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Abstract In this paper, we design a very simple algo-

rithm based on Split Bregman iterations to numerically

solve the cartoon + textures decomposition model of

Meyer. This results in a significant gain in speed com-

pared to Chambolle’s nonlinear projectors.
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1 Introduction

In the last few years, cartoon + textures image decom-

position models have received a lot of interest from the

image processing community. The original model was

theoretically proposed by Yves Meyer in [6] and used

the total variation (TV) to model the cartoon part and

a specific space G for oscillatory patterns. Many devel-
opments, especially the work of Aujol et al. [1] who pro-

posed an efficient way to numerically solve this model,

appeared in the literature. The significant idea involves

using a duality argument and the nonlinear projectors

proposed by Chambolle [3] to find the oscillatory com-

ponent which lies in the space G defined by Meyer.

Recent works of Goldstein et al. [5] in optimization

show that Bregman iteration is a very efficient and fast

way to solve TV problems. Surprisingly, in our knowl-

edge, no work was proposed in the literature to design

an algorithm which solves G−norm based problems by

the use of Bregman iterations (and the same duality

argument used by Chambolle).

In this paper, we describe the algorithm which aims

to find the minimizer of a functional based on Meyer’s

G−norm by using Split Bregman iterations. The re-

mainder of the paper is as follows: in section 2, we set
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up the basic notations used throughout the paper. We

recall the definition of Chambolle’s nonlinear projector

and the cartoon + textures decomposition model. In

section 3, we give the algorithm designed by Goldstein

et al. to solve TV problems by Split Bregman itera-

tions. In section 4, we describe how to use the Split

Bregman iteration to solve G−norm models and then

give the corresponding algorithm to do the cartoon +

textures decomposition. Section 5 presents some results

obtained by the new algorithm. We conclude this work

in section 6.

2 Chambolle’s projector and cartoon +

textures decomposition

In [3], A.Chambolle proposed a nonlinear projector to

efficiently solve the Rudin-Osher-Fatemi (ROF) model

[7] given in Eq. 1.

û = argu min J(u) +
λ

2
‖f − u‖22 (1)

where f is the original image, J(u) is the total varia-

tion (TV) of u (defined as J(u) =
∫
|∇u|) and û the

restored image. This algorithm is widely used for de-

noising and restoration purposes because of its ability

to preserve piecewise smooth functions. Total variation

is directly related to the space of bounded variations

(BV ). If we consider the closure of BV in S2 (denoted

BV), we can prove the existence of a dual space G

(sometimes denoted BV∗). Considering the set Gµ =

{g ∈ G/‖g‖G 6 µ}, Chambolle shows that the solution

of the ROF model can be written as û = f − PG1/λ
(f)

where PGµ(f) corresponds to the projection onto Gµ .

Practically, this nonlinear projector is evaluated by the

help of Proposition. 1 (see [3] for details and proof).
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Algorithm 1 Cartoon + textures decomposition algo-

rithm based on Chambolle’s projectors.
Initialisation: u0 = v0 = 0
while “ Not converged” do

Update v by vn+1 = PGµ(f − un)
Update u by un+1 = f − vn+1 − PG1/λ

(f − vn+1)
end while

Proposition 1 If τ < 1
8 then µdiv (pn) converges to

PGµ(f) when n→ +∞ where

pn+1
i,j =

pni,j + τ
(
∇
(

div (pn)− f
µ

))
i,j

1 + τ

∣∣∣∣(∇(div (pn)− f
µ

))
i,j

∣∣∣∣ (2)

In [1], the authors proposed using this projector to do

the cartoon + texture decomposition of an image. They

followed the idea of Meyer [6] who showed that the

space G is well adapted to capture oscillatory patterns

and then proposed to replace the L2 norm in the ROF

model by the G−norm. The corresponding cartoon (u)

+ texture (v) decomposition model is equivalent to min-

imize the problem given in Eq. 3 for (u, v) ∈ BV ×Gµ.

FAUλ,µ (u, v) = J(u) + J∗
(
v

µ

)
+
λ

2
‖f − u− v‖2L2 (3)

The authors of [1] then showed that the solution of

this minimization problem is given by Algorithm. 1.

This method works well to separate textures from

cartoon and was adapted in different cases like in the

presence of a convolution kernel or made locally adap-

tive [2,4].

3 Split Bregman iteration for TV minimization

Recently a new minimization approach, called the Split

Bregman iteration, was proposed by Goldstein et al. [5]

and is particularly well-adapted for L1 schemes like the

total variation. It is easy to implement and converges

quickly (very few iterations are needed). If we denote

dx = ∇xu and dy = ∇yu the derivatives with respect

to x and y respectively, the problem described by Eq. 1

can be rewritten as the one depicted in Eq. 4.

(d̂x, d̂y, û) = arg min
√
|dx|2 + |dy|2 +

λ

2
‖u− f‖22 (4)

+
η

2
‖dx −∇xu− bx‖22 +

η

2
‖dy −∇yu− by‖22

The authors of [5], show that (d̂x, d̂y, û) can be com-

puted by the Algorithm. 2.

Algorithm 2 ROF restoration by Split Bregman iter-

ations.
u0 = f, d0x = 0, d0y = 0, b0x = 0, b0y = 0
while “Not converged” do

Update uk+1 by using equation (5)

Compute sk =
√
|∇xuk + bkx|2 + |∇yuk + bky |2

dk+1
x = max(sk − 1/η), 0)

∇xuk+bkx
sk

dk+1
y = max(sk − 1/η), 0)

∇yuk+bky
sk

bk+1
x = bkx +∇xuk+1 − dk+1

x

bk+1
y = bky +∇yuk+1 − dk+1

y

end while

where u can be updated in the Fourier domain by

Eq. 5 (in [5], Goldstein et al. propose to use a discrete

version of the Laplacian and a Gauss-Seidel scheme in-

stead of the Fourier domain), where the hat symbol

stands for the Fourier transform and <(g) the real part

of g:

Û = (λÎ − η<(∆̂))−1
[
λF̂ − η

(
div (dk − bk)

)∧]
(5)

4 Bregman Meyer’s G−norm implementation

In this section, we show that finding the function v ∈
Gµ which minimize the model presented in Eq. 6.

J∗
(
v

µ

)
+
λ

2
‖f − v‖22 (6)

can be done by using a duality argument and the

Split Bregman iteration (in fact, we follow the proof

of Chambolle but in the oppposite direction). Proposi-
tion 2 gives the corresponding result.

Proposition 2 The function v ∈ Gµ which minimizes

Eq. 6 is given by

v̂ = f − 1

λ
PROF

(
λf,

1

λµ

)
(7)

where PROF (λf, 1/(λµ)) is defined as the output of the

ROF model applied to λf with a coefficient 1/(λµ) and

is efficiently implemented by the Split Bregman itera-

tions.

Proof From Eq. 6 we have

∂J∗
(
v

µ

)
− λ(f − v) 3 0 (8)

⇔ λ(f − v) ∈ ∂J∗
(
v

µ

)
(9)

⇔ ∂J(λ(f − v)) 3
(
v

µ

)
(10)
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Setting w = λ(f − v) we get

∂J(w) 3 f − w/λ
µ

(11)

⇔ 0 ∈ ∂J(w)− 1

λµ
(λf − w) (12)

This is equivalent that w is a minimizer of J(w) +
1

2λµ‖λf−w‖
2
2 which is nothing less than the ROF model.

Consequently, ŵ = PROF (λf, 1/(λµ)) and finally v̂ =

f − 1
λPROF (λf, 1/(λµ)). ut

The new algorithm providing the cartoon + textures

decomposition based on Eq. 3 is presented in Algo-

rithm. 3 where PROF is computed by Algorithm. 2. The

correspond MATLAB source code to compute PROF is

freely available in the Bregman Cookbook [8].

Algorithm 3 Cartoon + textures decomposition algo-

rithm based on Split Bregman iterations.
Initialisation: u0 = v0 = 0
while “ Not converged” do

Update u by un+1 = PROF (f − vn, λ)
Update v by vn+1 = f − un+1 − 1

λ
PROF (λ(f −

un+1), 1/(λµ))
end while

5 Experiments

In this section, we present the output of Algorithm. 3

applied on the two images depicted on Fig. 1. In both

experiments, we set λ = µ = 1000. Figures 2 and 3 show

the corresponding cartoon and textures parts obtained

by the proposed algorithm. In order to compare with

the results given by Aujol et al. algorithm, we show the

output of the nonlinear projector method of Barbara

on Fig. 4. We see that the Bregman based algorithm

performs well on the decomposition.

We ran many experiments to compare the speed of the

two methods. These tests show that the number of iter-

ations for both Chambolle’s and Bregman’s algorithms

are, in average, the same. But Chambolle’s projector

needs more iterations to converge to PGµ than the Split

Bregman needs to converge to PROF . Then globally, the

new approach based on Bregman iterations is faster.

6 Conclusion

In this paper, we propose an algorithm based on Split

Bregman iterations to solve models based on Meyer’s

G−norm. The direct application is a dual approach to

perform the cartoon + textures decomposition of an

Fig. 1 Original images used as inputs of the decomposition
algorithms.

image. Experiments show the effectiveness of the algo-

rithm and the use of Bregman iterations clearly improve

the speed of the decomposition.
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Fig. 2 Cartoon + textures parts obtained with λ = µ = 1000
for both images.
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Fig. 4 Cartoon + textures parts obtained with λ = µ = 1000
from the nonlinear projectors.


