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Abstract—In this paper we present an efficient numerical
scheme for the recently introduced Geodesic Active Fields (GAF)
framework for geometric image registration. This framework
considers the registration task as a weighted minimal surface
problem. Hence, the data-term and the regularization-term are
combined through multiplication in a single, parametrization
invariant and geometric cost functional. The multiplicative cou-
pling provides an intrinsic, spatially varying and data-dependent
tuning of the regularization strength, while the parametrization
invariance allows working with images of non-flat geometry,
generally defined on any smoothly parametrizable manifold. The
resulting energy-minimizing flow, however, has poor numerical
properties. Here, we provide an efficient numerical scheme that
uses a splitting approach: data and regularity terms are opti-
mized over two distinct deformation fields that are constrained to
be equal via an augmented Lagrangian approach. Our approach
is more flexible than standard Gaussian regularization, since one
can interpolate freely between isotropic Gaussian and anisotropic
TV-like smoothing. In this work, we compare the Geodesic Active
Fields method against the popular Demons method and three
more recent state-of-the-art algorithms: NL-optical flow [1], MRF
image registration [2], and landmark-enhanced large displace-
ment optical flow [3]. Overall, we can show the advantages of the
proposed FastGAF method. It compares strictly favorably against
Demons, both in terms of registration speed and quality. Over
the range of example applications, it also consistently produces
results not far from more dedicated state-of-the-art methods,
illustrating the flexibility of the proposed framework.

Index Terms—Augmented Lagrangian, Biomedical image pro-
cessing, Computational geometry, Diffusion equations, Geodesic
Active Fields, Image registration, Non-convex optimization, Op-
erator Splitting.

I. INTRODUCTION

IMAGE REGISTRATION is the concept of mapping cor-
responding, homologous points of different images, rep-

resenting a same object. In practice, however, it is often
difficult to establish correspondence in images based on this
definition. For automatic image registration, it is commonplace
to substitute homology by a measurable criterion of image
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dissimilarity, which is to be minimized by an unknown de-
formation field u. The determination of this deformation field
is an ill-posed inverse problem, and regularity constraints are
usually introduced to solve it.

A multitude of approaches to solve the registration problem
exist, see [4]–[8] and references therein. The most impor-
tant conceptual differences are regarding similarity criterion
(intensity-based, surfaces, landmarks, other features), defor-
mation parametrization (dense/non-parametric, rigid and affine
models, non-rigid models using splines, wavelets, radial or
other basis functions), regularity constraints (smoothness, dif-
feomorphism, FEM), and optimization methods.

Here, we focus on the non-parametric variational approach,
where the image distance metric and the regularization penalty
are commonly incorporated into a single energy minimization
model, a.k.a. variational model, e.g., [9]. The energy function-
als are commonly of the general form

E = Edata + γ · Eregularization, γ > 0. (1)

A popular algorithm of this class is called Demons [10], which
is today despite its age still a commonly used method in
medical image registration because of its conceptual simplicity
and numerical rapidity. Modern Demons essentially consist of
a two-step iterative scheme, involving an image-based data-
step and a Gaussian smoothing step for regularity. Demons
has two important short-comings: Gaussian convolution is
only fast on Cartesian grids, and further the linear diffusion
regularization might not be suitable for all registration tasks.

Therefore, in previous work [11], we have proposed a new
framework called “Geodesic Active Fields” (GAF). The GAF
energy belongs to the class of (weighted) minimal surface
problems. In other words, the minimization flow drives the
deformation field towards a harmonic map corresponding to
the solution of the registration problem. To this end, the
deformation field regularity is measured with the Polyakov
energy [12], weighted by a suitable image distance borrowed
from standard registration models.

The GAF registration method shares important properties
and similarities with the well-known geodesic active contours
(GAC) model [13] in image segmentation. For example, our
registration method is re-parametrization invariant, like the
GAC model. Further, our registration method can be designed
to work on any kind of surface, such as the sphere.

While in [11] we have introduced the concept of GAF along
with some prototype results for purely illustrative purposes,
the main drawback was the relatively poor computational
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performance, compared to state-of-the-art methods, including
Demons. Here, we want to address these numerical and perfor-
mance shortcomings and provide a numerical scheme that con-
siderably improves the speed of the GAF energy minimization.
The basic idea is to use splitting and an augmented Lagrangian
method borrowed from optimization theory, such as [14], [15],
which aims at solving some optimization problems efficiently
through simpler sub-optimization problems. In our case, it
consists in splitting the data term and the regularization term,
which are coupled with the product operator. The splitting is
then processed in an augmented Lagrangian approach to guar-
antee the equivalence with the original optimization problem
[16]. However, we observe that the splitting method is applied
to a non-convex functional (product of the data term and the
regularization term) which is thus not necessarily guaranteed
to converge to a global solution, even if all our experiments
converged to satisfying solutions. The main interest of the
proposed method is the splitting of the rather complex GAF
problem into smaller sub-problems, for which fast solution
schemes exist.

Here, Demons will serve as baseline for performance com-
parisons due to its structure very similar to GAF. This choice
might appear odd at first, considering that Demons have been
introduced back in 1998 [10], and that many other algorithms
have since been proposed. However, despite its age, Demons
is still very popular and widely used, particularly in medical
imaging. Indeed, in a comparative study in 2003, Demons
outperformed other methods in brain matching [17]. Today,
new applications of standard and diffeomorphic Demons [18]
are reported regularly, e.g. [19]–[24]. Further, very fast imple-
mentations on GPU have been presented [25], [26], and new
flavors and modifications of Demons are still developed, e.g.
[27]. We therefore believe that the comparison of our proposed
algorithm to the very closely related classical Demons method
is sensible. We also note that a good part of alterations made to
this classical Demons framework over the last almost 15 years
can also be incorporated into the proposed GAF scheme.

Beyond, in order to compare with more recent, cutting-edge
models than Demons, we also include comparisons to more
specialized image registration and optical flow methods: NL-
optical flow [1], MRF image registration [2], and landmark-
enhanced large displacement optical flow [3].

The rest of this paper is organized as follows. First, we
briefly recall the GAF framework in section II. Then, in
section III we make use of a splitting scheme and augmented
Lagrangians (AL) to get a fast minimization scheme for the
GAF energy. We setup both, a stereo vision, an optical flow
and a medical 2D registration test case, and comparisons with
other methods, in section IV. Finally, we will give a short
conclusion and outlook in section V.

II. GEODESIC ACTIVE FIELDS

In this section we recall the GAF framework for image
registration, introduced in [11]. The deformation field is
embedded as a mapping between the n-dimensional image
domain and an m-dimensional space, where m > n. This is
achieved by letting the components of the deformation field

become additional dimensions of the embedding space, in
close analogy to the Beltrami framework for image smoothing
and restoration [28]. The embedded manifold then evolves
towards a weighted minimal surface, while being attracted by
a deformation field that brings the two images into registration.
The main strengths of this framework are:

1) The flexibility to register images on any Riemannian
manifold, i.e., on any smooth and parametrized surface.

2) The invariance under re-parametrization of the proposed
energy, like the GAC energy [13] for the segmentation
problem.

3) The data-dependent adaptation of the regularization
strength thanks to the multiplicative weighting.

4) The ability to work with multi-scale images, where the
relation between space and scale is inherently accounted
for.

In the most general form, we register a pair of n-
dimensional images defined on a Riemannian domain Ω ⊂ Rn
with coordinates x = (x1, . . . , xn). The deformation field
acts along p ≤ n dimensions, i.e., u : Ω 7→ Rp,u(x) =
(u1(x), . . . , up(x)). At the very core of GAF, the deformation
field is seen as a surface or hypersurface embedded in a higher
dimensional space, much like images embedded with the
Beltrami framework [28]. On these embeddings, a Riemannian
structure can be introduced: the metric G locally measures the
distances on the embedded deformation field, whereas in the
higher dimensional embedding space distances are measured
using H.

The embedding X : Rn → Rm=n+p, and the local metric
tensors H ∈ Rm×m and G ∈ Rn×n are chosen as follows: X : (x1, . . . , xn)→ (x1, . . . , xn, u1, . . . , up),

H(x,u) is arbitrary,
G(x,u) = JT (x,u)H(x,u)J(x,u),

(2)

where x1, . . . , xn denote the spatial components of the image
and u1, . . . , up are the components of the dense deformation
field. The m × n matrix J denotes the Jacobian of the
embedding defined by X . The manifolds associated with G
and H are isometric i.e., the tensor G of the deformation
field is obtained from H of the embedding space through the
pullback relation. Now, we abbreviate the determinant of the
deformation field’s metric tensor as:

g(x,u) := det (G(x,u)) . (3)

Based on this choice, we define the following general registra-
tion energy functional, which is a weighted Polyakov energy
[12], [29], for the geodesic active fields (GAF):

EGAF (u) =

∫
f(x,u)

√
g(x,u) dx, (4)

where the weighting function f = f(x,u) is arbitrary, and
represents a penalty with respect to the alignment of the two
images.

Indeed, the purpose of the weighting function f is to drive
the deformation field toward minimal surfaces that bring the
two images into registration. Hence, the weighting function is
naturally chosen to be an image distance metric, penalizing
local image mismatch. An intuitive primer for mono-modal
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image registration is the squared error metric [30], leading to:

f(x,u) = 1 + α · (M(x + u)−F(x))
2
, (5)

where F and M refer to the fix and moving images, respec-
tively. In other cases, e.g., for stereo vision, the absolute error
norm might be more appropriate:

f(x,u) = 1 + α · |M(x + u)−F(x)| . (6)

For other examples such as multimodal image registration, or
more sophisticated deformation models, refer to [31].

As we work with sampled images and deformation fields,
we adapt the notation of variables and the energy accordingly.
First, let x ∈ RN×n denote the matrix containing the coordi-
nates of all samples, where N is the number of spatial samples,
and where n is the dimension of the images. Pixel i is located
at xi ∈ Rn. Similarly, ui = u(xi) ∈ Rp is the deformation
vector at xi. For any i ∈ [1, N ] let us write xi,j , j ∈ [1, n]
and ui,q , q ∈ [1, p] to denote a specific component of those
vectors. Finally, the weighting function and the square root of
the metric tensor are rewritten as column vectors, F,G ∈ RN ,
respectively:

Fi = f(xi,ui) ∀i ∈ [1, N ], (7)

Gi =
√
g(xi,u) ∀i ∈ [1, N ]. (8)

This allows rewriting the GAF energy in terms of a standard
vectorial inner product:

EGAF = 〈F,G〉 =

N∑
i=1

FiGi = FTG. (9)

In summary, the notation changes as follows:

x ∈ Ω ⊂ Rn → x ∈ RN×n

u(x) ∈ Rp → u(x) ∈ RN×p

f(x,u) ∈ R+ → F (x,u) ∈ R+N (10)√
g(x,u) ∈ R+ → G(x,u) ∈ R+N

EGAF (u) =

∫
Ω

f
√
gdx → EGAF (u) = FTG.

III. FASTGAF ENERGY MINIMIZATION

The preliminary results presented in [11] were based on a
direct implementation of the flow (4), using a simple forward
Euler scheme. Here, we speed up the optimization task with a
splitting approach, that minimizes the weighting function and
the metric tensor term of the GAF energy separately, tightly
coupled through an augmented Lagrangian (AL) method.

Lagrangian multiplier methods are a powerful and com-
monly used technique for constrained optimization. They are
known to outperform ordinary penalty methods – where the
constraint is only encouraged but not enforced [16], [32].
Indeed, a combination of both ordinary penalty and Lagrangian
multiplier terms in the energy functional leads to the so-called
Augmented Lagrangian (AL), that exhibits better convergence
properties [14], [16]. Several recent, successful TV-regularized
image processing problems, such as [33], [34], can be derived
from such an AL scheme.

A. Splitting

First, we note that in GAF, the unknown u ∈ RN×p is a
matrix of size N × p, where p is the co-dimension of the
deformation field, i.e., the number of associated deformation
field components. As first step, we transform the unconstrained
GAF energy minimization problem over one deformation field
u:

min
u

{
EGAF = F (u)TG(u)

}
(11)

into an equivalent, constrained minimization problem on two
coupled deformation fields u and v:

min
u,v

{
EGAF = F (u)TG(v)

}
s.t. u = v. (12)

We can obtain an unconstrained minimization problem and
guarantee to satisfy the linear constraint u = v using the
following AL scheme [14], [16]:

AL(u,v,λ) := F (u)TG(v) + 〈λ,u− v〉N,p +
r

2
‖u− v‖2F ,

(13)
where λ ∈ RN×p is the Lagrangian multiplier ma-
trix, in the same space as u and v, 〈λ,u − v〉N,p =∑N
i=1

∑p
d=1 λi,d(ui,d − vi,d) is the scalar product between

two matrices of the same dimension N × p, and where
‖M‖2F =

∑
i,jm

2
i,j is the square of the Matrix Frobenius

norm. From now on, r > 0 is a positive constant; how to
choose it will be discussed later in section IV-F.

The constrained minimization problem is then solved by
looking for a saddle point of the associated AL. To this end,
the minimization w.r.t. u and v can be carried out separately,
followed by a dual ascent step (Lagrangian multiplier update).
We get the following split optimization scheme:

uk+1 = argminu

{
F (u)TG(vk)

+〈λk,u− vk〉N,p +
r

2
‖u− vk‖2F

}
,

vk+1 = argminv

{
F (uk+1)TG(v)

+〈λk,uk+1 − v〉N,p +
r

2
‖uk+1 − v‖2F

}
,

λk+1 = λk + r(uk+1 − vk+1).

(14)

In the next paragraphs, we will present how the two respec-
tive subminimization problems can be tackled efficiently.

B. Subminimization w.r.t. u

The first subminimization problem in (14) deals with the
partial optimization of the sub-problem w.r.t. deformation field
u used in the weighting function F (u), i.e., the image distance
function, while keeping the regularization term G(vk) fixed:

E1(u) := F (u)TG(vk) + 〈λk,u− vk〉N,p +
r

2
‖u− vk‖2F .

(15)
To simplify things, we linearize F around the current

estimate F (uk). The functional derivative w.r.t. u is then
obtained as:

DuE1(u) = diag(G(vk)) · ∂F
∂u

(uk) + λk + ru− rvk. (16)
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From the optimality condition, DuE1(u) = 0, we get the
update equation directly:

uk+1 = vk − 1

r

(
λk + diag(G(vk)) · ∂F

∂u
(uk)

)
. (17)

The stability of this step is limited by the constant r: a small
r results in a wider step away from the current estimate, and
consequently the linear approximation of the image might not
be good enough. We present a solution in the next paragraph.

C. Balancing the computational complexity

The first order approximation requires small step sizes, i.e.
big r. Further, as we will see below, the exact inverse solution
of the second problem is computationally more challenging,
but stable irrespective of the step size r. Therefore, our goal
is to both balance the computational complexity between
the two tasks, and alleviate the step size restrictions in the
first task. Here we propose a fixed-point scheme to address
these limitations. First, let us introduce a virtual time t and
define a corresponding gradient descent equation associated
to the functional derivative (parabolic problem), instead of
solving directly for the linearized optimality condition (elliptic
problem):

∂u

∂t
= −DuE1(u). (18)

We discretize in time using a semi-implicit scheme:

un+1 − un

τ
= −diag(G(vk)) · ∂F

∂u
(un)−λk−run+1 +rvk.

(19)
Using un=0 := uk as initial condition, we iterate the scheme

un+1 =
un − τ diag(G(vk)) · ∂F∂u (un)− τλk + τrvk

1 + τr
(20)

until convergence towards a fixed point such that uk+1 :=
un→∞. We choose τ = 1

Lr , L ∈ N. This choice corresponds to
a gradient-descent step-size, τ/(1+τr) = 1/(L+1)r, which is
shorter than the direct solution step 1/r to the elliptic problem
(17) by a factor (L+ 1). To balance this, in practice, roughly
2L iterations are enough to achieve a satisfying convergence.
The benefit of this iterated optimization is increased accuracy
regarding the data-term optimization (if we keep the same r),
or faster overall convergence in terms of outer optimization
iterations, thereby using less regularization steps (if r is
decreased by a factor up to (L+ 1)).

D. Subminimization w.r.t. v

The second subminimization problem in (14) deals with
the optimization of the deformation field in terms of the
regularizer G(v), while, this time, keeping the weighting
function term F (uk+1) fixed:

E2(v) := F (uk+1)TG(v)+〈λk,uk+1−v〉N,p+
r

2
‖uk+1−v‖2F .

(21)
The derivative of the first term with respect to the deformation
field v contains both the weighted Laplace-Beltrami operator
and a term involving the weighting function’s spatial gradient.
We discard the latter term since the weighting function’s

spatial gradient mainly reflects the noise in image acquisitions.
The remaining weighted Laplace-Beltrami operator is a “div-
grad”-operator affected by the metric G, thus rendering the
smoothing diffusion anisotropic. To discretize, we use a second
order central differences standard scheme, as in [35]. First,
we simplify the notation and shorten the expression of the
anisotropy tensor:(

a b
b c

)
i

=
√
g(xi,u)G−1(xi,u). (22)

Now, we introduce the Laplacian-like matrix W ∈ RN×N :

Wi,j = 2β2 ·



−a(i)− c(i)
− 1

2 (a(i+1,0) + a(i−1,0))
− 1

2 (c(i0,+1) + c(i0,−1)) j = i
1
2 (a(i) + a(j)) j = i±1,0
1
2 (c(i) + c(j)) j = i0,±1
(b(i±1,0)+b(i0,±1))

4 j = i±1,±1
−(b(i±1,0)+b(i0,∓1))

4 j = i±1,∓1

0 otherwise,
(23)

where i±1,0 7→ (m± 1, n) denotes the index of the east/west
neighbor of pixel i 7→ (m,n), and i0,±1 7→ (m,n±1) denotes
the index of the south/north neighbor, respectively. Finally,
having omitted the term in DxF , we may write

∂F (uk+1)TG(v)

∂v
≈ −diag(F (uk+1)) ·Wv. (24)

Overall, we consider the following approximation to the com-
plete functional derivative corresponding to E2:

DvE2(v) = −diag(F (uk+1))·Wv−λk−r(uk+1−v) (25)

and, by the optimality condition again, we directly solve for
the update:

vk+1 =

(
I − 1

r
diag(F (uk+1)) ·W

)−1(
uk+1 +

1

r
λk
)
.

(26)
Since we are only interested in the solution of this linear
system, it is not necessary to explicitly compute the inverse of
the right-hand-side matrix. Instead, more sophisticated solvers
can exploit the sparsity of the system. We call this scheme the
exact inverse FastGAF, in contrast to the approximate inverse
FastGAF that will be introduced below. Note that this scheme
highly resembles a semi-implicit Euler diffusion scheme, and
therefore it can be considered unconditionally stable w.r.t. r
[36].

E. A Jacobi scheme for approximate inversion

Instead of an exact computation of the update (26), which
is computationally expensive, we propose to use an iterative
Jacobi scheme as an approximation, see e.g., [37]. Therefore,
let us decompose the system matrix in a diagonal D and a
remainder matrix R:

D +R =

(
I − 1

r
diag(F (uk+1)) ·W

)
, (27)
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where D and R can be given explicitly:

Dii = 1 +
2β2Fi
r

(a(i) + c(i))

+
β2Fi
r

(a(i+1,0) + a(i−1,0)) (28)

+
β2Fi
r

(c(i0,+1) + c(i0,−1))

and

Rij =



−β
2Fi

r (a(i) + a(j)) j = i±1,0

−β
2Fi

r (c(i) + c(j)) j = i0,±1

−β
2Fi(b(i±1,0)+b(i0,±1))

4 j = i±1,±1
β2Fi(b(i±1,0)+b(i0,∓1))

4 j = i±1,∓1

0 otherwise.

(29)

Let us denote the right hand term b =
(
uk+1 + 1

rλ
k
)

.
Now, the Jacobi scheme approximates vk+1 as a fixed point
solution, with vk+ 0

J = uk+1 as possible initialization:

(D +R)v = b (30)

vk+ j
J = D−1

(
b−Rvk+ j−1

J

)
, j = 1, . . . , J, (31)

where D−1 is straightforward to compute, and where conver-
gence can be guaranteed since W is definite positive.

The complete approximate inverse FastGAF energy mini-
mization scheme is summarized in algorithm 1.

Algorithm 1 Approximate-inverse FastGAF algorithm

1: Initialize u0, v0 and λ0.
2: repeat

uk+ l+1
2L =

uk+ l
2L − 1

Lr diag(G(vk)) · ∂F∂u (uk+ l
2L )− λk + rvk

1 + τr
l = 0 . . . (2L− 1)

vk+ j
J =


D−1

(
uk+1 + 1

rλ
k −Ruk+1

)
j = 1

D−1
(
uk+1 + 1

rλ
k −Rvk+ j−1

J

)
j = 2 . . . J

λk+1 = λk + r(uk+1 − vk+1)
(32)

3: until convergence.

IV. EXPERIMENTS

We test the FastGAF scheme on three example applications:
stereo vision disparity recovery, small displacement optical
flow, and large displacement 2D registration on a brain MRI
slice. The results of the proposed FastGAF algorithm are com-
pared to the popular Demons algorithm baseline, as well as
three more recent, state-of-the-art optical flow/image registra-
tion methods: Sun et al. “non-locally regularized optical flow”
[1], Glocker et al. “MRF image registration” [2], and Brox

et al. “large displacement optical flow” [3]. These three state-
of-the-art methods have their code and/or binaries publicly
available. We measure endpoint error EPE (in pixels) and
percentage of wrong pixels w1 i.e., rate of pixels off by more
than 1 pixel, w2 (off by more than 2 pixels), and angular error
AE (where applicable) [38] as registration quality indicators.

In addition, to illustrate the geometrical flexibility of the
proposed FastGAF scheme, we show the results of a hemi-
spherical toy-registration problem.

A. Stereo vision

An example of stereo vision depth recovery problem is
shown in Fig. 1. The image pair tsukuba is a well known
test image, taken from the middlebury benchmark set for stereo
vision [39]. We are aware of the existence of a broad variety
of high performance algorithms for the stereo vision depth
recovery problem. Neither Demons, nor our proposed method
are particularly well suited to compete with those state-of-the-
art stereo vision methods. Here, we simply explore the stereo
vision problem as an illustrative example due to its relatively
simple embedding.

Indeed, a fundamental assumption in classical stereo depth
recovery is the simple epipolar geometry relating the two im-
ages in the pair. Photos are acquired on a common image plane
and cameras are shifted horizontally. Therefore, corresponding
points in the image pair lie on the same horizontal line. The
(relative) amount of horizontal shift between corresponding
pixels is then a measure of depth in the 3D scene.

Consequently, the co-dimension of the deformation field is
reduced to p = 1, while n = 2 for 2D images, which results
in a very accessible case of GAF embedding:

X : (x, y)→ (x, y, u)
H = diag(1, 1, β2)

G =

[
1 + β2u2

x β2uxuy
β2uxuy 1 + β2u2

y

]
g = 1 + β2|∇u|2.

(33)

Put into the general equations we get the following energy
functional:

EGAF (u) =

∫
f
√

1 + β2|∇u|2dxdy. (34)

Results are illustrated in Fig. 1 and metrics reported in
table I. The ranking of methods is very difficult, since Sun
et al. has the lowest w1, the proposed FastGAF yields lowest
w2, and Brox et al. suffer from lowest EPE.

B. 2D optical flow

The second example, rubberwhale, is a test image pair
frequently used in optical flow benchmarking. The ground
truth deformation is fairly small and essentially piece-wise
smooth. Deformation takes place along both image dimen-
sions.

The test image pair and results are illustrated in Fig. 2,
numbers are again reported in table I. In summary, here Sun
et al. performs best in all quality metrics, while Brox et al.
and the proposed FastGAF method come in second and third,
closely together.
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Method:
Parameters:

Demons
data = L1

α = 2

Sun et al. [1]
default parameters

Glocker et al. [2]
data = L1

reg = Potts
λ = 1

Brox et al. [3]
σ = 0.8

α = 1

β = 300

γ = 5

proposed FastGAF
data = L1

α = 200

β2 = 10

Fig. 1: Results of the stereo-vision depth-recovery problem (tsukuba). Top row: Ground truth depth map and disparities
recovered by the 5 evaluated methods. Bottom row: One of the input frames, and the 5 different error maps. Grey pixels are
not considered (no ground truth, or expected occlusion), black pixels indicate error (recovered disparity more than one pixel
off).

Method:
Parameters:

Demons
data = L1

α = 2

Sun et al. [1]
default parameters

Glocker et al. [2]
data = L1

reg = L2

λ = 0.1

Brox et al. [3]
σ = 0.8

α = 1

β = 300

γ = 5

proposed FastGAF
data = L1

α = 200

β2 = 10

Fig. 2: Results of the optical flow experiment (rubberwhale). Top row: Ground truth (leftmost) and recovered flow fields
(color codes direction, intensity codes amplitude). Bottom row: One frame of the input pair (leftmost) and the 5 respective
error maps (black pixels are more than one pixel off).

C. 2D medical image registration

The third case deals with 2D registration of a highly
misaligned mono-modal medical image pair. An axial slice
through a T1 MRI volume is heavily deformed by a given
2D deformation field. The initial average endpoint error is 7.3
pixels. The images have a resolution of 317× 317 pixels and
are both affected by 5% additive Gaussian noise.

The test images as well as the obtained results are shown
in Fig. 3, while numbers are found in table I. Here, Glocker
et al. is the winner, while the proposed FastGAF comes in
second, with quite some margin to the other methods.

D. Ranking of methods

We base our assessment of performance of the 5 different
methods on the results reported in table I. One quickly realizes

that there seems not to be an immediate winning method: in the
stereo case, results are very heterogeneous between different
quality measures. The optical flow case is clearly won by NL-
optical flow [1], whereas the 2D medical image registration
task is best solved by MRF-based registration [2], immediately
followed by the proposed FastGAF method.

In order to summarize, we ranked the 5 methods in all
11 quality columns independently, and aggregate the rank-
sum per method (

∑
#). The computation time is ignored here,

since the 5 different methods are implemented in very different
environments (Matlab, Matlab+MEX, binary only with GUI).
It turns out that three methods achieve almost identical rank-
sum: Sun et al. (27), Brox et al. (26), and the proposed
FastGAF (27). Glocker et al. (35) comes in 4th, and Demons
(50) is clearly the worst method considered. Interestingly,
the proposed FastGAF method is highly ranked thanks to
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Method:
Parameters:

Demons
data = L2

α = 15

Sun et al. [1]
default parameters

Glocker et al. [2]
data = L2

reg = curv
λ = 5000

Brox et al. [3]
σ = 2

α = 3.5

β = 300

γ = 5

proposed FastGAF
data = L2

α = 450

β2 = 3

Fig. 3: Results of the medical 2D registration problem. Top row: Ground truth (leftmost) and recovered deformation fields (color
codes direction, intensity codes amplitude). The yellow contour indicates the boundaries of the error evaluation mask—outside
this boundary, the target frame has no intrinsic information but only noise, and we do not evaluate registration errors, there.
Middle row: Target image (leftmost), and the 5 error maps (black pixels are off by more than one pixel from ground truth).
Bottom row: frame difference before registration (leftmost), and the 5 frame differences after registration.

its consistent quality—it’s never the best method, but always
a good choice, whereas the other methods seem to work
particularly good for some cases but fail for others.

To get a more quantitative comparison, we perform a paired
sign-test between each pair of methods, where each different
quality measurement produces a pair of samples. This is
a test of the null hypothesis that performance differences
between two methods come from a continuous distribution
with zero median, against the alternative that the distribution
does not have zero median (i.e. the performance differences
are systematic). The resulting p-values for each combination
are provided in table II, both ignoring and considering the
computation times. The p-values confirm, that under the con-
sidered statistical test, there is no clear winner, but Demons
is the clear loser. In particular, the proposed FastGAF method
performs better than Demons, Glocker and Brox, but worse
than Sun—however, only the difference to Demons is statisti-
cally significant.

E. Hemi-spherical registration

One of the main strengths of the Geodesic Active Fields
method for image registration, is its intrinsic ability to deal
with non-Euclidean images. Here we show an example of

a spherical image, parametrized through stereographic pro-
jection. While we use the well-known topography of the
Earth as a toy example, realistic applications can be found in
omni-directional vision e.g., [40]. Indeed, in [41], [42] it was
shown, that a sensor image of a catadioptric camera—i.e. using
spherical, paraboloid or hyperboloid mirror—is equivalent to
a stereographic projection of the spherical plenoptic function.

The metric of the stereographic projection is conformal to
the regular Euclidean metric [43]. The choice of the metric H
of the embedding space is immediate:

H =
4

1 + x2 + y2
diag(1, 1, β2, β2). (35)

Three typical stereographic projections—polar, equatorial
and oblique—are sketched in Fig. 4(a)–(c). Here we chose
an oblique projection of the Earth’s topographical map for
the sake of generality. The map is artificially deformed and
successfully restored through registration, see Fig. 4(d)–(f).

F. The roles of the parameters r, L and J

The approximate-inverse FastGAF scheme introduces three
new parameters to the problem. Here we want to illustrate
and discuss their respective role in the optimization framework
from a performance-based point of view. The images are low-
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TABLE I: Computation time and quality measurements. Demons clearly comes in last and Glocker performs medium, while
Sun, Brox and the proposed FastGAF method perform equally good overall.

Stereo Optical flow Medical

t w1 w2 EPE t w1 w2 EPE AE t w1 w2 EPE AE
Σ# [s] [%] [%] [1] [s] [%] [%] [1] [◦] [s] [%] [%] [1] [◦]

Demons 50 476 10.5(4) 5.3(5) 0.5(3) 555 6.9(5) 1.2(4) 0.3(5) 10.7(5) 485 38.0(5) 17.2(5) 1.3(5) 0.5(4)
Sun [1] 27 37 6.7(1) 5.0(3) 0.5(2) 35 2.1(1) 0.3(1) 0.1(1) 4.1(1) 12 33.4(4) 14.7(4) 1.1(4) 0.5(5)
Glocker [2] 35 66 11.1(5) 5.3(4) 0.6(5) 33 4.6(4) 1.3(5) 0.3(4) 9.6(4) 25 6.0(1) 0.2(1) 0.4(1) 0.3(1)
Brox [3] 26 45 6.7(2) 4.4(2) 0.4(1) 41 2.6(2) 0.5(3) 0.2(2) 5.1(2) 17 23.4(3) 8.6(3) 0.8(3) 0.5(3)
FastGAF 27 222 7.9(3) 4.0(1) 0.5(4) 293 3.1(3) 0.4(2) 0.2(3) 8.1(3) 174 7.9(2) 1.2(2) 0.5(2) 0.3(2)

Computation time t in seconds, percentages of pixels off by more than 1(2) pixels w1(w2), endpoint error EPE, and angular error AE. In each column, the
best result is shown in boldface. (1)-(5) are the ranks of the individual performance measurements prior to rounding (within each column). The computation
time is given for the sake of completeness, but not considered in the ranking, due to the different implementation environments of the methods.

∑
# is the

row-wise rank sum per method based on the individual ranks.

(a) polar (b) equatorial (c) oblique

(d) M (e) M−F (f) M′ −F

Fig. 4: (a)–(c) Different stereographic projections of the
sphere. (d) Chosen oblique projection and artificial deforma-
tion (original coastlines in black). (e)–(f) Intensity differences
before and after registration.

pass filtered and subsampled at different resolutions and the
minimization is executed in multiple stages. In the image
pyramid, each level stops after a pre-definite number of iter-
ations K. To measure the convergence speed of the different
methods, we launch registration for a whole range of different
numbers of iterations K, and plot the obtained respective
quality measures against the wall clock time t required.

1) Penalty weight r: The first novel parameter introduced
with the augmented Lagrangian scheme is the penalty weight
r. The penalty term is supposed to stabilize the minimization
problem. Indeed, it introduces a quadratic energy on the dis-
tance between the separate split deformation fields and acts as
a “leash” between the two, its elasticity being governed by r.

TABLE II: Paired sign-test of the performance measurements
between methods from table I. Demons clearly loses, while all
other differences are not statistically significant. Even consid-
ering computation time, FastGAF performs not significantly
worse than the state-of-the-art methods.

p-values
Ignoring computation time

Demons Sun Glocker Brox

FastGAF > 0.02 ≤ 1 ≥ 0.5 ≥ 1
Brox > 0.003 ≥ 1 ≥ 0.5
Glocker ≥ 0.2 ≤ 0.5
Sun > 0.02

Considering computation time

Demons Sun Glocker Brox

FastGAF > 0.003 ≤ 0.4 = 1 ≤ 0.8
Brox > 0.0005 ≤ 0.8 ≥ 0.4
Glocker ≥ 0.06 ≤ 0.4
Sun > 0.003
Read: FastGAF outperforms Demons (>, p-value = 0.02); We reject the null
hypothesis of zero-median measurement differences in a two-sided paired
sign-test (α = 0.05). Or: FastGAF performs equal to or slightly worse than
Sun (≤, p-value = 1); The null hypothesis of zero-median measurement
differences in a two-sided paired sign-test cannot be rejected (α = 0.05).

The bigger this parameter, the closer u and v are tied together
and the less they can diverge at each iteration. This reduces
the lag between u and v and is the only way to restrict the step
size at each iteration. The step size limitation is critical with
respect to the data term, as due to the complexity of the images
under consideration, the linear approximation of the weighting
function only holds within a close vicinity of the current
configuration. The impact of r on the registration performance
is illustrated in fig. 5. It becomes clear, that below a certain
level the optimization is unstable with respect to the data
term, whereas above a certain threshold only the speed of the
algorithm is affected. In particular, it becomes obvious that the
penalty term itself is vital for stability, and a pure Lagrangian
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approach implies severe convergence issues. In contrast, the
Lagrangian multiplier is not an absolute requirement for the
split GAF iterations to converge, as illustrated in fig. 5b).
However, as can be seen from the charts, it improves the
convergence of the algorithm especially for low penalty weight
and thus confirms to be of true interest, considering its little
computational extra effort.

2) Data-step sub-iterations L: In order to overcome the
small-step requirement of the data-term, we propose to carry
out several data-step optimizations within a fixed-point scheme
before doing a more important smoothing step. The number
of data-term optimizations per regularity-term optimization is
governed by the parameter L. At r fixed, the image distance
term is optimized more precisely, while by replacing r ← r/L,
the leash length can be extended at the same image distance
precision, thus reducing the number of smoothing steps re-
quired. This speed gain is illustrated in fig. 6. In particular
with the exact-inverse FastGAF scheme, this parameter can be
seen as a way of balancing the computational load between
both optimization subtasks, to gain in efficiency.

3) Regularity-step Jacobi iterations J: In the approximate-
inverse FastGAF scheme, finally, we replace the costly full
inversion of the diffusion matrix by an approximating Jacobi
scheme. There, the number of Jacobi iterations is given by J ,
controlling the desired precision of the approximate inverse.
While the exact inverse has full support (full matrix), now the
support of the smoothing stencil is of size 2J + 1 in each
dimension and the speedup is obviously considerable. Close
to the critical step-length r, however, the algorithm does not
properly converge for small, in particular odd, J . Beyond, the
speedup comes at little loss of precision, which is reasonable
since the smoothing is essentially operating in a closed loop.

V. CONCLUSIONS

In this paper, we have presented a splitting scheme for
GAF, based on the method of augmented Lagrangians. The
optimization takes place in three alternating steps. In the first
problem, the data-term is optimized using a fixed-point scheme
derived from a semi-implicit gradient-descent discretization.
The second task optimizes with respect to the smoothing-term,
initially by exactly solving a sparse linear system, a method
we call exact-inverse FastGAF. Then, we substitute with
an approximate inversion within the semi-implicit smoothing
step, using a few fast Jacobi iterations only, to obtain the
approximate-inverse FastGAF scheme. The third step consists
in the update of the Lagrangian multipliers by integration of
the residuals between the split deformation field copies. This
scheme results in a considerable speedup of the registration
process with respect to the baseline GAF as introduced in
[11], and also compares favorably to the Demons registration
method. While we describe promising solvers for those sub-
problems, note that those can still be improved, which will
be investigated in future work. The Jacobi scheme already
provides a nice speedup, but more recent and efficient methods
e.g., additive operator splitting (AOS) may further improve
performance [36], [44]–[46].

From a more fundamental perspective, geodesic active fields
can be considered a generalization of the Demons method

in several respects. First, the GAF framework is designed
to work on Riemannian manifolds and is thus not restricted
to Euclidean images. Although Demons can be generalized
to non-flat images as well, e.g. [47], on non-Cartesian grids
the speed advantages of Gaussian convolution are lost. While
Demons regularization is explicitly Gaussian—it penalizes the
L2-norm of the deformation field gradient—Beltrami regular-
ization offers a tunable interpolation between Gaussian L2 and
more anisotropic, TV-norm like L1 regularization. Also, the
GAF framework offers the advantage of being parametrization
invariant. Finally, the GAF registration framework comes with
no preferred image discrepancy measure, whereas Demons has
a strong preference for the L2-norm on the image differences
(SSD). With the approximate-inverse FastGAF scheme pre-
sented in this paper, we are able to achieve those relative
advantages in very competitive computation times.

Finally, we have shown in multiple comparisons with pub-
licly available state-of-the-art image registration and optical
flow methods [1]–[3] that, considering the broad spectrum
of registration tasks (stereo vision depth recovery, small dis-
placement optical flow, large displacement medical image
registration), the proposed FastGAF algorithm performs con-
sistently well. State-of-the-art methods exceed it slightly in the
individual tasks, however, FastGAF is the only method which
provides consistently good results in all tasks.
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