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Abstract. The aim of this paper is to formulate a class of inverse problems

of particular relevance in crowded motion, namely the simultaneous identifica-

tion of entropies and mobilities. We study a model case of this class, which
is the identification from flux-based measurements in a stationary setup. This

leads to an inverse problem for a nonlinear transport-diffusion model, where

boundary values and possibly an external potential can be varied. In spe-
cific settings we provide a detailed theory for the forward map and an adjoint

problem useful in the analysis and numerical solution. We further verify the

simultaneous identifiability of the nonlinearities and present several numerical
tests yielding further insight into the way variations in boundary values and

external potential affect the quality of reconstructions.

1. Introduction

This paper is devoted to the mathematical formulation and preliminary study
of inverse problems related to the macroscopic limits of many-particle systems in
crowded situations. The study of the latter is driven by various important appli-
cations at different scales, e.g. human crowd motion (cf. [31, 9]) and traffic (cf.
[1]), animal group motion (cf. [4, 47, 7, 58]), cell migration at high densities (cf.
[15, 38, 35]), crowded intracellular motion (cf. [2, 32, 39, 24]), and transport across
cell membranes as occurring in ion channels (cf. [10, 23]).

The mathematical modeling of many-particle systems is of central importance for
many areas of science, e.g. physics, biology and increasingly also in socio-economics.
The classical approach of passing from microscopic models (at the single particle
level) such as Newton’s equations of motion to macroscopic partial differential equa-
tions relies on closure relations like Boltzmann’s ”Stosszahlansatz” (cf. [5]), which
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can be made rigorous under certain scaling assumptions on particle number N and
radius σ (cf. [11]). A classical example is the Boltzmann-grad limit Nσ2 tending
to a constant, which applies well to dilute gases (cf. [12]). The crowded case Nσ3

tending to a constant on the other hand is much more subtle and the macroscopic
limit is not unique. Using different assumptions and closure relations (in some cases
even different microscopic models), a variety of macroscopic equations have been
derived. In a diffusive scaling as thought of in particular for biological applications,
a canonical form is

(1) ∂tu = div(D(u)∇(E′(u)− V +W ∗ u)),

where u = u(x, t) denotes the particle density, D = D(u) a nonlinear mobility,
E = E(u) an entropy functional, V = V (x) an external potential and W = W (x)
a symmetric interaction kernel to model long-range forces such as electrostatics or
chemotaxis (W ∗u denoting the convolution of W with the density). Such equations
are (metric) gradient flows of the entropy-energy functional

(2) E(u) =

∫
E(u)− uV +

1

2
u(W ∗ u) dx.

In the case of no-flux boundary conditions stationary solutions are characterized as
stationary points of E subject to non-negativity and a total mass constraint. Sev-
eral special cases of (1) have been proposed in different models for crowded motion
(cf [8, 57, 15, 52, 10, 56, 9]), with different assumptions and approximations diffi-
cult to be verified. We thus propose a different approach in this paper, namely to
identify the model components directly from available data related to the particu-
lar applications. A variety of data is collected already in the situations mentioned
earlier, e.g. video surveillance, traffic counts, time-resolved microscopy, or electro-
physiological measurements (cf. [29, 54, 14, 40]). So far these data are mainly used
for statistical evaluations not coupled to appropriate macroscopic models, but only
phenomenological descriptions like anomalous (linear) diffusion based on analyzing
root-mean-square distance over time. Here we propose to use such data for inverse
problems related to (1). Although inverse problems are of interest for the potential
V (mainly control) and interaction kernels (identification) as well, we focus on the
two nonlinearities D and E appearing from the limiting procedures (note that V
and W can be translated directly from microscopic forces and could thus be consid-
ered also in inverse problems for the particle system). In the classical limit without
crowding, the mobility is linear and the entropy is logarithmic, i.e.

(3) D(u) = u, E(u) = u log u.

In the crowded case several modifications have been proposed, e.g. additional qua-
dratic terms in E (short-range pair repulsion, cf. [48]) or even more nonlinear ones
(cf. [58, 3]). In particular saturating mobilities D tending to zero as u reaches a
maximal density value (cf. [28, 57]) have been of interest for many years.
As one may imagine from the multitude of applications, there are indeed several
different mathematical expressions of the identification problems to be solved. Dis-
tinctions concern the type of measurements (density- or flux-related), the design of
experiments (single or multiple, stationary or transient situations), prior informa-
tion (non-negativity and concavity of D, convexity of E), and the use of information
about the stochastic nature of the limit (e.g. in the likelihood functional). There
is plenty of literature on the identification of nonlinear diffusion coefficients, either
from distributed measurements (cf. [25, 17]) or from boundary measurements (cf.
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[51, 41] for the parabolic and [27, 43] for the elliptic case). There are also some
works about the reconstruction of the nonlinear flux term in conservation laws, cf.
[34, 33]. However, the simultaneous reconstruction of nonlinearities has, to the best
of our knowledge, not been considered in the literature so far. The paper closest to
our approach appears to be [26], where they identify two coefficients simultaneously,
but not both of them are nonlinearities.

This paper is organized as follows: In Section 2 we will discuss the modeling,
measurements, and possible formulations of inverse problems. Section 3 is devoted
to the properties of the direct problem. In the remaining part of the paper we shall
focus on a particular case, namely the identification from boundary flux measure-
ments in a stationary situation. We consider the uniqueness of the inverse problem
as well as differentiability of the parameter-to-output map (Section 4), provide an
explicit reconstruction formula using linearizations (Section 4.3). In Section 5 we
present a least-squares approach to the fully nonlinear problem and conclude by
presenting the results of numerical experiments (Section 6).

2. Identification of Entropies and Mobilities for Particle Systems

2.1. Motivation of the Inverse Problem. In this Section we further detail the
identification problems for interacting particle systems and their continuum limit.
We illustrate the continuum limit process for pair interacting Brownian motions,
a commonly used model in biological applications, and comment on the particular
challenges of this process for crowded setups.
The motion of pairwise interacting particles, which undergo Brownian motion, is
given by

(4) dXi = −∇(Vext(Xi) +
1

N

∑
j 6=i

Vint(Xi −Xj)) dt+ σ dWi,

where Xi(t) ∈ Rd denotes the position of the i-th particle at time t, Vext = Vext(x)
is a potential due to external forces, and Vint = Vint(x) an interaction potential
(e.g. Coulomb or gravitational forces in physics or attractive-repulsive forces in
animal group motion). The noise terms Wi denote independent Wiener processes.
The dynamics of the N -particle system can be characterized by considering the
evolution of the joint probability density

fN : RdN × R+ → R,

which can be computed from the Liouville-Fokker-Planck equation

∂tf
N +

∑
i

∇xi
· (∇(Vext(xi) +

1

N

∑
j 6=i

Vint(xi − xj))fN ) =
σ2

2

∑
i

∆xi
fN .

In order to obtain feasible macroscopic descriptions, the single-particle density

u(x, t) =

∫
. . .

∫
fN (x, x2, . . . , xN ) dx2 . . . dxN

is used. Assuming that the initial states are equal and independent, i.e.

fN (x1, x2, . . . , xN , 0) = u(x1, 0)u(x2, 0) . . . u(xN , 0),

and that the standard propagation of chaos property holds, i.e.

(5) fN (x1, x2, . . . , xN , t) ≈ u(x1, t)u(x2, t) . . . u(xN , t),
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the mean field (Vlasov) limit of the process is of the form

∂tu+ div(u∇(Vext + Vint ∗ u)) =
σ2

2
∆u.

This derivation can be made rigorous in terms of the BBGKY-hierarchy (consisting
of all k-particle distribution functions) under suitable assumptions like regularity of
Vint and hence the continuum limit is rather clear. Identification issues in this aspect
mainly concern the external and interaction potentials, which might correspond to
unknown interaction rules (cf. [45, 20]) and the diffusion coefficient σ.
In the crowded setup two additional challenging issues arise in the derivation of the
above macroscopic limit, namely:

• In order to treat the limit of infinitely many particles with finite sizes rescal-
ing has to be carried out in the interaction distance, typically of the form
NαdVint(N

α(xi − xj)).
• The typical interaction potentials are not regular, they even might have

singularities. Often even hard-core potentials (zero outside and infinite
inside the particle volume) are used to enforce non-overlapping of particles.

The first issue results in nonlinear diffusion terms in the equation in the limit
N →∞, e.g. into

(6) ∂tu+ div(u∇(Vext + E′(u))) =
σ2

2
∆u,

where E is a local entropy functional, cf. [49, 50, 48]. However, even in the most
natural case of hydrodynamic scaling (α = 1) the exact form of the limiting entropy
E cannot be characterized, it can only be shown to be bounded above by a quadratic
function (cf. [49, 50]).
The second issue, i.e. the addition of singular interaction potentials, can destroy
the propagation of chaos property (if particles become strongly correlated locally).
The limit rather becomes

(7) fN (x1, x2, . . . , xN , t) = CN (x1, x2, . . . , xN , t)u(x1, t)u(x2, t) . . . u(xN , t),

with a correlation term CN that cannot be obtained explicitly. Different assump-
tions and approximations have to be used to obtain the limiting equations of the
form (1).
Typical measurements collected for such particle systems (related inherently to La-
grangian respectively Eulerian viewpoints) are:

• Tracking: Here M single-particle trajectories Xi(t) are recorded over a time
interval [0, T ], but often M � N . This procedure is routinely carried
out in cell biology using fluorescence and phase-contrast microscopy (cf.
[60, 46, 14]), it seems to become of increasing importance in behavioral
biology and human crowd motion based on video surveillance and other
methods (cf. [29, 54, 14, 40]).
• Flux Measurements: Here the number of particles passing a codimension

one manifold per unit of time is recorded. This is the standard procedure
in car and pedestrian traffic counting, where the manifold is an imaginary
line on the street or pathway, as well as in electrical measurements, where
it corresponds to the electrodes recording charged particles.
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A standard approach in model calibration for tracking data is to use log-likelihood
estimation by minimizing

(8) LL = −
M∑
i=1

∫ T

0

log u(Xi(t), t) dt,

or a penalized version subject to the unknown parameters. This is based on the
interpretation of u = u(x, t) as the probability density of a particle being at x at
time t. This is well justified asymptotically in the standard mean-field limit due to
(5), which implies that the log-likelihood of the M particles indeed tends to the sum
of the independent log-likelihoods. The latter is highly questionable in the crowded
case if CN in (7) does not tend to 1. We leave this inherent modeling question
(or the development of alternative approaches) as a challenge to be considered and
hopefully clarified in the future. We finally mention that due to limited resolution
in the imaging processes (single particle trajectories not to be analyzed easily), it
might also be an interesting route to directly consider macroscopic measurements
of the density u or the flow density

(9) j = D(u)∇(E′(u)− UV +W ∗ u),

where U ∈ R corresponds to a possibly variable strength. This quantity can
be obtained from image analysis techniques such as optical flow estimation (cf.
[44, 30, 6, 53]).

2.2. Inverse Problems from Total Flux Measurements. In this paper we shall
consider the inverse problem based on macroscopic flux data, i.e. the expected value
of the flux. Apparently such macroscopic data can be treated in a more straight
forward manner than trajectories. We will restrict ourselves to applications without
interaction potential, i.e. we assume W = 0 in the following. The macroscopic limit
of the expectation of the flux over a manifold Γ can be carried out as the limit in
the partial differential equation and yields

(10) I =

∫
Γ

j · n dσ,

where n denotes the outward unit vector and with j as in (9). In this paper we
consider the inverse problem in the special setup of a stationary solution. In this
case u is the solution of

(11) div(D(u)∇(E′(u)− UV )) = 0 in Ω,

with Ω ⊂ Rd , d = 1, 2, 3 and Dirichlet boundary conditions u = f on ΓD ⊂ ∂Ω
and no-flux boundary conditions on ∂Ω \ ΓD. As above, the external potential is
of the form UV , with variable strength U ∈ R. The no-flux boundary conditions
correspond to impenetrable walls while the Dirichlet conditions prescribe the density
of particles at entrance and exit. From a modeling point of view it would also be
reasonable to prescribe a constant flux at the entrance and a flux proportional to
the density at the exits. However, since we focus on the theoretical treatment of the
problem in this paper, we shall prescribe Dirichlet conditions on the whole boundary
from now on, namely

(12) u = f on ∂Ω, f ∈ H2(Ω), 0 < f < 1.
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Here, 0 < f < 1 is meant pointwise since Ω is at most of dimension three and thus
f is continuous by Sobolev embedding. Hence, the inverse problem is to find D and
E from measurements over a part of the boundary Γ ⊂ ∂Ω given by

(13) I[f, U, V ] =

∫
Γ

D(u)∇(E′(u)− UV ) · n dσ,

for a class of boundary conditions f and potentials UV . In most instances we
shall consider the one-dimensional version of this inverse problem, which is well-
motivated by applications like ion channels and traffic. In this case Ω corresponds
to an interval, ΓD to its end points with Γ being one of them.

3. Basic Properties of the Stationary Model

In this Section, we shall examine basic properties of our model given by

(14) div(D(u)∇(E′(u)− UV )) = 0, x ∈ Ω ⊂ Rd, d = 1, 2, 3

where Ω is bounded and V = V (x) is a given potential. For simplicity we shall
rewrite (14) as

(15) div(G(u)∇u−D(u)U∇V ) = 0,

with G(u) = D(u)E′′(u) from now on. We remark that no information is lost since
E′′ can be recovered from G once D is known and E′ is anyway only determined
up to a constant. The flow density (9) in normal direction then reads as

j := (G(u)∇u−D(u)U∇V ) · n,

where n is the outward normal to ∂Ω. As mentioned in Section 2, we shall for
simplicity supplement (14) with Dirichlet conditions of the form (12). Furthermore,
we assume that the domain is such that

(16) ∂Ω ∈ C2,

and introduce the nomenclature:

We denote by PS(G,D;U, V, f) the problem of solving (15) for given G, D,
U, V and subject to the boundary conditions (12) for the unknown u. In one
space dimension, we shall write PS(G,D;U, V, uL, uR), where uL, uR ∈ R+

denote the left and right boundary value, respectively.

The following assumptions on the nonlinearities D, E and V will remain valid
throughout the whole paper:

(A1) E ∈ C2(I), D ∈ C1(I), D(0) = 0,
(A2) G = DE′′(u) > 0, D(u) > 0 for 0 < u < 1.
(A3) V ∈W 1,∞(Ω).

Here I = [0, 1] is the interval between zero and the maximal density, normalized
to 1. Due to the continuity of D and G, assumption (A2) implies G(u) ≥ 0 and
D(u) ≥ 0 for u ∈ [0, 1]. In some Sections we will need additional assumptions on
D, G. These will be stated explicitly.
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3.1. Transformation to Entropy Variables. We consider the entropy functional

(17) E(u) =

∫
Ω

E(u(x))− u(x)UV (x)dx.

It is easy to verify that, if u is a solution of the transient version of (14) with no-flux
boundary conditions, this functional decreases in time. The entropy functional is
also important in the stationary case as it allows to transform (15) into entropy
variables ϕ given by

ϕ :=
∂E
∂u

= E′(u)− UV.

Due to (A2), the function E′ is invertible for 0 < u < 1 and we can solve this
equation for u. Using (15) this yields

(18) div(D((E′)−1(ϕ+ UV ))∇ϕ) = 0.

An important feature of (18) is that it satisfies a maximum principle which, in
original variables, is only true if ∆V = 0, i.e. if the potential is harmonic.

3.2. Existence in the case: V harmonic. For a given potential with ∆V = 0,
(15) features a maximum principle which implies 0 < u < 1 due to (12). Then
G > 0 and therefore H ∈ C1(Ω) defined by H ′ = G is strictly monotone and H−1

exists and is also in C1 (by means of the implicit function theorem). This allows us
to define w = H(u) and F (w) = D(H−1(w)) with the new variable w satisfying the
elliptic equation

(19) ∆w = UF ′(w)∇w · ∇V.

Since H maps the interval [0, 1] to [a, b] for some constants a, b with 0 = H(0) <
a ≤ b < H(1) <∞, it is meaningful to supplement (19) with the Dirichlet boundary
condition

w = H(f) on ∂Ω.(20)

We shall prove existence of solutions of (19), (20) using a fixed-point argument. We
consider the linearized equation

(21) ∆w = UF ′(w̃)∇w · ∇V,

with w̃ given. Note that F ′ is well-defined here since D ∈ C1(Ω). The fact that
this equation features an obvious comparison principle (and its solution is therefore
uniformly bounded in L∞(Ω)) motivates the definition of the set

M = {w ∈ L∞(Ω) | a ≤ w ≤ b a.e.} .

We consider the solution operator to equation (21)

L̃ : M→ H2(Ω),

w̃ 7→ w,w solution to (21), (20),

and define

L =
(
IH2↪→L∞ ◦ L̃

)
:M→M,

where IH2↪→L∞ denotes the embedding operator.

Lemma 3.1. Let Ω be a bounded subset of Rd, d = 1, 2, 3. Let w̃ ∈ M and
F ′ continuous and bounded. Then the operator L is well-defined and continuous.
Furthermore, the set L(M) is precompact.
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Proof. Existence of a solution w ∈ H2(Ω) to (21) follows from [22, Theorem 8.3 and
Theorem 8.12]. The fact that the solution is again inM follows by the (weak) max-
imum principle, [22, Theorem 8.1] and the precompactness from the compactness
of the embedding H2(Ω) ↪→ L∞(Ω) in d = 1, 2, 3. �

Using Schauder’s fixed point theorem (cf. [55]) we thus conclude:

Theorem 3.2 (Existence in the case of a harmonic potential). Assume d = 1, 2, 3,
∆V = 0 and furthermore D, G such that F ′(w) = (D(H−1(w)))′ is continuous and
bounded for all 0 < a ≤ w ≤ b < 1. Then, there exists a solution w to (19), (20) in
M ∩ H1(Ω), which is unique if U is sufficiently small.

Proof. As noticed above the existence of a solution follows from Schauder’s theorem
and moreover the argument implies that w = H(u) ∈ H2(Ω). Since H has a
continuously differentiable inverse and w is bounded, we easily infer that ∇u =
(H−1)′(w)∇w ∈ H1(Ω). Since the transform between u and w is one-to-one from
M ∩ H1(Ω) to H(M) ∩ H1(Ω), it suffices to verify uniqueness of the solution w of
(19) with given Dirichlet boundary condition. This follows for U sufficiently small
since the linearized differential operator in (21) is uniformly elliptic on H(M) ∩
H1(Ω). �

3.3. Existence in the case: ∆V 6= 0. Next we present an existence result in the
case of general nonlinear potentials in one space dimension. The above strategy fails
as equation (15) no longer satisfies a comparison principle. However, a maximum
principle still holds for the equation in entropy variables (see Section 3.1), i.e.

(22) ((D ◦ (E′)−1)(ϕ+ UV ))ϕx)x = 0, x ∈ [0, 1],

with boundary conditions

(23) ϕ(0) = ϕL = E′(uL)− UV, ϕ(1) = ϕR = E′(uR)− UV.
To prove that there exists a solution to this equation, we again construct a fixed-
point argument, this time in the set

N =
{
ϕ ∈ L∞((0, 1)) | ã ≤ ϕ ≤ b̃

}
,

with ã = inf(ϕL, ϕR) and b̃ = sup(ϕL, ϕR). First, we define the operator

S : L∞((0, 1))→ L∞((0, 1))

ϕ 7→ (D ◦ (E′)−1)(ϕ+ UV )),

which is well defined and continuous due to assumptions (A1)-(A3). Next we con-
sider the linearized equation

(24) (b(x)ϕx)x = 0,

with a given coefficient b ∈ L∞((0, 1)) and define the corresponding solution oper-
ator

R̃ : L∞((0, 1))→ H1((0, 1))

b 7→ ϕ s.t. ϕ solves (24), (23).

This operator is well-defined (cf. [21]) and its continuity can be shown using stan-
dard estimates, cf. [10, Lemma 4.2]. Using the fact that the embedding of H1((0, 1))
into L∞((0, 1)) is compact we conclude that the operator

R = IH1↪→L2 ◦ R̃ ◦ S
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maps N into N and that the set R(N ) is precompact. Using again Schauder’s
fixed-point theorem we conclude that:

Theorem 3.3 (Existence for nonlinear Potential). For d = 1 and if the nonlinear-
ities D, G are chosen such that (D ◦ (E′)−1)(ϕ + UV ) is continuous and bounded

for all 0 < ã ≤ ϕ ≤ b̃ < 1. Then equation (22), (23) admits a solution in N .

Since this results has been obtained by Schauder’s theorem we cannot deduce
uniqueness in general. However, for U small, we can construct a contractive fixed-
point operator:

Lemma 3.4. Under the assumptions of Theorem 3.3 and for U sufficiently small,
there exists a unique solution to (22), (23).

Proof. By adding and subtracting the term ((D ◦ (E′)−1)(ϕ+UV ))UVx)x to equa-
tion (22) we obtain

(25) ((D ◦ (E′)−1)(ϕ+ UV ))(ϕx + UVx))x = −U((D ◦ (E′)−1)(ϕ+ UV )Vx)x.

Denoting by K the primitive of D ◦ (E′)−1, we introduce the new variable v =
K(ϕ + UV ). Since D ◦ (E′)−1 is positive, K is invertible and the transformed
equation (25) reads as

vxx = −U((D ◦ (E′)−1)(K−1(v))Vx)x, x ∈ [0, 1],

with boundary conditions

(26) v(0) = vL = K(E′(uL)), v(1) = vR = K(E′(uR)).

Due to our assumptions, (D◦(E′)−1) positive and thus it is clear that the linearized
elliptic equation with given ṽ ∈ L2((0, 1)),

vxx = −U((D ◦ (E′)−1)(K−1(ṽ))Vx)x, x ∈ [0, 1],

has a unique solution. If we chose U sufficiently small and exploit the fact that
under our assumptions D◦(E′)−1 and K−1 are continuous, the operator solving this
equation is a contraction on H1((0, 1)) and thus, by Banach’s fixed-point theorem,
we conclude the existence of a unique solution. �

3.4. Existence and Uniqueness for a Linearized Equation. In this Subsection
we assume again ∆V = 0 and consider the linearized equation

(27) div(∇ (H ′(u)ṽ)−D′(u)ṽ∇V ) = g, x ∈ Ω,

where 0 < u < 1 is solution of (15), g ∈ H−1(Ω), H ′ = G and supplemented with

(28) ṽ = vb ∈ H2(Ω) on ∂Ω.

Introducing v = ṽ − vb, we obtain the equation

(29) div(∇ (H ′(u)v)−D′(u)v∇V ) = g + div(∇ (H ′(u)vb)−D′(u)vb∇V ) =: f̃ ,

x ∈ Ω and with homogeneous boundary conditions. This can be rewritten as

(30) G(u)v −∆−1 (div(D′(u)v∇V )) = ∆−1f̃ =: f,

and hence we define

Q : L2(Ω)→ H1
0

v 7→ ∆−1 (div(D′(u)v∇V )) ,
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with H−1 defined as the dual of H1
0 . The formal adjoint to equation (30) in the

scalar product

(31) 〈u, v〉H1
0

:=

∫
Ω

∇u · ∇v dx,

is given by

G(u)∆ϕ̃+D′(u)∇V · ∇ϕ̃ = F̃ ,(32)

ϕ̃ = ϕb on ∂Ω,(33)

with an arbitrary F̃ ∈ L2(Ω). Dividing by G(u) > 0, using the transformation
ϕ = ϕ̃− ϕb and applying ∆−1 we obtain the equation

(34) ϕ+ ∆−1

(
D′(u)

G(u)
∇V · ∇ϕ

)
= ∆−1

(
F̃ − ϕb −D′(u)∇V · ∇ϕb

G(u)

)
=: F,

with homogeneous Dirichlet boundary conditions. The operator

(35) Pϕ := ∆−1

(
D′(u)

G(u)
∇V · ∇ϕ

)
: L2(Ω)→ H1(Ω) ↪→ L2(Ω),

is continuous and compact (due to the boundedness of D′, G > 0 and ∇V ∈ L∞
guaranteed by assumptions (A1) and (A3)). As the solutions to the homogeneous
version of (32) is unique due to the maximum principle, we obtain a unique solution
ϕ for every F ∈ L2(Ω) by Riesz’ Theorem as in Section 3.2. Now, the Fredholm
alternative asserts that the solution of (29) is unique. Thus the existence of a
solution v can again be obtained by Riesz’ Theorem, since the operator

(36) Uv :=
1

G(u)
∆−1 (div(D′(u)v∇V )) : L2(Ω)→ H1(Ω) ↪→ L2(Ω),

is obviously continuous and compact as well. Furthermore, note that the operator
norm ‖U‖ is proportional to U . Thus, for U sufficiently small we can apply a
perturbation argument for linear operators, cf. [37, Thm. 1.16, Remark 1.17], to
the equation

Iv + Uv = f,

where ∆V = 0, I denotes the identity, and conclude the existence of a unique
solution. To summarize, we have

Lemma 3.5. Let u be a solutions of (15), (12) in the sense of Theorem 3.2. Then,
there exists for every g ∈ H−1(Ω) a solution ṽ ∈ H1(Ω) of (27), (28). The solution
depends continuously on g and is unique if U is sufficiently small.

Proof. The existence of ṽ follows from the above considerations. The fact that the
solution is in H1(Ω) can be easily obtained exploiting the fact that G(u) > 0. The
continuity follows from standard arguments, see [22, Chapter 8]. �

4. Inverse problem

This Section is devoted to inverse problems related to the nonlinear convection
diffusion equation (15). We are interested in identifying the functions D and G
from flux measurements in different situations.
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4.1. Formulation of the inverse problem. We define the parameter-to-solution
map

T : D(T )→ H1(Ω)

(G,D,U, V, f) 7→ u, u solving PS(G,D;U, V, f),
(37)

with
D(T ) = C1(I)× C1(I)× R×W 1,∞(Ω)×H2(Ω),

I = [0, 1] as above. Furthermore, we define the observation operator O which maps
the solution u to the flux evaluated at Γ ⊆ ∂Ω. The operator O is defined as

O : C1(I)× C1(I)× R×W 1,∞(Ω)×H1(Ω)→ L2(Γ),

(D,G;U, V, u) 7→
∫

Γ

(G(u)∇u−D(u)U∇V ) · ndσ(x) .
(38)

Finally, we denote by

(39) PO = O ◦ (ID, IG, IU , IV , T )

the parameter-to-output map. Here ID, IG, IU , IV denote the identity in the spaces
of C1, R and W 1,∞, respectively. With these notations, we can formulate the inverse
problem:

Identify the functionsG, D from measurements I[f, U, V ] = PO(G,D,U, V, f)
where (f, U, V ) are taken from a subset of H2(Ω)× R×W 1,∞(Ω).

In the applications we shall discuss below, the potential V will always be given.
Then, one may either vary the strength of the potential for given boundary data,
i.e. the inverse problem on the set R × {V } × {f} or one may consider different
boundary values for a given potential strength {U0}, i.e. {U0}× {V }×H2(Ω). We
conclude this Section by introducing

e : C1(I)× C1(I)×H → H−1(Ω),(40)

(G,D, u) 7→ div(G(u)∇u−D(u)U∇V ),

with H := {u ∈ H1(Ω) ∩ L∞(Ω) | 0 < u < 1 a.e.}. Then, e(G,D, u) = 0 is usually
called “state equation”.

4.2. Differentiability. First we would like to study the differentiability of the
parameter-to-solution map. Note that throughout this Section we use the letter C
as well as C1, C2, . . . for generic, not necessarily equal constants. We impose the
following additional assumption

(B1) G ∈ C1(I) (i.e. E ∈ C3(I)),

then we have:

Theorem 4.1. For fixed given (U, V, f) ∈ R+×W 1,∞(Ω)×H2(Ω) the operator T ,
defined in (37) is Fréchet differentiable with respect to D and G.

Proof. We use a generalized version of the implicit function theorem to show the
differentiability, see [13, Theorem 2.1]. According to this theorem, we have to show
that

(1) e(G,D;u) is continuous in G, D and u,
(2) ∂e

∂u (G,D;u) is continuous in G, D, and u,

(3)
(
∂e
∂u (G,D;u)

)−1
exists as a bounded mapping,

(4) ∂e
∂D (G,D;u) and ∂e

∂G (G,D;u) are continuous in G, D, and u.
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Condition (2): The Fréchet derivative with respect to u is given by

(41)
∂e

∂u
(G,D;u)v = div(G(u)∇v + (G′(u)∇u−D′(u)U∇V )v).

We start again by examining the continuity with respect to G (for D similar argu-
ments hold)∥∥∥∥ ∂e∂u (G+ h,D;u)v − ∂e

∂u
(G,D;u)v

∥∥∥∥
H−1(Ω)

=

∫
Ω

([(G+ h)(u)−G(u)]∇v + [(G′ + h′)(u)−G′(u)]v∇u) · ∇w dx

≤
(
‖h‖C(Ω)‖∇v‖L2(Ω) + ‖h′‖C(Ω)‖v‖L∞(Ω)‖∇u‖L2(Ω)

)
‖∇w‖L2(Ω).

As before, this estimate yields the continuity with respect to G and G′ as h → 0.
Using the same arguments we obtain∥∥∥∥ ∂e∂u (G,D;u+ h)v − ∂e

∂u
(G,D;u)v

∥∥∥∥
H−1(Ω)

≤ C‖h‖,

where C depends on ‖G‖C1(Ω), ‖D‖C1(Ω) and ‖U∇V ‖L2(Ω). Conditions (1), (4)
follow by similar calculations. For condition (3), we need to show there exits a
bounded solution to the linearized equation (41) which is precisely the statement
of Lemma 3.5. �

4.3. Identification of D and G from linearized problems. Before we discuss
identification strategies for fully nonlinear problems, we would like to start with
identification results for particular linearizations in one space dimension, i.e. Ω =
[0, 1], with boundary conditions

u(0) = uL, u(1) = uR.

In these cases we are able to deduce explicit solutions for the identification of D and
G, which serve as a starting point and validation for the nonlinear problems. These
linearizations can be motivated from different applications, like ion channel or crowd
motion models. First we start with the following assumptions being reasonable
for flux measurements in ion channels: let uR = uL and V (x) = x. Then the
equilibrium solution for u = const satisfies

(−D(u)U)x = 0.

Therefore we can identify D(u) from given flux measurements, i.e.

(42) j = −D(u)U.

Next we consider the case of a given potential V (x) = x and linearize around equal
Dirichlet boundary conditions, i.e. uL = uR with corresponding constant solution
u0. Then we obtain

(G(u0)ux −D′(u0)uU)x = 0,

where u0 denotes the solution at the linearization point. Since we already know D
due to (42), we choose u0 such that D′(u0) 6= 0. The total flux for the linearized
equation is given by

jlin = G(u0)ux −D′(u0)uU.

We introduce the new variable u = ecxv with c = D′(u0)U
G(u0) , then the flux can be

written as
jlin = G(u0)ecxvx.
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Integration over the domain [0, 1] leads to

vR − vL =
jlin
G(u0)

∫ 1

0

e−cxdx,

and subsequently to

uRe
−c − uL = − jlin

G(u0)

1

c

(
e−c − 1

)
.

We conclude that

e−c =
uL + jlin

D′(u0)U

uR + jlin
D′(u0)U

by using the definition of c. Furthermore we assume that uR is a small perturbation
of uL, i.e. uR = uL + ε and obtain

(43) G(u0) =
−D′(u0)U

log
(

1− ε
/(

uR + jlin
D′(u0)U

)) .
We conclude that it is possible to identify the functions D and G in situations close
to equilibrium. Equations (42) and (43) are not valid for non-equilibrium situations,
but they serve as a starting point for fully nonlinear identification problems.

Remark 1. We would like to mention a different application, namely crowd motion
models. Here equation (15) includes an additional geometry information via an area
function a(x). The function a(x) corresponds to the “width” of the domain at a point
x. Then the one dimensional reduction of (15) reads as

(44) 0 = (a(x)(G(u)ux −D(u)UVx))x for x ∈ Ω := [0, 1].

A common assumption in crowd motion modeling is that the velocity is constant,
i.e. the potential is linear. Here the constant U corresponds to the typical walking
speed of a human which is around 1.3 m/s, cf. [59]. Then one can consider the
same linearization approach as above, but it is not possible to obtain an explicit
reconstruction formula for G anymore.

4.4. Identifiability. From now on, we restrict ourselves to one spatial dimension
and the domain Ω = [0, 1] and assume that the potential V (x) is harmonic. Next
we shall prove identifiability of D and G in the fully nonlinear case. We will use the
adjoint method that has been introduced in [16]. The key ingredient is an integral
identity relating the nonlinearities to solutions of an adjoint problem defined below.
Here we need the additional assumption that D is concave, i.e.

(B2) D′′(u) ≤ 0.

This assumption is natural since all standard examples as well as many analytical
results require the concavity of D.

Remark 2 (Flux in One Dimension). We mention that in spatial dimension one,
the flux in the stationary equation is constant in space, hence it does not matter
whether we speak about total flux or flux density, and we will simply use the nomen-
clature of flux j in the following. Let us also comment on the rule of thumb about
dimensions of data and reconstructed quantities: We can change both boundary val-
ues separately, yielding the flux as a function of two variables, i.e. two-dimensional
measurements. Since we aim at identifying two functions of a single variable, the
problem might be overdetermined. On the other hand there may be correlations be-
tween different settings of boundary values. However, for U 6= 0 we obtain at least
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independent measurements if we fix one boundary value, e.g. at 1
2 and vary the

other. Hence, the effective dimensionality of the data is certainly not smaller than
the dimensionality of the unknowns. Overdetermination should further hold if we
vary U in addition.

Remark 3 (Identifiability of D). The strategy to identify D by applying equal
Dirichlet boundary values used in (42) in Section 4.3 works for the fully nonlinear
problem considered here. Therefore we will always assume that D is known in the
following.

Lemma 4.2. For given (D,G1) and (D,G2) consider the corresponding solutions
u1, u2 of (15), (12) with associated fluxes j1, j2. Then the following relation holds:

(45) (j1 − j2) =

∫ 1

0

(H1(u1)−H2(u1))xλx dx,

where λ is a solution of

p(x)λxx + q(x)UVxλx = 0, x ∈ Ω = [0, 1],(46a)

supplemented with

λ(0) = 0, λ(1) = 1,(46b)

and with

p(x) =
∫ 1

0
G2(u1 + s(u2 − u1)) ds,

q(x) =
∫ 1

0
D′(u1 + s(u2 − u1)) ds.

Proof. We subtract equation (15) with (u1;D,G1) and (u2;D,G2) from each other
and obtain

(G1(u1)(u1)x −G2(u2)(u2)x − (D(u1)−D(u2))UVx)x = 0.

For Hi with H ′i = Gi, i = 1, 2 we rewrite the equation as

((H1(u1)−H2(u2))x − (D(u1)−D(u2))UVx)x = 0.

Multiplying with λ and integrating by parts yields to

(j1 − j2)λ|x=1
x=0 =

∫ 1

0

(H1(u1)−H2(u2))xλx − (D(u1)−D(u2))UVxλx dx

=

∫ 1

0

−(H2(u1)−H2(u2))λxx + (H1(u1)−H2(u1))xλx

− (D(u1)−D(u2))UVxλx dx

=

∫ 1

0

(H1(u1)−H2(u1))x dx

+

∫ 1

0

[p(x)λxx + q(x)UVxλx] (u2 − u1) dx.

Note that the last line is zero, due to (46a) and that the boundary term

(H2(u1)−H2(u2))λx|x=1
x=0 ,

vanishes because u1 and u2 satisfy the same Dirichlet boundary conditions. Impos-
ing boundary conditions (46b) on λ we obtain (45). �



IDENTIFICATION OF NONLINEARITIES IN CROWDED MOTION 15

Remark 4. Since p, q ∈ L∞(Ω), p > 0 in Ω and Vx ∈ L∞(Ω), the existence of a
unique solution λ ∈ H1(Ω) follows from standard results for linear elliptic equations,
see again [22, Theorem 8.3 and Theorem 8.12]. Furthermore, since for identifiability
we always need to assume j1 = j2, the term (j1 − j2) will always be zero in the
proceeding proofs. Thus, we are free to chose arbitrary Dirichlet boundary conditions
for λ. Here we apply (46b) to ensure that (46a) has a non-trivial solution with
specific properties, see below.

We continue by proving the followings results about the sign of ux and λx:

Lemma 4.3. Let u be a solution of (15), (12) with ∆V = 0, d = 1 on the domain
Ω1 = [0, 1]. Then, if U is sufficiently small, the sign of ux is determined by the
sign of uL − uR where uL, uR ∈ R+, uL 6= uR denote the left and right Dirichlet
boundary value.

Proof. W.l.o.g. we only consider the case uL − uR > 0. The maximum principle
immediately implies that ux ≥ 0. Now assume that there exists a point x0 ∈ [0, 1]
such that ux(x0) = 0 and denote by c = u(x0) the value of u at this point. Then,
solving problem (15) subject to the Dirichlet boundary conditions

u(0) = uL, u(1) = uR,

is equivalent to solve two Cauchy problems on the intervals I1 = [0, x0] and I2 =
[x0, 1], both with boundary conditions u(x0) = c, ux(x0) = 0. Then, in one of the
intervals I1, I2 there exists a point x̃ such that u(x̃) < u(x0). However, Hopf’s
Lemma applied to this interval asserts that ux(x0) is either strictly positive or
strictly negative which is a contradiction. Since by smallness of U we know that u
is unique, this completes the proof. �

This strategy also applies to the linear adjoint equation:

Lemma 4.4. Let λ be a solution to (46a), (46b). Then

λx > 0 in [0, 1].

Proof. The proof is the same as in Lemma 4.3. Since Equation (46a) is linear it
features a maximum principle and we conclude that there exists only one solution.

�

Before we state the main identification result we would like to introduce the
notion of distinguishability.

Definition 4.5 (Distinguishability, cf. [16]). Two continuous functions f, g :
[a, b] → R are called distinguishable if f 6= g and f − g changes sign only finitely
many times on [a, b].

In the following we denote by ui a solution obtained by solving (15) with G = Gi
and Dirichlet boundary conditions (uL, uR) for i = 1, 2. For each ui we use ji for
the corresponding flux.

Theorem 4.6. Let the functions D, G1 and G2 satisfy (A1) and (A2) and assume
that ∆V = 0 holds.
Then, for U sufficiently small, there exists a set of finitely many Dirichlet bound-
ary conditions (uiL, u

i
R), i = 1, . . . , N , such that the functions G1 and G2 are not

distinguishable on

I =

[
inf

i∈{1,...,N}
uiL, sup

i∈{1,...,N}
uiR

]
,
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if ji1 equals ji2 for all i.

Proof. If G1 and G2 would be distinguishable, there would exist a partition of I
into intervals IkG, k = 1, . . . , N such that either G1 > G2 or G2 < G1 on each
interval. In each interval IkG, we can choose boundary values uL and uR such that
the values of u1 lie in this interval (due to the maximum principle). Then we have

0 =

∫
Ω

(G1(u1)−G2(u1))(u1)xλx dx.

Since due to Lemma 4.3 and 4.4, both (u1)x and λx have a sign, the integrand is
either strictly positive (G1(u1) > G2(u1)) or negative (G1(u1) < G2(u1)). Thus,
we obtain a contradiction and G1 = G2 on IkG. In the case that G1 = G2 on an
interval, there is nothing to show. �

We remark that the above Theorem contains the implicit assumption that there
exist only two different functions G1, G2 which would create the same output data.
Of course, this is not true in general and there could be an infinite number of differ-
ent functions Gi creating the same data. This also explains why the above Theorem
contradicts the rule of thumb that the dimension of the measured data should be
the same as of object one wants to identify. However, the finite measurements de-
pend on the specific G1, G2. Given an infinite number of measurements, with all
boundary values in an interval, Theorem 4.6 can be applied to an arbitrary pair
and thus the final identifiability result is given by the following corollary:

Corollary 1. Given a set of infinitely many flux measurements Ik (generated by
infinitely many combinations of U , uL and uR), it is possible to identify the function
G, up to distinguishability, on the interval I.

5. Least Squares Approach and Regularization for the Fully
Nonlinear Problem

Next we consider the fully nonlinear inverse problem. Here we would like to solve
the following optimization problem :

(47) min
(D,G)

J(D,G) =
1

2

∫
R×I2

(PO(D,G;U, V, uL, uR)− Iδ)2 dµ.

Here Iδ denotes the noisy measurements and PO the observation operator defined
in (39). We remark that the above integral is well defined as PO is continuously
differentiable with respect to U , uL and uR. This can easily be shown using the
same arguments as in the proof of Theorem 4.2. Since the potential V is assumed
to be given, we will from now on neglect it when writing the arguments of PO to
increase readability. Furthermore, µ = µ(U, uL, uR) is a measure defined on the set
R×I2 and is chosen according to the type of application. A typical example would
be a given potential strength U0 and a finite number of boundary values ukL, ukR,
k = 1, . . . ,M . Then, µ is given by

µ(U, uL, uR) = δ(U − U0)

M∑
k=1

δ(uL − ukL)δ(uR − ukR).
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Note that (47) might be ill posed, hence we add two Tikhonov regularization terms
(see [19]) and obtain

J(D,G) =
1

2

∫
R×I2

(PO(D,G;U, uL, uR)− Iδ)2 dµ(48)

+β2‖D −D∗‖2H1(I) + β1‖G−G∗‖2H1(I),

where β1,2 denote the regularization parameters, D∗ and G∗ is a given prior initial
guess.

In order to compute a derivative we have to compute the gradient of the functional
J , which is usually carried out via adjoint equations. To do so we use the equivalent
constrained formulation.

J̃(u,D,G) =
1

2

∫
R×I2

(O(D,G;U, V, u)− Iδ)2 dµ(49)

+β2‖D −D∗‖2H1(I) + β1‖G−G∗‖2H1(I),

under the constraint that (15) is satisfied. The corresponding Lagrange functional
is given by

L(u,D,G) =
1

2

∫
R×I2

(O(D,G;U, uL, uR, u)− Iδ)2 dµ

(50)

+

∫
Ω

w(div(G(u)∇u−D(u)U∇V )) dx+ β1‖D −D∗‖2H1(I) + β2‖G−G∗‖2H1(I).

From now on, we will write O(G,D;u) and neglect all other arguments to emphasize
the dependence of O on u. The corresponding adjoint equation is given by

(51) G(u)∆w +D′(u)U∇V∇w = 0,

subject to the boundary conditions

w(x) = 0 ∀x ∈ ∂Ω\Γ

w(x) =

∫
R×I2

(O(G,D;u)− Iδ) dµ ∀x ∈ Γ.

Hence we can use the solution of the adjoint equation (51) to calculate the gradient
of J with respect to D and G. We obtain the following iterative scheme: Set initial
datum D0 and G0

(1) Solve forward problem using Di and Gi for ui.
(2) Compute adjoint solution wi via (51) using ui, Di and Gi.
(3) Update Di+1 and Gi+1 using the directional derivatives ∂L

∂Dh and ∂L
∂Gh

(4) Go to (1) until

|J(Di+1, Gi+1)− J(Di, Gi)| ≤ tol.
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6. Numerical Solution

Finally we shall discuss the numerical discretization of the forward problem (15)
as well as the numerical simulation of the inverse solver. Note that G(u) can be-
come small compared to D(u) and therefore the numerical solver should be capable
of dealing with convection dominated problems. The proposed method has been
introduced by Egger and Schöberl for linear convection diffusion problems, see [18].
Furthermore we discuss a Kaczmarz type method for the efficient solution of the
inverse problem. Finally we present numerical results based on the linearization
approach and the fully nonlinear problem.

6.1. Mixed HDG. We solve equation (15) using Newton’s method and a hybrid
mixed discontinuous Galerkin method. Introducing the new variable σ = −∇u we
obtain

σ +∇u = 0,

div(−G(u)σ −D(u)U∇V ) = 0.

We discretize the mixed system using a hybrid discontinuous Galerkin method, i.e.
find (σ, v, λ) ∈ Qh × Vh ×Mh such that∑

T

[

∫
T

σ · q dx+

∫
T

∇u · q dx+

∫
∂T

(λ− u)q · nds] = 0(52)

∑
T

[

∫
T

G(u)σ · ∇v dx+

∫
T

D(u)U∇V · ∇v dx

−
∫
∂T

(G(u)σn +D(u+)U
∂V

∂n
)vds] = 0(53) ∑

T

[

∫
∂T

(G(u)σn +D(u)U
∂V

∂n
)µ ds] = 0,(54)

for all test functions (q, v, µ) ∈ Qh × Vh ×Mh. Here T denotes the elements, ∂T
the element interfaces and Eh the set of all facets. The finite elements spaces are
given by

Qh = {τh ∈ [L2(Ω)]n : τh ∈ RTk(T )} and Vh = {vh ∈ L2(Ω) : vh ∈ Pk(T )}
Mh = {µh ∈ L2(Eh) : µh ∈ Pk(∂T )},
where RTk denotes the Raviart Thomas finite element space (up to order k) and
Pk are polynomials up to order k. The unknown λ corresponds to the value of the
function u at the element interfaces. The function u+ denotes the upwind value of
u, given by

u+ =

{
u if ∂V

∂n ≥ 0,

λ otherwise.

Note that the variational formulation is stated for space dimensions d = 1, 2, 3, al-
though we only consider space dimension one in this manuscript. Then the elements
correspond to intervals T = [xi, xi+1], i = 1, .....N and the interfaces to the grid
points ∂T = {xi, xi+1}.
The above system defines a nonlinear operator equation F (σ, u, λ) = 0, which can
be solved using Newton’s method, i.e.

JF (wn)rn = −F (wn)

wn+1 = wn − αrn,
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where wn = (σn, un, λn) and JF denotes the Jacobi Matrix of the operator F . We
solve the adjoint equation (51) using a the similar discretization as for the forward
problem. The adjoint equation (51) is linear, hence we can apply the mixed hybrid
DG scheme as presented in [18].

6.2. Kaczmarz methods. In most applications several flux measurements for var-
ious boundary conditions are available. Hence we choose a Landweber Kaczmarz
iteration (cf. [36, 42]) to solve the inverse problem efficiently. We assume that we
have p measurements available, therefore the cost functional is given by

(55) J =
1

2

p−1∑
j=0

(O(G,D, uj)− Iδj )2 + β1|D −D∗|2H1(I) + β2|G−G∗|2H1(I)

subject to the constraints

e(D,G, u) = (e0(D,G, u1), . . . , ep−1(D,G, up−1)) = 0.

We update the functions D and G using the following iterative procedure

Dk,j = Dk,j−1 − τ ∂ej
∂D

(Dk,j−1, Gk,j−1, uk,j)∗wk,j(56)

Gk,j = Gk,j−1 − τ ∂ej
∂G

(Dk,j−1, Gk,j−1, uk,j)∗wk,j(57)

where uk,j and wk,j are solutions of

ej(D
k,j−1, Gk,j−1, uk,j) = 0,

∂ej
∂u

(Dk,j−1, Gk,j−1, uk,j) ∗ wk,j

+
∂O∗

∂u
(Dk,j−1, Gk,j−1, uk,j)(O(Dk,j−1, Gk,j−1, uk,j)− Iδj ) = 0.

We assume that the nonlinearities D and G are in H1(Ω), hence the can be written
as

D(u) =
∑
l

Dlϕl(u), G(u) =
∑
l

Glϕl(u),

where ϕl denotes the classical hat functions in H1. Therefore the updates (56) and
(57) correspond to the updates of the coefficients Dl and Gl.

7. Results

Finally we present first numerical results for the reconstruction of nonlinearities
from flux measurements, which are based on the linearized as well as the fully non-
linear problem. These simulations confirm the feasibility of the proposed objectives
and serve as a starting point for the more sophisticated reconstruction techniques
in higher space dimension.

7.1. Problem setup. We consider the unit interval Ω = [0, 1] as the computational
domain for (15) in all numerical simulations, and use a equidistant mesh of size h.
The interval I = [0, 1], where 1 corresponds to the maximum density, is divided
into NI equidistant grid points. Its mesh size is denoted by uh. Since we assume
that D(u) and G(u) are in H1(I), we use classical H1 conforming basis functions of
order two for their discretization. The higher order basis functions are necessary to
compute the curvature of D(u) in the last example. We consider a linear potential
in all examples, i.e. V = x, hence only the strength U is varied.
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1 2 3 4 5 6 7 8
uL 0.2 0.3 0.4 0.45 0.55 0.6 0.7 0.8
uR 0.35 0.45 0.55 0.66 0.58 0.7 0.78 0.89
Table 1. Boundary conditions for the linearized case

We generate the synthetic data by solving (15) on an equidistant mesh of size
hf = 1

2h with the Newton solver presented in Section 6.1. We used the same
discretization for I in the data generation and reconstruction routines. No noise
was added to the calculated currents.

7.2. Numerical results based on the linearization approach. We start by
presenting numerical results obtained using the linearization approach presented in
Section 4.3. We expect that this approach gives good results close to equilibrium,
but becomes inaccurate for more general settings. To reconstruct D we used the
boundary conditions uL = uR = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and for G the ones
depicted in Table 1. In this example we set h = 0.01, D(u) = u(1 − u), G(u) = u
and U = 0.001. This leads to the results shown in Figure 1. However, the quality of

(a) D(u) (b) G(u)

Figure 1. Reconstructed D(u) and G(u). The increased inaccu-
racy around u = 0.5 in the reconstruction of G is due to the fact
that D′ = (1− 2u) degenerates at u = 0.5.

these results depends strongly on the value of U . This is reasonable, as this factor
multiplies the error due to the linearization of the convection term. In fact, for larger
values of U the error in the reconstruction increases strongly as shown in Figure
2. This leads to the conclusion that the linearization approach is of theoretical
interest, as it demonstrates the feasibility of identifying both nonlinearities but its
practical value is limited.

7.3. Numerical results based on the fully nonlinear problem. For the fully
nonlinear problem we choose an equidistant mesh of sizes h = 0.005 and hu = 0.005.
The regularization parameters are set to β1 = β2 = 0.01.
Example 1: Reconstruction for different values of U
First we would like to illustrate the behavior for different values of U . For small
values of U the nonlinear diffusion dominates the problem, for larger values the
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Figure 2. Error in l2 norm between exact and reconstructed G(u)
for different values of the Potential U .

1 2 3 4 5 6 7 8 9 10 11 12 13
uL 0.25 0.3333 0.6 0.5 0.25 0.95 0.3 0.425 0.72 0.844 0.395 0.515 0.9
uR 0.65 0.7 0.8 0.915 0.55 0.55 0.475 0.6 0.375 0.275 0.225 0.275 0.625

Table 2. Boundary conditions for the fully nonlinear problem

convection. Consequently we expect a better reconstruction of either D or G in one
or the other case.
The exact nonlinearities are set to D(u) = u(1− u) and G(u) = u2(1− u). For the
initial datum of D and G we choose the functions D∗(u) = u(1− u2) and G∗(u) =
u2(1−u2), which have the same values at u = {0, 1}. We choose a set of 13 different
boundary conditions, given in Table 2. We reconstruct the nonlinearities for two
different potentials, i.e. U = 0.3 and U = 1, see Figure 3. Here we observe that we
get a good reconstruction for G(u) for U = 0.3, the reconstruction of the function
D(u) is worse especially for smaller and larger values of u. Note that we only
reconstruct the nonlinearities D and G on the interval [min(uR, uL),max(uR, uL)],
in the gray shaded areas the functions stay the same. For U = 1 the “convection”
term dominates the equation, therefore we can reconstruct the nonlinear diffusion
much better than for U = 0.3.
Example 2: Reconstruction for different sets of boundary values
The quality of the reconstruction depends heavily on the chosen boundary values.
In the first example we chose a set of very different boundary conditions, e.g. large
value on the right, small on the left or vice versa. If we choose very simple bound-
ary conditions like ui(0) = u0 + iδu and ui(1) = u1 + iδu with i = 1, . . .m, the
reconstructed solution are worse than in the first setting. All functions and param-
eters are the same as in the first example, except U = 0.5. Figure 4 shows the
reconstructed solutions for the boundary conditions in Table 2 and

(58) ui(0) = 0.15 + 0.05i and ui(1) = 0.3 + 0.05i

with i = 0, . . . 13. We observe that the quality of the reconstruction depends heavily
on the boundary conditions. For the first set of boundary conditions, i.e. Table 2,
the nonlinearities can be reconstructed much better than for the second set, i.e.
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Figure 3. Reconstructed D(u) and G(u) and for U = 0.3 and U = 1.

(58). This confirms the assumption that the reconstruction quality depends heavily

D
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)
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b.c. equ. (56)

exact sol
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Figure 4. Reconstructed D(u) and G(u) for U = 0.5 with b.c.
taken from Table 2 or (58).

on the chosen boundary conditions. In some applications it is possible to consider
variations of the applied potential V , if this is not the case (e.g. in pedestrian
motion where V = x and U determines the average walking speed) one should
choose various boundary settings to obtain good results.
Example 3: Reconstruction quality for different number of boundary conditions and
basis functions
Next we would like to understand the relationship between the number of basis
functions ϕl, the number of boundary conditions and the regularization parameters
β = β1 = β2. The nonlinearities are chosen the same as in the previous example,
the strength of the potential is U = 0.5 and h = 0.005. We picked i = 5 sets of
boundary conditions given by (59). Table 3 shows the L2 norm of ‖D(u) − u(1 −
u)‖2 + ‖G(u) − u2(1 − u)‖2 for different regularization parameters β and different
mesh sizes hu in the discretization of the nonlinearities D and G.
Table 4 shows the decrease in the error as the number of boundary measurements
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β vs hu 0.05 0.02 0.01 0.004
5× 10−3 0.111459 0.120784 0.125089 0.130275
5× 10−2 0.114804 0.122067 0.126279 0.130437
5× 10−1 0.135208 0.125606 0.130955 0.131876

Table 3. L2 error of the difference between the reconstructed and
the exact nonlinearities for different discretizations and regulariza-
tion parameters

num. bc 6 10 18 34
β = 0.005 0.113703 0.111459 0.103156 0.0864826

Table 4. L2 error of the difference of the reconstructed and the
exact nonlinearities for different number of boundary conditions

increases. Here we used similar boundary conditions as in (58), i.e. by choosing
pairs of the form

ui(0) = 0.25 + ξi and ui(1) = 0.4 + ξi(59)

ui+1(1) = 0.25 + ξi and ui+1(0) = 0.4 + ξi,

for different values of ξ and i. We choose i = 6, 10, 18, 34 boundary conditions (i.e.
3, 5, 9, 17 sets of boundary conditions of the form (59)), where ξ was chosen such
that the boundary conditions covered the interval [0.25, 0.75]. The regularization
parameter was set to β = 0.005 and hu = 0.05, which corresponds to the pair
with the smallest error in Table 3. We observe that the discretization has strong
regularization properties and that the error decreases for a larger set of boundary
conditions. Example 2 and Table 4 show that the number of boundary conditions as
well as their particular choice play a significant role in quality of the reconstruction.
Example 4: Reconstruction with convexity constraints on the diffusivity D(u)

In our final example we would like to include convexity constraints on the diffusiv-
ity D(u), since we posed this assumption throughout the paper. To include this
constraint into our numerical simulations we add

κ

∫
I

max(D′′, 0)2dw

to the minimization function (48). This additional term penalizes non-convex solu-
tions, which can be observed in Figure 5. In the case of κ = 0.4, the diffusion D(u)
looks like the “convex envelope” of the unregularized one, i.e. κ = 0.
This first simple approach serves as a starting point for further research in the
direction of parameter identification problems with convexity constraints.
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[2] H. Berry and H. Cható. Anomalous subdiffusion due to obstacles : A critical survey. arXiv,

2011.

[3] M. Bodnar and J. Velazquez. An integro-differential equation arising as a limit of individual
cell-based models. Journal of Differential Equations, 222(2):341–380, 2006.

[4] S. Boi, V. Capasso, and D. Morale. Modeling the aggregative behavior of ants of the species
polyergus rufescens. Nonlinear Analysis: Real World Applications, 1(1):163–176, 2000.

[5] L. Boltzmann. Vorlesungen über Gastheorie, 2 vols. 1896, 1898.



24 M. BURGER, J.-F. PIETSCHMANN AND M.-T. WOLFRAM

D
(u

)

u

U=0.75,κ=0
U=0.75, κ = 0

exact sol.
initial datum

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

(a) D(u)

G
(u

)

u

U=0.75,κ = 0
U=0.75, \kappa = 0.25

exact sol.
initial datum

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

(b) G(u)

Figure 5. Reconstructed D(u) and G(u) for U = 0.75 with κ = 0
and κ = 0.25
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