
Multiscale Methods for Polyhedral

Regularizations

Michael Möller∗ Martin Burger∗

November 10, 2011

Abstract

In this paper we present the extension and generalization of the adap-
tive inverse scale space (aISS) method proposed for `1 regularization in
[BMBO11] to arbitrary polyhedral functions. We will see that the repre-
sentation of a convex polyhedral function as a finitely generated function
yields a fast and general aISS algorithm. We analyze its convergence and
interpret the well known (forward) scale space flow as the inverse scale
space flow on the convex conjugate functional, thus including this class of
flows in our analysis. A surprising result is the equivalence of the scale
space or gradient flow with a standard variational problem. Finally, we
give some examples of the applications for the adaptive inverse scale space
algorithm for polyhedral functions.

Key words: Inverse Scale Space, Scale Space, Adaptivity, Polyhedral Func-
tions, Convex Optimization

1 Introduction

The problem of solving linear systems subject to convex polyhedral constraints
or subject to minimizing a convex polyhedral function arises in many applica-
tions. The most prominent examples of such problems are the minimization of
‖Au− f‖2 subject to linear inequality constraints Bu ≤ b, or variational prob-
lems like the minimization of ‖u‖1 subject to Au = f . The latter has recently
gained a lot of attention (particularly in compressed sensing and image process-
ing) due to its desirable properties of enforcing sparsity. Further examples of
polyhedral functions are ‖Tu‖∞, and ‖Tu‖1 for any matrix T or the indicator
function of equality constraints, inequality constraints, or the indicator function
of a constraint restricting u to be in the convex hull of finitely many points.

In [BMBO11] we investigated the so called inverse scale space flow for solving
problems of the form

J(u)→ min
u∈X

subject to Au = f, (1.1)

and introduced a new and very efficient method for solving the above problem in
the case of J(u) = ‖u‖1. In this paper we will generalize this method and prove
that the underlying concept can be applied to any convex polyhedral function.

∗Westfälische Wilhelms-Universität Münster, Institut für Numerische und Angewandte
Mathematik, Einsteinstr. 62, D 48149 Münster, Germany (m.moeller@gmx.net, mar-
tin.burger@wwu.de)

1

The rest of the paper is organized as follows: In Section 2 we will briefly recall
the main findings of [BMBO11] about the adaptive inverse scale space method
(aISS). In the following Section 3 we will summarize the most important facts
about polyhedral functions before we show in Section 4 how to generalize the
aISS method to arbitrary polyhedral functions. We will analyze the convergence
properties of our method in detail and prove finite time convergence. Further-
more, we will show in Section 5 that the popular (forward) scale space flow is
the inverse scale space flow on the convex conjugate problem and can therefore
also be solved with the aISS algorithm. In addition we show that the scale space
flow is equivalent to a well known variational problem. In Section 6 we illustrate
the concept of polyhedral functions and demonstrate the behavior of the aISS
flow in several examples like problems with convex hull constraints, problems
with linear inequality constraints or regularizations like ‖Tu‖∞ or finding the
best convex approximation of a noisy data set.

2 Inverse Scale Space Flows

2.1 Motivation for the inverse scale space flow

In this section we will recall the main results of [BMBO11]. For compressed
sensing problems where the goal is to recover a sparse signal u ∈ Rn from
measurements f = Au, A ∈ Rm×n, m << n, the Bregman iteration [OBGaY05,
YOGD08] respectively its linearized version [COS09b, COS09a] have gained a
lot of attention due to their efficiency and quality of the recovery results. The
Bregman iteration constructs a sequence uk as minimizers of

Ek(u) =
λ

2
‖Au− f‖2 + J(u)− 〈pk−1, u〉, (2.1)

where pk−1 is an element of the subdifferential of a convex regularization func-
tional J at uk−1, pk−1 ∈ ∂J(uk−1) = {p : J(u)−J(uk−1)−〈p, u−uk−1〉 ≥ 0 ∀u}.
Each step is a penalized least squares problem with the (generalized) Bregman
distance

Dpk−1(u, uk−1) = J(u)− J(uk)− 〈pk−1, u− uk〉, (2.2)

between u and uk−1 with respect to regularization function J . The optimality
condition of (2.1) at the minimizer uk is

pk = pk−1 + λA∗(f −Auk) ∈ ∂J(uk). (2.3)

This equation can be interpreted as the implicit discretization of the time con-
tinuous equation

∂tp(t) = A∗(f −Au(t)), p(t) ∈ ∂J(u(t)), (2.4)

which is called inverse scale space method and analyzed in [BGOX06].

2.2 The Adaptive Inverse Scale Space Method for `1 Reg-
ularitaion

One of the main findings of [BMBO11] was that for J(u) = ‖u‖1 problem (2.4)
can be solved exactly without discretization due to the discrete nature of the

2

time evolution of solutions. It has been shown that the solution u(t) changes
only at fixed times tk, which can be calculated explicitly. This leads to an
algorithm, called adaptive inverse scale space method (aISS), that converges in
a finite number of iterations to the solution of the problem

min
u
‖u‖1 such that Au = f. (2.5)

We can summarize the algorithm to achieve this as follows:

• Initialize t1 = ‖AT f‖∞, p(t1) = t1A
T f , k = 1

• repeat until ‖Au(tk)− f‖2 < threshold

1. Calculate u(tk) as the minimizer of

‖Au− f‖2 subject to p(tk) ∈ ∂‖u‖1 (2.6)

2. Determine the next time step by

tk+1 = min{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) 6= pj(tk)},
(2.7)

where

pj(t) = pj(tk) + (t− tk)ej ·AT (f −Au(tk)) (2.8)

3. Update p(tk + 1) by Formula (2.8).

4. k ← k + 1

For details on the method, the corresponding proof, and further convergence
analysis we refer to [BMBO11]. The goal of this paper is to show how the above
aISS concept generalizes to regularizations with polyhedral functions. Let us
summarize the most important facts about polyhedral functions in the next
section.

3 Convex polyhedral functions

We start with the general definitions of convex polyhedral functions and finitely
generated convex functions from [Roc96]:

Definition 1. A function J : Rn → R is called a polyhedral convex function if
and only if J can be expressed in the form

J(u) = h(u) + δ(u|C), (3.1)

where

h(u) = max
i
{〈u, bi〉 − βi | i ∈ 1, ..., k}, (3.2)

δ(u|C) =

{
0 if u ∈ C,
∞ else ,

(3.3)

C = {u | 〈u, bi〉 ≤ βi | i ∈ k + 1, ...,m}. (3.4)

3

Definition 2. A convex function J : Rn → R is said to be finitely generated if
there exist vectors di ∈ Rn, i = 1, ...,m, and corresponding scalars αi such that

J(u) = inf
{λi}
{
m∑
i=1

λiαi}, (3.5)

such that the infimum is taken over all λi for which

u =

m∑
i=1

λidi,

l∑
i=1

λi = 1, λi ≥ 0 ∀i = 1, ...,m (3.6)

Rockafellar proves that the definitions of “finitely generated” and “polyhe-
dral” are equivalent for convex functions:

Lemma 1. [Roc96]
A convex function is polyhedral if and only if it is finitely generated. The infi-
mum for a given u in the definition of “finitely generated convex functions” if
finite, is attained by some choice of the coefficients λi.

Since the two definitions above are equivalent, we will from now on talk about
the finitely generated fg-representation and the polyhedral p-representation of a
convex polyhedral function. Moreover, the infimum in the definition of finitely
generated is attained by some coefficients λi. Therefore, for a given polyhedral
function in fg-representation, we can write any u as u =

∑m
i=1 λidi,

∑l
i=1 λi = 1,

with coefficients λi ≥ 0 such that J(u) =
∑m
i=1 λiαi. We will refer to this

representation of u as the infimal coefficient ic-representation. Before we go
into more details about polyhedral functions, let us look at a simple example:

Example 1. The function J(u) = ‖u‖1 is polyhedral. For simplicity, consider
the 2d case. In the notation of the definition of polyhedral functions we can
choose

b1 =

(
1
1

)
, b2 =

(
−1
1

)
, b3 =

(
1
−1

)
, b4 =

(
−1
−1

)
,

C = R2, βi = 1 ∀i, k = 0

and easily see that indeed

‖u‖1 = max
i
〈bi, u〉.

In the definition of finitely generated we have

d1 =

(
1
0

)
, d2 =

(
−1
0

)
, d3 =

(
0
1

)
, d4 =

(
0
−1

)
,

l = 0, αi = 1 ∀i.

It is interesting to see that the two representations of the ‖u‖1 norm have
two geometric interpretations. In the p-representation the bi are the normals of
the unit ball of ‖u‖1 while in the fg-representation the `1 norm is expressed in
terms of the edges of the unit normal ball. Thinking about the geometric relation
between the primal and dual unit ball of a function it is not too surprising that
the vectors in the fg-representation of the primal function become the vectors in
the p-representation of the dual norm as the next theorem from [Roc96] shows.

4

Theorem 1. [Roc96]
The conjugate of a polyhedral convex function is polyhedral. More precisely,

if a convex polyhedral function J(u) is given in the fg-represention, using the
notation from above, its convex conjugate is

J∗(p) = h(p) + δ(p|C), (3.7)

h(p) = max
i∈{1,...,k}

{〈di, p〉 − αi}

C = {p | 〈di, p〉 ≤ αi ∀i ∈ {k + 1, ...,m}}

We now know the connection between a polyhedral function and its convex
conjugate. Since our goal is to derive a general inverse scale space algorithm
for polyhedral functions, let us characterize the subdifferential of a polyhedral
function in its fg-representation.

Lemma 2. Let J be a convex finitely generated function in the notation of Def-
inition 2. Then the subdifferential ∂J(u) at u =

∑m
i=1 λidi in ic-representation

can be characterized as follows:

p ∈ ∂J(u) ⇔

 〈p, di〉 ≤ αi for i ∈ {l + 1, ...,m}
λi = 0 if 〈p, di〉 < αi for i ∈ {l + 1, ...,m}
λi = 0 if i /∈ I

(3.8)

I = {1 ≤ i ≤ l : (αi − 〈p, di〉) = min
k

(αk − 〈p, dk〉)}

Proof. Let us prove the two implications of Lemma 2 separately.

• First, let us assume we have an element p which meets the three conditions
on the right hand side of (3.8) for some u with ic-representation u =∑m
i=1 λidi. We will show that p ∈ ∂J(u). By definition p ∈ ∂J(u) means

J(v)− J(u)− 〈p, v − u〉 ≥ 0 ∀v. (3.9)

5

Let v =
∑m
i=1 νidi be an arbitrary element in ic-representation. Then

J(v)− J(u)− 〈p, v − u〉

=

m∑
i=1

(νi − λi)
(
αi − 〈p, di〉

)
=

l∑
i=1

(νi − λi)
(
αi − 〈p, di〉

)
+

m∑
i=l+1

(νi − λi)
(
αi − 〈p, di〉

)︸ ︷︷ ︸
=0 if λi>0

=

l∑
i=1

(νi − λi)
(
αi − 〈p, di〉

)
+

m∑
i=l+1,λi=0

νi
(
αi − 〈p, di〉

)
︸ ︷︷ ︸

≥0

≥
l∑
i=1

νi
(
αi − 〈p, di〉

)
︸ ︷︷ ︸

≥mink(αk−〈p,dk〉)
∑l

i=1 νi

−
l∑
i=1

λi
(
αi − 〈p, di〉

)
︸ ︷︷ ︸

=mink(αk−〈p,dk〉)
∑l

i=1 λi

≥ min
k

(αk − 〈p, dk〉)
(l∑
i=1

νi −
l∑
i=1

λi
)

︸ ︷︷ ︸
=1−1=0

= 0 (3.10)

• Now let us assume the we have an element u =
∑m
i=1 λidi in ic-represenation

and p ∈ ∂J(u). We need to show that the three conditions in the right
hand side of (3.8) are satisfied.

1. We prove the first inequality by contradiction. Assume that there
exists a j with 〈p, dj〉 > αj . Let us define v =

∑m
i=1 νidi such that

νi = λi for all i 6= j and νj = λj + ε with ε > 0. Notice that we
can not yet speak of this being the ic-representation of v since we
have not shown that this choice of coefficients corresponds to the
infimal choice as required in (3.5), but, since the ic-representation
leads to the smallest energy among all such representations we know
that J(v) ≤

∑
i νiαi. Thus,

J(v)− J(u)− 〈p, v − u〉

≤
m∑
i=1

(νi − λi)
(
αi − 〈p, di〉

)
= ε

(
αj − 〈p, dj〉

)︸ ︷︷ ︸
<0 by assumption

< 0

This is a contradiction to p ∈ ∂J(u), and therefore 〈p, di〉 ≤ αi for i ∈
{l + 1, ...,m}.

2. For the second condition, we can use a similar argument as for the
first. Assume there is a j > l with 〈p, dj〉 < αj but λj > 0. Again,

6

consider v =
∑m
i=1 νidi such that νi = λi for all i 6= j and νj = 0.

Similar to the above we obtain

J(v)− J(u)− 〈p, v − u〉
≤ −λj

(
αj − 〈p, dj〉

)︸ ︷︷ ︸
>0 by assumption

< 0,

which again is a contradiction to p ∈ ∂J(u). Therefore, λi = 0 if
〈p, di〉 < αi for i ∈ {l + 1, ...,m}.

3. The last condition is also proved by contradiction. Let us assume that
there is a j ≤ l for which λj > 0 although (αj −〈p, dj〉) > mink(αk−
〈p, dk〉). Now consider v =

∑m
i=1 νidi such that νi = λi for all i 6= j

and i 6= c, νj = 0, νc = λc + λj , where c ∈ arg mink(αk − 〈p, dk〉).
This way

∑l
i=1 νi =

∑l
i=1 λi = 1, and therefore we can again argue

that J(v) ≤
∑
i νiαi and compute

J(v)− J(u)− 〈p, v − u〉
≤ −λj

(
αj − 〈p, dj〉

)
+ (νc − λc)

(
αc − 〈p, dc〉

)
= λj

((
αc − 〈p, dc〉

)
−
(
αj − 〈p, dj〉

))︸ ︷︷ ︸
<0

< 0. (3.11)

Again, the assumption led to a contradiction, which means that the
third condition also holds and therefore concludes the proof.

Example 2. Let us look at our standard example J(u) = ‖u‖1 again. We
know that in this case the di are the positive and negative unit normal vectors,
l = 0, αi = 1, and C = Rn. Thus, Lemma 2 tells us that for the representation
u =

∑
i λidi where

∑
λiαi is infimal, we have

p ∈ ∂J(u) ⇔
{
〈p, di〉 ≤ 1 for i ∈ {1, ...,m}
λi = 0 if 〈p, di〉 < 1 for i ∈ {1, ...,m}

which, using our knowledge about the di, could be rewritten as

p ∈ ∂J(u) ⇔
{
‖p‖∞ ≤ 1
λi = 0 if pi < 1 for i ∈ {1, ...,m}

and is a well known representation of the `1 subdifferential.

Similar to the adaptive inverse scale space method for `1 regularization,
the adaptive inverse scale space method for polyhedral functions will first com-
pute the subgradient p of some (unknown) element u and then find u in ic-
representation by solving a low dimensional optimization problem. For this sake,
it is important to classify the ic-represenations, because it is not obvious (and
in general not true) that writing an element u as u =

∑
i λidi automatically is

an ic-representation. The following Lemma however classifies ic-representations
in a way that easily allows to find the ic-representations of elements for a given
subgradient.

7

Lemma 3. Let p ∈ ∂J(u). Then any representation of u as u =
∑m
i=1 νidi,

νi ≥ 0,
∑l
i=1 νi = 1 for which{

νi = 0 if 〈p, di〉 < αi for i ∈ {l + 1, ...,m},
νi = 0 if (αi − 〈p, di〉) > mink(αk − 〈p, dk〉)

,

is an ic-representation of u.

Proof. Let u =
∑m
i=1 νidi be a representation of u that meets the above con-

ditions and let u =
∑
i λidi be an ic-representation of u, i.e. J(u) =

∑
i αiλi.

Then

0 = 〈p, u− u〉
=

∑
i

νi〈p, di〉 −
∑
i

λi〈p, di〉

Because of p ∈ ∂J(u) and Lemma 2 we know that 〈p, di〉 ≤ αi for all i > l. Due
to our assumptions above this means 〈p, di〉 = αi whenever νi > 0 or λi > 0 for
i > l. Therefore we can continue

0 =
∑
i

νi〈p, di〉 −
∑
i

λi〈p, di〉

=

l∑
i=1

νi〈p, di〉+

m∑
i=l+1

νiαi −
(l∑
i=1

λi〈p, di〉+

m∑
i=l+1

λiαi
)

=

l∑
i=1

νi(〈p, di〉 − αi) +

m∑
i=1

νiαi −
(l∑
i=1

λi(〈p, di〉 − αi) +

m∑
i=1

λiαi
)

= min
k

(αk − 〈p, dk〉)
l∑
i=1

−νi +

m∑
i=1

νiαi −
(

min
k

(αk − 〈p, dk〉)
l∑
i=1

−λi +

m∑
i=1

λiαi
)

= −min
k

(αk − 〈p, dk〉) +

m∑
i=1

νiαi −
(
−min

k
(αk − 〈p, dk〉) +

m∑
i=1

λiαi
)

=

m∑
i=1

νiαi −
m∑
i=1

λiαi

Therefore,
∑m
i=1 νiαi =

∑m
i=1 λiαi = J(u) and

∑m
i=1 νidi is an ic-representation

of u.

Example 3. Let us illustrate what the above lemma means in very simple
example. Consider for u ∈ R, J(u) = |u| + χ[−1,1](u), where χ[−1,1](u) is the
characteristic function of [−1, 1]. The fg-represenation of J is d1 = −1, d2 = 0,
d3 = 1, α1 = 1, α2 = 0, α3 = 1, and l = 3. Let us look at some 0 < u < 1. There
are infinitely many ways to represent u =

∑
i=1 λidi with λi ≥ 0,

∑
i λi = 1,

however not all of them are ic-representations. In fact, in this example, the
ic-representation is unique. The subgradient of u > 0 is p = 1 and we can use
Lemma 3 to find an ic-representation. We have

〈p, d1〉 = −1 < α1

〈p, d2〉 = 0 = α2

〈p, d3〉 = 1 = α3

8

Therefore, we have to choose λ1 = 0 to obtain an ic-representation, which means
u = λ2d2 + λ3d3 with λ2 = (1 − u) and λ3 = u is the ic-representation of u in
our example.

We will see in the next section that an fg-representation of the regularizer
is sufficient for an efficient adaptive inverse scale space flow algorithm. Before
going into the details of this flow we need to mention that the fg-representation
as defined in Definition 2 is not unique. Therefore, it makes sense to from now
on only consider irredundant fg-representations.

Definition 3. An fg-representation of a convex polyhedral function is called
irredundant if one can not discard any (di, αi) without changing the function.

The irredundant fg-representation of a convex polyhedral function is unique (cf.
[Sch87]).

4 The inverse scale space flow for an arbitrary
polyhedral function

We will now develop an adaptive inverse scale space flow algorithm for solving

min J(u) such that u ∈ arg min
J(u)<∞

‖Au− f‖2, (4.1)

where J(u) is a given convex polyhedral function in fg-representation. Opposed
to the `1 inverse scale space flow from [BMBO11], we have to pay a little more
attention to the starting point u0 = u(0), p0 = p(0) of the flow, since (0, 0) no
longer needs to satisfy p0 ∈ ∂J(u0). In the next subsection we will first prove
that the inverse scale space flow for any polyhedral function has a piecewise
constant solution, before, in the following subsection, discussing how to find an
appropriate starting point.

4.1 Generalized aISS flow algorithm

We will now show that the inverse scale space flow

∂tp(t) = AT (f −Au(t)) p(t) ∈ ∂J(u(t)), (4.2)

has a piecewise constant solution for any convex polyhedral J(u) and that the
solution can be calculated without any discretization of the above equation. All
we need is a starting point (p0, u0) = (p(0), u(0)) such that

u0 = arg min
u
‖Au− f‖2 such that p0 ∈ ∂J(u0). (4.3)

We will discuss how to obtain such a starting point and what influence it has
on the flow in detail in the next subsection. Let us first state the result of a
piecewise constant flow:

Theorem 2. There exists a sequence of times

0 = t0 < t1 < t2 < . . .

9

such that

u(t) = u(tk), p(t) = p(tk) + (t− tk)AT (f −Au(tk)) (4.4)

for t ∈ [tk, tk+1) is a solution of the inverse scale space flow (4.2) with starting
point (p0, u0) satisfying (4.3), where u(tk) is a solution of

‖Au− f‖ → min
u,p(tk)∈∂J(u)

. (4.5)

Proof. By the assumption on our starting point, u(t0) satisfies (4.5). Now we
proceed inductively to show that (4.4) is a solution to (4.2) for t ∈ [tk, tk+1),
tk+1 > tk. Given p(tk), we define

I1(t) = {1 ≤ i ≤ l : (αi − 〈p(t), di〉) = min
j

(αj − 〈p(t), dj〉)}, (4.6)

I2(t) = {l + 1 ≤ i ≤ m : αi = 〈p(t), di〉}, (4.7)

for p(t) defined by (4.4). Our goal is to show that p(t) ∈ ∂J(u(tk)) holds for
some t > tk. By the characterization of the subdifferential (Lemma 2), this is
the case if we can verify the following four criteria

• For i ∈ {1, ...l}, i /∈ I1(tk), ⇒ i /∈ I1(t) for some t > tk.

• For i ∈ {l + 1, ...m}, i /∈ I2(tk), ⇒ i /∈ I2(t) for some t > tk.

• For i ∈ I1(tk), ⇒ i remains in I1(t) for some t > tk, or (αi − 〈p(t), di〉) ≥
minj(αj − 〈p(t), dj〉) and λi = 0 in the ic-representation of u(tk).

• For i ∈ I2(tk), ⇒ i remains in I2(t) for some t > tk, or 〈p(t), di〉 ≤ αi and
λi = 0 in the ic-representation of u(tk).

Notice that u(tk) minimizes ‖Au−f‖ subject to the constraint p(tk) ∈ ∂J(u(tk)).
By the characterization of the subdifferential (Lemma 2) we can conclude that
u(tk) has an ic-representation u(tk) =

∑
λki di = Dλ which is the solution to

the optimization problem

minλ ‖ADλ− f‖2

such that λi ≥ 0,
∑l
i=1 λi = 1, λi = 0 if i /∈ I1(tk), λi = 0 if i /∈ I2(tk)

Notice that by Lemma 3 we know that any set {λi} determined by the above
minimization automatically yields an ic-representation of u(tk). We will discuss
the situation for four cases separately.

• For i ∈ {1, ...l}, i /∈ I1(tk) we have λi = 0 and

(αi − 〈p(tk), di〉) > min
j

(αj − 〈p(tk), dj〉).

Therefore, for p(t) defined by (4.4),

(αi − 〈p(t), di〉) > min
j

(αj − 〈p(t), dj〉)

holds for some t > tk small enough.

10

• For i ∈ {l + 1, ...m}, i /∈ I2(tk) we have λi = 0 and

〈p(tk), di〉 < αi.

Therefore, for p(t) defined by (4.4),

〈p(t), di〉 < αi.

holds for some t > tk small enough.

• For i ∈ I2(tk) the optimality conditions to (4.8) allow us to conclude that

〈di, AT (f −Au)〉 = ci, (4.8)

for some Lagrange multiplier ci ≤ 0, which enforces the non-negativity of
λi. There are two cases:

1. Either λi = 0. In this case 〈di, AT (f −Au(tk))〉 ≤ 0 and therefore

〈di, p(t)〉 ≤ 〈di, p(tk)〉 = αi,

for any t ≥ tk.

2. Or λi > 0. In this case the complimentary slackness condition tells
us that ci = 0 and therefore

〈di, p(t)〉 = 〈di, p(tk)〉 = αi,

which means i ∈ I(t) for any t ≥ tk.

In either case we have either have i ∈ I(t) or 〈di, p(t)〉 ≤ αi and λi = 0
for any t ≥ tk.

• For i ∈ I1(tk) the optimality conditions to (4.8) allow us to conclude that

〈di, AT (f −Au)〉 = ci + β,

for some Lagrange multiplier ci ≤ 0, which enforces the non-negativity
of λi and another multiplier β shared by all λi with i ∈ {1, ...l}, which
enforces the sum to one constraint. Similar to the previous point we can
distinguish between two cases:

1. Either λi > 0, which by complementary slackness means that ci = 0
and

(αi − 〈di, p(t)〉) = (αi − 〈di, p(tk)〉)− (t− tk)β

= min
j

(αj − 〈dj , p(tk)〉)− (t− tk)β (4.9)

2. Or λi = 0, which means that

(αi − 〈di, p(t)〉) = (αi − 〈di, p(tk)〉)− (t− tk)(ci + β)

≥ (αi − 〈di, p(tk)〉)− (t− tk)β (4.10)

Therefore, either (αi − 〈di, p(t)〉) evolves in time by subtracting (t− tk)β
from the previous minimum, or λi = 0 and (αi − 〈di, p(t)〉) is as most as
small as (αi−〈di, p(tk)〉)−(t−tk)β possibly making this index leave I1(t).

11

The above case study shows that there exists a time t > tk for which p(t) ∈
∂J(u(tk)). The time where the solution changes, can be calculated as the min-
imal time at which a new coefficient enters I1(t) or I2(t), i.e.

tk+1 = min
{
{t > tk | ∃i ∈ I1(t), i /∈ I1(tk)} ∪ {t > tk | ∃i ∈ I2(t), i /∈ I2(tk)}

}
(4.11)

If the above set in which we want to find the minimal t is empty, it obviously
means that p(t) ∈ ∂J(t(tk)) for all t ≥ tk. The flow has reached a stationary
solution and we define tk+1 =∞. Otherwise, by continuity of p(t) we obtain

p(tk+1) = p(tk) + (tk+1 − tk) ·AT (f −Au(tk)), (4.12)

and can determine the next solution u(tk+1) by solving the next optimization
problem. The existence of a solution to (4.5) follows from standard convex
optimization/quadratic programming arguments.

Proposition 1. The time step in (4.11) can be determined by

tk+1 = min(T1 ∪ T2) (4.13)

for the two sets

T1 = {ti | i ∈ {1, .., l}, i /∈ I1(tk), ti = tk +
(αi − αj)− 〈p(tk), di − dj〉
〈AT (f −Au(tk)), di − dj〉

}

T2 = {ti | i ∈ {l + 1, ..,m}, i /∈ I2(tk), ti = tk +
αi − 〈p(tk), di〉

〈AT (f −Au(tk)), di〉
}

where in the definition of T1, j is any index j ∈ I1(tk) such that λj > 0. Due

to the
∑l
i=1 λi = 1 constraint, such an index has to exist.

Proof. The above formulas follow from the equations αi − 〈p(ti), di〉 = αj −
〈p(ti), dj〉 and αi = 〈p(ti), di〉 with p(t) as defined in (4.4).

The above Theorem and Proposition imply an algorithm to compute the
exact solution to the inverse scale space flow for polyhedral functions, which is
given as Algorithm 1 below.

Algorithm 1 Adaptive Inverse Scale Space Method for Polyhedral Functions

1. Parameters: A, f, threshold ≥ 0
2. Initialization: Find a starting point for which (4.3) is satisfied (also see
Section 4.2).
while ‖Au(tk)− f‖ > threshold do

Find next time step tk+1 according to Proposition 1.
Compute p(tk+1) and update I1(tk+1) and I2(tk+1) accordingly.
Let I = I1(tk+1) ∪ I2(tk+1). Compute u(tk+1) = Dλ via

λ = arg min
λ

{
‖ADPIλ− f‖2

}
subject to λ ≥ 0,

∑
i∈I1(tk+1)

λi = 1. (4.14)

Here D denotes the matrix whose columns are the di and PI is a projection
onto the index set I.

end while
return u(tk)

12

We have seen that the inverse scale space flow stays piecewise constant and
its solution can be calculated easily. Once a starting point is found, each step
only contains of finding the minimal time tk+1, updating p(tk+1), I1(tk+1) and
I2(tk+1) explicitly and solving a least squares problem with a sum to one con-
straint for the index set I1(tk+1). Notice that aISS is very efficient if the solution
has a sparse representation in the di, since in this case the optimization problem
becomes very low dimensional.

In the next subsection, we will go into more details about how to find a
starting point.

4.2 Starting point of the aISS flow

As a starting point for the aISS flow we need a p0 and corresponding u0 such
that (4.3) holds. Therefore, we have to find a solution to the inequalities

〈di, p〉 ≤ αi ∀i ∈ {l + 1, ...,m}. (4.15)

For reasons to be discussed later the additional condition p0 ∈ range(AT) some-
times is desirable, which would modify the problem to finding a solution q0 to
the inequalities

〈Adi, q〉 ≤ αi ∀i ∈ {l + 1, ...,m}, (4.16)

and setting p0 = AT q0. Once a p0 is found the corresponding u0 can be found
by solving the optimization problem (4.3). This optimization problem becomes
a non-negative least squares problem for the λi in the ic-representation of u0,
where only those λi are non-zero for which

〈di, p0〉 = αi i ∈ {l + 1, ...,m} (4.17)

αi − 〈di, p0〉 = min
k∈{1,...,l}

αk − 〈dk, p0〉 i ∈ {1, ..., l} (4.18)

Thus, since we should assume a sparse ic-representation of final solution u
in the λi, it makes sense to try to choose p0 such that the above index sets are
as small as possible. Let us investigate a special type of polyhedral functions
J(u) in more detail:

Lemma 4. Let J be given in its irredundant fg-representation. If J(u) ≥ 0 and
J(u) = 0 if and only if u = 0, then αi > 0 ∀i > l and if l > 0 there is a j ≤ l
such that dj = 0, αj = 0 and αi > 0 ∀i 6= j.

Proof. For di 6= 0 we have 0 < J(di) = infdi=
∑

j λjdj

∑
j λjdj ≤ αi. If l > 0

there is a representation 0 =
∑
i λidi such that

∑l
i=1 λi = 1 and 0 = J(0) =∑

i λiαi. As seen above, αi > 0 for any i corresponding to a di 6= 0. Due to the

constraint
∑l
i=1 λi = 1 at least one λj j ≤ l has to be greater than zero. Since

both αi and λi have to be greater or equal to zero, 0 =
∑
i λiαi is only possible

for αj = 0 and dj = 0.

Conclusion 1. If J(u) ≥ 0 and J(u) = 0 if and only if u = 0, then

0 = arg min
0∈∂J(u)

‖Au− f‖2, (4.19)

or in other words, u0 = 0, p0 = 0 is a consistent starting point for aISS.

13

Proof. According to Lemma 4 αi > 0 except for one αj corresponding to dj = 0
(if l > 0). Therefore, 〈di, 0〉 < αi for all i > l, and thus all corresponding λi are
zero. For i ≤ l the minimum of all (αi−〈di, 0〉) is attained at i = j and thus the
only valid ic-representation of a u0 for which p0 ∈ ∂J(u0) is u0 = dj = 0.

We have established u0 = 0, p0 = 0, as a consistent starting point for the
aISS flow if J has the property J(u) ≥ 0 with equality only for u = 0, which
already covers a wide variety of regularizers. One popular class of functions not
covered by the above analysis are indicator functions of polyhedral sets, like e.g.
non-negativity constraints or, more generally, constraints of the form Bu ≤ b.
Let us assume u = 0 meets the Bu ≤ b constraint, i.e. b ≥ 0. Many problems can
at least be expressed as a translation of this setting. Since indicator functions
map onto {0,∞}, the αi for all valid points are zero. Although this again
makes p0 = 0 a valid starting subgradient, this is not a good choice since
αi − 〈di, p0〉 = 0 for all i and thus the solution is completely dense in its ic-
representation.

If the set described by Bu ≤ b is bounded, then l = m and we suggest to
choose p0 = dj for a dj which has maximal norm, since in this case αj−〈dj , p0〉 =
−‖dj‖2 is the unique minimum and u0 is 1-sparse with only λj possibly being
non-zero. If l < m the situation is more complicated and one should try to find
a p0 such that the minimum mini≤l αi − 〈di, p0〉 is attained at as few indices as
possible, while αi > 〈di, p0〉 holds for as many indices i > l as possible. This
choice guarantees a sparse starting point.

4.3 Convergence

As we have seen in the previous two subsections, choosing a starting point will be
easy in most cases and with an appropriate starting point the piecewise constant
solution to the aISS flow can be computed efficiently. In this subsection we will
establish some convergence properties of the flow. Let us start with the strict
decrease of the approximation to f at each time step:

Proposition 2. The approximation error ‖Au(t)−f‖ of the inverse scale space
flow for polyhedral functions is strictly decreasing at the times tk, i.e.

‖Au(tk+1)− f‖ < ‖Au(tk)− f‖ (4.20)

Proof. We will prove the above Proposition in two steps

1. Show that ‖Au(tk+1)− f‖ < ‖Au(tk)− f‖ if p(tk) /∈ ∂J(u(tk+1)).

2. Show that p(tk) /∈ ∂J(u(tk+1)) is always satisfied.

First part: Let us assume that p(tk) /∈ ∂J(u(tk+1)). In this case

Dp(tk)(u(tk+1), u(tk)) > 0. (4.21)

Notice that u(tk+1) is a minimizer of

Q(u) =
1

2
(tk+1 − tk)‖Au− f‖2 +Dp(tk)(u, u(tk)), (4.22)

14

which can easily be verified by confirming that the formula for p(tk+1) coincides
with the optimality condition of the above functional. Using (4.21) this yields
the conclusion

1

2
(tk+1 − tk)‖Au(tk+1)− f‖2 < Q(u(tk+1))

≤ Q(u(tk))

=
1

2
(tk+1 − tk)‖Au(tk)− f‖2,

and since (tk+1 − tk) > 0 we have shown ‖Au(tk+1)− f‖ < ‖Au(tk)− f‖.

Second part: By construction, more specific by the choice of tk+1, there exists
an index i such that i ∈ I1(tk+1), i /∈ I1(tk) or i ∈ I2(tk+1), i /∈ I2(tk). By
the characterization of the subdifferential of J(u), we have to have λi = 0
in the ic-representation of u(tk+1), because otherwise i /∈ I1(tk), (respectively
i /∈ I2(tk)), implies p(tk) /∈ ∂J(u(tk+1)) and we are done. If all λi = 0 at
the indices that newly entered I1(tk+1) or I2(tk+1), then we can conclude that
u(tk+1) = u(tk) since the remaining λj in the ic-representation of u(tk+1) solve
the same optimization problem as they did for u(tk). However, we will show
that the assumption u(tk+1) = u(tk) leads to a contradiction:

1. If there exists an i ∈ I2(tk+1), i /∈ I2(tk), and u(tk+1) = u(tk) then

αi
i∈I2(tk+1)

= 〈di, p(tk+1)〉
= 〈di, p(tk)〉+ (tk+1 − tk)〈di, AT (f −Au(tk))〉
= 〈di, p(tk)〉︸ ︷︷ ︸

<αi, since i/∈I2(tk)

+(tk+1 − tk) 〈di, AT (f −Au(tk+1))〉︸ ︷︷ ︸
≤0(compare (4.8))

< αi

2. If there exists an i ∈ I1(tk+1), i /∈ I1(tk), and u(tk+1) = u(tk) then

(αi − 〈di, p(tk+1)〉) i∈I(tk+1)
= min

j
(αj − 〈dj , p(tk+1)〉)

compare (4.9)
= min

j
(αj − 〈dj , p(tk)〉)− (tk+1 − tk)β

i/∈I(tk+1)
< (αi − 〈di, p(tk)〉)− (tk+1 − tk)β

compare(4.10)

≤ (αi − 〈di, p(tk+1)〉)

The previous proposition allows us to conclude the finite time convergence
of the aISS method:

Theorem 3. Let (u(t), p(t)) be a solution of the adaptive inverse scale space
method as above, then there exists a K > 0 such that tK+1 =∞.

Proof. If there existed a k 6= j such that I1(tk) = I1(tj) and I2(tk) = I2(tj)
then we would obviously have u(tk) = u(tj) and therefore ‖Au(tk) − f‖2 =

15

‖Au(tj) − f‖2. By Proposition 2 this is impossible. Since in finite dimensions
there are only finitely many possibilities for indices to be (or not to be) in I1(tk)
and I2(tk), we can conclude that the method has to converge in a finite number
of iterations, i.e. there exists a K > 0 such that tk+1 =∞.

In the previous literature on Bregman iterations and inverse scale space
methods it has been shown already that the solution u(t) of the inverse scale
space flow converges to a J-minimizing solution of Au = f or, if f /∈ range(A),
to a J-minimizing solution such that u ∈ arg min ‖Au− f‖2. However, different
from the previous literature, our starting point does not have to be (0, 0). Fur-
thermore, we allow J(u) =∞ which might lead to the case where f ∈ range(A),
but for any solution to Au = f we have J(u) =∞. Both aspects are not covered
by the previous analysis. Let us start with a lemma similar to Proposition 3.2
in [OBGaY05].

Lemma 5. The inverse scale space flow for polyhedral norms meets

Dp(tk+1)(u, u(tk))−Dp(tk)(u, u(tk−1))

≤ (tk+1 − tk)

2

(
‖Au− f‖2 − ‖Au(tk)− f‖2

)
(4.23)

for all u for which J(u) ≤ ∞

Proof. First of all notice, that the inverse scale space flow has the interest-
ing property of p(tk) ∈ ∂J(u(tk)) as well as p(tk) ∈ ∂J(u(tk−1)), such that

Dp(tk)(u(tk), u(tk−1)) = 0 for all k. We can calculate

Dp(tk+1)(u, u(tk))−Dp(tk)(u, u(tk−1))

= Dp(tk+1)(u, u(tk)) +Dp(tk)(u(tk), u(tk−1))−Dp(tk)(u, u(tk−1))

= 〈u(tk)− u, p(tk+1)− p(tk), 〉
= (tk+1 − tk)〈u(tk)− u,AT (f −Au(tk)), 〉

≤ (tk+1 − tk)

2

(
‖Au− f‖2 − ‖Au(tk)− f‖2

)
,

where the last step comes from 2AT (Au(tk)− f) being in the subdifferential of
‖Au− f‖2 at u(tk).

We can use the above lemma to state the following convergence result:

Theorem 4. tK+1 =∞ if and only if u(tK) ∈ arg minJ(u)<∞ ‖Au− f‖2.
More precisely, for any ũ ∈ arg minJ(u)<∞ ‖Au− f‖2 we have

‖Au(tk)− f‖2 ≤ ‖Aũ− f‖2 +
2Dp0(ũ, u0)

tk+1
. (4.24)

for any k.

Proof. Let us start with proving the estimate (4.24). We sum over estimate

16

(4.23) yielding the left hand side

k∑
i=1

(
Dp(ti+1)(u, u(ti))−Dp(ti)(u, u(ti−1))

)
= Dp(tk+1)(u, u(tk))−Dp(t1)(u, u(t0)),

≥ −
(
J(u)− J(u(t0))− 〈p(t1), u− u(t0)〉

)
,

= −Dp(t0)(u, u(t0))− (t1 − t0)〈AT (Au(t0)− f), u(t0)− u〉,

≥ −Dp(t0)(u, u(t0))− (t1 − t0)

2

(
‖Au(t0)− f‖2 − ‖Au− f‖2

)
.

For the right hand side we use the monotone decay of ‖Au(ti)−f‖2 (Proposition
2) to obtain

k∑
i=1

(ti+1 − ti)
2

(
‖Au− f‖2 − ‖Au(ti)− f‖2

)
≤ (‖Au− f‖2 − ‖Au(tk)− f‖2)

k∑
i=1

(ti+1 − ti)
2

,

=
tk+1 − t1

2
(‖Au− f‖2 − ‖Au(tk)− f‖2), (4.25)

Reading the full estimate we have

tk+1 − t1

2
(‖Au− f‖2 − ‖Au(tk)− f‖2)

≥ −Dp(t0)(u, u(t0))− (t1 − t0)

2
(‖Au(t0)− f‖2 − ‖Au− f‖2) (4.26)

which is equivalent to (4.24) and holds for any u with J(u) <∞.
As for the equivalence:

• tK+1 < ∞ while u(tK) ∈ arg minJ(u)<∞ ‖Au − f‖2 would contradict
Proposition 2

• By the estimate we just showed, tK+1 =∞ means ‖Au(tK)−f‖2 ≤ ‖Au−
f‖2 for all u with J(u) <∞ and thus u(tK) ∈ arg minJ(u)<∞ ‖Au− f‖2.

Lemma 6. For a convex set {u | J(u) <∞} and M defined by

M = {u | u ∈ arg min
J(u)<∞

‖Au− f‖2} (4.27)

the set

{Au | u ∈M} (4.28)

consists of only one element (unless J(u) ≡ ∞).

17

Proof. The elements in {Au | u ∈M} are the solutions of

min
q∈C
‖q − f‖2

with C = {Au | J(u) < ∞}. For a convex polyhedral J , C is non-empty,
closed and convex. Since the `2 norm is strictly convex, the above minimizer is
unique.

Theorem 5. The stationary solution u(tK) of the inverse scale space flow with
starting point p0 minimizes the Bregman distance

Dp0(u, u0) = J(u)− J(u0)− 〈p0, u− u0〉, (4.29)

among all u ∈ arg minJ(u)<∞ ‖Au− f‖2. In particular, if p0 ∈ range(AT) then
u(tK) is J(u)-minimizing.

Proof. Let u be any u ∈ arg minJ(u)<∞ ‖Au− f‖2. Since p(tK) ∈ ∂J(u(tK)) we
know that

0 ≤ Dp(tK)(u, u(tK))

= J(u)− J(u(tK))−
〈
p(tK), u− u(tK)

〉
= J(u)− J(u(tK))−

〈
p(0) +

K∑
i=1

(ti − ti−1)AT (f −Au(ti−1)), u− u(tK)
〉

= J(u)− J(u(tK))−
〈
p(0), u− u(tK)

〉
−
〈 K∑
i=1

(ti − ti−1)(f −Au(ti−1)), Au−Au(tK)︸ ︷︷ ︸
=0 due to Lemma 6

〉
= J(u)− J(u(tK))−

〈
p(0), u− u(tK)

〉
, (4.30)

Rearranging this inequality and extending with u0 leads to

J(u(tK))− J(u0)− 〈p0, u(tK)− u0 ≤ J(u)− J(u0)−
〈
p(0), u− u0

〉
,

⇒ Dp0(u(tK), u0) ≤ Dp0(u, u0) (4.31)

for all u ∈ arg minJ(u)<∞ ‖Au− f‖2.

Notice that above theorem allows us to incorporate a-priori information into
the solution of our problem. If we for instance know that a certain coefficient λi,
i > l, in the ic-representation of the true solution is likely to be non-zero we could
choose a p0 such that 〈p0, di〉 = αi, which would basically lead to not penalizing
this particular coefficient. Of course, care has to be taken when incorporating
such prior knowledge since choosing a p0 /∈ range(AT) based on false a-priori
assumptions can lead to weakening the performance of the regularization J .

So far, we have seen the strict decay of ‖Au−f‖ at each time step, concluded
the finite time convergence and seen that the final solution of the aISS method
is J-minimizing among all u ∈ arg minJ(u)<∞ ‖Au − f‖2, if p0 ∈ range(AT).
As seen earlier, p0 = 0 is a valid starting point for J(u) with J(u) ≥ 0 and
J(u) = 0⇔ u = 0. For this starting point p0 ∈ range(AT) automatically holds.
For indicator functions, the starting point is less obvious to choose, but also less
important, since we are just looking for one possible u ∈ arg minJ(u)<∞ ‖Au−
f‖2:

18

Conclusion 2. For indicator functions J(u) the condition p0 ∈ range(AT)
is not crucial. Being able to possibly determine different Bregman distance
minimizing solutions to u ∈ arg minJ(u)<∞ ‖Au − f‖2 simply reflects possible
non-uniqueness of the minimizer.

Finally, we can state the exact recovery of very special f = Autrue as well as
a result about the di being eigenfunctions, if A is normalized in a certain way.

Proposition 3. Let u0 = 0, p0 = 0 be a valid starting point and let the data f
be f = γAdi, γ > 0. If the matrix A is normalized such that

αj‖Adi‖2 ≥ αi〈Adi, Adj〉, (4.32)

then aISS converges in a single iteration. Furthermore, if the above inequality
is strict, then u(t1) = γdi.

Proof. In the aISS flow we have p(t) = tAT f = tγATAdi and t1 being the
smallest time among all tj at which

αj = 〈p(tj), dj〉

⇒ tj =
αj

γ〈dj , di〉
. (4.33)

Thus, λi is allowed to be non-zero at t1 if ti ≤ tj , i.e. if

αi
γ〈di, di〉

≤ αj
γ〈dj , di〉

,

⇔ αj‖Adi‖2 ≥ αi〈Adi, Adj〉. (4.34)

If this is the case minp(t1)∈∂J(u) ‖Au− f‖2 = 0 and thus aISS converges in one
step. If the above inequality is strict, then λi is the only non-zero coefficient in
the ic-representation of u(t1) and therefore u(t1) = γdi.

In [Ben] Benning introduced/generalized the concept of eigenfunctions for
quadratic minimization problems with respect to general regularizers J(u) as
function for which there exists a λ > 0 such that

λATAu ∈ ∂J(u)

This idea will be extended by Benning and Burger in [BB]. We can show that for
polyhedral functions the di correspond to eigenfunctions if the matrix A meets a
certain normalization criterion. If this normalization criterion is met for all di we
can conclude that the aISS flow represents the solution u as a linear combination
of eigenfunctions. For more details on the concepts of eigenfunctions we refer
to [Ben].

Proposition 4. If the matrix A is normalized such that

αi‖Adj‖2 ≥ αj〈Adi, Adj〉, (4.35)

then dj is an eigenfunction to eigenvalue γj =
αj

‖Adj‖2 .

Proof. For dj to be an eigenfunction to eigenvalue γj we need to show that

γjA
TAdj ∈ ∂J(dj),

which by the characterization of the subdifferential means

19

• If j > l:

– 〈γjATAdj , dj〉 = αj - which is met for γj =
αj

‖Adj‖2

– 〈γjATAdj , di〉 ≤ αi for all i - which substituting the above γj is
equivalent to

αi‖Adj‖2 ≥ αj〈Adi, Adj〉,

and is met by the requirements of the proposition.

• If j ≤ l:

(αj − 〈γjATAdj , dj〉) ≤ (αi − 〈γjATAdj , di〉), ∀i

For γj =
αj

‖Adj‖2 the left hand side is zero and the condition becomes

αi‖Adj‖2 ≥ αj〈Adi, Adj〉,

which again is the propositions requirement.

Notice that in the simplest case of `1 regularization, where di are just the
(positive and negative) unit normal vectors and αi = 1, the criterion is met if
‖Aei‖2 = 1, which was discovered in [Ben] before.

5 Scale Space Flows for Polyhedral Functions

In this section we will briefly discuss that the popular scale space flow (also
called gradient flow) can also be interpreted under the framework presented
above. The scale space flow

∂u(t) = −p(t) such that p(t) ∈ ∂J(u(t)), (5.1)

with u(0) = f is commonly used for denoising, and can be seen as the continuous
gradient descent with respect to the functional J starting at u = f . Due to the
fact that

p(t) ∈ ∂J(u(t))⇔ u(t) ∈ ∂J∗(p(t)) (5.2)

as well as Theorem 1, which tells us that the convex conjugate of a polyhedral
function again is a polyhedral function, we can interpret (5.1) as the inverse scale
space flow with respect to J∗(p) and starting subgradient u(0) = f ∈ ∂J∗(p(0)).
Notice that the roles of u and p are inverted in comparison to the previous
sections. However, interpreting the scale space flow to J(u) as the inverse scale
space flow to J∗(p) allows us to apply all the above convergence theory and
draw some very interesting conclusions.

Conclusion 3. Assume that J∗(0) < ∞ and 0 ∈ ∂J∗(0), then the scale space
flow (5.1) yields extinction of u in finite time. Furthermore, Theorem 4 gives
us the estimate

‖p‖2 ≤
2Df

J∗(p̃, p0)

tk+1
(5.3)

20

In particular, for regularizations of the form J(u) = ‖Ku‖1 (like anisotropic
total variation), we have p̃ = 0 and J∗(p) = 0 for all p in the feasible region,
yielding

‖p‖2 ≤ 2
J∗(0)− J∗(p0)− 〈f, 0− p0〉

tk+1
=

2J(f)

tk+1
(5.4)

In terms of the computational expenses to determine the scale space flow, it
seems that the number of discrete steps the aISS algorithm has to take to reach
extinction is much more relevant than the total time, because in between the
steps u evolves linearly and p stays constant. The following result shows, that
the flow does not take any superfluous steps:

Theorem 6. Let J∗ be an indicator function of some convex bounded polyhedral
set, i.e. let the fg-representation of J∗ be

J∗(p) =

{
0 if p =

∑l
i=1 λidi, λi ≥ 0,

∑l
i=1 λi = 1

∞ else.
(5.5)

Then the index set I1(t) = {1 ≤ i ≤ l : 〈u(t), di〉 = maxj〈u(t), dj〉} correspond-
ing to the flow (5.1) is strictly increasing. Thus, the aISS algorithm converges
after at most l steps.

Proof. Let i ∈ I1(tk). We will show that i ∈ I1(tk+1). Due to i ∈ I(tk) we know
that 〈u(tk), di〉 = r = 〈u(tk), dj〉 for all j ∈ I1(tk). Based on the aISS algorithm,
p(tk) is determined as

p(tk) = arg min ‖DPI1(tk)λ‖
2 such that λi ≥ 0,

∑
i

λi = 1. (5.6)

Notice that

arg min
λ
‖DPI1(tk)λ‖

2 = arg min ‖DPI1(tk)λ‖
2 + ‖u(tk)‖2 − 2r

= arg min
λ
‖DPI1(tk)λ‖

2 + ‖u(tk)‖2 − 2r
∑
j

λj

= arg min
λ
‖DPI1(tk)λ‖

2 + ‖u(tk)‖2 − 2
∑
j

λj〈u(tk), dj〉

= arg min
λ
‖DPI1(tk)λ− u(tk)‖2

Therefore, p(tk) is the projection of u(tk) onto the convex hull of the dj , j ∈
I(tk), i.e. of the dj for which 〈u(tk), dj〉 = r = maxj〈u(tk), dj〉. Naturally,
λj > 0 for all j ∈ I(tk). We have seen in the proof of the aISS algorithm above
already, that λj > 0 at tk implies that j ∈ I1(tk+1). This shows that I(t) is
increasing. The fact that I(t) strictly increases at the time steps tk comes from
the definition of tk (as the next time a new coefficient enters an index set).

It is very interesting to see that the scale space flow for these kinds of regu-
larizations (where J∗ has an fg-representation with l = m) not only leads to a
monotonically increasing index set, but even allows to conclude the equivalence
between the solution to the scale space flow u(t) at time t and the solution to
an unconstrained minimization problem as the following theorem tells us.

21

Theorem 7. Let the assumptions of Theorem 6 be satisfied. Then the solution
u(t) to the scale space flow (5.1) satisfies

u(t) = arg min
u

1

2
‖u− f‖2 + tJ(u) (5.7)

Proof. We have seen above that the solution u(t) to (5.1) is piecewise linear in
time, more precisely

u(t) = u(tk)− (t− tk)p(tk),

= u(0)− (t− tk)p(tk)−
k∑
i=1

(ti − ti−1)p(ti−1).

= f − (t− tk)p(tk)−
k∑
i=1

(ti − ti−1)p(ti−1).

The optimality condition to (5.7) is

1

t
(u− f) ∈ −∂J(u), (5.8)

such that it is sufficient to show that 1
t

(
(t− tk)p(tk)+

∑k
i=1(ti− ti−1)p(ti−1)

)
∈

∂J(u). For the simplicity of being able to also include the first term in the
sum, let us (under slight abuse of notation) denote tk+1 = t without necessarily

meaning the next time step with this notation. Let p(ti) =
∑
j λ

(i)
j dj be the

ic-representations with λ
(i)
j ≥ 0,

∑
j λ

(i)
j = 1. We can write

k+1∑
i=1

ti − ti−1

tk+1
p(ti−1) =

k+1∑
i=1

(ti − ti−1)

tk+1

∑
j

λ
(i)
j dj

=
∑
j

(k+1∑
i=1

(ti − ti−1)

tk+1
λ
(i)
j

)
︸ ︷︷ ︸

λ̃j

dj

(5.9)

We have written the element we would like to show to be in the subdifferential
∂J(u(t)) as the sum of the dj and coefficients λ̃j . We now need to show that

λ̃j ≥ 0,
∑
j λ̃j = 1 and λ̃j = 0 if 〈u(t), dj〉 < maxk〈u(t), dk〉.

• The first point, λ̃j ≥ 0, is obvious because ti > ti−1 and λ
(i)
j ≥ 0.

22

• For the sum to one criteria we have

∑
j

λ̃j =
∑
j

k+1∑
i=1

(ti − ti−1)

tk+1
λ
(i)
j

=

k+1∑
i=1

(ti − ti−1)

tk+1

∑
j

λ
(i)
j︸ ︷︷ ︸

=1

=
1

tk+1

k+1∑
i=1

(ti − ti−1)

= 1 (5.10)

• Finally, we have to show that at indices j at which 〈u(t), dj〉 < maxk〈u(t), dk〉,
we have λ̃j = 0, or in other words λ̃j = 0 for j /∈ I1(t). Now, Theorem
6 tells us that I1(t) is strictly increasing. Therefore, if j /∈ I1(t) we can

conclude j /∈ I1(ti) for all ti ≤ t, which means λ
(i)
j = 0 for all i. Thus

λ̃j =
∑k+1
i=1

(ti−ti−1)
tk+1 λ

(i)
j = 0 if j /∈ I1(t), which concludes our proof.

Finally, let us mention that many regularizations meet the assumptions of
Theorem 6 that J∗ is an indicator function of some convex bounded polyhedral
set. Consider for instance J(u) = ‖Tu‖1 for any matrix T (for instance with T
being the discrete approximation of the gradient and thus J(u) being anisotropic
total variation regularization). For such a J the convex conjugate is

J∗(p) = sup
u

(
〈p, u〉 − ‖Tu‖1

)
= sup

u
inf

‖q‖∞≤1
〈p− TT q, u〉

Thus, we have J∗(p) = 0 if and only if p ∈ {TT q | ‖q‖∞ ≤ 1} (which clearly is
a bounded polyhedral set) and J∗(p) =∞ else. A similar argument shows that
the assumptions of Theorem 6 are also met for J(u) = ‖Tu‖∞.

For T being the discrete approximation of the divergence, we have confirmed
and generalized the result from [BCNO] in which the authors have shown the
equivalence of the scale space flow and the minimizer of the energy for the
particular case of J(u) = ‖div(u)‖1.

6 Examples and Numerical results

6.1 A first example in 2d

Let us give an example of a more complicated polyhedral function than the `1

norm, particularly to illustrate the use of the
∑l
i=1 λi = 1 constraint.

Example 4. Let us consider the following convex polyhedral function in two
dimensions given in its fg-representation by l = 6, α1 = 1, α2 = 1, α3 = 2,

23

α4 = 1, α5 = 1, α6 = 0, α7 =∞, α8 =∞, α9 =∞, α10 =∞, α11 = 2, and

d1 =

(
−1
0

)
, d2 =

(
0
−1

)
, d3 =

(
−1
−1

)
d4 =

(
0
1

)
, d5 =

(
1
0

)
, d6 =

(
0
0

)
d7 =

(
−1
0

)
, d8 =

(
0
−1

)
, d9 =

(
−1
1

)
, d10 =

(
1
−1

)
d11 =

(
1
1

)
Figure 1 illustrates the area where J(u) <∞ as well as the di.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

d
1

d
3

d
4

d
6

d
4

d
11

d
5

Figure 1: Illustrating the fg-representation of J(u)

Let us look at two numerical experiments we can do with the polyhedral
function above:
1. Projection onto the feasible region
First let us choose A to be the identity and f = (1, −1.5)T to lie outside of
the J(u) < ∞ region. As we have seen above, the aISS flow will converge
to a u ∈ arg minJ(u)<∞ ‖f − u‖2 , which has a unique solution, namely the
projection of f onto the J(u) < ∞ region. As we can see in Figure 2 the
algorithm converges in two steps. First it chooses the edge d2 since the product
〈d2, f〉 is largest. Next it includes i = 4 in the index set of possibly non-zero
elements and finds the projection of f to be in the convex hull of d2 and d4,
thus having fully converged.

24

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u(t
1
)

u(t
2
)

u
true

Figure 2: Iterates of the aISS algorithm for the calculation of a projection

2. Finding the J-minimizing solution
In the second experiment, we choose A as a random 2 × 2 matrix with values
drawn from a standard Gaussian distribution and generate the data f as f =
Autrue for utrue = (1, 1)T . Since now the true solution lies in the feasible region,
we expect the aISS algorithm to converge to utrue, which is indeed the case, as
we can see in Figure 3. This time aISS took three steps. First, d4 enters the
index set I1 and simultaneously makes d6 = 0 leave I2. Next the coefficient
corresponding to d11 is allowed to be non-zero. Although utrue = d11, the
algorithm can not yet fully converge because I1 = {4} and due to the sum to
one constraint for indices in I1 the solution u(t2) at the second time step is of
the form d4 + λ11d11. Finally, at the third time step i = 6 reenters the index
set I2 and allows u(t3) = d11 = utrue.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u(t
1
)

u(t
2
)

u
true

u(t
3
)

Figure 3: Iterates of the aISS algorithm for the calculation a J-minimizer of
Au = f

6.2 Convex hull constraints

While the previous example was instructive, it only served illustration purposes,
since a minimization over a vector of length 2 is of little practical relevance

25

due to its low dimensionality. Frequently arising in optimization are quadratic
programming problems of the form

min
u
‖Au− f‖2 such that u ∈ C, (6.1)

where C is some given polyhedron. Generally, there are two different ways
to express polyhedra, either by inequalities (a so called H-representation C =
{u | B1u ≤ b1, B2u = b2}) or as a convex hull (a so called V-representation
C = {u | u = Dλ, λi ≥ 0,

∑
i λ1 = 1}). For the inverse scale space

flow a V-representation is very well suited because it immediately gives a fg-
representation of the regularizing function. Notice that the conversion of one
polyhedral representation into the other can be extremely computationally chal-
lenging such that one should keep the polyhedron in the format that naturally
arises in the application and solve the corresponding problem (6.1). Many meth-
ods deal with incorporating polyhedral constraints in H-representation such that
aISS offers a fast algorithm for C given in V-representation. The inverse scale
space flow will particularly be fast, if the true solution lies on a low dimensional
face of C, i.e. if u = Dλ with only few non-zero λi.

For quadratic programming problems in H-representation Matlab offers an
optimization method called quadprog. In the following we would like to compare
the inverse scale space flow for solving a constrained optimization problem with
the Matlab algorithm. Due to the different representations the two algorithms
expect, we need to choose an example problem for which both representations
are easily computable. Let us consider

min
u
‖Au− f‖2 such that u ≥ 0,

∑
i

ui = 1. (6.2)

The constraints can either be represented by C = {u | B1u ≤ b1, B2u = b2}
with B1 = −I being the negative identity, b1 = 0, B2 = 1 being a row vector
with all ones and b2 = 1, or as C = {u | u = Dλ, λi ≥ 0,

∑
i λ1 = 1} with D = I

being the identity. Notice that this is special case where the number of vertices
in the V-representation (number of columns in D) and number of intersecting
hyperplanes in the H-representation (number of rows of B1 and B2) is almost
the same and both representations are easily computable.

For our numerical experiment we choose A to be a random n × m matrix
and random data f , both with values from a uniform sampling of [0, 1]. Table
6.2 shows a run time comparison of the two methods for different matrix sizes,
where we ran each experiment 10 times and took the average values for the run
time (in seconds) and sparsity.

Matrix size 100× 200 180× 200 100× 250 50× 200 100× 300
Runtime aISS 0.33 0.28 0.27 0.17 0.30
Runtime quadprog 4.0 2.3 7.1 3.2 17.5
|u|0 18.8 27.6 21.5 16 22.2

We can see that the aISS flow determined the solution to the constrained
optimization problem much faster than the Matlab algorithm. Moreover, due
to the sparsity of the solution remaining rather low even for increasing dimen-
sions, the run time of the aISS algorithm is almost not affected by the changes in
matrix dimension, while quadprog has difficulties dealing with the large under-
determined 100×300 system. For quadprog to converge we even had to increase

26

the maximum number of iteration. A further increase in dimensionality is basi-
cally impossible with quadprog, while it is no problem for aISS.

6.3 Linear inequality constraints

As we have seen in the previous subsection, the aISS algorithm can handle con-
vex hull constraints very well, since it immediately gives us a fg-representation
of the polyhedral regularizer. We will see in this subsection, that the problem

min
u
‖Au− f‖2 such that Bu ≤ b (6.3)

for an injective A is also easy to handle for the aISS algorithm, by going to the
dual formulation. Let us define

H(u) =
1

2
‖Au− f‖2

J(Bu) =

{
0 if Bu ≤ b
∞ else

(6.4)

Fenchels duality theorem (cf. [ET99])allows us to conclude that

min
u
H(u) + J(Bu) = −min

q
H∗(−TT q) + J∗(q), (6.5)

where the superscript ∗ denotes the convex conjugate functionals. We have

H∗(p) = sup
u
{〈p, u〉 −H(u)} (6.6)

The supremum yields the optimality condition, which for injective A can be
solved for the optimal u:

0 = p−AT (Au− f)

⇒ u = (ATA)−1(AT f + p) (6.7)

Inserting back into H∗ we can calculate

H∗(p) = 〈p, (ATA)−1(AT f + p)〉 − 1

2
‖A(ATA)−1(AT f + p)− f‖2

=
1

2
‖A(ATA)−1p+ (2I −A(ATA)−1AT)f‖2 + C, (6.8)

where C is some constant independent of p. Another calculation shows that

J∗(p) =

{
〈b, p〉 if pi ≥ 0
∞ else

. (6.9)

Therefore, we can conclude

Proposition 5. For an injective matrix A the problems

ũ = arg min
u
‖Au− f‖2 such that Bu ≤ b (6.10)

and

q̃ = arg min
q

{
1
2‖A(ATA)−1BT q − (2I −A(ATA)−1AT)f‖2 + 〈b, q〉

such that qi ≥ 0

}
(6.11)

27

are equivalent with the relation

ũ = (ATA)−1(AT f −BT q̃) (6.12)

between the primal and dual variable.

The above proposition allows us to rewrite inequality constraints into a prob-
lem of the form (6.11), which can easily be solved by the adaptive inverse scale
space method, since it is nothing but a non-negative least squares problem.

Matlab provides two function, quadprog and lsqlin, to solve the constrained
problem (6.10). For a numerical test we chose a Matrix A ∈ Rn×m with val-
ues drawn from a Gaussian normal distribution, where n ≥ m to guarantee
injectivity. We generated the data f = Au with a vector u ∈ Rm coming from
a normal distribution. Similarly, the inequality constraints were chosen from
random B ∈ Rk×m, b ∈ Rk, again from a normal distribution. We used k < m
to guarantee that the set {u | Bu ≤ b} is non-empty. Table 6.3 shows the run
times in seconds for different values of (n,m, k).

(n,m,k) (400,200,100) (300,290,200) (400,400,100) (400,110,100)
aISS 0.26 1.49 0.36 0.26
quadprog 1.25 4.92 5.56 0.60
lsqlin 2.11 6.25 7.18 0.97

We can see that aISS outperformed the Matlab algorithms in all test cases.
Particularly in the case of a big quadratic A aISS was much faster needing less
than 1/10 of the time that quadprog needed. Generally, we should metion, that
aISS is particularly fast, if q in the formulation (6.11) is sparse. Since q can also
be interpreted as the Lagrange multiplier to enforce Bu ≤ b, this means that
aISS is particularly fast, if the constraint has to be enforced only at few indices.

6.4 Some examples in applications

In this final section of our numerical results we provide some examples of poly-
hedral regularized functions for problems that could come up in applications.

6.4.1 Non-negative `1 minimization

The example of using aISS for unconstrained `1 minimization has extensively
been studied in [BMBO11]. It is easy to see that an additional non-negativity
constraint is straight forward to include. While the fg-representation of the `1

norm contains all positive and negative Euclidean normal vectors, ei and −ei,
we can simply omit the negative ones to obtain the fg-representation of

J(u) =

{
‖u‖1 if u ≥ 0,
∞ else.

(6.13)

As a simple example, we generated a random A ∈ R100×200 with values from a
Gaussian distribution, and data f = Autrue with utrue consisting of 8 positive
entries from a uniform sampling of [0, 2] at random indices. Figure, 4 shows the
results of the aISS algorithm after 1, 3, 5 and 8 iterations.

28

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Solution at Iteration 1

(a) Iteration 1

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Solution at Iteration 3

(b) Iteration 3

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Solution at Iteration 5

(c) Iteration 5

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Solution at Iteration 8

(d) Iteration 8

Figure 4: Intermediate results for determining non-negative `1 minimizing so-
lutions

We can see that similar to the aISS results from [BMBO11], we reconstruct
one peak at each iteration. For sparse solutions like in this example, aISS is
extremely fast, since it works on very low dimensions based on the indices where
the subgradient is one.

6.4.2 Projection onto the `1 ball and `∞ minimization

We have shown in [BMBO11] that the aISS framework not only works for de-
termining `1 minimizing solutions, but also for unconstrained problems of the
form minu ‖Au − f‖2 + µ‖u‖1. Similarly, one could consider the regularizing
constraint minu ‖Au − f‖2 such that ‖u‖1 ≤ 1 (or less than a parameter µ
which could however also be incorporated by rescaling A). Notice that the fg-
representation of the `1 ball is easy to determine since it consists of all positive
and negative unit normal vectors and (additionally) the vector with 0 in all
components, together with l = m and αi = 0 for all i, which makes it well
suited for the aISS algorithm.

Furthermore, notice that the dual formulation for the problem

min
‖p‖1≤1

‖αTT p− f‖2, (6.14)

is an `∞ regularized problem with the matrix T , i.e.

min
u
‖u− f‖2 + α‖Tu‖∞. (6.15)

29

Respectively, unconstrained `1 minimization by duality is equivalent to the con-
strained `∞ formulation

min
u
‖u− f‖2 such that ‖Tu‖∞ ≤ µ, (6.16)

such that the aISS method is also very useful for possible regularizations in-
volving the `∞ norm. As a toy example let us consider the problem of denois-
ing smooth signals by penalizing with the `∞ norm of the second derivative,
i.e. minimizing (6.15) with T being the discretization of the (one dimensional)
Laplacian. Figure 5 gives an example of such a denoising result for a sine func-
tion.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Noisy data
Reconstruction by
projecting the noisy
data onto the set of
low Laplacian values
True noise free data

Figure 5: Denoising a function by restricting the maximum Laplacian

6.4.3 Best convex approximation

Knowing the characterization of convex functions as functions for which the
second derivative is non-negative, we could also use the discretization of the
second derivative operator T from the previous example to find the best convex
approximation of a function by minimizing

min
u
‖u− f‖2 such that Tu ≥ 0. (6.17)

Notice that (6.17) has the form of the problems investigated in Section 6.3 and
again can rapidly be solved with aISS. Figure 6 shows an example of denoising
the function f(x) = x2 with (6.17), i.e. by using the prior knowledge that the
true function we are looking for is convex.

30

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Noisy data
Best convex approximation
True noise free data

Figure 6: Determining the best convex approximation

6.4.4 Best monotone approximation

Similar to the previous example, one could also look for the best monotone
approximation by replacing the discrete Laplace operator from the previous
subsection with the discrete derivative and again solve the resulting system with
aISS. Figure 7 shows an example of such a monotone approximation result. The
minimizer will typically have staircases - in case a smooth underlying function
can be expected, one would have to add an additional smoothness term for
instance by combining this approach with the one from Section 6.4.2.

0 20 40 60 80 100 120 140 160 180 200
−6

−4

−2

0

2

4

6

Noisy data
Best monotone approximation
Original noise free signal

Figure 7: Determining the best monotone approximation

31

7 Conclusions

We have generalized the concept of solving the inverse scale space flow exactly
from `1 regularization to arbitrary polyhedral functions. Although the inverse
scale space flow at first seems to be difficult to solve due to the differential
inclusion, we have seen that it can easily be solved exactly for any convex
polyhedral function in fg-representation. We proved finite time convergence
and presented a general adaptive inverse scale space algorithm only depending
on the fg-representation of the polyhedral function. The connection to the
forward scale space flow was made by showing that it corresponds to the inverse
scale space flow on the convex conjugate problem. Numerical examples show
that the aISS can efficiently compute a wide variety of different regularized or
constrained problems, if the fg-representation is accessible and the solution is
sparse in the ic-representation.

In future research we will investigate if the inverse scale space flow might
also allow fast and exact solutions for non-quadratic fidelity terms.

Acknowledgements

The authors would like to acknowledge the help of Donald Goldfarb and Bo
Huang from the Columbia University, who gave extremely important and valu-
able comments for our work. We would also like to thank Martin Benning for
his helpful discussions. MM and MB acknowledge the financial support of the
German research foundation DFG via grants BU 2327/2-1 BU 2327/6-1.

References

[BB] M. Benning and M. Burger. Ground states and singular vectors of
convex variational regularization methods. In preparation.

[BCNO] A. Briani, A. Chambolle, M. Novaga, and G. Orlandi. On the
gradient flow of a one-homogeneous functional. arXiv:1109.6765v2.

[Ben] M. Benning. Singular regularization of inverse prob-
lems. Ph.D. Thesis, online: http://wwwmath.uni-
muenster.de/num/publications/2011/Ben11/SRoIP-Final.pdf.

[BGOX06] M. Burger, G. Gilboa, S. Osher, and J. Xu. Nonlinear inverse scale
space methods. Comm. Math. Sci., 4:179–212, 2006.

[BMBO11] M. Burger, M. Möller, M. Benning, and S. Osher. An adaptive
inverse scale space method for compressed sensing. UCLA CAM
Report (11-08), Submitted, 2011.

[COS09a] J. Cai, S. Osher, and Z. Shen. Convergence of the linearized breg-
man iteration for `1-norm minimization. Math. Comp., 78:2127–
2136, 2009.

[COS09b] J. Cai, S. Osher, and Z. Shen. Linearized bregman iterations for
compressed sensing. Math. Comp., 78:1515–1536, 2009.

32

[ET99] I. Ekeland and R. Temam. Convex analysis and variational prob-
lems. SIAM, Philadelphia, corrected reprint edition edition, 1999.

[OBGaY05] S. Osher, M. Burger, D. Goldfarb, and J. Xu andW. Yin. An itera-
tive regularization method for total variation-based image restora-
tion. SIAM Multiscale Model. Simul., 4:460–489, 2005.

[Roc96] R. T. Rockafellar. Convex Analysis (Princeton Mathematical Se-
ries). Princeton University Press, 1996.

[Sch87] M. Schechter. Polyhedral functions and multiparametric linear
programming. Journal of Optimization Theory and Applications,
53:269–280, 1987.

[YOGD08] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative
algorithms for `1-minimization with applications to compressed
sensing. SIAM J. Imaging Sci., 1:143–168, 2008.

33

