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Abstract. We present a new method for the recovery of the parameters and interface from an

observed solution to embedded interface linear elliptic PDEs with piecewise constant coefficients.

Our approach uses the linear nature of these equations to derive a function that is approximately
equal to the coefficients across the entire domain. We are then able to recover the coefficients

using split Bregman implementations of standard piecewise constant segmentation methods.
This results in an approach that can recover both the coefficients and the interface from the

observed data incredibly quickly, allowing us to run at high resolutions in both two and three

dimensions. The method has a single control parameter that is not difficult to set and allows us
to easily recover complex geometry for the embedded interface. We demonstrate the method on

Poisson’s equation and linear elasticity.

1. Introduction

The problem of recovering the coefficients and interface between two regions of an embedded
interface elliptic partial differential equation (PDE) from observations of a solution has many
real world applications. In the case of Poisson’s equation, these include areas such as electrical
impedance tomography [6, 18, 57], groundwater flow / oil reservoir simulation [36, 37], and DC
resistivity analysis [56]. In continuum mechanics, applications include imaging [30, 34], identifying
material properties and inclusion detection [41, 54], design optimization [1, 5, 11, 55], and medical
applications [43, 48, 51]. In medical imaging applications, the solution of this problem could
potentially lead to the determination of different tissues in a patient via minimally invasive methods
([43] and references therein). The elastic material properties of tissue, muscle, and bone that are in
contact are examples where the data can be well approximated by piecewise constant coefficients.
However, the specific values of these coefficients will vary from patient to patient. The ability to
identify these coefficients accurately for individual patients could be used to fine tune simulations,
[52], allowing for improved treatment tied to a specific patient.

In some cases, only the coefficients are of interest, in others just the interface, and in some
both, depending on the application area. For many of the applications discussed above, it is
reasonable to assume that the coefficients are either piecewise constant or well approximated by
piecewise constant functions. In the following section, we will discuss previous work that solves
the parameter estimation problem (coefficients only), inverse geometric problem (interface only),
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or both simultaneously. We then present a new, fast, non-variational approach to recovering the
coefficients and the interface between the two regions from solution data to elliptic PDEs. We
demonstrate how to compute a function that is approximately equal to the piecewise constant
function we wish to solve for from a given solution to an elliptic PDE in §3. A discussion of
piecewise constant segmentation methods is included in §4, which we use to find the location of
the interface and determine the values of the coefficients. Finally, we demonstrate our algorithm
on examples coming from Poisson’s equation and linear elasticity in §5.

2. Previous Work

Variational models are very commonly used to solve the parameter estimation problem for
elliptic PDEs. For Poisson’s equation, some combination of output-least-squares, equation error,
and the augmented Lagrangian method have been used by many authors to recover the unknown
coefficients from given solution data [4, 13, 17, 23, 31, 39]. Generally, these approaches discretize
the coefficients over the entire domain, rather than directly using the fact that the coefficients will
only take on a small, finite number of values. This results in a need to solve for the coefficients over
the entire domain and requires some kind of regularization on the coefficients. Common choices of
regularizers are either total variation or Tikhonov-type. These approaches can also be applied to
the equations of linear elasticity to find the Lamé coefficients [21, 33]. Approaches have also been
proposed to solve only for the shear modulus [47]. Some authors have also demonstrated methods
with examples applied to parameter estimation for both Poisson’s equation and linear elasticity
[22, 23].

The recovery of an interface contained within a computational domain has also been studied
by many authors, as it has applications in such areas as determining locations of discontinuities
in conductivity [29], inverse problems involving obstacles [8, 53], and optimal shape design [1].
The equations that the data are generated from vary depending on the application, but include
Poisson’s equation [8, 27, 29, 40] and elasticity [1, 3, 9] which are the focus of this work, as well as
other elliptic problems [28, 38]. Most modern approaches use the level set method of Osher and
Sethian [49] to represent the interface, due to its many nice properties, including the automatic
handling of topological changes [2, 3, 8, 9, 32, 50, 53, 60]. In more recent work, some authors have
simultaneously solved for both the coefficients and the interface [14, 19, 59, 26, 46, 58], rather than
only solving the parameter estimation problem or the inverse geometric problem.

3. Problem Formulation

Let Ω ⊂ Rd be open and bounded with a smooth or piecewise smooth boundary, ∂Ω. We then
divide Ω into two disjoint open sets, Ω1 and Ω2, as shown in Figure 1. The interface between the
two regions will be denoted by Γ. We now look at linear elliptic PDEs with an embedded interface
Γ where the coefficients of the equation are piecewise constant in the two regions delineated by Γ.

3.1. Poisson’s Equation. We first consider Poisson’s equation,

(1)

{
−∇ · (β∇u) = f, in Ω,

u = g, on ∂Ω

where

(2) β =

{
β1 in Ω1,

β2 in Ω2

with β1, β2 ∈ R and both positive.
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Figure 1. Our simulation domain, divided into two regions Ω1 and Ω2.

Given a solution to the above equation, ud, as well as the associated boundary data, g, and
a non-zero right-hand side f , we wish to recover the unknown coefficients β1 and β2 as well as
the location of the interface between the regions Ω1 and Ω2. To accomplish this, we consider the
following function defined on Ω,

(3) hpe = − f

∆(S ∗ ud)
where S is some type of smoothing operator. The smoothing operator is added at this step since
the solution ud is only guaranteed to have zero or one continuous derivatives across the interface
Γ (depending on the jump conditions enforced on the interface). By first smoothing, we can then
apply the Laplacian operator at all points in our domain without having to first consider if it is
well-defined at that point. This step is also necessary to obtain solutions when the initial data are
corrupted by noise.

We observe that the function hpe is approximately equal to β(x). Since β(x) is a piecewise
constant function, we can quickly retrieve Γ, β1, and β2 with any standard piecewise constant
segmentation method.

3.2. Linear Elasticity. We also consider the embedded boundary problem with piecewise con-
stant coefficients for linear elasticity,

(4)


−∇ · σ(u) = f, in Ω

u = g1, on ∂ΩD

σ · n = g2, on ∂ΩN ,

where ∂ΩD indicates the portion of the domain on which we specify Dirichlet boundary data and
∂ΩN is the portion of the boundary with traction boundary conditions. The displacement u and
the stress, σ(u), are related via Hooke’s law for a linear material,

σ(u) = λtr(ε(u))I + 2µε(u)(5)

where

ε(u) =
1

2

(
∇u+∇uT

)
.(6)
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The Lamé coefficients describe the material properties in the two regions and are given by

(7) λ =

{
λ1, in Ω1

λ2, in Ω2

µ =

{
µ1, in Ω1

µ2, in Ω2.

As in the Poisson case described above, we are given a solution to this PDE, ud, as well as
the boundary data g1 and g2, and the external forces f , which again need to be non-zero. Given
these data, we then wish to find the four Lamé coefficients as well as Γ. We proceed as before,
by first smoothing the data with some smoothing operator and then plugging the function ud into
the linear elasticity operator (with no interface),

(8) − hλ(x)∇ · tr(ε(S ∗ ud))I − 2hµ(x)∇ · ε(S ∗ ud) = f.

where hλ(x) and hµ(x) are our unknown functions that are approximately piecewise constant. In
two dimensions, this method produces two equations that we can solve directly to find hλ(x) and
hµ(x). For problems in three dimensions, the system will be overdetermined and can be solved
using least squares.

Now that we have proposed functions that are approximately piecewise constant and contain
both the coefficient values and the interface location, we need a method to extract these data,
which we discuss in the next section.

4. Piecewise Constant Segmentation Methods

The problem of obtaining a segmentation of some given data that can be well approximated by
a piecewise constant function has been well studied in the image processing literature. In our case,
any suitable method could be applied to hpe or hλ and hµ. We are going to focus on variational
methods that have fast implementation methods available. However, other approaches would
also produce viable results, including graph cuts [20], Markov random fields [42], and watershed
algorithms [45], to name a few. We will now discuss the two variational methods used in this paper
in detail.

4.1. Region Based Segmentation. The first class of algorithms we look at are those based on
the Mumford-Shah segmentation problem [44]. In particular, the Active Contours without Edges
(ACWE) algorithm [16] solves this problem by finding the best piecewise constant approximation
to the function over the domain,

(9) min
Γ,c1,c2

Length(Γ) + ω

∫
Ω1

(c1 − f)2 + ω

∫
Ω2

(c2 − f)2

where f is the function we are trying to approximate, ω is a constant that controls the scale of the
features we want to find, and c1 and c2 are the values of the piecewise constant approximation in
the two regions Ω1 and Ω2. In [16], the authors computed a curve that minimizes this energy via
the gradient flow

(10)
∂u

∂t
= H ′ε(u)

(
∇ · ∇u
|∇u|

− ω
(
(c1 − f)2 − (c2 − f)2

))
where u is a level set function and Hε is a C∞ regularization of the Heaviside function, for a fixed
c1 and c2.

The Globally Convex Segmentation (GCS) method proposed by Chan, Esedoglu, and Nikolova
[15] modifies ACWE to be a globally convex minimization problem. This method starts from the
observation that the steady state solution of (10) is the same as the steady state solution of
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(11)
∂u

∂t
= ∇ · ∇u

|∇u|
− ω

(
(c1 − f)2 − (c2 − f)2

)
which corresponds to a gradient descent for minimizing

(12) E(u) = |∇u|1 + ω〈u, r〉

where r = (c1 − f)2 − (c2 − f)2. In order to ensure that a global minimum to this problem is
well-defined, we have to restrict the solution to lie in a specified interval. The final minimization
problem is then

(13) min
0≤u≤1

|∇u|1 + ω〈u, r〉.

To find the two regions of the segmentation, we simply threshold

(14) Ω1 = {x : u(x) > a}

for some a ∈ (0, 1) and Ω2 = Ωc1 ∩ Ω. This minimization problem is now in a form where we
can apply the split Bregman algorithm [25] as described in [24] to obtain a fast solver for this

segmentation problem. This is accomplished by introducing an auxiliary variable ~d ← ∇u and
then approximately enforcing this equality constraint through a quadratic penalty term,

(15) (u∗, ~d∗) = arg min
0≤u≤1,~d

|~d|1 + ω〈u, r〉+
η

2
‖~d−∇u‖2.

The equality constraint is then enforced exactly by applying Bregman iteration to (15), which
results in the following sequence of optimization problems:

(uk+1, ~dk+1) = arg min
0≤u≤1,~d

|~d|1 + ω〈u, r〉+
η

2
‖~d−∇u−~bk‖2,(16)

~bk+1 = ~bk +∇uk − ~dk.(17)

The iterates uk+1 and ~dk+1 can be found by taking a single Gauss-Seidel iteration of

(18) ∆u =
ω

η
r +∇ · (~d−~b), when 0 < u < 1

and solving

~dk+1 = shrink(~bk +∇uk+1, 1/η)(19)

where the shrink operator is defined at each point γ ∈ Ω as

(20) shrink(~z, ρ)γ = max{‖~zγ‖ − ρ, 0}
~zγ
‖~zγ‖

.
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4.2. Geodesic Active Contours. Another class of segmentation algorithms are those that divide
the image into regions by looking for the boundaries between objects. This is generally accom-
plished by using an edge stopping function that is computed from the gradient of the given data.
Examples of this type of approach include snakes [35] and Geodesic Active Contours (GAC) [10].
The GAC model proposed by Caselles, Kimmel, and Sapiro [10] obtains solutions to this problem
by solving

(21) min
Γ

∫
Γ

g(∇f)ds,

where Γ is a closed curve representing the boundary of the regions in the domain and g is an edge
detecting function. A commonly used edge detector (and the one we will use in our examples) is

(22) g(ξ) =
1

1 + τ |ξ|2
.

with τ ≥ 0. Using a level set function, φ, to represent the curve Γ, solutions to (21) can be found
by solving

(23)
∂φ

∂t
=

(
g∇ · ∇φ

|∇φ|
− 〈∇g,∇φ〉

)
|∇φ|.

In [7], the authors show how to obtain a convex variational form of GAC based on work by
Chambolle on mean curvature motion [12] that allows for implicit time stepping in the evolution
of the curve. The resulting minimization problem has the form

(24) u∗ = min
u
|∇u|g +

1

2h
‖u− dΓ‖2

where | · |g = g| · |1 is the weighted TV norm, dΓ is a signed distance function representation of
the curve Γ, and h corresponds to a time step for evolving the contour. To find the solution to the
GAC model, we have to solve this minimization problem repeatedly, computing a signed distance
function between each iteration with a method such as fast sweeping [61]. As before, we now
have a model to which we can apply the split Bregman algorithm to obtain a fast solver for the
segmentation. In this case, the sequence of minimization problems we need to solve has the form

(uk, ~dk) = arg min
u,~d
|~d|g +

1

2h
‖u− dkΓ‖+

η

2
‖~d−∇u−~bk‖(25)

~bk+1 = ~bk +∇uk − ~dk(26)

where we alternate solving for uk by taking one iteration of Gauss-Seidel on the system

(27)

(
1

h
I − η∆

)
u =

1

h
dkΓ + η∇ · (~b− ~d)

and solving for ~dk via the shrink operator

(28) ~dk = shrink(∇u+~b, 1/η).

After solving for u∗ in equation (24), we set dk+1
Γ to be a signed distance function computed from

u∗ and then continue iterating the GAC model until it has converged.
Combining one of these two segmentation approaches with the formulae we derived in §3 for

hpe(x), hλ(x), and hµ(x), we now have a complete system for solving for the coefficients and
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interface from solution data to Poisson’s equation and linear elasticity. In the next section we
show results of applying this process.

5. Numerical Experiments

We now demonstrate the algorithm on examples from Poisson’s equation and linear elasticity in
two dimensions, Poisson’s equation in three dimensions, and a two-dimensional Poisson’s equation
example with noise. We also show a comparison of our method against more standard, variational
techniques. All examples use the GCS approach described in §4.1 unless noted otherwise. An
explicit choice of smoother S as mentioned in §3 is only necessary in examples with high levels of
noise. In all other cases, the approximations to the differential operators are sufficiently smooth
to produce reasonable results.

5.1. Experiments in Two Dimensions. For our first example we recover the interface and
coefficients from data that are a solution to Poisson’s equation on the domain [0, 1] × [0, 1] with
zero Dirichlet boundary conditions and a right hand side of f = 1. The coefficients for the PDE
were chosen to be β1 = 8 and β2 = 1.5. With ω = 1 in the GCS algorithm, we find the two recovered

regions shown in Figure 2. The coefficients in the two regions were found to be β̂1 = 7.979 and

β̂2 = 1.475 corresponding to a relative error of about .3% in β1 and 1.7% in β2.

Figure 2. Recovered regions from Poisson’s Equation example. Domain has
2400× 2400 nodes.

Next we run an example where the given data are a solution to the equations of linear elasticity
on [0, 1] × [0, 1] with free boundaries on the top and bottom and Dirichlet displacement data
specified on the left and right edges of the square. The displacement vector is −(.01, .015) on the
left and (.01, .015) on the right, resulting in a slight stretching and shearing of the material. Again,
it is important to have a non-zero right hand side in order to obtain solutions to (8), so we set an

external force vector of ~f = (1, 1) at each node. When generating the data, we used coefficients
(E1, ν1) = (600, .33) and (E2, ν2) = (300, 0.28). The two recovered regions are shown in Figure 3,
with ω = .1 in the segmentation step. The recovered coefficients found in the two regions were
(Ê1, ν̂1) = (599.98, 0.33) and (Ê2, ν̂2) = (289.12, 0.28) which corresponds to a relative error of less
than 1% in every coefficient except for E2 which has a relative error of 3.6%.

5.2. Experiments in Three Dimensions. We also demonstrate the ability to recover coefficients
and the interface between the regions in three dimensions for Poisson’s equation. In this case, our
given data come from an exact solution to the PDE given by
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Figure 3. Recovered regions for linear elasticity. Domain has 1200× 1200 nodes.

(29) u(x, y, z) =

{
1

6β1

(
x2 + y2 + z2

)
for (x, y, z) ∈ Ω1

1
6β2

(
x2 + y2 + z2

)
for (x, y, z) ∈ Ω2

with appropriate Dirichlet boundary data given by the equation above and f(x, y, z) = 1. Using
these data as input to our algorithm with β1 = 4 and β2 = 22, we are able to recover the interface

shown in Figure 4 as well as coefficient values of β̂1 = 3.96 and β̂2 = 22. In the piecewise constant
segmentation stage of the algorithm, we set ω = 1. To demonstrate the computational efficiency
of our approach, we also present some timings of our algorithm for the three dimensional problem
at different resolutions, given in Table 1.

Figure 4. Recovered interface for the Poisson equation in 3d solved on a cube
with 400 nodes in each dimension.
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Table 1. Runtimes of the 3d solver for Poisson’s equation at different grid reso-
lutions. Tests were performed on an Intel Xeon X5365 3GHz processor. Runtime
is the average of 10 simulations.

Grid Resolution Runtime
1283 0.616 s
2563 5.237 s
5123 43.616 s

5.3. Experiments with Noise. Next, we look at how our algorithm performs in the presence of
noise and data corruption. We accomplish this by taking our given data, ud, and adding Gaussian
white noise that is determined relative to the maximum value in the given data,

(30) ud = ud + n

where n is a vector of independent and identically distributed Gaussian random variables with zero
mean and standard deviation α‖ud‖L∞ . For cases with high levels of noise, we find that the GAC
method discussed in §4.2 performs better than the GCS method used for the previous examples.
To compute the final coefficients in the two regions, we also find a median to be more robust than
calculating a mean.

Results are shown in Figure 5 with the coefficient in the noise set to α = .01. The data were

generated using β1 = 12 and β2 = 4. The recovered coefficients were β̂1 = 11.060 and β̂2 = 3.867
corresponding to relative errors of 7.8% and 3.3%, respectively. A convolution with a Gaussian is
performed prior to taking the Laplacian of the given data. The standard deviation of the Gaussian
was chosen to be approximately σ ≈ 0.0857.

Figure 5. Original regions (left) and recovered noisy example (right) with 1400×
1400 nodes. Original data was a solution to Poisson’s equation.

5.4. Comparison with Variational Methods. Finally, we compare our method with more
standard variational approaches [14, 19, 26, 46, 58, 59]. As mentioned in §2, these methods
generally use a constrained optimization approach with output least squares and the augmented
Lagrangian method to solve the optimization problem. We chose to compare to the method in [26]
because we feel that it is representative of the general approach taken in the variational context.

We consider a linear elasticity example where the Lamé parameters are E1 = 200, ν1 = 0.28,
E2 = 117, and ν2 = 0.33. The boundary displacement is −(0.02, 0.01) on the left and (0.02, 0.01)
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on the right, with free boundaries on the top and bottom. The variational algorithm has two
control parameters and requires initial guesses for the coefficients and interface. These parameters
are set to w = 10−5 and r = 0.004. The initial guess for the interface is a three by three grid of
circles and the coefficients are E0

1 = 230, ν0
1 = 0.3, E0

2 = 80, and ν0
2 = .35. For our method, the

control parameter is set to ω = 1. Coefficient results are summarized in Table 2 and the recovered
regions are shown in Figure 6. Results are reported after 5000 iterations for the variational method.

We start by noting that variational methods require at least one linear system to be solved per
iteration. For the method considered here, using a standard linear algebra package to solve the
resulting equations with the conjugate gradient method results in a rather slow algorithm. The
5000 iterations used to compute the results in this section take approximately 33 hours on the
same architecture used for the timing tests presented in Table 1. While this could definitely be
improved through better choices of numerics, numerical tolerances, and initial guesses, this makes
the method more complicated to implement and use in an efficient way. Our approach leads to an
easy to implement, fast method. For this reason, the example used to compare the methods only
has 256× 256 nodes as the variational method cannot reasonably be run at higher resolutions. In
the authors’ experience, as the shape of the two regions becomes more complicated, it becomes
increasingly difficult to find parameters for the variational approach that guarantee convergence
in a timely fashion. This issue does not exist with the method discussed in this paper.

Table 2. Recovered coefficients and errors for our method and a variational
approach [26].

E1 ν1 E2 ν2

Exact Value 200 0.28 117 0.33

Our Method 197.093 0.282 114.975 0.318
Relative Error 1.5% 0.7% 1.7% 3.6%

Variational Method 208.752 0.2798 122.196 0.3299
Relative Error 4.4% 0.07% 4.4% 0.03%

6. Conclusion

In this paper we presented a fast, non-variational method for solving for both the interface
and the coefficients of a solution to an embedded interface elliptic PDE with piecewise constant
coefficients. Our approach works by building a function that is approximately piecewise constant
and then using a suitable piecewise constant segmentation algorithm on that function. This results
in an algorithm that has one parameter, corresponding to the scale of the segmentation. The
method is also fast as demonstrated by the ability to solve high resolution problems in both two
and three dimensions.

Acknowledgements

The regions in Figure 2 are a combination of images used with permission from
http://www.tribalshapes.com. The regions in Figure 3 are a combination of images used with
permission from http://www.freetattoodesigns.org. We would also like to thank Jeff Hellrung
for providing the code to generate the level set for the trefoil knot used in the example shown in
Figure 4.



INTERFACE AND PARAMETER ESTIMATION 11

Figure 6. Comparison of our approach (top left) against a more standard vari-
ational method (top right). Original regions shown on the second row. Domain
has 256× 256 nodes.
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