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Robust 1-bit Compressive Sensing using Adaptive
Outlier Pursuit

Ming Yan, Yi Yang and Stanley Osher

Abstract—In compressive sensing (CS), the goal is to recover
signals at reduced sample rate compared to the classic Shannon-
Nyquist rate. However, the classic CS theory assumes the mea-
surements to be real-valued and have infinite bit precision.The
quantization of CS measurements has been studied recently and
it has been shown that accurate and stable signal acquisition
is possible even when each measurement is quantized to only
one single bit. There are many algorithms proposed for 1-
bit compressive sensing and they work well when there is no
noise in the measurements, e.g., there are no sign flips, while
the performance is worsened when there are a lot of sign
flips in the measurements. In this paper, we propose a robust
method for recovering signals from 1-bit measurements using
adaptive outlier pursuit. This method will detect the positions
where sign flips happen and recover the signals using “correct”
measurements. Numerical experiments show the accuracy of sign
flips detection and high performance of signal recovery for our
algorithms compared with other algorithms.

Index Terms—1-bit compressive sensing, adaptive outlier pur-
suit

I. I NTRODUCTION

T HE theory of compressive sensing (CS) enables recon-
struction of sparse or compressible signals from a small

number of linear measurements relative to the dimension of
the signal space [1], [2], [3], [4], [5]. In this setting, we have

y = Φx, (1)

where x ∈ R
N is the signal,Φ ∈ R

M×N with M < N
is an underdetermined measurement system, andy ∈ R

M is
the set of linear measurements. It was demonstrated thatK-
sparse signals, i.e.,x ∈ ΣK whereΣK := {x ∈ R

N : ‖x‖0 :=
|supp(x)| ≤ K}, can be reconstructed exactly ifΦ satisfies the
restricted isometry property (RIP) [6]. It was also shown that
random matrices will satisfy the RIP with high probability if
the entries are chosen according to independent and identically
distributed (i.i.d.) Gaussian distribution.

Classic compressive sensing assumes that the measurements
are real valued and have infinite bit precision. However,
in practice, CS measurements must be quantized, i.e., each
measurement has to be mapped from a real value (over a
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potentially infinite range) to a discrete value over some finite
range, which will induce error on the measurements. The
quantization of CS measurements has been studied recently
and several new algorithms are proposed [7], [8], [9], [10],
[11], [12].

Furthermore, for some real world problems, severe quanti-
zation may be inherent or preferred. For example, in analog-
to-digital conversion (ADC), the acquisition of 1-bit measure-
ments of an analog signal only requires a comparator to zero,
which is an inexpensive and fast piece of hardware that is
robust to amplification of the signal and other errors, as long
as they preserve the signs of the measurements, see [13], [14].
In this paper, we will focus on the CS problem when 1-bit
quantizer is used.

The 1-bit compressive sensing framework proposed in [13]
is as follows. Measurements of a signalx ∈ R

N are computed
via

y = A(x) := sign(Φx). (2)

Therefore, the measurement operatorA(·) is a mapping from
R

N to the Boolean cube1 BM := {−1, 1}M . We have to
recover signalx ∈

∑

∗

K := {x ∈ SN−1 : ‖x‖0 ≤ K} where
SN−1 := {x ∈ R

N : ‖x‖2 = 1} is the unit hyper-sphere of
dimensionN . Since the scale of the signal is lost during the
quantization process, we can restrict the sparse signals tobe
on the unit hyper-sphere. Jacques et al. provided two flavors
of results for the 1-bit CS framework [15]: 1) a lower bound is
provided on the best achievable performance of this 1-bit CS
framework, and if the elements ofΦ are drawn randomly from
i.i.d. Gaussian distribution or its rows are drawn uniformly
from the unit sphere, then the solution will have bounded error
on the order of the optimal lower bound. 2) A condition on the
mappingA, binary ǫ-stable embedding (BǫSE), that enables
stable reconstruction is given to characterize the reconstruction
performance even when some of the measurement signs have
changed (e.g., due to noise in the measurements).

Since this problem was introduced and studied by
Boufounos and Baraniuk in 2008 [13], it has been studied by
many people and several algorithms have been developed [13],
[15], [16], [17], [18], [19], [20]. Binary iterative hard thresh-
olding (BIHT) [15] is shown to perform better than other
algorithms such as matching sign pursuit (MSP) [16] and
restricted-step shrinkage (RSS) [18] in both reconstruction
error as well as consistency, see [15] for more details. The
experiment in [15] shows that the one-sidedℓ1 objective

1Generally, theM -dimensional Boolean cube is defined as{0, 1}M .
Without loss of generality, we use{−1, 1}M instead.
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(BIHT) performs better when there are only a few errors, and
the one-sidedℓ2 objective (BIHT-ℓ2) performs better when
there are significantly more errors, which implies that BIHT-
ℓ2 is useful when the measurements contain significant noise
that might cause a large number of sign flips.

In practice, there will always be noise in the measurements
during acquisition and transmission, therefore, a robust algo-
rithm for 1-bit compressive sensing when the measurements
flip their signs is strongly needed. One possible way to build
this robust algorithm is to introduce an outlier detection
technique.

There are many applications where the accurate detection of
outliers is needed. For example, when an image is corrupted
by random-valued impulse noise, the corrupted pixels are
useless in image denoising. There are some methods (e.g.,
adaptive center-weighted median filter (ACWMF) [21]) for
detecting the damaged pixels. But these methods will miss
quit a lot of real noise and false-hit some noise-free pixels
when the noise level is high. In [22], we proposed a method
to adaptively detect the noise pixels and restore the image
with ℓ0 minimization. Instead of detecting the damaged pixels
before recovering the image, we iteratively restore the image
and detect the damaged pixels. This idea works really well
for impulse noise removal. In this 1-bit compressive sensing
framework, when there is a sign flip in one measurement, this
measurement will worsen the reconstruction performance. If
we can detect all the measurements with sign flips, then we
can change the signs for these measurements and improve
the reconstruction performance a lot. However, it is much
more difficult than detecting impulse noise and there is no
method for detecting sign flips, but we can still utilize the
idea in [22] to adaptively find the sign flips. In this paper, we
will introduce a method for robust 1-bit compressive sensing
which can detect the sign flips and reconstruct the signals with
very high accuracy even when there are a large number of sign
flips.

This paper is organized as follows. We will introduce several
algorithms for reconstructing the signal and detecting thesign
flips in section II. Section III studies the case when the noise
information is not given. The performance of these algorithms
is illustrated in section IV with comparison to BIHT and
BIHT-ℓ2. We will end this work by a short conclusion.

II. ROBUST 1-BIT COMPRESSIVESENSING USING

ADAPTIVE OUTLIER PURSUIT

Binary iterative hard thresholding (BIHT or BIHT-ℓ2)
in [15] is the algorithm for solving

min
x

M
∑

i=1

φ(yi, (Φx)i)

subject to: ‖x‖2 = 1, ‖x‖0 ≤ K,
(3)

whereφ is the one-sidedℓ1 (or ℓ2) objective:

φ(x, y) =

{

0, if x · y > 0,
|x · y| (or |x · y|2/2), otherwise.

(4)

The high performance of BIHT is demonstrated when all the
measurements are noise-free. However when there are a lot of
sign flips, the performance of BIHT and BIHT-ℓ2 is worsened

by the noisy measurements. There is no method to detect the
sign flips in the measurements, but adaptively finding the sign
flips and reconstructing the signals can be combined together
as in [22] to obtain better performance.

Let us assume firstly that the noise level (the ratio of
the number of sign flips over the number of measurements
for 1-bit compressive sensing) is provided. Based on this
information, we can choose a proper integerL such that
at mostL elements of the total measurements are wrongly
detected (having sign flips). For measurementsy ∈ {−1, 1}M ,
Λ ∈ R

M is a binary vector denoting the “correct” data:

Λi =

{

1, if yi is “correct”,
0, otherwise.

(5)

According to the assumption, we have
M
∑

i=1

(1− Λi) ≤ L.

IntroducingΛ into the old problem solved by BIHT, we have
the following new problem with unknown variablex andΛ:

min
x,Λ

M
∑

i=1

Λiφ(yi, (Φx)i)

s.t.
M
∑

i=1

(1− Λi) ≤ L,

Λi ∈ {0, 1} i = 1, 2, · · · ,M,
‖x‖2 = 1, ‖x‖0 ≤ K.

(6)

The above model can also be interpreted in the following
way. Let us consider the noisy measurementy as the sign of
Φx with additive unknown noisen, i.e. y = sign(Φx + n).
Though the binary measurement is robust to noise as long as
the sign does not change, there exist someni’s such that the
corresponding measurements change. In our problem, only a
few measurements are corrupted, and only these corresponding
ni’s are important. Therefore,n can be considered as sparse
noise with nonzero entries at these locations, and we have to
recover the signalx from sparse corrupted measurements [23],
[24], even when the measurements is acquired by taking the
sign ofΦx+ n. This equivalent problem is

min
x,n

M
∑

i=1

φ(yi, (Φx)i + ni)

s.t. ‖n‖0 ≤ L,
‖x‖2 = 1, ‖x‖0 ≤ K.

(7)

The equivalence is described in the appendix.

The problem defined in (6) is non-convex and has both
continuous and discrete variables. It is difficult to solve it
together, thus we use alternating minimization method, which
separates the energy minimization overx andΛ into two steps:

• Fix Λ and solve forx:

min
x

M
∑

i=1

Λiφ(yi, (Φx)i)

s.t. ‖x‖2 = 1, ‖x‖0 ≤ K.
(8)

This is the same as (3) with revisedΦ and y. We only
need to use theith rows ofΦ andy whereΛi = 1.
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• Fix x and updateΛ:

min
Λ

M
∑

i=1

Λiφ(yi, (Φx)i)

s.t.
M
∑

i=1

(1− Λi) ≤ L,

Λi ∈ {0, 1} i = 1, 2, · · · ,M.

(9)

This problem is to chooseM − L elements with least
sum from M elements{φ(yi, (Φx)i)}Mi=1. Given anx
estimated from (8), we can updateΛ in one step:

Λi =

{

0, if φ(yi, (Φx)i) ≥ τ,
1, otherwise.

(10)

whereτ is theLth largest term of{φ(yi, (Φx)i)}Mi=1. If
the Lth and (L + 1)th larges terms are equal, then we
can choose anyΛ such that

∑M

i=1
Λi = M − L and

min
i,Λi=0

φ(yi, (Φx)i) ≥ max
i,Λi=1

φ(yi, (Φx)i).

Since for each step, the updatedΛ identifies the outliers, this
method is named as adaptive outlier pursuit (AOP). WhenL =
0, this is exactly the BIHT proposed in [15]. Our algorithm is
as follows:

Algorithm 1 AOP

Input: Φ ∈ R
M×N , y ∈ {−1, 1}M , K > 0, L ≥ 0, α > 0,

Miter > 0
Initialization: x0 = ΦT y/‖ΦTy‖, k = 0, Λ = 1 ∈ R

M ,
Loc = 1 : M , tol = inf, TOL = inf.
while k ≤ Miter andL ≤ tol do

Compute βk+1 = xk + αΦ(Loc, :)T (y(Loc) −
sign(Φ(Loc, :)xk)).

Updatexk+1 = ηK(βk+1),
Set tol= ‖y −A(xk+1)‖0.
if tol ≤TOL then,

ComputeΛ with (10).
Update Loc to be the location of1-entries ofΛ.
Set TOL = tol.

end if
k = k + 1.

end while
return xk/‖xk‖.

ηK(v) computes the bestK-term approximation ofv by
thresholding. Sinceyi ∈ {−1, 1}, once we find the locations
of the errors, instead of deleting these data, we can also
“correct” them by flipping their signs. Hencex can also be
updated withΦ and this new measurements. This algorithm
with changing signs is called AOP with flips.

Remark: Similar to BIHT-ℓ2, we can also choose the one-
sidedℓ2 objective instead ofℓ1 objective and obtain two other
algorithms.

III. T HE CASE WITHL UNKNOWN

In previous section, we assume thatL, the number of
corrupted measurements, is known in advance. However in
real world applications there are cases when no pre-knowledge

about the noise is given. IfL is chosen smaller or larger than
the true value, the performance of these algorithms will get
worse. As shown numerically in section IV, whenL is less
than the true value, even if theL detections are completely
correct, some sign flips still stay in the measurements. On the
other hand, some correct measurements will be lost ifL is too
large, and the problem will have more solutions if the number
of total measurements is not large enough, which will affect
the accuracy of the algorithm. Therefore, in this scenario we
have to apply anL detection skill to find anL which is not
far from the true value.

When no noise information is given, the following proce-
dure can be applied to predictL. The first-phase preparation
is to do extensive experiments on simulated data with known
L and record the Hamming distances betweenA(x) and noisy
y of BIHT-ℓ2 and AOP. Here we can simply use the results
in our first experiment in section IV. The average of the
results describes nicely the behavior of these two algorithms
at different noise levels. Hence a formula can be derived to
predict the Hamming distance of AOP based on the results
obtained by BIHT-ℓ2. This could be a fair initial guess for
the noise level, and we can derive anL based on the result,
labeled asL0. Then we calculateLt = ‖A(x) − y‖0 using
the resultx gained by AOP withL0 as the input forL. If Lt

is greater thanL0, which means thatL0 is too small while
Lt is too large, we setLt as the upper boundLmax andL0

as the lower boundLmin. Otherwise, ifLt is smaller than or
equal toL0, which meansL0 may be too large, we useµL0

(0 < µ < 1) as the newL0 to look for newLt. We will
keep doing this untilLt is greater thanL0. Then the previous
L0 is defined as the upper boundLmax and the newL0 is
defined as the lower boundLmin. This is just one method for
finding lower and upper bounds forL, and there are certainly
other possible ways to decide the bounds. Then we use the
bisection method to find a betterL. The mean ofLmax and
Lmin (Lmean) is then used as input to deriveLt with AOP.
If Lt is greater thanLmean, we updateLmin with Lmean.
Otherwise,Lmean is set asLmax. This bisection method is
applied to update these two bounds untilLmax − Lmin ≤ 1.
The finalLmin is our inputL.

IV. N UMERICAL RESULTS

In this section we use several numerical experiments to
demonstrate the effectiveness of AOP algorithms. Here AOP
is implemented in the following four ways: 1) AOP with one-
sidedℓ1 objective (AOP); 2) AOP with flips and one-sidedℓ1
objective (AOP-f); 3) AOP with one-sidedℓ2 objective (AOP-
ℓ2); 4) AOP with flips and one-sidedℓ2 objective (AOP-ℓ2-f).
The four algorithms, together with BIHT and BIHT-ℓ2, are
studied and compared in the following experiments.

The setup for our experiments is as follows. We first
generate a matrixΦ ∈ R

M×N whose elements follow i.i.d.
Gaussian distribution. Then we generate the originalK-sparse
signalx∗ ∈ R

N . Its non-zero entries are drawn from standard
Gaussian distribution and then normalized to have norm1.
y∗ ∈ {−1, 1}M is computed byA(x∗).
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(a) SNR
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(b) Angular error
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(c) Hamming error betweenA(x) and
A(x∗)
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(d) Hamming distance betweenA(x)
andy

Fig. 1: Algorithm comparison on corrupted data with different
noise levels. (a) average SNR vs noise level, (b) average
angular error vs noise level, (c) average Hamming error
betweenA(x) andA(x∗) vs noise level, (d) average Hamming
distance betweenA(x) and noisy measurementsy vs noise
level. AOP proves to be more robust to measurement sign
flips compared with BIHT.

A. noise levels test

In our first experiment, we setM = N = 1000, K = 10,
and examine the performance of these algorithms on data with
different noise levels. Here in each test, we choose a few
measurements at random and flip their signs. The noise level is
between0% and10% and we assume it is known in advance.
For each level, we perform100 trials and record the average
signal-to-noise ratio (SNR), average reconstruction angular
error for each reconstructed signalx with respect tox∗,
average Hamming error betweenA(x) andA(x∗) and average
Hamming distance betweenA(x) and the noisy measurements
y. Here SNR is denoted by10 log10(‖x‖

2/‖x−x∗‖2), angular
error is defined asarccos〈x, x∗〉/π, Hamming error stands for
‖A(x)−A(x∗)‖0/M and the Hamming distance betweenA(x)
and y, defined as‖A(x) − y‖0/M , is used to measure the
difference betweenA(x) and the noisy measurementsy. The
results are depicted in Figure 1. The plots demonstrate that
in these comparisons four AOP algorithms outperform BIHT
and BIHT-ℓ2 for all noise levels, significantly so when more
than 2% of the measurements are corrupted. Compared with
BIHT, BIHT-ℓ2 tends to give worse results when there are only
a few sign flips iny and better results if we have high noise
level. This has been shown and studied in [15]. Of all the AOP
series, AOP and AOP-f give better results compared with AOP-
ℓ2 and AOP-ℓ2-f. We can also see that there is a lot of overlap
between the results obtained by AOP and the ones acquired
by AOP with flips, especially when one-sidedℓ2 objective is
used, the results are almost the same. Figure 1(d) compares

the average Hamming distances betweenA(x) and the noisy
measurementsy for all algorithms. If the sign flips can be
found correctly, then the Hamming distance betweenA(x) and
y should be equal to noise level. The result shows that average
Hamming distances for AOP and AOP-f are slightly above
the noise levels, which means that AOP with one-sidedℓ1
objective performs better in consistency than other algorithms
in noisy cases.

In order to show that our algorithms can find the positions
of sign flips with high accuracy, we measure the probabilities
of correct detections of sign flips in the noisy measurements
for different noise levels from 0.5% to 10% in Figure 2
(M = N = 1000, K = 10). The exact number of sign flips is
used asL in the algorithms and we compare the exact locations
of sign flips in measurementsy with those detected from the
algorithms for all 100 trials, then the average probabilities
of correct detections are shown for different algorithms at
different noise levels. From this figure, we can see that all
four algorithms have high accuracy in detecting the sign flips.
When the noise level is low (≤4%), the accuracy of AOP and
AOP-f can be as high as 95%, even when the noise level is
high (e.g., 10%), the accuracy of AOP and AOP-f is still above
90%. Comparing to algorithms with one-sidedℓ1 objective,
algorithms with one-sidedℓ2 objective have lower accuracy.
The accuracy for AOP-ℓ2 and AOP-ℓ2-f is around 80%.
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Fig. 2: The probabilities of correct detections of sign flipsfor
different noise levels ranging from 0.5% to 10%. AOP and
AOP-f have very high accuracy (great than 90%) in detecting
the sign flips, while AOP-ℓ2 and AOP-ℓ2-f have relatively
lower accuracy (around 80%).

B. M/N test

In the second experiment,N = 1000, K = 10 and
the noise level3% are fixed, and we changeM/N within
the range(0, 2]. 40 different M/N are considered and we
perform 300 tests for each value. The results are displayed
in five different ways: the average SNR, average angular
error, average Hamming error betweenA(x) and A(x∗),
average Hamming distance betweenA(x) andy and average
percentage of coefficient “misses”. Here “misses” stands for
the coefficients wherex∗

i 6= 0 while xi = 0. According to
Figure 3, although all the algorithms show the same trend
as M/N increases, AOP and AOP-f always obtain a much
smaller angular error (higher SNR) than BIHT and BIHT-ℓ2.
There are also fewer coefficient misses in the results acquired
by AOP series. Furthermore, we see that even when3%
of the measurements are corrupted, AOP can still recover a
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(b) M=0.7N
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(c) M=1.5N

Fig. 4: Hamming error vs angular error with differentM . AOP gives the most consistent results forM = 0.7N andM = 1.5N .
In these two cases we can see a linear relationshipǫsim ≈ C+ǫH between the average angular errorǫsim and average Hamming
error ǫH , whereC is constant. For really small M (M = 0.1N ) BIHT returns almost the same results as AOP since AOP may
fail to find the exact sign flips in the noisy measurements. Thedashed lineǫ1000 + ǫH is a upper bound for 1000 trials.

0 0.5 1 1.5 2
−5

0

5

10

15

20

25

30

35

40

M/N

a
v
e
ra

g
e
 S

N
R

 

 

BIHT
BIHT-ℓ2
AOP
AOP-f
AOP-ℓ2
AOP-ℓ2-f
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(b) Angular error
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(c) Hamming distance betweenA(x)
andA(x∗)
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(d) Hamming error betweenA(x) and
y
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(e) % coefficient misses

Fig. 3: Algorithm comparison on corrupted data with different
M/N . (a) average SNR vsM/N , (b) average angular error vs
M/N , (c) average Hamming error betweenA(x) andA(x∗)
vs M/N , (d) average Hamming distance betweenA(x) and
y vs M/N , (e) average percentage of coefficient misses vs
M/N . AOP yields a remarkable improvement in reducing the
Hamming and angular error and achieving higher SNR.

signal with SNR greater than20 using less than0.5 bits per
coefficient of x∗. In Hamming error comparison, AOP and
AOP-f beat other algorithms significantly whenM/N > 0.15.
Moreover, we see that the average Hamming error of AOP
and AOP-f is extremely close to zero whenM/N > 0.5.
WhenM/N < 0.15, the seemingly failure of AOP and AOP-
f compared with BIHT is due to the fact that there are usually
more than one solution to (6) for really smallM , and with
high probability our method will return one solution withL
sign flips, which may not be the actual ones. Hence we may
not be able to detect the actual errors in the measurements.

We also try to explore the relationship between the Ham-
ming error betweenA(x) andA(x∗) and the reconstruction
angular error. WithN = 1000, K = 10 and the noise level
3% fixed, we plot the Hamming error vs angular error for
three differentM in Figure 4. Since AOP and AOP with flips
tend to return almost the same results if we use the same
objective (one-sidedℓ1 or one-sidedℓ2) for x update, we only
compare the results acquired by BIHT, BIHT-ℓ2, AOP and
AOP-ℓ2. We can see clearly that almost all the blue (+) points
stay in the lower left part of the graph forM = 0.7N and
M = 1.5N , which proves that AOP gives more consistent
results compared with other three algorithms. For these two
M , the average angular error is close to a linear function of
average Hamming error, which is predicted by BǫSE property
in [15]. We also plot an empirical upper bound for AOP
of ǫ1000 + ǫH defined in [15], whereǫ1000 is the largest
angular error of AOP andǫH is the Hamming distance. For
especially “under-sampled” case likeM = 0.1N , none of
these algorithms is able to return consistent reconstructions,
as we can see the points scatter almost randomly over the
domain. In this case the results obtained by BIHT stay really
close to those gained by AOP. As mentioned above, this is
because AOP may not be able to detect the exact sign flips in
the noisy measurements whenM is too small.

C. high noise levels

In this subsection, we study the performance of AOP and
AOP-ℓ2 when a large number of measurements are corrupted.
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Two settings are considered. In the first experiment, we fix
N = 1000, K = 10, and change theM/N ratio between
0.05 and 2. Four different noise levels are considered from
0.1 to 0.4 and we record the average angular error and correct
detection probability from100 tests. In the second setting,
we fix M = 2000, N = 1000 and changeK from 1 to 30.
Still, four noise levels are considered and the mean results
from 100 tests are recorded. From Figure 5 (a) and (b), we
can see similar trend for the behavior of angular error and
correct detection probability as we have discovered in Figure 3.
According to (c), (d), for all the noise levels the performance
of these two algorithms tends to get worse asK increases.
We also have another interesting discovery that when the noise
level is greater than0.2, AOP-ℓ2 turns out to be a better choice
than AOP. This is because when the noise level is extremely
high, even with outlier detection technique, lots of sign flips
remain in the recovered measurements, and this new “noise
level” is still relatively high. According to [15], BIHT-ℓ2
outperforms BIHT when the measurements contain lots of sign
flips. Therefore, when the noise level is high enough, AOP-ℓ2
is considered as a better choice compared with AOP.
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Fig. 5: AOP and AOP-ℓ2 performance under different noise
levels. (a) average angular error vs M/N with different noise
levels, (b) correct detection percentage vs M/N with different
noise levels, (c) average angular error vs K with different noise
levels, (d) correct detection percentage vs K with different
noise levels. The performance gets better when we increase
M/N or decreaseK.

D. L mismatch

In Figure 6, we analyze the influence of incorrect selection
of L on AOP. Here we chooseM = N = 1000,K = 10, noise
level 5%, and change the input value from0.5L to 1.5L. 100
tests are conducted and the mean results are recorded. It is
easily seen that the error will become larger when the inputL

digresses from its true value. According to this plot, we know
that in order to obtain good performance for our method, we
should choose a properL as input.
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Fig. 6: AOP performance with differentL inputs.L has to
stay close to its true value in order to get good performance.

E. unknown L

To show that our method works even whenL is not
given, we use the method described in Section III to find an
approximation ofL, and compare the results of AOP with
different L. HereM = N = 1000, K = 10 are fixed, and
10 different noise levels (from 1% to 10%) are tested. Three
inputs forL: the initial L0 predicted from the result of BIHT-
ℓ2, L obtained from bisection method, exactL, are used in
AOP to obtain the results. The following figure 7 is depicted
with the average results from100 trials. Even with the initial
L0, the results are comparable to those with exactL, and
bisection method can provide a better approximation forL
with longer time for predictingL.
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Fig. 7: Comparison of results by differentL at different noise
levels from 1% to 10%. (a) average angular error vs noise
level, (b) average Hamming distance betweenA(x) and noisy
y vs noise level. By choosing appropriateL as the input, we
can still obtain the results comparable to those with exactL.

V. CONCLUSION

In this paper, we propose a method based on adaptive outlier
pursuit for robust 1-bit compressive sensing. By iteratively
detecting the sign flips in measurements and recovering the
signals from “correct” measurements, this method can obtain
better results in both finding the noisy measurements and
recovering the signals, even when there are a lot of sign
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flips in the measurements. Four algorithms (AOP, AOP-f,
AOP-ℓ2 and AOP-ℓ2-f) are given based on this method, and
the performances of these four algorithms are shown in the
numerical experiments. The algorithms based on one-sidedℓ1
objective (AOP and AOP-f) have better performance compared
to the other two algorithm (AOP-ℓ2 and AOP-ℓ2-f), which are
based on one-sidedℓ2 objective when the noise level is not
high (less than 20%), when the noise level is extremely high,
AOP-ℓ2 is a better choice compared with AOP. In addition, we
proposed a simple method to find a candidate for the number of
sign flipsL whenL is unknown and the numerical experiments
show that the performance of AOP with this inexact inputL
is comparable with that of exactL.

APPENDIX

In this appendix, we show the equivalence of problem (6)
and (7). If (x, n) satisfies the constraints of problem (7), we
can define

Λi =

{

1, if ni = 0,
0, otherwise.

(11)

then we haveφ(yi, (Φx)i + ni) = 0 if Λi = 0, since we
can always findni such thatφ(yi, (Φx)i + ni) = 0 for fixed
x. If Λi = 1, we haveni = 0, thus φ(yi, (Φx)i + ni) =
φ(yi, (Φx)i). Therefore, problem (7) is equivalent to

min
x,n

M
∑

i=1

Λiφ(yi, (Φx)i)

s.t. ‖n‖0 ≤ L,
‖x‖2 = 1, ‖x‖0 ≤ K.

(12)

From the relation ofΛ andn in (11), we know the constraint
‖n‖0 ≤ L in the above problem can be replaced with the
constraints onΛ defined in (6). Therefore, problem (6) and
(7) are equivalent.
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