and AOP¥,-f) are given based on this method, and

the performances of these four algorithms are shown in the
numerical experiments. The algorithms based on one-dided11]
objective (AOP and AOP-f) have better performance compared

to the other two algorithm (AOP; and AOP¥,-f), which are

[12]

based on one-side€h objective when the noise level is not

high (less than 20%), when the noise level is extremely high
AOP-(5 is a better choice compared with AOP. In addition, w

[913

proposed a simple method to find a candidate for the number of
sign flipsL whenL is unknown and the numerical experimentg4l

show that the performance of AOP with this inexact input

is comparable with that of exadt.

APPENDIX

[15]

[16]

In this appendix, we show the equivalence of probléi (6)
and [7). If (z,n) satisfies the constraints of problef (7), We )

can define

if n; = O,
otherwise

(11)

L,
-

then we havep(y;, (Px); + n;) = 0 if A; = 0, since we

can always findn; such thate(y;, (®x); + n;) = 0 for fixed
z. If A, = 1, we haven; = 0, thus ¢(y;, (Pz); + n;) =
o(yi, (Px);). Therefore, problenf{7) is equivalent to

M
Z:l Aid(ys, (Px);)

min

z,mn —

st fnllo < L, (12)
lzll2=1, |lzllo < K.

From the relation ofA andn in (1), we know the constraint

(18]

[19]
[20]

[21]

[22]

[23]

[n]lo < L in the above problem can be replaced with the
constraints onA defined in [[6). Therefore, problerh] (6) and

(@) are equivalent.

REFERENCES

[1] E. Candes, “Compressive sampling,” int. Congress of Mathematics,
vol. 3, Madrid, Spain, 2006, pp. 1433-1452.

[2] E.J.Candes, J. K. Romberg, and T. Tao, “Robust unceytarinciples:

exact signal reconstruction from highly incomplete freggyeinforma-

tion,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp.

489-509, 2006.

E. J. Candeés, J. K. Romberg, and T. Tao, “Stable sigradvery from

incomplete and inaccurate measuremer@sfhmunications on Pure and

Applied Mathematics, vol. 59, no. 8, pp. 1207-1223, 2006.

E. J. Candes and T. Tao, “Near-optimal signal recoveomf random

projections: Universal encoding strategie3ZEE Transactions on In-

formation Theory, vol. 52, no. 12, pp. 5406-5425, 2006.

D. L. Donoho, “Compressed sensindEEE Transactions on Informa-

tion Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

E. Candes, “The restricted isometry property and itplioations for

compressed sensingComptes Rendus Mathematique, vol. 346, no. 9-

10, pp. 589-592, 2008.

[7]1 J. Z. Sun and V. K. Goyal, “Quantization for Compressechsiag
Reconstruction,” ifSAMPTA' 09, International Conference on Sampling

(3]

(4]

(5]
(6]

Theory and Applications, L. Fesquet and B. Torrésani, Eds., Marseille

France, 2009, p. Special session on sampling and quaatizati

[8] W. Dai, H. V. Pham, and O. Milenkovic, “Distortion-rateirictions for
quantized compressive sensing,’lEEEE Information Theory Workshop
on Networking and Information Theory, 2009, pp. 171-175.

[9] A. Zymnis, S. Boyd, and E. Candes, “Compressed sensitly gan-
tized measurements|EEE Sgnal Processing Letters, vol. 17, no. 2, pp.
149-152, 2010.

[24]

J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. GraBaik,
“Democracy in action: Quantization, saturation, and caspive sens-
ing,” Applied and Computational Harmonic Analysis, vol. 31, no. 3, pp.
429-443, 2011.

L. Jacques, D. K. Hammond, and M.-J. Fadili, “Dequantizcom-
pressed sensing: When oversampling and non-gaussianaiotsstom-
bine.” IEEE Transactions on Information Theory, pp. 559-571, 2011.
Y. Plan and R. Vershynin, “Robust 1-bit compressed isgnand sparse
logistic regression: A convex programming approach;Xiv preprint
arXiv:1202.1212, 2012.

] P. T. Boufounos and R. G. Baraniuk, “One-bit compressiensing,”

in Conference on Information Sciences and Systems (CISS), Princeton,
March 2008.

J. N. Laska and R. G. Baraniuk, “Regime change: Bit-dept
versus measurement-rate in compressive sensiAgXiv preprint
arXiv:1110.3450, 2011.

L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. BakafiRobust 1-
bit compressive sensing via binary stable embeddings ofspectors,”
ArXiv preprint arXiv:1104.3160, 2011.

P. T. Boufounos, “Greedy sparse signal reconstructiom sign mea-
surements,” irProceedings of the 43rd Asilomar conference on Sgnals,
systems and computers, ser. Asilomar'09. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 1305-1309.

A. Gupta, R. Nowak, and B. Recht, “Sample complexity fbibit
compressed sensing and sparse classificationProteedings of the
|EEE International Symposium on Information Theory, 2010, pp. 1553—
1557.

J. N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, “Trustt karify: Fast
and accurate signal recovery from 1-bit compressive measamts,”
|IEEE Transactions on Sgnal Processing, vol. 59, no. 11, pp. 5289—
5301, 2011.

Y. Plan and R. Vershynin, “One-bit compressed sensiyglibear
programming,”ArXiv preprint arXiv:1109.4299, 2011.

T. Zhou and D. Tao, “Hamming compressed sensifgXiv preprint
arXiv:1110.0073, 2011.

T. Chen and H. R. Wu, “Adaptive impulse dectection usitenter-
weighted median filters/EEE Sgnal Processing Letters, vol. 8, no. 1,
pp. 1-3, 2001.

M. Yan, “Restoration of images corrupted by impulseseousing blind
inpainting andé¢p norm,” UCLA CAM report 11-72, 2011.

J. N. Laska, M. A. Davenport, and R. G. Baraniuk, “Exa@nal
recovery from sparsely corrupted measurements througlpuhsuit of
justice,” in Proceedings of the 43rd Asilomar conference on Sgnals,
systems and computers, ser. Asilomar’'09. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 1556-1560.

C. Studer, P. Kuppinger, G. Pope, and H. Bolcskei, ‘tRecy of sparsely
corrupted signals,JEEE Transactions on Information Theory, to appear.

Ming Yan received the B.S. and M.S. degrees in
computational Mathematics from University of Sci-
ence and Technology of China, Hefei, China, in 2005
and 2008, respectively. He is currently pursuing the
Ph.D. degree from the Department of Mathematics,
University of California, Los Angeles.

His current research interests include variational
and optimization methods for image and signal pro-
cessing.

Yi Yang received the B.S. degrees in Mathemat-
ics from University of Science and Technology
of China, Hefei, China, in 2009. She is currently
pursuing the Ph.D. degree from the Department of
Mathematics, University of California, Los Angeles.
Her current research interests include optimization
and its applications to image and signal processing.



Stanley Osherreceived the Ph.D. degree in mathe-
matics from New York University’s Courant Institute
of Mathematical Sciences.

He is a Professor of Mathematics, Computer Sci-
ence and Electrical Engineering at UCLA. He is also
the Director of Special Projects of the NSF funded
Institute for Pure and Applied Mathematics. He is a
member of the National Academy of Sciences, the
American Academy of Arts and Sciences and is one
of the top 25 most highly cited researchers in both
mathematics and computer sciences.

He has received numerous academic honors and has co-fouhrkssl
successful companies, each based largely on his own (jeésarch. His
current interests mainly involve information science whincludes graphics,
image processing, compressed sensing and machine learning

He has co-invented and/or co-developed the following wideded algo-
rithms: (1) Essentially nonoscillatory (ENO), weightedsestially nonoscil-
latory (WENO) and other shock capturing schemes for hygiersgstems of
conservation laws and their analogues for Hamilton-Jaeghations. (2) The
level set method for capturing dynamic surface evoluti®).Total variation
and other partial differential based methods for image gssing. (4) Bregman
iterative methods for L1 and related regularized problentsckv arrive in
compressive sensing, matrix completion, imaging and disesv (5) Diffusion
generated motion by mean curvature and other threshholantigs methods.

His website i$http//www.math.ucla.edugjo. His recent papers are on the
UCLA Math Dept's CAM website:
http://www.math.ucla.edu/applied/cam/index.shtml.

TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING


http://www.math.ucla.edu/applied/cam/index.shtml

	Introduction
	Robust 1-bit Compressive Sensing using Adaptive Outlier Pursuit
	The case with L unknown
	Numerical Results
	noise levels test
	M/N test
	high noise levels
	L mismatch
	unknown L

	Conclusion
	References
	Biographies
	Ming Yan
	Yi Yang
	Stanley Osher


