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Abstract Image segmentation is one of the fundamen-
tal problems in computer vision and image processing.
In the recent years mathematical models based on par-
tial differential equations and variational methods have
led to superior results in many applications, e.g., medi-
cal imaging. A majority of works on image segmentation
implicitly assume the given image to be biased by addi-
tive Gaussian noise, for instance the popular Mumford-
Shah model. Since this assumption is not suitable for
a variety of problems, we propose a region-based varia-
tional segmentation framework to segment also images
with non-Gaussian noise models. Motivated by appli-
cations in biomedical imaging, we discuss the cases of
Poisson and multiplicative speckle noise intensively. An-
alytical results such as the existence of a solution are
verified and we investigate the use of different regulariza-
tion functionals to provide a-priori information regarding
the expected solution. The performance of the proposed
framework is illustrated by experimental results on syn-
thetic and real data.

Keywords Image segmentation, Variational methods,
Maximum a-posteriori probability estimation, Non-
Gaussian noise models, Multiplicative speckle noise,
Poisson noise, Medical ultrasound imaging, Positron
emission tomography

1 Introduction

The task of automated image segmentation has become
increasingly important in the last decade, due to a fast

expanding field of applications, e.g., in biomedical imag-
ing. The main goal of image segmentation is to recover
an object-of-interest from a given dataset by partitioning
it into disjoint compartments. In general, one can dis-
tinguish between edge-based (cf. e.g., [16, 44, 55]) and
region-based (cf. e.g., [19, 22, 79]) segmentation meth-
ods. In this paper we will concentrate on the latter one,
since our work is motivated by segmentation tasks in
biomedical imaging, where we have to segment continu-
ous objects-of-interest.

Recently, mathematical tools such as level sets, active
contours, and variational methods led to significant im-
provements in automated image segmentation. One fa-
mous framework, which also allows to incorporate a-
priori knowledge into the process of segmentation, is the
popular Mumford-Shah (MS) model [55]. Based on this
framework the frequently used Chan-Vese segmentation
method [22] was developed, which simplifies the MS seg-
mentation model to the case of piecewise constant ap-
proximations of the image intensity.

1.1 Motivation

Despite its high level of awareness in the segmentation
community, the MS formulation has not yet been inves-
tigated in a more general context of physical noise mod-
eling. This is a crucial part in image denoising, since the
image noise naturally has to be covered by the denois-
ing method in order to produce satisfying results. Some
exemplary literature on image denoising based on statis-
tical methods can be found in [6, 21, 47]. Furthermore,
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only few publications considered the effect of a specific
noise model on the results of image segmentation [23, 53].
Since the field of applications for automated image seg-
mentation grows steadily, a lot of segmentation prob-
lems need a suitable noise model, e.g., synthetic aperture
radar, positron emission tomography or medical ultra-
sound imaging. Especially for data with poor statistics,
i.e., with a low signal-to-noise ratio, it is important to
consider the impact of the present noise model in the
process of segmentation as we will show in later sections.

Besides the application of different noise models, the se-
lection of appropriate regularizers has a remarkable in-
fluence on the results of a segmentation approach. By
incorporating a-priori knowledge into the mathematical
model one is able to reduce the set of possible solutions to
a subset of segmentations satisfying certain constraints.
This effect can be seen best in the work of Chan-Vese
[22], which restricts the set of solutions of the segmen-
tation problem to the subset of piecewise constant func-
tions. However, it is possible to think about situations in
which the original signal is not constant at all, e.g., inho-
mogeneous intensity distributions in magnetic resonance
imaging [81] or medical ultrasound imaging [85]. This
motivates the possibility to adjust the incorporation of
a-priori knowledge with the help of suitable regularizers.

In the following we describe our general segmentation
framework for different physical noise models, which also
allows the incorporation of a-priori knowledge by using
different regularization terms. In Section 2 we introduce
a statistical formulation of the region-based segmentation
problem and present our general segmentation frame-
work. We study our statistical formulation for three dif-
ferent noise models, i.e., additive Gaussian noise, Poisson
noise, and multiplicative speckle noise. The framework
is analyzed extensively in Section 3. In particular, we in-
vestigate the existence of a solution and discuss different
regularizers for our variational segmentation formulation,
which allow us to incorporate a-priori knowledge about
solutions to the segmentation problem. The relationship
to the classical formulations of Chan-Vese and Mumford-
Shah is discussed in detail in Section 4. In particular,
we show that the region-based variant of the popular
MS model is a special case of our framework for addi-
tive Gaussian noise. Moreover, we consider a natural ex-
tension of the Chan-Vese method to non-Gaussian noise
models. Section 5 describes the numerical realization of
our segmentation formulation. We discuss the possibili-
ties of global convex minimization and describe how to
implement the corresponding optimization schemes effi-
ciently. We present experimental results in Section 6 and
validate our methods on both synthetic and real data
from medical imaging with challenging image attributes,
e.g., high noise level and intensity inhomogeneities. Fi-
nally, this paper is ended by discussion in Section 8.

2 Region-based segmentation
framework

The main idea of our region-based segmentation frame-
work is based on the fact that a wide range of noise types
is present in real-life applications, particularly including
noise models that are fundamentally different from addi-
tive Gaussian noise. To formulate a segmentation frame-
work for different noise models and thus for a large set
of imaging modalities, we use tools from statistics. First,
we introduce some preliminary definitions to describe our
model accurately.

Let Ω ⊂ Rd be the image domain (we consider the typical
cases d ∈ {2, 3}) and let f be the given (noisy) image we
want to segment. The segmentation problem consists in
separation of the image domain Ω into an “optimal” par-
tition Pm(Ω) of pairwise disjoint regions Ωi, i = 1, . . . ,m,
i.e.,

Pm(Ω) ∈
{

(Ω1, . . . ,Ωm) : Ω =

m⋃
i=1

Ωi

and Ωi ∩ Ωj = ∅ for all i 6= j

}
.

(1)

Naturally, the partition Pm(Ω) is meant to be done with
respect to the given image information induced by f , e.g.,
separation into an object-of-interest and background for
m = 2. Finally, we remark that in most cases the specific
order of the Ωi in (1) does not matter.

In this work we are not only interested in the partition
Pm(Ω) of the image domain but also in the simultaneous
restoration of the given data f as an approximation of the
original noise free image. For this purpose we follow the
idea proposed in [12] and [84, Sect. 4.4.4] and compute
a smooth function ui for each subregion Ωi of Pm(Ω),
where the smoothness of ui is not only enforced in Ωi
but on the entire image domain Ω. Using this approach
an approximation u of the noise free image is given by

u = χΩ1
u1 + · · · + χΩmum , (2)

where χΩi denotes the indicator function of Ωi and ui is
a global smooth function induced by Ωi and the given
data f , i.e.,

χΩi(x) =

{
1 , if x ∈ Ωi ,

0 , else ,
(3)

and

ui =

{
restoration of f in Ωi ,

appropriate extension in Ω \ Ωi .
(4)
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2.1 Statistical formulation of region-based
segmentation

In this section we provide a general region-based seg-
mentation framework from the viewpoint of statistical
(Bayesian) modeling. Following [26, 61] the partition
Pm(Ω) of the image domain Ω can be computed via
a maximum a-posteriori probability (MAP) estimation,
i.e., by maximizing the a-posteriori probability density
p(Pm(Ω)|f) using Bayes’ theorem. However, since we
also want to restore an approximation u of the origi-
nal noise free image, we have to maximize a modified
a-posteriori probability density as discussed below. In
order to give precise statements on probability densities
we use a discrete formulation with N denoting the num-
ber of pixels (or voxels) and expressing the dependency
on N by a superscript in the functions (to be interpreted
as piecewise constant on pixels and identified with the
finite-dimensional vector of coefficients in a suitable ba-
sis) and partitions (any subdomain restricted to be a
union of a finite number of pixels). As a last step we
consider the formal limit N → ∞ to obtain our vari-
ational model. Since this serves as a motivation only,
we will not treat the challenging problem of analyzing
the continuum limit, which in the case of hierarchical
Bayesian priors related to the standard Mumford-Shah
model was already carried out in [40].

In the following, we have to maximize an a-posteriori
probability density p(uN ,PNm (Ω) | fN ), which can be
rewritten as

p(uN ,PNm (Ω) | fN ) ∝
p(PNm (Ω)) p(uN | PNm (Ω)) p(fN | uN ,PNm (Ω)) .

(5)

The main advantage of the statistical formulation in (5)
is the possibility to separate geometric properties of the
partition of Ω (first term) from image-based features (sec-
ond and third term). In addition, the densities on the
right-hand side of (5) are often easier to model than the
a-posteriori probability density p(uN ,PNm (Ω) | fN ) itself.
For the sake of completeness, we note that the probabil-
ity densities p(PNm (Ω)) and p(uN | PNm (Ω)) in (5) allow
to incorporate a-priori information with respect to the
desired partition PNm (Ω) and the restoration uN in (2)
into the segmentation process. Moreover, the posterior
distribution p(fN | uN ,PNm (Ω)) in (5) solely depends on
the noise model in the given data fN , i.e., on the image
formation process of the imaging device.

In order to characterize the a-priori probability density
p(PNm (Ω)) in (5), we consider a geometric prior which
is most frequently used in segmentation problems. This
prior provides a regularization constraint favoring small-
ness of the edge set

ΓN =
⋃
i 6=j

(
∂ΩNi ∩ ∂ΩNj \ ∂Ω

)

in the (d− 1)-dimensional Hausdorff measure Hd−1, i.e.,

p(PNm (Ω)) ∝ e−βH
d−1
N (ΓN ) , β > 0 . (6)

Note that in order to avoid unwanted grid effects one
should use an appropriate approximation Hd−1

N of the
Hausdorff measure which also guarantees a correct limit
as N →∞.

For characterization of the two remaining densities
p(uN | PNm (Ω)) and p(fN | uN ,PNm (Ω)) in (5) we assume
in the following that the functions uNi in (2) are uncor-
related and independent with respect to the partition
PNm (Ω). This is natural since the segmentation should
exactly separate the parts with different behavior of uN .
Hence, due to the composition of uN by functions uNi
and the pairwise disjoint partition of ΩN by ΩNi in (1),
we obtain simplified expressions of the form

p(uN | PNm (Ω)) =

m∏
i=1

p(uNi |ΩNi ) (7)

and

p(fN |uN ,PNm (Ω)) =

m∏
i=1

p(fN |uNi ,ΩNi ) , (8)

where p(uNi |ΩNi ) and p(fN |uNi ,ΩNi ) denote for a region-
of-interest ΩNi the probability of observing an image uNi
and fN , respectively.

First, we discuss the densities p(uNi |ΩNi ) from (7), which
can be reduced to a-priori probability density functions
p(uNi ). The most frequently used a-priori densities, in
analogy to statistical mechanics, are Gibbs functions [31,
32] of the form

p(uNi ) ∝ e−αiR
N
i (uNi ) , αi > 0 , (9)

where RNi is a discretized version of a non-negative (and
usually convex) energy functional Ri. Using these a-
priori densities (7) is then given by

p(uN | PNm (Ω)) ∝
m∏
i=1

e−αiR
N
i (uNi ) . (10)

To characterize the densities p(fN |uNi ,ΩNi ) in (8) we
assume that each value fN |Px (with Px ⊂ ΩN being a
pixel) describes a realization of a random variable and
all random variables are pairwise independent and iden-
tically distributed in the same corresponding subregion
ΩNi . Consequently, it is possible to replace the proba-
bility p(fN | uNi ,ΩNi ) by a joint a-posteriori probability
pi(f

N |uNi ) in ΩNi , i.e., the expression in (8) (with Px
denoting a pixel) reads as

p(fN | uN ,PNm (Ω)) ∝
m∏
i=1

∏
Px⊂ΩNi

pi(f
N
|Px | u

N
i |Px) .

(11)
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As mentioned above, we use the MAP estimator to de-
termine an approximation of the unknown image u and
a partition of the image domain Pm(Ω). Following this
approach, we maximize the a-posteriori probability (5),
respectively minimize its negative logarithm, i.e.,

(uN ,PNm (Ω))MAP ∈
arg min
uN ,PNm(Ω)

{
− log p(fN |uN ,PNm (Ω))

− log p(uN | PNm (Ω)) − log p(PNm (Ω))
}
.

By inserting the a-priori constraints (6) and (10) for the
geometric and image terms, respectively, as well as the
region-based image term (11), we consequently minimize
the following energy functional,

EN (uN1 , . . . , u
N
m, ΩN1 , . . . ,Ω

N
m) =

m∑
i=1

∑
Px⊂ΩNi

− log pi(f
N
|Px |u

N
i |Px)

+

m∑
i=1

αiR
N
i (uNi ) + βHd−1

N (ΓN ) .

(12)

We already stated above that a suitable selection of prob-
ability densities pi(f

N |uNi ) depends on the underlying
physical noise model in the given data fN and the sub-
region ΩNi . For the cases of additive Gaussian, Pois-
son, and multiplicative speckle noise we present the cor-
responding form of pi(f

N |uNi ) in Section 2.2.

The variational problem (12) for the MAP estimate has
a formal continuum limit (with αi and β rescaled by the
pixel volume), which we shall consider as the basis of our
variational framework in the following:

E(u1, . . . , um, Ω1, . . . ,Ωm) = βHd−1(Γ) +
m∑
i=1

(∫
Ωi

− log pi(f(x) |ui(x)) dx + αiRi(ui)

)
.

(13)

Finally, we add that in the context of inverse problems
the functionals Ri in (13) and the Gibbs a-priori density
in (9) are related to regularization functionals, whereas
the resulting functionals

∫
Ωi
− log pi(f(x) |ui(x)) dx are

related to data fidelity terms for each subregion Ωi.

The main advantage of the proposed region-based seg-
mentation framework (13) is the ability to handle the
information, i.e., the occurring type of noise and the de-
sired smoothness conditions, in each subregion Ωi of the
image domain Ω separately. For example, it is possi-
ble to choose different smoothing functionals Ri if subre-
gions of different characteristics are expected. Moreover,
the framework in (13) describes a direct generalization of
the Chan-Vese method and the region-based version of
the Mumford-Shah segmentation model to non-Gaussian
noise problems, which is discussed in Section 4.

2.2 (Non-)Gaussian noise models

As mentioned above, the choice of probability densities
pi(f |ui) in (13) solely depends on the noise occurring
in the data f and the subregion Ωi. Typical examples
for probability densities pi(f |ui) are exponentially dis-
tributed raw data f (see e.g., [23, 53]). In most cases it is
(often implicitly) assumed that the data is perturbed by
additive Gaussian noise. However, there are many real-
life applications in which different types of noise occur,
especially signal-dependent ones, which form the main
interest of this paper. In this work we focus our atten-
tion on Poisson and multiplicative speckle noise. How-
ever, we note that there are also other non-Gaussian noise
models which can be of particular interest, e.g., salt-and-
pepper noise or different types of multiplicative noise like
Gamma noise [6], multiplicative Gaussian noise [66], or
Rayleigh-distributed noise [68].

In the following we discuss the selection of probability
densities pi(f |ui) for additive Gaussian noise, Poisson
noise, and multiplicative speckle noise. To illustrate the
different characteristics of these noise forms we show in
Fig. 1 a synthetic 1D signal corrupted by the mentioned
three noise models. We can observe that the appear-
ance of Poisson and speckle noise is in general stronger
compared to the additive Gaussian noise. Hence, an ap-
propriate choice of probability densities is required to
handle the perturbation effects of different noise models
accurately. For the sake of simplicity and since we are
only interested in the formulation in (13), we will write
pi(f(x) |ui(x)) in the following. However, this term has
to be interpreted as the value of pixels in the sense of a
correct modeling.

2.2.1 Additive Gaussian noise

One of the most commonly used noise models in com-
puter vision and mathematical image processing is the
additive Gaussian noise model (see Fig. 1b) of the form
f = u + η, where η is a Gaussian-distributed random
variable with expectation 0 and variance σ2. This kind
of noise is signal-independent and has a globally identi-
cal distribution of noise. For this case the conditional
probability pi(f(x) |ui(x)) in (11) is given by (cf. e.g.,
[11])

pi(f(x) | ui(x)) ∝ e−
1

2σ2
(ui(x)− f(x))2 .

Thus, this model leads to the following negative log-
likelihood function in the energy functional E in (13),

− log pi(f(x) | ui(x)) =
1

2σ2
(ui(x) − f(x))2 . (14)

Consequently, the additive Gaussian noise model induces
the commonly used L2 data fidelity term, which is the
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(a) original 1D signal (b) add. Gaussian noise

(c) Poisson noise (d) mult. speckle noise

Figure 1: Illustration of three physical noise models in
one dimension. (a) Noise free 1D signal. (b) Signal bi-
ased by additive Gaussian noise with σ = 5 (see Section
2.2.1). (c) Signal biased by Poisson noise (see Section
2.2.2). (d) Signal biased by speckle noise with σ = 5 (see
Section 2.2.3). Note, that we cut off a few values in case
of the speckle noise model to maintain a comparable ver-
tical scale for each signal. We observe that the Poisson
and multiplicative speckle noise is much stronger than
the classical additive Gaussian noise.

canonical choice of fidelity in many segmentation formu-
lations, e.g., in the Mumford-Shah or Chan-Vese model
(see Section 4). Therefore, these segmentation methods
are successful on a large class of images, since additive
Gaussian noise is the most common form of noise. Fi-
nally, we mention that the factor σ2 in (14) is neglected
in the course of this work because it can be scaled by the
regularization parameters αi and β in the energy func-
tional (13).

2.2.2 Poisson noise

In contrast to the additive noise model described above,
we are also interested in Poisson or the so-called ’photon
counting noise’. In Fig. 1c the effect of Poisson noise on
an unbiased signal can be observed. This type of noise is
signal-dependent and appears in a wide class of real-life
applications, e.g., in positron emission tomography [78,
83], fluorescence microscopy [27, 41], CCD cameras [74],
and astronomical images [46, 51]. For Poisson noise one
indeed counts natural numbers as data, so also the image
in the discrete modeling needs to be quantized. Thus,
the conditional probability pi(f

N
|Px |u

N
i |Px) in (11) with

Px ⊂ ΩNi is modeled as (cf. e.g., [11])

pi(f
N
|Px= k | uNi |Px= λ) =

λk

k !
e−λ ,

and leads in the limit to the following negative log-
likelihood function for the energy functional E in (13),

− log pi(f(x) | ui(x)) =

ui(x) − f(x) log ui(x) + const .
(15)

Note that the fidelity can be rescaled in f and ui in
a straight-forward way, such that one can pass from
quantized intensities on to real values in the reasonable
limit of sufficiently high count rates. Appending additive
terms independent of ui, the corresponding data fidelity
term in (15) becomes the so-called Kullback-Leibler (KL)
divergence (also known as cross entropy or I-divergence)
between two non-negative measures f and ui. The most
significant difference of the KL fidelity compared to the
L2 data term in (14) is the strong non-linearity in the KL
functional, leading to complications in the computation
of minimizers in (13).

2.2.3 Multiplicative speckle noise

The last noise model we want to investigate for our gener-
alized segmentation framework (13) is a signal-dependent
noise of the form f = u+

√
uη, where η is a normally dis-

tributed random variable with mean 0 and variance σ2.
The appearance of this noise form is illustrated in Fig.
1d, in which a spatial variation of noise variance yields
different signal amplitudes. This effect occurs because
the noise model is of multiplicative nature, i.e., the noise
variance directly depends on the underlying signal inten-
sity. This type of noise can be found, e.g., in diagnostic
ultrasound imaging [43, 45, 52] and corresponds to an
experimentally derived model of multiplicative speckle
noise [77] in ultrasound images. Using this noise model,
the conditional probability pi(f(x) |ui(x)) in (11) is mod-
eled as

pi(f(x) | ui(x)) ∝ (ui(x))
− 1

2 e
− 1

2σ2
(ui(x) − f(x))

2

ui(x) ,

and the negative log-likelihood function in the energy
functional E in (13) is given by

− log pi(f(x) | ui(x)) =

1

2σ2

(ui(x) − f(x))2

ui(x)
+

1

2
log ui(x) .

(16)

Although this noise model is somewhat similar to the ad-
ditive Gaussian noise model introduced in Section 2.2.1,
its impact on the given data f differs fundamentally from
the influence of additive Gaussian noise due to the mul-
tiplicative adaption of the noise level η by the signal

√
u.
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Consequently, this aspect leads to a more complicated
form of the data fidelity term and hence to more prob-
lems in the computation of minimizers in (13). As for
additive Gaussian noise in Section 2.2.1, we can multiply
the right-hand side of (16) by 2σ2 and incorporate this
scaling factor in the regularization parameter αi and β
in (13).

2.3 Two-phase formulation of region-based
segmentation framework

In the following we will restrict the proposed segmenta-
tion framework in Section 2.1 to a two-phase segmenta-
tion problem (i.e., we set m = 2 in (1) and (13)) for mul-
tiple reasons. First, we are mainly interested in medical
imaging applications in which we want to segment ob-
jects in a complex background. Second, we extensively
employ exact convex relaxation (see e.g., Lemma 1) in
our analysis and numerical solution. In principle an ex-
tension to multiphase models can be performed with ex-
actly the same difficulties as in the case of the standard
Chan-Vese model (cf. [13, 24, 25, 37, 48, 49, 63, 64, 79]).

For a two-phase formulation of the region-based segmen-
tation framework (13) we introduce the following nota-
tions. First, we assume that we want to segment the
image domain Ω into a background and a target sub-
region for the wanted partition P2(Ω) in (1), which we
denote with Ωb and Ωt, respectively. Subsequently, we
introduce an indicator function χ in order to represent
both subregions such that

χ(x) =

{
1 , if x ∈ Ωb ,

0 , else .
(17)

The negative log-likelihood functions − log pi(f |ui) in
(13) are defined as data fidelity functions using the no-
tation

Di(f, ui) = − log pi(f | ui) for i ∈ {b, t} . (18)

Finally, we use the well-known relation between the
Hausdorff measure and the total variation of an indi-
cator function (see e.g., [4, Sect. 3.3] or [35, Ex. 1.4]),
which implies that Hd−1(Γ) = |χ|BV (Ω). Here Γ ⊂ Ω
is the edge set of the partition P2(Ω) = (Ωb,Ωt), χ is
defined in (17), and | · |BV (Ω) denotes the total variation
of a function in Ω. Then the energy functional E in (13)
can be rewritten for the case of a two-phase segmentation
problem as

E(ub, ut, χ) =∫
Ω

χDb(f, ub) + (1 − χ)Dt(f, ut) dx

+ αbRb(ub) + αtRt(ut) + β|χ|BV (Ω) .

(19)

3 Analysis of region-based
segmentation framework

After introduction of our general region-based segmen-
tation framework in Section 2.1 we provide a mathemat-
ical analysis of the variational problem induced by the
energy functional E defined in (13) in the following. For
the sake of simplicity, we restrict this analysis to the two-
phase formulation proposed in (19) and thus consider a
variational problem of the form

min
(ub,ut,χ) ∈ D(E)

E(ub, ut, χ) , (20)

for which D(E) denotes the (effective) domain of the en-
ergy functional E.

3.1 Assumptions

In this section we introduce the necessary foundations
for the analysis of the variational problem (20). In par-
ticular, we discuss the choice of function spaces in D(E)
and state the required assumptions on the data fidelity
terms Di and the regularization functionals Ri in (19)
with i ∈ {b, t}.

We start with the characterization of D(E) and deal with
admissible sets of functions in the following (denoted by
an additional (Ω)), which we assume all to be closed sub-
sets of Banach spaces. First, we give a general formula-
tion of these spaces and then provide detailed conditions
such that all integrals in (19) are well-defined.

Assumption 1 (Function sets) Let i ∈ {b, t}, then we
consider the following sets of functions:

i. The domain Wi(Ω) of Ri in (19) is a subset of a

Banach space W̃i(Ω), which is closed with respect to
a topology τ

W̃i
(which will later be the weak or strong

norm topology depending on specific examples).

ii. The domain Ui(Ω) of Di in (19) is a subset of a Ba-

nach space Ũi(Ω) such that W̃i(Ω) ⊂ Ũi(Ω) and the

embedding (W̃i(Ω), τ
W̃i

) into Ũi(Ω) with the strong
norm topology is continuous.

iii. The data function set is V (Ω) = Vb(Ω) ∩ Vt(Ω), for

which Vi(Ω) is a subset of a Banach space Ṽi(Ω) such

that Ṽi(Ω) is continuously embedded in Ũi(Ω), both
associated with the strong norm topologies.

Thus, the effective domain D(E) of the energy functional
E in (20) is given by

D(E) = { (ub, ut, χ) : ui ∈ Wi(Ω),

χ ∈ BV (Ω; {0, 1}), E(ub, ut, χ) < +∞} .
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Note that Assumption 1 (i) and (ii) are required since the
purpose of the regularization functionals Ri is to restrict
the admissible solution set of the minimization problem
(20) to smooth functions. Additionally, the assumption
on V (Ω) is necessary due to the occurrence of the data
function f in both fidelity terms Di in (19).

Remark 1 The properties of the function sets in Assump-
tion 1 are chosen in this very general form in order to
provide an unified framework for all cases of data fidelity
and regularization terms. These abstract assumptions
become more clear for specific models in the progress of
this work.

To have a first impression of the function sets Wi(Ω),

W̃i(Ω), Ui(Ω), Ũi(Ω), Vi(Ω), and Ṽi(Ω), let us consider
the choice of these sets for the simple example of additive
Gaussian noise in the subregions Ωi and a squared H1-
seminorm regularization functional (cf. Section 3.4.1 and
3.5.1). Then we have to choose the function sets as

W̃i(Ω) = H1(Ω)

and

Wi(Ω) =

{
u ∈ H1(Ω) :

∣∣∣∣ 1

|Ω|

∫
Ω

u dx

∣∣∣∣ ≤ Mi

}
for a positive constant Mi big enough and

Vi(Ω) = Ṽi(Ω) = Ui(Ω) = Ũi(Ω) = L2(Ω) .

We continue with assumptions on the data fidelity terms
Di and the regularization functionals Ri in (19), which
is necessary to ensure the existence of a regularized solu-
tion. For the sake of brevity, we introduce data fidelity
functionals

D̄i : Vi(Ω)× Ui(Ω)×BV (Ω; [0, 1])→ R ∪ {+∞} , (21)

defined by

D̄i(f, u, v) =


∫

Ω
v Di(f, u) dx ,

if
(
v Di(f, u)

)
∈ L1(Ω) ,

+∞ , else .

(22)

In the following we provide the required assumptions on
the functionals D̄i. However, note that some of these can
be transfered easily to assumptions on Di in (22).

Assumption 2 (Energy functionals) Let the func-
tion sets Wi(Ω), Ui(Ω), and Vi(Ω) satisfy Assumption
1. Then we assume the following:

i. For any fixed ϕ ∈ Vi(Ω) and ψ ∈ BV (Ω; [0, 1]), the
function u 7→ D̄i(ϕ, u, ψ) is bounded from below.

ii. For any fixed ϕ ∈ Vi(Ω) the function u 7→ D̄i(ϕ, u,1)
is lower semi-continuous with respect to the topology
τ
W̃i

, where 1(x) = 1 for all x ∈ Ω.

iii. The functional Ri : Wi(Ω) → R≥ 0 is convex and
lower semi-continuous with respect to the topology
τ
W̃i

.

iv. For any fixed ϕ ∈ Vi(Ω) and ψ ∈ BV (Ω; [0, 1]),

D(D̄i(ϕ, · , ψ)) ∩ D(Ri) 6= ∅ (23)

holds, where D denotes the effective domain of a
functional. In particular, this implies that the func-
tionals Ri are proper.

v. For every a > 0, the sub-level sets SRi(a) of the
functional Ri, defined by

SRi(a) := {u ∈ Wi(Ω) : Ri(u) ≤ a } , (24)

are sequentially precompact with respect to the topol-
ogy τ

W̃i
.

3.2 Convex relaxation

In this section we shortly anticipate the numerical real-
ization of the minimization problem (20), for which we
provide a theoretical basis in this section. Due to the
simultaneous minimization with respect to ub, ut and
χ, the problem (20) is hard to solve in general and we
use an alternating minimization scheme to achieve our
aim. This approach is commonly used for segmentation
models in the literature (e.g., for the models of Ambrosio-
Tortorelli [5], Chan-Vese [22], or Mumford-Shah [55]) and
leads to the following iterative minimization process,

(uk+1
b , uk+1

t ) ∈ arg min
ui ∈Wi(Ω)

E(ub, ut, χ
k) , (25a)

χk+1 ∈ arg min
χ ∈ BV (Ω; {0,1})

E(uk+1
b , uk+1

t , χ) . (25b)

However, even the minimization step (25b) is a difficult
task since this problem is nonconvex due to the non-
convexity of the function set BV (Ω; {0, 1}). Considering
the form of the energy functional E in (19), exact convex
relaxation results for such problems have been proposed
by Chan, Esedoglu and Nikolova in [19], which we recall
in the following.

Lemma 1 (Exact convex relaxation) Let a ∈ R and
g ∈ L1(Ω). Then there exists a minimizer of the con-
strained minimization problem

min
χ ∈ BV (Ω; {0,1})

a +

∫
Ω

g χ dx + |χ|BV (Ω) , (26)

and every solution is also a minimizer of the relaxed prob-
lem

min
v ∈ BV (Ω; [0,1])

a +

∫
Ω

g v dx + |v|BV (Ω) , (27)

consequently leading to the fact that the minimal func-
tional values of (26) and (27) are equal. Moreover, if v̂
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solves (27), then for almost every µ ∈ (0, 1) the indicator
function

χ̂(x) =

{
1 , if v̂(x) > µ ,

0 , else ,

solves (26) and thus also (27).

Since we use the alternating minimization strategy pro-
posed in (25), there is an immediate implication of
Lemma 1.

Theorem 1 Let Wi(Ω), Ui(Ω), V (Ω), D̄i, and Ri satisfy
Assumption 1 and 2. Additionally, we assume that f ∈
V (Ω) and

Db(f, ub) − Dt(f, ut) ∈ L1(Ω) , ∀ui ∈ Wi(Ω) . (28)

Here, if (ûb, ût, χ̂) is a minimizer of (20), then it is also
a minimizer of the relaxed problem

min
(ub,ut,v) ∈ Drel(E)

E(ub, ut, v) , (29)

where Drel(E) denotes the relaxed (effective) domain of
the energy functional E and is given by

Drel(E) = { (ub, ut, v) : ui ∈ Wi(Ω),

v ∈ BV (Ω; [0, 1]), E(ub, ut, v) < +∞} .

Moreover, if (ûb, ût, v̂) solves (29), then for almost every
µ ∈ (0, 1) and

χ̂(x) =

{
1 , if v̂(x) > µ ,

0 , else ,

the triple (ûb, ût, χ̂) is a minimizer of (20).

Proof. For fixed ub ∈Wb(Ω) and ut ∈Wt(Ω), set

a =

∫
Ω

Dt(f, ut) dx + αbRb(ub) + αtRt(ut)

and

g = Db(f, ub) − Dt(f, ut)
(28)
∈ L1(Ω) .

Thus, due to D(E) ⊂ Drel(E) and Lemma 1 we have

min
v∈BV (Ω;[0,1])

E(ub, ut, v) = min
v ∈BV (Ω;{0,1})

E(ub, ut, v)

and conclude

min
(ub,ut,v) ∈ Drel(E)

E(ub, ut, v)

= min
ui ∈Wi(Ω)

min
v ∈BV (Ω;[0,1])

E(ub, ut, v)

= min
ui ∈Wi(Ω)

min
v ∈BV (Ω;{0,1})

E(ub, ut, v)

= min
(ub,ut,v) ∈ D(E)

E(ub, ut, v) .

3.3 Existence of minimizers

In this section we verify the existence of a minimizer of
(20). For this reason, we first show the sequential lower
semi-continuity of the energy functional E. With respect
to the following lemma we note that the weak* topology
represents the natural choice of a topology in BV (Ω).

Lemma 2 (Sequential lower semi-continuity) Let
Wi(Ω), Ui(Ω), V (Ω), D̄i, and Ri satisfy Assumption 1
and 2, and let the data function f ∈ V (Ω). Moreover,
let (uni ) be any τ

W̃i
-convergent sequence to some ui in

Wi(Ω) and vn ⇀∗ v in BV (Ω) with 0 ≤ vn ≤ 1 almost
everywhere. Then, for

Db(f, u
n
b )−Dt(f, u

n
t )︸ ︷︷ ︸

=: gn

L1(Ω)→ Db(f, ub)−Dt(f, ut)︸ ︷︷ ︸
=: g

, (30)

we have

E(ub, ut, v) ≤ lim inf
n→∞

E(unb , u
n
t , v

n) .

Proof. Due to the sequential lower semi-continuity of the
functionals Rb, Rt, D̄t(f, · ,1) and the total variation
seminorm | · |BV (Ω) (cf. e.g., [4, Prop. 3.6]), it is sufficient
to show the following convergence∫

Ω

vngn dx →
∫

Ω

v g dx ,

where gn and g are defined as in (30). For this purpose
we consider the estimate∣∣∣∣ ∫

Ω

(
vngn − v g

)
dx

∣∣∣∣
≤ ‖vn‖L∞(Ω) ‖gn − g‖L1(Ω) +

∣∣〈vn − v, g〉
∣∣ . (31)

The first term on the right-hand side of (31) vanishes
in the limit due to ‖vn‖L∞(Ω) ≤ 1 and assumption (30).
For the second term, the definition of the weak* topology
on BV (Ω) implies vn → v in L1(Ω) (cf. e.g., [4, Def.
3.11]). Moreover, as 0 ≤ vn ≤ 1 a.e., the Banach-Alaoglu
theorem [54, Thm. 2.6.18] delivers the existence of a
subsequence (vnj ) with vnj ⇀∗ ṽ in L∞(Ω) and thus
vnj ⇀ ṽ in L1(Ω). The uniqueness of the limit yields
ṽ = v, and we find that each subsequence of (vn) has a
subsequence converging to v in the weak*-sense, which
implies

∣∣〈vn − v, g〉
∣∣→ 0 .

Theorem 2 (Existence of a minimizer) Let Wi(Ω),
Ui(Ω), V (Ω), D̄i, and Ri satisfy Assumption 1 and 2.
Assume that αi, β > 0 and f ∈ V (Ω) be fixed. More-
over, let (30) hold for any sequence (uni ) converging to
ui with respect to the topology τ

W̃i
. Then there exists a

minimizer of (29) and consequently also of (20).
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Proof. With respect to Assumption 2 and Lemma 2 we
use the direct method of the calculus of variations (see
e.g., [7, Sect. 2.1.2]). Due to the boundedness of D̄i from
below by a constant Ci ∈ R and due to αi, β > 0 we have
an inequality of the form

Rb(u
n
b ) + Rt(u

n
t ) + |vn|BV (Ω)

≤ 1

min{αb, αt, β}
(C − Cb − Ct) < ∞ ,

(32)

where (unb , u
n
t , v

n) is a minimizing sequence of E in
Drel(E) with E(unb , u

n
t , v

n) ≤ C and C > (Cb + Ct).
By using standard arguments, we obtain the existence of
a minimizer of (29) and thus by Theorem 1 the existence
of a minimizer of (20).

3.4 Discussion of regularization functionals

In this section we investigate different regularization
functionals that allow to incorporate a-priori information
of possible solutions in our segmentation framework. We
focus our attention on the Fisher information and the
most frequently used squared H1-seminorm regulariza-
tion. The main objective of this section is to verify the
properties of these functionals with respect to the re-
quirements in Assumption 2.

3.4.1 The squared H1-seminorm

In this section we consider the case of the squared H1-
seminorm regularization (sometimes also called Dirichlet
functional),

Ri(u) =
1

2

∫
Ω

|∇u|2 dx , i ∈ {b, t} . (33)

Considering this smoothing functional, we choose the
function space W̃i(Ω) as the Sobolev space H1(Ω) and
the subset Wi(Ω) as

Wi(Ω) =

{
u ∈ H1(Ω) :

∣∣∣∣ 1

|Ω|

∫
Ω

u dx

∣∣∣∣ ≤ Mi

}
(34)

with a constant Mi > 0 big enough. Assumptions 2 (iii)
and (v) are then satisfied if τ

W̃i
is the weak topology

on H1(Ω). More precisely, the following lemma gives an
overview on properties of the functional in (33).

Lemma 3 (Properties of squared H1-seminorm)
Let Wi(Ω) be the function set defined in (34) and Ri
the squared H1-seminorm (33) defined on Wi(Ω), then
the following statements hold:

i. Ri is convex.

ii. Ri is lower semi-continuous with respect to the weak
topology on H1(Ω).

iii. Let a > 0 and SRi(a) be a sub-level set of Ri defined
in (24). Then SRi(a) is sequentially precompact with
respect to the weak topology on H1(Ω).

Proof. First, note that Wi(Ω) ⊂ H1(Ω) is convex and
closed with respect to the strong norm topology on
H1(Ω). Thus, Wi(Ω) is also weakly closed (cf. e.g., [9,
p. 29, Prop. 1.2.5]) (i) It is obvious that Ri is convex
on H1(Ω) and thus on Wi(Ω), since Wi(Ω) is a convex
subset. (ii) It is also obvious that Ri defined on H1(Ω)
is lower semi-continuous with respect to the strong norm
topology on H1(Ω). By [28, p. 11, Cor. I.2.2], Ri defined
on H1(Ω) is thus also lower semi-continuous with respect
to the weak topology and the assertion holds since Wi(Ω)
is weakly closed. (iii) First, we mention that the func-
tional ‖ · ‖∗p,H1(Ω) given by

‖u‖∗p,H1(Ω) :=

(∣∣∣∣ 1

|Ω|

∫
Ω

up dx

∣∣∣∣ 2p +

∫
Ω

|∇u|2 dx

) 1
2

(35)

defines an equivalent norm on H1(Ω) for p ∈ {1, 2} (cf.
[56, Thm. 7.1]). Hence we obtain that ‖u‖∗1,H1(Ω) is

uniformly bounded for every u ∈ SRi(a) and the weak
precompactness of sub-level sets follows directly from the
Banach-Alaoglu theorem (cf. e.g., [54, Thm. 2.6.18])
since H1(Ω) is reflexive.

Finally, we also recall some basic results about the
Sobolev space H1(Ω), which is needed in the course of
following sections.

Lemma 4 (Embedding of H1(Ω)) Let Ω ⊂ Rd be an
open and bounded subset with a Lipschitz boundary, and
d ≥ 1. Then the following compact embedding of H1(Ω)
holds,

H1(Ω)
c
↪→ Lr(Ω)

for 2 ≤ r


≤ ∞ , if d = 1 ,

< ∞ , if d = 2 ,

< 2d
d−2 , if d ≥ 3 .

(36)

Additionally, H1(Ω) is continuously embedded in Lr(Ω)
for r = 2d

d−2 and d ≥ 3.

Proof. See [2, Thm. 6.2] and [3, Thm. 4.12].

3.4.2 The Fisher information

In the following we discuss the Fisher information as reg-
ularization functional, which can be written as

Ri(u) =
1

2

∫
Ω

|∇u|2

u
dx , u ≥ 0 a.e. , (37)
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with i ∈ {b, t}. We use this form of Fisher information
since the numerical motivation for this regularization en-
ergy gets more apparent in (37). For a more rigorous
definition we refer to [34], in which it is based on a weak
definition of the ”logarithmic gradient” in suitable mea-
sure spaces. Under some regularity assumptions on u the
energy in (37) can also be written as (cf. [34, 80])

Ri(u) =
1

2

∫
Ω

u |∇ log u|2 dx = 2

∫
Ω

|∇
√
u|2 dx . (38)

The use of this regularization energy is motivated by the
fact that the functional in (37) is one-homogeneous and
thus seems to be more appropriate for density functions
than the squared H1-seminorm in (33). This is partic-
ularly significant in the context of problems with mea-
sured data corrupted by Poisson or speckle noise, since
in such applications the desired functions typically rep-
resent densities or intensity information. Furthermore,
the adaptive regularization property of the denominator
u in (37) is additionally useful, since the background re-
gion of an image (with assumed low intensities) will be
regularized stronger than the target subregion. Finally,
we note that the Fisher information energy has already
been used as regularization functional in density estima-
tion problems [14, 58].

In the case of the Fisher information (37) as regulariza-
tion energy, we use the result stated in [34, Lemma 2.2],

Ri(u) < +∞ if and only if

u ≥ 0 a.e. and
√
u ∈ H1(Ω) ,

for which the conditions get obvious with regard to the
second identity in (38). Thus we choose the function

space W̃i(Ω) as L
r
2 (Ω) with r given in (36), as well as

Wi(Ω) =

{
u ∈ L

r
2 (Ω) : u ≥ 0 a.e. ,

√
u ∈ H1(Ω) and

∣∣∣∣ 1

|Ω|

∫
Ω

u dx

∣∣∣∣ ≤ Mi

} (39)

with a positive constant Mi big enough. Then Assump-
tions 2 (iii) and (v) are satisfied if τ

W̃i
is the strong norm

topology on L
r
2 (Ω) as we can see in the following lemma.

Lemma 5 (Properties of Fisher information) Let
Wi(Ω) be the function set defined in (39) with r chosen
as in (36) and Ri the Fisher information (37) defined on
Wi(Ω). Then the following statements hold:

i. Ri is convex.

ii. Ri is lower semi-continuous with respect to the
strong norm topology on L

r
2 (Ω).

iii. Let a > 0 and SRi(a) be a sub-level set of Ri defined
in (24). Then SRi(a) is sequentially precompact with
respect to the strong norm topology on L

r
2 (Ω).

Proof. (i) It is easy to show that the mapping (x, y) 7→
x2

y is convex for y ≥ 0 defining x2

y = +∞ for y = 0.

Thus Ri is convex since Wi(Ω) is a convex subset of {u ∈
L
r
2 (Ω) : u ≥ 0 a.e.}. (ii) Let (un) be a sequence in

S(Ω) := {u ∈ L
r
2 (Ω) : u ≥ 0 a.e. ,

√
u ∈ H1(Ω) }

and u ∈ S(Ω) such that un → u in L
r
2 (Ω), i.e., also√

un →
√
u in Lr(Ω). Since r is given as in (36) and

∇ : L2(Ω)→ H−1(Ω) is a continuous linear operator, we
additionally have that ∇√un → ∇

√
u in H−1(Ω), where

H−1(Ω) is the dual space ofH1
0 (Ω). We can also conclude

that the sequence (
√
un) is bounded in H1(Ω) and thus

there exists a weakly convergent subsequence in H1(Ω)
which converges against

√
u due to the strong conver-

gence of (
√
un) in L2(Ω) and (∇√un) in H−1(Ω). Thus

we obtain that every subsequence of (
√
un) has a weakly

convergent subsequence in H1(Ω) with the same limit
and consequently

√
un ⇀

√
u in H1(Ω). Finally, since

the squared H1-seminorm (33) is lower semi-continuous
with respect to the weak convergence in H1(Ω) and due
to relation (38), we obtain that the Fisher information
is lower semi-continuous with respect to the strong norm
topology on L

r
2 (Ω). (iii) Using the equivalent norm on

H1(Ω) in (35) with p = 2, we see that the set{√
u : u ∈ SRi(a)

}
(40)

is bounded in H1(Ω). Additionally, we note that the
pointwise mapping u 7→ u2 is continuous from Lr(Ω) to
L
r
2 (Ω). Thus, the assertion is ensured since the set in

(40) is compact in Lr(Ω) due to the compact embedding
of H1(Ω) in Lemma 4 and the convexity of this set.

Remark 2 In view of the squared H1-seminorm in (33),
one might also consider an approximation of the Fisher
information (37) of the form

Ri(u) =
1

2

∫
Ω

|∇u|2

w
dx ,

w ∈ L∞(Ω) and w ≥ 0 a.e. ,

(41)

where w is a given function and i ∈ {b, t}. Notice that
the condition w ∈ L∞(Ω) (or more precisely the bound-
edness from above) is required to ensure the coercivity
of the functional in (41). The main motivation to use
this weighted version of the squared H1-seminorm is the
simpler form of (41) compared to the Fisher informa-
tion formulation in (37), since the denominator in (41)
is known. Furthermore, if the function w is chosen as an
appropriate approximation of u such that the magnitude
of w is close to the data function f , then the functional
(41) is approximately one-homogeneous. Simultaneously,
the analytical results from Lemma 3 also hold for the
weighted version (41), due to the non-negativity of w.
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3.5 Discussion of data fidelity terms

We discuss in this section the properties of data fidelity
terms that are used for the cases of additive Gaussian
noise, Poisson noise, and multiplicative speckle noise.
For this purpose we recall that a data fidelity func-
tional D̄i(f, u, v), i ∈ {b, t}, is induced by a negative
log-likelihood function Di(f, u) (cf. (18) and (22)) by
setting

D̄i(f, u, v) =

∫
Ω

v Di(f, u) dx (42)

with

Di(f, u) = − log pi(f |u) .

In the case of the noise models mentioned above the
negative log-likelihood function Di(f, u) is chosen as de-
scribed in Section 2.2. In the following the objective is
to verify the properties of D̄i(f, u, v) regarding the re-
quirements stated in Assumption 2. We also prove the
conditions (28) and (30), which are required for the exis-
tence of a minimizer in Section 3.3 above. However, it is
sufficient to verify only (30), due to the similarity of the
respective statements. Finally, note that the following
analysis strongly depends on the general choice of reg-
ularization functionals in the segmentation framework.
Therefore, we focus in this work on the Fisher informa-
tion and squared H1-seminorm regularization proposed
in Section 3.4.

3.5.1 Additive Gaussian noise

We begin our investigation by discussion of the addi-
tive Gaussian noise model and consider the fidelity func-
tional D̄i(f, u, v) in (42) using the following negative log-
likelihood function (cf. (14)),

Di(f, u) =
1

2
(u − f)2 . (43)

Due to this form, we choose the function sets in Assump-
tion 1 as

Vi(Ω) = Ṽi(Ω) = Ui(Ω) = Ũi(Ω) = L2(Ω)

and summarize the properties of this fidelity term in the
following lemma.

Lemma 6 (Properties of additive Gaussian noise
model) Let Di(f, u) be defined as in (43). Moreover, we
assume that f ∈ L2(Ω) and v ∈ BV (Ω; [0, 1]) are fixed.
Then the following statements hold:

i. D̄i(f, · , v) is nonnegative and convex on L2(Ω).

ii. D̄i(f, · ,1) is lower semi-continuous with respect to
the weak topology on H1(Ω) and the strong norm
topology on L2(Ω).

iii. The statement Di(f, u
n) → Di(f, u) in L1(Ω) (cf.

(30)) holds

• if un ⇀ u in H1(Ω), i.e., using H1-seminorm
regularization;

• if un → u in L
r
2 (Ω), r as in (36), and d ≤ 3,

i.e., using Fisher information regularization.

Proof. (i) Obviously both properties hold due to the
non-negativity of v and Di(f, u), and the convexity of
the mapping u 7→ u2. (ii) It is clear that the functional
D̄i(f, · ,1) is lower semi-continuous with respect to the
strong norm topology on H1(Ω) and L2(Ω). With [28,
p. 11, Cor. I.2.2] it is then also lower semi-continuous
with respect to the weak topology on H1(Ω) since the
functional is convex. (iii) Since f ∈ L2(Ω), we have to
show that

‖(un)2 − u2‖L1(Ω) → 0 and ‖un − u‖L2(Ω) → 0 .

However, due to the inequality

‖(un)2 − u2‖L1(Ω) ≤ ‖un + u‖L2(Ω) ‖un − u‖L2(Ω)

and the fact that (un) is uniformly bounded in L2(Ω) if
the sequence is convergent, it is sufficient to show that

un → u in L2(Ω) . (44)

Hence, if we assume un ⇀ u in H1(Ω), we directly obtain
the required condition (44) due to the compact embed-
ding of H1(Ω) in L2(Ω). Furthermore, assuming un → u
in L

r
2 (Ω) with r as given in (36), the condition (44) is

fulfilled if d ≤ 3.

3.5.2 Poisson noise

In this section we consider the case of the Poisson noise
model, for which the data fidelity functional D̄i(f, u, v)
in (42) is induced by the following negative log-likelihood
function (cf. (15)),

Di(f, u) = u − f log u . (45)

Disregarding additive terms independent of u, the corre-
sponding fidelity functional D̄i(f, u,1) in (42) is the so-
called Kullback-Leibler divergence (also known as cross
entropy or I-divergence) between two nonnegative mea-
sures f and u. Consequently, we set in Assumption 1 the
function sets

Ũi(Ω) = L1(Ω) and Ṽi(Ω) = L∞(Ω) ,

as well as (see [65, Sect. 3.1 and 3.3])

Ui(Ω) =
{
u ∈ L1(Ω) : u ≥ c > 0 a.e.

and u log u ∈ L1(Ω)
} (46)
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and

Vi(Ω) = { f ∈ L∞(Ω) : f ≥ 0 a.e.

and f log f ∈ L1(Ω)
}
,

(47)

and summarize the properties of this fidelity term in the
following lemma.

Lemma 7 (Properties of Poisson noise model) Let
Ui(Ω) and Vi(Ω) be defined as in (46) and (47), respec-
tively, and Di(f, u) as in (45). We also assume that
v ∈ BV (Ω; [0, 1]) and f ∈ Vi(Ω) are fixed. Then the
following statements hold:

i. D̄i(f, · , v) is bounded from below on Ui(Ω).

ii. D̄i(f, · ,1) is lower semi-continuous with respect to
the weak topology on H1(Ω) and the strong norm
topology on L1(Ω).

iii. The statement Di(f, u
n) → Di(f, u) in L1(Ω) (cf.

(30)) holds

• if un ⇀ u in H1(Ω), i.e., using H1-seminorm
regularization;

• if un → u in L
r
2 (Ω), r as in (36), i.e., using

Fisher information regularization.

Proof. (i) As the function u 7→ Di(f, u) attains its mini-
mum at u = f , the assertion follows directly since v and
‖f log f − f‖L1(Ω) are bounded. (ii) Due to the compact
embedding of H1(Ω) in L2(Ω) ⊂ L1(Ω), it is sufficient to
show the lower semi-continuity with respect to the strong
norm topology on L1(Ω). In the following we show that
the functional D̄i(f, · ,1) is even continuous with respect
to the strong norm topology on L1(Ω). For this purpose
note that

|D̄i(f, u
n,1) − D̄i(f, u,1)|

(42)

≤ ‖Di(f, u
n) − Di(f, u)‖L1(Ω) ,

such that we need to prove Di(f, u
n) → Di(f, u) for

un → u in L1(Ω). Thus, using that f ∈ L∞(Ω), we
have to show

‖un − u‖L1(Ω) → 0 and ‖log un − log u‖L1(Ω) → 0 .

However, since the log function is Lipschitz continuous
on [c,+∞) with c given in (46), we obtain with the mean
value theorem the following inequality,

‖log un − log u‖L1(Ω) ≤
1

c
‖un − u‖L1(Ω) ,

and conclude that Di(f, u
n) → Di(f, u) if un → u in

L1(Ω). (iii) To prove the assertion it suffices to show
that

un → u in L1(Ω) , (48)

as we have seen in the proof of Lemma 7 (ii). Hence,
if we assume un ⇀ u in H1(Ω), we directly obtain the
required condition (48) due to the compact embedding
of H1(Ω) in L2(Ω) ⊂ L1(Ω). Furthermore, supposing
un → u in L

r
2 (Ω) with r as given in (36), the condition

(48) is fulfilled directly.

3.5.3 Multiplicative speckle noise

Finally, we discuss the multiplicative speckle noise model
presented in Section 2.2.3. Here the data fidelity func-
tional D̄i(f, u, v) in (42) is induced by the negative log-
likelihood function given in (16),

Di(f, u) =
(u − f)2

u
+ σ2 log u . (49)

Considering the specific form of this function, we set the
function sets in Assumption 1 as following,

Vi(Ω) = Ṽi(Ω) = L∞(Ω) and Ũi(Ω) = L1(Ω) ,

as well as

Ui(Ω) =
{
u ∈ L1(Ω) : u ≥ c > 0 a.e.

}
, (50)

and describe the properties of the corresponding fidelity
functional in the lemma below.

Lemma 8 (Properties of multiplicative speckle
noise model) Let Ui(Ω) be as defined in (50) and
Di(f, u) as in (49). Moreover, we assume that f ∈
L∞(Ω) and v ∈ BV (Ω; [0, 1]) are fixed. Then the fol-
lowing statements hold:

i. D̄(f, · , v) is bounded from below on Ui(Ω).

ii. D̄(f, · ,1) is lower semi-continuous with respect to
the weak topology on H1(Ω) and the strong norm
topology on L1(Ω).

iii. The statement Di(f, u
n) → Di(f, u) in L1(Ω) (cf.

(30)) holds

• if un ⇀ u in H1(Ω), i.e., using H1-seminorm
regularization;

• if un → u in L
r
2 (Ω), r as in (36), i.e., using

Fisher information regularization.

Proof. (i) Let u ∈ Ui(Ω), then D̄i(f, u, v) ≥ |Ω|σ2 log c
for all c > 0 in (50). (ii) We proceed analogously
to Lemma 7 (ii) and thus need to prove Di(f, u

n) →
Di(f, u) for un → u in L1(Ω). In this context we use the
identity

(u − f)2

u
= u − 2f +

f2

u
,
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and exploit the results from Lemma 7 (ii) with the ob-
servation that we also have to show

‖ 1

un
− 1

u
‖L1(Ω) → 0 .

We can use that the mapping u 7→ 1
u is Lipschitz contin-

uous on [c,+∞) with c as given in (50) and obtain with
the mean value theorem that

‖ 1

un
− 1

u
‖L1(Ω) ≤

1

c2
‖un − u‖L1(Ω) .

Finally, we obtain Di(f, u
n) → Di(f, u) if un → u in

L1(Ω) and the continuity of D̄(f, · ,1) with respect to the
strong norm topology on L1(Ω). (iii) Using the results
proven in Lemma 8 (ii) we can argument analogously to
the case of the Poisson noise model in Lemma 7 (iii).

We finally mention that the assumption f ∈ L∞(Ω)
can be weakened in favor of the more natural condition
f ∈ L2(Ω) by an alternative proof taking into account
the special structure of speckle noise data fidelity term
and considering specific regularization terms. The coer-
civity of the functional is clear and it thus remains to
consider the weak lower semi-continuity, which (by com-
pact embeddings of BV (Ω), respectively H1(Ω)), can be
reduced to the lower semi-continuity of functionals of the
form

(v, u) 7→
∫

Ω

v
(u − f)2

u
dx

=

∫
Ω

(
vu − 2vf + v

f2

u

)
dx

with respect to the strong convergence of v and u in
Lp(Ω) for an appropriate p > 1. Now using the a-priori
boundedness of v it is straight-forward to pass to the
limit in the first two terms. Thus it remains to verify the
weak lower semi-continuity of

(v, u) 7→
∫

Ω

v
f2

u
dx .

Now we can substitute variables and use that w =
√
v

still converges strongly in some Lq(Ω). Since the func-

tional
∫

Ω
w2 f

2

u dx is jointly convex with respect to w and
u it is also lower semi-continuous in suitable reflexive
Banach spaces Lq(Ω) and Lp(Ω), respectively.

We mention that in the above data term the restriction
that u is bounded away from zero can also be removed us-
ing the joint convexity. However, in the overall functional
the nonconvex term including log u cannot be shown to
be lower semi-continuous without this restriction. This
seems not to be just a technical issue, but a fundamen-
tal property of the multiplicative speckle noise model.
Indeed, without a lower bound it is extremely favorable
to have very small values of u if f is small due to the

log term. Hence there is a certain bias for decreasing
u, which might be removed if the logarithm term in the
functional (49) is ignored. In our numerical tests both
cases gave very similar results, so it might be possible
to choose a convex speckle noise model without the loga-
rithmic term in practice, which is easier to handle numer-
ically and allows a complete analysis without restrictive
assumptions.

3.6 Boundedness of function mean values

In previous sections we discussed the analytical proper-
ties of different regularization functionals and data fi-
delity terms, which were required to verify the existence
of a minimizer of (20). In the course of this discussion
the boundedness of function mean values in (34) and (39)
was needed in order to prove the sequential precompact-
ness of the sub-level sets of the squared H1-seminorm
and Fisher information functional. In the following we
show that the existence of such bounds on mean values
can be guaranteed directly if the energy functional E in
(19) is bounded.

Lemma 9 (Boundedness of function mean values)
Let V (Ω) satisfy Assumption 1 and we choose the sets
Ui(Ω) and Vi(Ω) as in Section 3.5. Moreover, let f ∈
V (Ω), v ∈ BV (Ω; [0, 1]), and αi, β > 0. Let Mi =∞ for
Wi(Ω) as given in (34) and (39). For a set of (ub, ut, v) ∈
Drel(E) such that E(ub, ut, v) is bounded, i.e., it exists
a constant C with E(ub, ut, v) ≤ C, there exist constants
C̄b(C), C̄t(C) > 0 independent of ub, ut, and v such that

|cb|‖v‖L1(Ω) ≤ C̄b(C)

and |ct|‖1− v‖L1(Ω) ≤ C̄t(C) ,
(51)

where ci are the mean values of ui, i ∈ {b, t}.

Proof. Analogously to the proof of Theorem 2, let C >
(Cb+Ct), for which Ci ∈ R are lower bounds of the data
fidelity terms D̄i. We choose functions ub and ut such
that E(ub, ut, v) ≤ C and

ui ∈ H1(Ω) , if Ri = squared H1-seminorm (33) ,

ui ∈ {u ∈ L
r
2 (Ω) : u ≥ 0 a.e. ,

√
u ∈ H1(Ω) } ,

if Ri = Fisher information (37) ,

where r is given as in (36) and i ∈ {b, t}. The aim is to
show that there exist constants C̄i(C) > 0 independent
of ut, ub, and v such that (51) is fulfilled. For the sake
of completeness, we note that the constants C̄i(C) also
depend on the image domain Ω ⊂ Rd, the dimension d,
the lower bounds Ci of the data fidelity terms D̄i, the
data function f , and the regularization parameters αi,
β. However, for reasons of clarity, we refrain to indicate
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all dependencies and use only the bound C which is most
crucial for the statement in Lemma 9.

To prove this assertion we proceed in two steps. At first
we utilize the form of the data fidelity terms and show
that ‖vub‖L1(Ω) and ‖(1− v)ut‖L1(Ω) are bounded. Sub-
sequently, these results and the form of the regularization
functionals are used in order to show the boundedness
presented in (51).

We start with the fidelity functional D̄b(f, ub, v) for the
case of additive Gaussian noise discussed in Section 3.5.1.
Due to the positivity of the used regularization function-
als and the boundedness of D̄t from below (cf. Assump-
tion 2), we obtain by using the Cauchy-Schwarz inequal-
ity

1

2

(
‖vub‖L1(Ω) − ‖vf‖L1(Ω)

)2
≤ 1

2
‖v (ub − f)‖2L1(Ω)

=
1

2
‖
√
v
√
v (ub − f)‖2L1(Ω) ≤ ‖v‖L1(Ω) D̄b(f, ub, v)︸ ︷︷ ︸

≤ (C − Ct)

,

which results in

‖vub‖L1(Ω) ≤
√

2 |Ω| (C − Ct) +
√
|Ω| ‖f‖L2(Ω) .

Thus ‖vub‖L1(Ω) is bounded due to f ∈ L2(Ω) in the case
of additive Gaussian noise (cf. Section 3.5.1).

Next, we consider the Poisson noise fidelity functional
D̄b(f, ub, v) investigated in Section 3.5.2. Using the prop-
erties of the Kullback-Leibler divergence presented, e.g.,
in [65, Lemma 3.3] (cf. comments to (45)), we obtain the
estimate

‖vub − vf‖2L1(Ω)

≤
(

2

3
‖vf‖L1(Ω) +

4

3
‖vub‖L1(Ω)

)
D̄b(f, ub, v)

≤
(

2 ‖vf‖L1(Ω) +
4

3
‖vub − vf‖L1(Ω)

)
(C − Ct).

(52)

Adding 4 (C−Ct)2
9 on both sides of (52) yields(

‖vub − vf‖L1(Ω) −
2 (C − Ct)

3

)2

≤ 2 ‖vf‖L1(Ω) (C − Ct) +
4 (C − Ct)2

9

and consequently

‖vub‖L1(Ω) ≤
√

2 ‖f‖L1(Ω) (C − Ct) +
4 (C − Ct)2

9

+
2 (C − Ct)

3
+ ‖f‖L1(Ω) .

Thus ‖vub‖L1(Ω) is bounded due to f ∈ L∞(Ω) in the
case of Poisson noise (cf. Section 3.5.2).

We proved above that ‖vub‖L1(Ω) is bounded in the
case of additive Gaussian and Poisson noise fidelity
term. Analogously we can show the boundedness of
‖(1− v)ut‖L1(Ω). In the following we prove (51), assum-

ing that there exist constants C̃b(C), C̃t(C) > 0 such
that

‖vub‖L1(Ω) ≤ C̃b(C)

and ‖(1− v)ut‖L1(Ω) ≤ C̃t(C) .
(53)

We start with the squared H1-seminorm (33) as regular-
ization functional Ri and split ui into

ui = ci + wi (54)

with ci being the mean value of ui and wi := ui − ci
satisfying

∫
Ω
wi dx = 0. For this purpose, we use the

Poincaré-Wirtinger inequality (see e.g., [7, Sect. 2.5.1]),
which gives us

‖wi‖2L1(Ω) ≤ |Ω| ‖wi‖
2
L2(Ω)

≤ C1 ‖∇wi‖2L2(Ω)︸ ︷︷ ︸
= Ri(ui)

(32)

≤ C1 C2 , (55)

where C1 > 0 is a constant which depends on Ω ⊂ Rd
and d only, and C2 > 0 is specified as in (32). Using the
boundedness of ‖vub‖L1(Ω), we obtain

(
‖vcb‖L1(Ω) − ‖vwb‖L1(Ω)

)2
≤ ‖vub‖2L1(Ω)

(53)

≤
(
C̃b(C)

)2
,

and consequently

|cb|‖v‖L1(Ω)

(55)

≤ C̃b(C) +
√
C1 C2

(
=: C̄b(C)

)
.

Analogously we can also conclude that there exists a con-
stant C̄t(C) such that |ct|‖1− v‖L1(Ω) ≤ C̄t(C).

Now we investigate the case of the Fisher information
(37) as regularization functional Ri. Since we assume
ui ≥ 0 a.e., we split

√
ui into

√
ui = ci + wi (56)

with ci being the mean value of
√
ui and wi :=

√
ui − ci

satisfying
∫

Ω
wi dx = 0. To show the boundedness of the

mean value of ui we observe∣∣∣∣ 1

|Ω|

∫
Ω

ui dx

∣∣∣∣ ≤ 1

|Ω|
‖ui‖L1(Ω)

(56)
=

1

|Ω|
‖(ci + wi)

2‖L1(Ω) =
1

|Ω|
‖ci + wi‖2L2(Ω) ,
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such that further estimates for ‖ci‖L2(Ω) and ‖wi‖L2(Ω)

are required. As in (55) the Poincaré-Wirtinger inequal-
ity yields an estimate of ‖wi‖L2(Ω),

‖wi‖2L2(Ω) ≤ C3 ‖∇wi‖2L2(Ω)

(56)
= C3

∫
Ω

|∇
√
ui|2 dx︸ ︷︷ ︸

(38)
= 1

2Ri(ui)

(32)

≤ C3 C2

2
, (57)

where C3 > 0 is a constant which depends only on Ω ⊂
Rd and d, and C2 > 0 is specified as in (32). In addition
we have(
‖vcb‖L2(Ω) − ‖vwb‖L2(Ω)

)2
≤ ‖v

√
ub‖2L2(Ω)

(56)
= ‖vub‖2L1(Ω)

(53)

≤
(
C̃b(C)

)2
and (57) yields the following estimate,

|cb|‖v‖L2(Ω) ≤ C̃b(C) +

√
C3 C2

2
.

Thus, there exists a constant C̄b(C) with |cb|‖v‖L1(Ω) ≤
C̄b(C). Analogously, we can conclude that there exists a
constant C̄t(C) such that |ct|‖1− v‖L1(Ω) ≤ C̄t(C).

Remark 3 With some modifications, the statement of
Lemma 9 can also be proved in the case of the mul-
tiplicative speckle noise data fidelity term presented in
Section 3.5.3. For this we note that ub ≥ c > 0 a.e. (50)
and thus we can obtain the following estimate using the
Cauchy-Schwarz inequality,

‖vub − vf‖2L1(Ω) =

∥∥∥∥√vub√v (ub − f)
√
ub

∥∥∥∥2

L1(Ω)

≤ ‖vub‖L1(Ω)

∫
Ω

v
(ub − f)2

ub
dx .

Hence, for all c > 0 in (50) we have σ2 log ub ≥ σ2 log c
and

‖vub − vf‖2L1(Ω)

≤ ‖vub‖L1(Ω)

(
D̄b(f, ub, v) − |Ω|σ2 log c

)
.

Now, we are able to use the same strategies as for the
Poisson noise model in the proof of Lemma 9.

3.7 Existence of minimizers for proposed
noise and regularization models

In Theorem 2 we proved the existence of minimizers of
(20) using the most general assumptions on data fidelity
and regularization functionals without further knowledge

about the specific form of these terms (see Assumption
2). Subsequently, we verified the corresponding assump-
tions for three different noise models (additive Gaussian,
Poisson, and multiplicative speckle noise) and two regu-
larization functionals ((weighted) squared H1-seminorm
and Fisher information) in Sections 3.4 - 3.6. For rea-
sons of clarity we summarize the presented results for
the proposed noise and regularization models again in
the following.

Lemma 10 (Existence of a minimizer for proposed
noise and regularization models) Let V (Ω) satisfy
Assumption 1 and we choose the sets Ui(Ω) and Vi(Ω) as
in Section 3.5. Moreover, let f ∈ V (Ω) and αi, β > 0 be
fixed. Let Mi =∞ for Wi(Ω) as given in (34) and (39),
then there exists a minimizer of (29) and consequently
also of (20) corresponding to each investigated noise and
regularization model.

Proof. Analogously to the proof of Theorem 2 let C >
(Cb + Ct), where Ci ∈ R are lower bounds of the data
fidelity terms D̄i, which exist as proven in Lemmata 6 - 8
(i). Moreover, let (unb , u

n
t , v

n) be a minimizing sequence
of E with E(unb , u

n
t , v

n) ≤ C and

uni ∈ H1(Ω) , if Ri = squared H1-seminorm (33) ,

uni ∈ {u ∈ L
r
2 (Ω) : u ≥ 0 a.e. ,

√
u ∈ H1(Ω) } ,

if Ri = Fisher information (37) ,

for which r is given as in (36) and i ∈ {b, t}.

Since the functionals Ri are nonnegative the result in
(32) and the constraint ‖vn‖L∞(Ω) ≤ 1 imply the uniform
boundedness of (vn) in BV (Ω) and thus the existence of
a weakly* convergent subsequence (cf. [1, Thm. 2.5]
and [4, Prop. 3.13]), without restriction of generality
vn itself. Since the constraint 0 ≤ vn ≤ 1 prevails for
n→∞ we see that the limit belongs to BV (Ω; [0, 1]).

If ‖vn‖L1(Ω) and ‖1− vn‖L1(Ω) do not tend to zero, then
Lemma 9 implies that the mean values of (unb ) and (unt )
are uniformly bounded, and we can use the results pro-
posed in Lemmata 3 and 5. Thus, we can satisfy the
conditions required for the proof in Theorem 2 and ob-
tain the existence of a minimizer of (29).

It remains to discuss the case ‖vn‖L1(Ω) → 0 as the
case ‖1 − vn‖L1(Ω) → 0 is completely analogous. Due
to 0 ≤ vn ≤ 1 we conclude that ‖1 − vn‖L1(Ω) → 1 6= 0
such that by Lemma 9 the mean values of (unt ) are uni-
formly bounded. With the help of (32) we can use the
results proposed in Lemmata 3 (iii) and 5 (iii), which en-
sure the existence of a convergent subsequence (u

nj
t ) that

converges to some ût ∈ Wt(Ω). In addition, due to the
nonnegativity of vn and the uniqueness of the limit, vn

converges to zero also in the weak* topology of BV (Ω).
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Thus, with the simple estimate

E(unb , u
n
t , v

n) ≥
∫

Ω

(1− vn)Dt(f, u
n
t ) dx

+ αtRt(u
n
t ) + β|vn|BV (Ω) ,

we can conclude that

inf E(ub, ut, v)

= lim inf
j→∞

E(u
nj
b , u

nj
t , v

nj )

≥ lim inf
j→∞

(∫
Ω

(1− vnj )Dt(f, u
nj
t ) dx

+ αtRt(u
nj
t ) + β|vnj |BV (Ω)

)
=

∫
Ω

Dt(f, ût) dx + αtRt(ût)

= E(1, ût, 0) ,

showing that (1, ût, 0) is a minimizer of (29).

Finally, by Theorem 1 we conclude the existence of
a minimizer of (20) corresponding to each noise and
regularization model investigated in Section 3.4 and
3.5, namely the additive Gaussian, Poisson, and mul-
tiplicative speckle noise model in combination with the
(weighted) squared H1-seminorm and Fisher information
regularization functional.

4 Special cases of the segmentation
framework

In the following we investigate some special cases of our
proposed segmentation framework in Section 2 which
correspond to a region-based formulation of the popu-
lar Mumford-Shah model [84] and the Chan-Vese model
[22].

4.1 Mumford-Shah formulation

First, we study the Mumford-Shah model [55], which is
well known within the segmentation community. This
model can achieve edge-based segmentations of high
quality for a large class of images and is formulated as
a minimization problem of an energy functional of the
following form,

EMS(u,Γ) = βHd−1(Γ) +

1

2

∫
Ω

(u − f)2 dx +
α

2

∫
Ω\Γ
|∇u|2 dx .

(58)

In this context Γ ⊂ Ω denotes the edge set, which is
measured in the (d − 1)-dimensional Hausdorff measure

Hd−1, and u is a smoothed approximation of the per-
turbed image f on Ω\Γ. As already mentioned the orig-
inal formulation of the Mumford-Shah model (58) is an
edge-based segmentation method but can be turned into
a region-based model if Γ is restricted to be the contour
delineating the different subregions of Ω, e.g., in the case
of two subregions Ω1 and Ω2 = Ω \Ω1 by the restriction
Γ = ∂Ω1 \ ∂Ω.

In [84] the author proposes an efficient region-based vari-
ant of the Mumford-Shah model, which is based on the
modification of the boundary conditions on the edge set
leading to different extensions of functions outside the
subregions. The efficiency of this approach is induced by
reformulating the Helmholtz-type optimality equations
to the whole image domain Ω, which can be enforced by
the following energy functional,

EMS∗(u1, u2,Γ) = βHd−1(Γ) +

1

2

∫
Ω1

(u1 − f)2 dx +
1

2

∫
Ω2

(u2 − f)2 dx

+
α

2

∫
Ω

(
|∇u1|2 + |∇u2|2

)
dx .

(59)

Note that the case of two subregions Ω1 and Ω2 = Ω\Ω1

is used in (59) only for the sake of simplicity. Appar-
ently, this functional is equivalent to our generalized seg-
mentation framework in (13) choosing the negative log-
likelihood functions − log pi(f |ui) as squared distances
(14) and the regularizers Ri as squared H1-seminorms
(33). As already discussed in Section 2.2.1 this choice
of likelihood functions corresponds to the assumption of
the additive Gaussian noise model for the observed data
f . Thus, the region-based version of the Mumford-Shah
formulation in (59) represents a special case of our gener-
alized segmentation framework for an additive Gaussian
noise model and H1-seminorm regularization.

4.2 Chan-Vese formulation

The traditional Chan-Vese segmentation model in [22]
evolved as a simplification of the Mumford-Shah formu-
lation presented in (58). It is based on the assumption
that the intensities in the different subregions of Ω can
be modeled as piecewise-constant functions. The Chan-
Vese model can be formulated as minimization problem
of an energy functional from the following form,

ECV (c1, c2,Γ) = βHd−1(Γ) +

1

2

∫
Ω1

(c1 − f)2 dx +
1

2

∫
Ω2

(c2 − f)2 dx .
(60)

Here f is the perturbed image to be segmented and Γ
again denotes the delineating contour of subregions Ω1

and Ω2 = Ω \ Ω1 of Ω, defined by Γ = ∂Ω1 \ ∂Ω. The
functions c1 and c2 are constant approximations of f in
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Ω1 and Ω2, respectively. For the Chan-Vese segmenta-
tion method the relationship to our generalized segmen-
tation framework (13) gets obvious choosing the fidelity
functions − log pi(f |ui) as squared distances like for the
Mumford-Shah model in Section 4.1 and the regularizers
Ri as

Ri(ui) =

{
0 , if |∇ui| = 0 ,

∞ , else .
(61)

In this way we can also enforce our solutions u1 and u2

to be constant. Analogous to the case of the Mumford-
Shah formulation, we discussed in Section 2.2.1 that the
choice of fidelity functions above corresponds to an ad-
ditive Gaussian noise model assumed in the given data
f . Hence, the Chan-Vese segmentation model is a spe-
cial case of our proposed segmentation framework for
the additive Gaussian noise model and regularizers Ri
in (61), which enforce constant solutions of the segmen-
tation problem.

4.3 Extension of Chan-Vese formulation to
non-Gaussian noise models

In this section we discuss the natural extension of the
Chan-Vese formulation presented in the section above to
non-Gaussian noise models described in Section 2.2. To
perform this extension it suffices to exchange the L2 dis-
tance functions in (60) by general negative log-likelihood
functions − log pi(f |ui) such that the functional in (60)
gets the following form,

ECV ∗(c1, c2,Γ) = βHd−1(Γ) +∫
Ω1

− log p1(f | c1) dx +

∫
Ω2

− log p2(f | c2) dx .
(62)

As we can see this energy functional corresponds to the
region-based segmentation framework (13) for the two-
phase formulation (m = 2) using the regularization func-
tionals Ri defined in (61) in order to enforce constant
solutions c1 and c2. Actually, these optimal constants
can be computed explicitly using the form of the nega-
tive log-likelihood functions. Thus, we obtain in the case
of additive Gaussian (14) and Poisson (15) noise model
the following constants,

ci =

∫
Ωi
f dx

|Ωi|
,

and in the case of multiplicative speckle noise (16),

ci =
1

2

√σ4 +
4
∫

Ωi
f2 dx

|Ωi|
− σ2

 .

Due to the simple form of these constants, the extension
of the Chan-Vese segmentation method to non-Gaussian

noise models in (62) is easy to implement and allows to
be used in a wide range of applications in which piecewise
constant approximations can be expected.

5 Numerical realization

After the introduction and analysis of our region-based
segmentation framework in earlier sections, we now dis-
cuss the details of its numerical implementation. For the
sake of simplicity we restrict this discussion to the two-
phase formulation proposed in (19) and thus deal with
the realization of the minimization problem (20). We use
an alternating minimization strategy proposed in (25) in
order to minimize the energy functional E in (19). Devi-
ating from (25) we split the minimization step (25a) into
separate subproblems regarding uk+1

b and uk+1
t and have

to solve the following minimization problems,

uk+1
b ∈ arg min

ub ∈Wb(Ω)

{∫
Ω

χkDb(f, ub) dx

+ αbRb(ub)

}
,

(63a)

uk+1
t ∈ arg min

ut ∈Wt(Ω)

{∫
Ω

(1− χk)Dt(f, ut) dx

+ αtRt(ut)

}
,

(63b)

χk+1 ∈ arg min
χ ∈ BV (Ω;{0,1})

{
β |χ|BV (Ω) +∫

Ω

(
Db(f, u

k+1
b ) − Dt(f, u

k+1
t )

)
χ dx

}
.

(63c)

The first two minimization problems (63a) and (63b) can
be interpreted as denoising problems, since their solutions
uk+1
i are meant to be approximations of the given noisy

data f inside the subregions specified by χk and (1−χk)
with appropriate extensions outside of these, and which
are characterized by the choice of regularization func-
tionals Ri. The numerical realization of these two sub-
problems are discussed in Sections 5.2 and 5.3 for the
cases of additive Gaussian noise, multiplicative speckle
noise, and Poisson noise. The third minimization prob-
lem (63c) is derived from (25b) by neglecting additive
terms independent of χ. This subproblem is related to
the actual partition of Ω into subregions given by χ and
(1 − χ) and depends on the previously computed solu-
tions uk+1

i . The numerical solution of the minimization
step (63c) is discussed in Section 5.4.
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5.1 Numerical realization of denoising steps:
preliminary remarks

First, we discuss the numerical realization of denoising
problems (63a) and (63b) for each of the noise models
described in Section 2.2, i.e., additive Gaussian noise,
Poisson noise, and multiplicative speckle noise. To sim-
plify this discussion, we see that both problems are of
the form

uk+1
i ∈ arg min

ui ∈Wi(Ω)

{∫
Ω

χ̃ki Di(f, ui) dx

+ αiRi(ui)

} (64)

with i ∈ {b, t} and an indicator function χ̃ki such that
χ̃kb = χk in the case of (63a) and χ̃kt = (1 − χk) in
the case of (63b). In sections below we distinguish be-
tween the choice of the regularization functional Ri as
the squared H1-seminorm (33) (respectively its weighted
version (41)) and the Fisher information (37) in order to
propose a numerical strategy solving (64).

Finally, we mention the following aspects of the numeri-
cal realization below.

• In Assumption 2 (iii) we assumed the regulariza-
tion functionals Ri to be convex. Thus, we use the
concept of subdifferentials from convex analysis (see
e.g., [28, Sect. 5.1]) to compute the first order op-
timality condition of the minimization problem (64)
and denote the subdifferential with ∂.

• With respect to the analytical results in Section
3 the optimization problem (64) implies additional
complications in the computation of minimizers us-
ing the Poisson and speckle noise model, or for the
Fisher information regularization. As we can see in
(39) and (46) the admissible function spaces only
allow non-negative solutions in these cases, which
needs to be enforced in the minimization problem
(64). However, for reasons of clarity, we refrain to
note the non-negativity constraint on ui in (64) ex-
plicitly but include this condition in the function set
Wi(Ω) whenever it is required.

5.2 Numerical realization of denoising steps:
(weighted) H1-seminorm regularization

We start with a discussion of the problem (64) using
the squared H1-seminorm regularization (33) and its
weighted variant (41). Since the weighted version is
more general than the basic H1-seminorm, we focus on
the weighted H1-seminorm regularization functional and
denote it with RH1

w
. In order to propose an appropri-

ate numerical strategy minimizing the problem (64) with

Table 1: Overview for the setting of functions qn and hn

in (65) with respect to the different physical noise models
proposed in Section 2.2.

Noise model qn hn

Additive Gaussian noise f 1

Poisson noise f
(
uk+1
i

)n
Multiplicative speckle noise f2

(uk+1
i )

n − σ2
(
uk+1
i

)n

Ri = RH1
w

for each of the noise models described in Sec-
tion 2.2, we proceed in two steps. First, we show that for
each fixed k ∈ N the problem (64) can be equivalently
realized by a sequence of convex variational problems of
the form(

uk+1
i

)n+1 ∈ arg min
ui

{
1

2

∫
Ω

χ̃ki
(ui − qn)2

hn
dx

+ αiRH1
w

(ui)

}
,

(65)

with an appropriate setting of the noise function qn and
the weighting function hn with respect to the present
noise model. The choice of these functions is summarized
in Table 1. The advantage of this strategy is that it
allows to propose a uniform numerical framework for the
realization of the denoising steps (64) without depending
on the actual form of the fidelity functions Di(f, ui). In
the second part we discuss the numerical realization of
the variational problem (65).

5.2.1 Additive Gaussian noise

The first case that we want to investigate is the mini-
mization problem (64) using the negative log-likelihood
function Di(f, ui) for additive Gaussian noise,

Di(f, ui)
(18)
= − log pi(f |ui)

(14)
=

1

2
(ui − f)

2
.

Then, the problem (64) is apparently a special case of
(65) for hn ≡ 1 and qn = f , and hence no inner iterations
are needed for this case.

5.2.2 Poisson noise

We concentrate now on the problem of denoising images
perturbed by Poisson noise. For this purpose we insert
the following fidelity term Di(f, ui) into (64),

Di(f, ui)
(18)
= − log pi(f |ui)

(15)
= ui − f log ui .

Note that the Poisson noise model needs an additional
non-negativity constraint on the solution ui in (64) (cf.
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(46)). Hence, we use the Karush-Kuhn-Tucker (KKT)
optimality conditions which formally provide the exis-
tence of a Lagrange multiplier λ ≥ 0, such that the sta-
tionary points of the functional in (64) need to fulfill the
equations,

0 = χ̃ki

(
1 − f

uk+1
i

)
+ αi p

k+1
i − λ , (66a)

0 = λuk+1
i , (66b)

where pk+1
i ∈ ∂RH1

w

(
uk+1
i

)
and 1(x) = 1 on Ω. Multi-

plying (66a) by uk+1
i the Lagrange multiplier λ can be

eliminated by (66b) leading to a fixed point equation of
the form

0 = χ̃ki
(
uk+1
i − f

)
+ αi u

k+1
i pk+1

i .

Here, we use a semi-implicit iteration approach proposed
in [70] (see [69, Sect. 4.5] for details) and obtain the
following iteration scheme to compute uk+1

i ,

χ̃ki
(
uk+1
i

)n+1
= χ̃ki f − αi

(
uk+1
i

)n (
pk+1
i

)n+1
(67)

with(
pk+1
i

)n+1 ∈ ∂RH1
w

((
uk+1
i

)n+1
)
.

Considering the form of (67), we can see that each step
of this iteration sequence can be realized by solving the
following convex variational problem,(

uk+1
i

)n+1 ∈ arg min
ui ≥ 0

{
1

2

∫
Ω

χ̃ki
(ui − f)2(
uk+1
i

)n dx

+ αiRH1
w

(ui)

}
.

(68)

Inspecting the first order optimality condition of (68)
confirms the equivalence of this minimization problem
with the iteration step in (67) due to convexity. Hence,
the original problem (64) can be realized in the Poisson
case by a sequence of minimization problems of the form
(68), which is a special case of (65) with qn = f and

hn =
(
uk+1
i

)n
. We note that we incorporate an addi-

tional non-negativity constraint in (68), and thus auto-
matically ensure the complementarity condition (66b).
Finally, using the convergence result in [69], we termi-
nate the sequence (68) if the relative distance between
two consecutive iteration solutions falls below a specified
threshold, i.e., if∥∥∥(uk+1

i

)n+1 −
(
uk+1
i

)n∥∥∥
L2(Ω)∥∥∥(uk+1

i

)n+1
∥∥∥
L2(Ω)

< ε . (69)

Note that we can initialize the function (uk+1
i )0 in (68) as

(uk+1
i )0 ≡ 1. However, in our experiments we observed

that a combination of smoothed results of the last step
of our outer minimization strategy (63), i.e., (uk+1

i )0 =
uk = χkukb +(1−χk)ukt , resulted in a better performance.

5.2.3 Multiplicative speckle noise

The last case that we want to discuss is dedicated to
images biased by multiplicative speckle noise proposed
in Section 2.2.3 and thus consider the following negative
log-likelihood function Di(f, ui) in (64),

Di(f, ui)
(16)
=

(ui − f)2

ui
+ σ2 log ui .

Considering the non-negativity constraint on the solution
ui in (64) (cf. Section 3.5.3), we can proceed analogously
to the case of the Poisson noise fidelity term in Section
5.2.2. Thus, we obtain that each step of the resulting
semi-implicit iteration sequence can be realized by solv-
ing a convex variational problem of the form (see [69,
Sect. 5.3] for details),

(
uk+1
i

)n+1 ∈ arg min
ui ≥ 0

{
αiRH1

w
(ui) +

1

2

∫
Ω

χ̃ki

(
ui −

(
f2

(uk+1
i )

n − σ2
))2

(
uk+1
i

)n dx

}
.

(70)

We can see that (70) corresponds to (65) by setting
qn = f2/(uk+1

i )n − σ2 and hn = (uk+1
i )n. Finally,

we terminate the sequence (70) as in (69) and initialize
(uk+1
i )0 analogously to Section 5.2.2 as (uk+1

i )0 = uk =
χkukb + (1− χk)ukt .

5.2.4 Numerical realization of variational problem
(65)

In Sections 5.2.1 - 5.2.3 we have seen that the proposed
numerical schemes lead to solving a sequence of varia-
tional problems introduced in its most general form in
(65). In this section we discuss the numerical realization
of variational problems occurring in the sequence (65).
For the sake of simplicity, we neglect in the following
the indices k, n and i, and hence deal with the following
minimization problem using the definition of the regular-
ization functional RH1

w
in (41),

min
u≥ 0

1

2

∫
Ω

χ̃
(u − q)2

h
dx +

α

2

∫
Ω

|∇u|2

w
dx . (71)

Due to the presented results in (68) and (70) regard-
ing the Poisson and speckle noise model, respectively, we
consider in (71) the more interesting case of an additional
non-negativity constraint. The case of the additive Gaus-
sian noise model (i.e., where the non-negativity condition
is unnecessary) is indicated in Remark 5 below.

In order to solve the problem (71) efficiently, we propose
to use an augmented Lagrangian minimization approach
and refer, e.g., to [30, 36, 42] for an introduction to this
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topic. The major motivation for this approach is that
we want to obtain an unified method which can han-
dle the weights h and w in (71) in a simple way and
simultaneously incorporate the non-negativity condition
on the solution without great effort. A scheme of that
form has been used by the authors for inverse prob-
lems with Poisson noise and total variation regulariza-
tion [69] demonstrating good performance and variabil-
ity. In principle it would be possible to use alternative
techniques, e.g., Newton’s method or a conjugate gradi-
ent method, particularly for the case of additive Gaus-
sian noise and the standard H1-seminorm regularization
(i.e., using h = w ≡ 1 in (71)). However, one has to take
special care for the non-negativity constraint. Further-
more, if the weights h in the data fidelity term and w in
the regularization functional are not identity functions,
further problems can arise, such as choosing a proper
preconditioner matrix for the conjugate gradient method
for instance. Finally, another motivation for using the
augmented Lagrangian approach is that the most expen-
sive part of this iteration sequence is the computation of
a Helmholtz-type optimality equation (see (74) below),
which can be solved efficiently and exactly using the dis-
crete cosine transform. This has the advantage that it
provides the opportunity to accelerate this sub-step di-
rectly using fast methods, e.g., by using GPU-based ap-
proaches.

Due to the weights χ̃, h and w occurring in (71), we
introduce auxiliary functions ũ and v to simplify han-
dling of these weights. Hence, we consider the following
equivalent constrained optimization problem,

min
u,ũ,v

1

2

∫
Ω

χ̃
(ũ− q)2

h
dx +

α

2

∫
Ω

|v|2

w
dx + i≥0(ũ)

s.t. ũ = u and v = ∇u ,
(72)

where i≥0 is an indicator functional given by i≥0(u) = 0 if
u ≥ 0 a.e. and +∞ else. Following the idea of augmented
Lagrangian methods and using the standard Uzawa al-
gorithm (without preconditioning) [29], we obtain an al-
ternating minimization scheme given by (cf. [69, Sect.
6.3.4] for a detailed description of total variation regu-
larization)

ul+1∈ arg min
u

{〈
λlũ, ũ

l − u
〉

+
µũ
2
‖ũl − u‖2L2(Ω)

+
〈
λlv, v

l −∇u
〉

+
µv
2
‖vl −∇u‖2L2(Ω)

}
,

(73a)

ũl+1 ∈ arg min
ũ

{
1

2

∫
Ω

χ̃
(ũ − q)2

h
dx + i≥0(ũ)

+
〈
λlũ, ũ− ul+1

〉
+

µũ
2
‖ũ− ul+1‖2L2(Ω)

}
,

(73b)

vl+1 ∈ arg min
v

{
α

2

∫
Ω

|v|2

w
dx +

〈
λlv, v −∇ul+1

〉
+

µv
2
‖v −∇ul+1‖2L2(Ω)

}
,

(73c)

λl+1
ũ = λlũ + µũ

(
ũl+1 − ul+1

)
, (73d)

λl+1
v = λlv + µv

(
vl+1 − ∇ul+1

)
, (73e)

where λũ, λv are Lagrange multipliers and µũ, µv are pos-
itive relaxation parameters. The efficiency of this strat-
egy strongly depends on how fast one can solve each of
the subproblems in (73). First, the problem (73a) is dif-
ferentiable with the following Helmholtz-type optimality
equation assuming Neumann boundary conditions,

(µũI − µv∆)ul+1 =

λlũ + µũũ
l − div

(
λlv + µvv

l
)︸ ︷︷ ︸

=: zl

, (74)

where I is the identity operator and ∆ denotes the
Laplace operator. In the discrete setting using finite dif-
ference discretization on a rectangular domain Ω, this
equation can be solved efficiently by the discrete cosine
transform (DCT-II), since −∆ is diagonalizable in the
DCT-transformed space,

ul+1 = DCT−1

(
DCT

(
zl
)

µũ + µvk̂

)
, (75)

where zl is defined in (74), k̂ represents the negative
Laplace operator in the discrete cosine space (see [69,
Sect. 6.3.4]), and DCT−1 denotes the inverse discrete
cosine transform. Moreover, the solution of the mini-
mization problem (73b) can be computed by an explicit
formula of the form

ũl+1 = max

{
χ̃q + h

(
µũu

l+1 − λlũ
)

χ̃ + µũh
, 0

}
, (76)

where the maximum operation has to be interpreted
pointwise (i.e., for each x ∈ Ω). Finally, the sub-problem
(73c) can be computed by the following explicit formula,

vl+1 =
w
(
µv∇ul+1 − λlv

)
α + µvw

. (77)

Remark 4 From a practical point-of-view, we note that
the augmented Lagrangian approach presented above can
be simplified for the original squared H1-seminorm reg-
ularization (33) in (71), i.e., considering w ≡ 1 in (71).
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In this special case the auxiliary function v = ∇u in (72)
is not necessarily required and hence the iteration steps
(73e) and (77) disappear. In addition, the formula in (75)
can be simplified and the resulting numerical scheme has
only to perform the following iteration sequence,

ul+1 = DCT−1

(
DCT

(
λlũ + µũũ

l
)

µũ + α k̂

)
,

followed by steps in (76) and (73d). This increases the
algorithm performance significantly in the special case of
w ≡ 1 compared to the more general approach presented
in (73) - (77).

Remark 5 Finally, we want to discuss the case where the
non-negativity condition in (71) is unnecessary, i.e. con-
sidering the additive Gaussian noise model. The only
difference is that the indicator functional i≥0 in (72) and
(73b) is no longer required and hence we only have to
modify (76) to

ũl+1 =
χ̃q + h

(
µũu

l+1 − λlũ
)

χ̃ + µũh
.

5.3 Numerical realization of denoising steps:
Fisher information regularization

In Section 5.2 we considered the numerical realization of
the denoising problem (64) using the (weighted) squared
H1-seminorm regularization Ri. In this section we dis-
cuss the case of the Fisher information regularization de-
fined in (37), i.e., we consider

uk+1
i ∈ arg min

ui ≥ 0

{∫
Ω

χ̃ki Di(f, ui) dx +

αi
2

∫
Ω

|∇ui|2

ui
dx

}
.

(78)

Note that in the case of the Fisher information regulariza-
tion a non-negativity constraint on the solution is always
required due to the admissible domain of the functional
in (39).

Before we discuss the implementation of (78), we explain
why the differentiation between the Fisher information
and squared H1-seminorm regularization is required to
propose a numerical strategy minimizing (64). It is ap-
parent that for the Fisher information regularization we
can proceed analogously to Section 5.2 and propose an
iteration scheme solving the following minimization prob-
lem (cf. (71)),

min
u≥ 0

1

2

∫
Ω

χ̃
(u − q)2

h
dx +

α

2

∫
Ω

|∇u|2

u
dx . (79)

The complexity of this minimization functional, com-
pared to the one in (71), arises from the unknown denom-
inator in the regularization energy in (79). Hence, the
augmented Lagrangian approach used in Section 5.2.4
leads for (79) to several realization problems, which re-
quire further detailed investigations and hence go beyond
the scope of this work. Thus, we decided to omit these
additional discussions from this paper.

We rather propose to use another approach to solve (64)
with the Fisher information (37) as regularization func-
tional Ri in the following. There we derive the following
iteration scheme for each fixed k ∈ N,

(cI − αi∆)
(
uk+1
i

)n+1
=

(c − rn)
(
uk+1
i

)n
+ sn − αi

2

|∇
(
uk+1
i

)n|2(
uk+1
i

)n︸ ︷︷ ︸
=: z̃n

, (80)

where c > 0 is a constant, while I and ∆ denote the
identity and Laplace operator, respectively. The choice
of functions rn and sn in (80) is discussed below for each
of the noise models described in Section 2.2 and summa-
rized in Table 2. Now, each iteration step in (80) requires
the solution of a Helmholtz-type equation, which can be
realized efficiently in the discrete setting using the dis-
crete cosine transform,

(
uk+1
i

)n+1
= DCT−1

(
DCT (z̃n)

c + αik̂

)
,

using the notation of (75) with z̃n is defined in (80). Fi-

nally, we have to ensure the non-negativity of
(
uk+1
i

)n
for

each n ∈ N since the solution of this iteration sequence
should be non-negative in the case of Fisher information
regularization (see (39)). This can be guaranteed if the
right-hand side of (80) is non-negative due to the max-
imum principle for elliptic partial differential equations.
To ensure this property we have to choose the functions
sn and (uk+1

i )0 non-negative and

c ≥ ess sup
Ω

rn +
αi
2

|∇
(
uk+1
i

)n|2((
uk+1
i

)n)2

 (81)

for each n ∈ N, whereas the latter condition is a simple
consequence of the negative terms occurring in (80). The
termination of (80) is realized as in (69). With respect to
the convergence of (80), which is depending on c, we refer
to [73] and the references therein, where the convergence
of similar numerical schemes is discussed. It is obvious
that we cannot guarantee a sufficiently fast convergence
of the iteration sequence (80) due to potentially high val-
ues of c in (81). Thus, further development of alternative
algorithms will be required in the future.
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Table 2: Overview for the setting of functions rn and sn

in (80) with respect to the different physical noise models
proposed in Section 2.2.

Noise model rn sn

Additive Gaussian noise

if f ≥ 0 everywhere χ̃ki (uk+1
i )n χ̃ki (uk+1

i )nf

else χ̃ki
(
(uk+1
i )n − f

)
0

Poisson noise χ̃ki χ̃ki f

Multiplicative speckle noise χ̃ki

(
1 + σ2

(uk+1
i )n

)
χ̃ki

f2

(uk+1
i )n

In the following we discuss the choice of functions rn and
sn in (80) with respect to additive Gaussian, Poisson, and
multiplicative speckle noise.

5.3.1 Additive Gaussian noise

We start with the investigation of (78) using the neg-
ative log-likelihood function Di(f, ui) corresponding to
the additive Gaussian noise presented in (14), i.e., we

have Di(f, ui) = 1
2 (ui − f)

2
. Due to the non-negativity

constraint on the solution ui in (78) we use KKT condi-
tions, which formally provide the existence of a Lagrange
multiplier λ ≥ 0, such that the stationary points of the
functional in (78) need to fulfill the equations,

0 = χ̃ki
(
uk+1
i − f

)
− αi

∆uk+1
i

uk+1
i

+
αi
2

|∇uk+1
i |2(

uk+1
i

)2 − λ ,

(82a)

0 = λuk+1
i , (82b)

for which we assume Neumann boundary conditions.
Multiplying (82a) by uk+1

i the Lagrange multiplier λ can
be eliminated by (82b) and the subsequent addition of
the term cuk+1

i − cuk+1
i with c > 0 leads to a fixed point

equation of the form

0 = cuk+1
i − cuk+1

i + χ̃ki u
k+1
i

(
uk+1
i − f

)
− αi ∆uk+1

i +
αi
2

|∇uk+1
i |2

uk+1
i

.
(83)

Using a semi-implicit approach, we now obtain the iter-
ation sequence (80) by setting

• rn = χ̃ki (uk+1
i )n and sn = χ̃ki (uk+1

i )nf , if f is non-
negative everywhere;

• rn = χ̃ki
(
(uk+1
i )n − f

)
and sn = 0 else.

The case differentiation presented here is motivated by
practical reasons. It is obvious that we can always choose
c in (81) large enough such that the right-hand side of
(80) is non-negative. On the other hand, it should be
as small as possible to yield a reasonable convergence
behavior of the iteration sequence. Thus, in the case
of additive Gaussian noise, where the data function f
can also be negative, using the functions above is more
convenient. Finally, note that the resulting fixed point of
(83) is a minimizer of (78) if the corresponding derivative
has the correct sign, a condition which has to be checked
in the numerical realization.

5.3.2 Poisson noise

Here we consider the problem (78) in the case of Pois-
son noise, where the negative log-likelihood function
Di(f, ui) is given in (15), i.e., Di(f, ui) = ui − f log ui.
In this case we can proceed analogously to the additive
Gaussian noise discussed in Section 5.3.1 and hence ob-
tain the following fixed point equation using KKT and
Neumann boundary conditions,

cuk+1
i − cuk+1

i + χ̃ki
(
uk+1
i − f

)
− αi ∆uk+1

i +
αi
2

|∇uk+1
i |2

uk+1
i

= 0 .

Then a semi-implicit approach yields the iteration se-
quence (80) with rn = χ̃ki and sn = χ̃ki f . Note that
the non-negativity of sn results from Section 3.5.2 since
f ∈ Vi(Ω) is non-negative.

5.3.3 Multiplicative speckle noise

Finally, we discuss (78) for the case of the speckle noise
likelihood function introduced in (49), i.e., we consider

Di(f, ui) = (ui−f)2

ui
+ σ2 log ui. In this case the KKT

conditions give a fixed point equation of the form

cuk+1
i − cuk+1

i + χ̃ki

(
uk+1
i − f2

uk+1
i

+ σ2

)

− αi ∆uk+1
i +

αi
2

|∇uk+1
i |2

uk+1
i

= 0 ,

with Neumann boundary conditions. Consequently, a
semi-implicit approach results in the iteration sequence

(80) with rn = χ̃ki

(
1 + σ2

(uk+1
i )n

)
and sn = χ̃ki

f2

(uk+1
i )n

.

5.4 Numerical realization of the
segmentation step

After discussing the numerical realization of the denois-
ing problems (63a) and (63b) we now concentrate on the
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segmentation problem (63c) in our alternating minimiza-
tion strategy. In this context we are interested in com-
puting the current segmentation indicated by χk+1 using
the updated denoised images uk+1

b and uk+1
t .

The standard approaches to solve geometric problems
are active contour models such as snakes initially pro-
posed by Kass, Witkin and Terzopoulos in [44] or level
set methods introduced by Osher and Sethian in [60]. Al-
though these models have attracted strong attention in
the past, there are several drawbacks leading to compli-
cations in the computation of segmentation results. For
example, the explicit curve representation of snake mod-
els do not allow changes in curve topology or the level
set methods require an expensive re-initialization of the
level set function during the evolution process (cf. e.g.,
[50, 59]). However, the main drawback of these methods
is the non-convexity of the associated energy functionals
and consequently the existence of local minima leading
to unsatisfactory results with wrong scales of details.

Recently, several globally convex segmentation models
have been proposed in [12, 19, 38] to overcome the fun-
damental issue of existence of local minima. The main
idea of all these approaches is based on the unification
of image segmentation and image denoising tasks into a
global minimization framework. In our work we follow
the idea found in [15], where a relation between the well
known Rudin-Osher-Fatemi (ROF) model [67] and the
minimal surface problem is presented. In order to do so
we recall this relation in the following lemma and note
that the ROF model always admits a unique solution,
since the associated energy functional is strictly convex.

Lemma 11 Let β > 0 be a fixed parameter, g ∈ L2(Ω),
and û the unique solution of the ROF minimization prob-
lem

min
u ∈ BV (Ω)

1

2

∫
Ω

(u − g)2 dx + β |u|BV (Ω) . (84)

Then, for almost every t ∈ R, the indicator function

χ̂(x) =

{
1 , if û(x) > t ,

0 , else ,
(85)

is a solution of the minimal surface problem

min
χ ∈ BV (Ω; {0,1})

∫
Ω

χ(x) (t − g(x)) dx

+ β |χ|BV (Ω) .

(86)

In particular, for all t but a countable set, the solution of
the problem (86) is even unique.

Using Lemma 11 we are capable to translate our seg-
mentation problem (63c) to a standard ROF denoising

problem. We can observe that the problem (63c) corre-
sponds to the minimal surface problem (86) by setting

t = 0 and g = Dt(f, u
k+1
t ) − Db(f, u

k+1
b ) . (87)

Therefore, the solution χk+1 of the segmentation step
(63c) can now be computed by simple thresholding of
the form (85) with t = 0, where û is the solution of the
ROF problem (84) with g specified in (87).

In conclusion, the ROF model (84) is a well understood
and intensively studied variational problem in mathe-
matical image processing. Hence, a variety of numeri-
cal schemes have been already proposed in literature in
order to solve this problem. Exemplarily, we refer to
the projected gradient descent algorithm of Chambolle
in [17], a nonlinear primal-dual method of Chan, Golub
and Mulet in [20], the split Bregman algorithm of Gold-
stein and Osher in [39], and some first-order algorithms
in [8, 18].

6 Experimental results on synthetic
data

In this section we validate our variational segmentation
framework on synthetic data and focus on the choice of
an appropriate data fidelity term and the selection of reg-
ularization functionals. To fully understand the influence
of these variables we propose different experimental set-
tings in the following, which are constructed to highlight
observed characteristics of our segmentation framework.
In order to segment the images discussed below, we use
the alternating minimization scheme given in (63), for
which 25 iteration steps are sufficient in most cases. To
terminate the inner iteration loops discussed in Sections
5.2 and 5.3 we choose ε = 10−6 in (69).

6.1 Impact of regularization term

First, we investigate the impact of the selected regular-
ization term (cf. Section 3.4) on the results of segmen-
tation and especially on the estimated approximations
to the original object data. For this purpose we use
an image of size 150 × 150 pixels scaled to [0, 1] with
a simple object structure illustrated in Figure 2a. In
this image we put inhomogeneities in Ωt and Ωb covering
the full range of intensities, such that both regions have
the same mean value. The challenge of this data is the
occurence of the same grayscale values in both regions
with strong intensity changes at the border of the object
structure. Apparently, this situation is quite untypical
in real-life applications. However, it illustrates the limits
of the proposed segmentation framework.
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(a) synthetic data (b) ground truth (c) Chan-Vese

Figure 2: Comparison of Chan-Vese segmentation result
with ground truth on synthetic data.

Due to this constructed properties it is obvious that
a regularization functional enforcing piecewise constant
functions is not feasible in this situation, as can be seen in
Figure 2c for the popular Chan-Vese algorithm from Sec-
tion 4.2. This motivates the investigation of the squared
H1-seminorm and the Fisher information regularization
discussed in Section 3.4. For this purpose we concen-
trate on data which are perturbed by Poisson noise (cf.
Section 2.2.2) as illustrated in Figure 3b. In order to
guarantee identical preconditions we keep β = 0.4 fix for
both experiments.

For the squared H1-seminorm the regularization parame-
ters are chosen as αb = 7 and αt = 540 in order to achieve
a satisfying segmentation result illustrated in Figure 3c.
The strong difference in the absolute values of αb and αt
is caused by the extraordinary form of the given data.
However, as a consequence of this choice we obtain an
oversmoothing of the target region and on the other hand
a low regularization in the background region as pre-
sented in Figure 3e. The same observations can also be
made for the Fisher information regularization, where the
parameters are chosen as αb = 20 and αt = 30. The cor-
responding segmentation and approximation results are
illustrated in Figures 3d and 3f, respectively. However,
in order to demonstrate the difference of approximations
in Figures 3e and 3f we plot the intensity values of these
results in Figure 4 along the illustrated profile lines. As
we can see the Fisher information result approximates
the target object significantly better than the squared
H1-seminorm result.

During our experiments described above we also observed
a possible convergence of our algorithm against the lo-
cal minima presented in Figure 2c. For the Fisher in-
formation regularization we illustrate such segmentation
result in Figure 5c, where the regularization parameters
are chosen as described above and the initialization given
in Figure 5a are used. This unsatisfactory result can be
avoided as illustrated in Figure 5d using another initial-
ization as presented in Figure 5b. The reason for this
behavior is the non-convexity of the whole energy func-
tional given in (19) such that a convergence against a
global minimum cannot be guaranteed, although each
subproblem in (63) has a global solution. Hence, we state

(a) ground truth (b) data perturbed by
Poisson noise

(c) segmentation using H1

regularization
(d) segmentation using
Fisher regularization

(e) approximation using
H1 regularization

(f) approximation using
Fisher regularization

Figure 3: Comparison of segmentation and approxima-
tion results for synthetic data biased by Poisson noise
using the squared H1-seminorm and Fisher information
regularization. The grayscale values in (a), (e) and (f)
are scaled to an uniform interval and the horizontal white
lines represent the position of the profile lines plotted in
Figure 4.

that the convergence of the presented method against an
optimal solution depends not only on the specified regu-
larization parameters but also on a suitable initialization.

6.2 Impact of the data fidelity term

To evaluate the importance of a correct noise model
in automated image segmentation we investigate images
perturbed by physical noise forms described in Section
2.2, i.e., additive Gaussian noise, Poisson noise, and mul-
tiplicative speckle noise. For the sake of simplicity we
perform this experiment on piecewise constant images,
since this case is known from the popular Chan-Vese for-
mulation [22] and we can neglect the regularization pa-
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Figure 4: Profile lines of the squared H1-seminorm and
Fisher information approximations from Figure 3.

rameters αb and αt. For the segmentation we use the gen-
eralized Chan-Vese two-phase segmentation model pro-
posed in Section 4.3, i.e., we only separate regions-of-
interest from the background.

We choose the objects to be segmented with respect to
typical segmentation tasks from biomedical imaging. Of-
ten, only one major anatomical region-of-interest has
to be segmented, e.g., the left ventricle of the heart in
echocardiographic examinations [57, 76] or [18F]FDG up-
take studies in positron emission tomography [62]. Fur-
thermore, it is desirable to preserve as many image de-
tails as possible during the process of segmentation. Es-
pecially in tumor imaging [75] small lesions in a size of
only few pixels can easily be overseen, due to a loss of
details by too intense regularization. This leads to se-
vere consequences if not taken into account and hence it
is important to preserve details of small image regions.

Figure 6a shows our experimental data without pertur-
bation of noise and the ground truth segmentation in
Figure 6b. In the image center we place an approximate
shape of the left ventricle of the human heart as it would
be imaged in an apical four-chamber view in echocardio-
graphy. Below this major structure we put three small
squares with sizes of 1, 2, and 4 pixels to simulate mi-
nor structures, such as small lesions, which we want to
preserve during the process of automated image segmen-
tation. On the left and right side of our heart phantom
we set two curved lines with a diameter of 1 and 2 pixels
to simulate vessel-like structures, which play an impor-
tant role in perfusion studies of different organs [33, 82],
e.g., liver veins or coronary arteries of the heart.

To validate the impact of the data fidelity term we bias
the image in Figure 6a with synthetic noise and try to
find the optimal value of the regularization parameter β.
This optimization was done with respect to the following
two criterions,

• Segmentation of the main structure without noise

(a) unsuccessful initializa-
tion

(b) successful initializa-
tion

(c) segmentation result
using initialization (a)

(d) segmentation result
using initialization (b)

Figure 5: Comparison of segmentation results for syn-
thetic data biased by Poisson noise using the Fisher in-
formation regularization and different initializations.

(a) synthetic data (b) ground truth

Figure 6: Synthetic data with anatomical structures of
different size.

artifacts.

• Preservation of small anatomical structures without
loss of details.

Naturally, it is hard to fulfill both criterions simultane-
ously, since there is a trade-off between noise-free seg-
mentation results and a detailed partition of the image.
For our synthetic images we look for the highest possible
value of β, which preserves as many small structures as
possible, and on the other hand for the lowest possible
value of β that ensures a complete segmentation of the
main structure without noise-induced artifacts. These
two limiting cases are the foundation for our observa-
tions in the following experiment.

First, we perturb our data with additive Gaussian noise
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(a) data perturbed by addi-
tive Gaussian noise

(b) Gaussian noise model:
β = 4, 300

(c) Poisson noise model: β =
44

(d) Poisson noise model:
β = 50

(e) speckle noise model: β =
87

(f) speckle noise model: β =
103

Figure 7: Comparison of different data fidelity models on
synthetic data of simulated anatomical structures biased
by additive Gaussian noise.

as illustrated in Figure 7a. In Figure 7b the data fidelity
term for additive Gaussian noise (cf. (14)) produces a
satisfying segmentation result, which fulfills both criteri-
ons discussed above. For this case we observe very similar
results for the Poisson and speckle data fidelity term as
illustrated in Figures 7c, 7d and 7e, 7f, respectively.

In the next experiment we perturb our synthetic data
with Poisson noise as presented in Figure 8a. For this
image we state that the Poisson data fidelity term in
(15) is an appropriate choice as can be seen in Figure 8b.
In Figure 8c and 8d we test the additive Gaussian noise
fidelity term and choose the regularization parameter β
according to the criterions discussed above. In order to
preserve all small structures in Figure 8c we have to ac-
cept a significant amount of noise artifacts within the
main structure. On the other hand, we lose almost all
small structures in Figure 8d by choosing β high enough

(a) data perturbed by Pois-
son noise

(b) Poisson noise model:
β = 12

(c) Gaussian noise model:
β = 4, 000

(d) Gaussian noise model:
β = 31, 000

(e) speckle noise model: β =
32

(f) speckle noise model: β =
230

Figure 8: Comparison of different data fidelity models on
synthetic data of simulated anatomical structures biased
by Poisson noise.

to guarantee a segmentation of the center object without
pertubation of noise. In this case the trade-off between
smooth segmentations and the loss of details becomes ob-
vious. Figure 8e and 8f show the results in the case of the
speckle data fidelity term. Since we do not observe any
satisfying results for different values of β, we show two
representative segmentations for this model. Compared
to the results in the case of additive Gaussian noise, the
choice of the appropriate noise model has a significantly
higher impact on the segmentation results in the presence
of Poisson noise.

Finally, we investigate the case of data biased by multi-
plicative speckle noise as shown in Figure 9a. The seg-
mentation result for the corresponding speckle data fi-
delity term (cf. (16)) is presented in Figure 9b. Again,
we observe that we are able to satisfy both segmentation
criterions when choosing the correct noise model. In Fig-
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(a) data perturbed by mult.
speckle noise

(b) speckle noise model: β =
110

(c) Gaussian noise model:
β = 2, 000

(d) Gaussian noise model:
β = 19, 000

(e) Poisson noise model: β =
40

(f) Poisson noise model: β =
110

Figure 9: Comparison of different data fidelity models on
synthetic data of simulated anatomical structures biased
by multiplicative speckle noise.

ure 9c and 9d the segmentation results for the data fi-
delity term of additive Gaussian noise are presented. As
for the results in Figure 8c and 8d, the Gaussian model
is inappropriate in the presence of multiplicative speckle
noise. For the Poisson fidelity term we observe in Figure
9e and 9f similar effects compared to the Gaussian case,
but with a better trade-off between smooth segmentation
results and the preservation of small image structures.

In conclusion, we emphasize that the incorporation of
physical noise modeling for given data has a significant
impact on segmentation results and leads to improved ac-
curacy in applications dealing with non-Gaussian noise.

7 Experimental results on real data

In this section we use real data from biomedical imag-
ing and investigate the performance of the proposed
variational segmentation framework in real segmentation
tasks. Therefore, we present images from two imaging
modalities dealing with the non-Gaussian noise models
discussed in Section 2.2.

7.1 Positron emission tomography

To test our variational segmentation framework on data
which are heavily perturbed by noise we take images
from positron emission tomography (PET). PET belongs
to the field of molecular imaging in which a specific ra-
dioactive tracer is injected into blood circulation and its
binding to certain molecules is studied [83]. One possible
tracer is, e.g., H2[15O] (radioactive-labeled water), which
can be used for quantification of the myocardial blood
flow [71]. However, this quantification needs a segmen-
tation of myocardial tissue [10, 71], which is extremely
difficult to realize due to a very low signal-to-noise (SNR)
ratio of H2[15O] data.

Figure 10a shows a slice of a reconstructed H2[15O] study
using the expectation maximization (EM) algorithm [72]
with signal intensities in the range of up to 2, 000, 000
counts. The data were captured in the moment, when
the tracer flooded into the left ventricle of the human
heart. This very short interval leads to a high level of
Poisson noise in the data and thus in the corresponding
EM reconstructions, causing a challenging task for most
segmentation algorithms. Based on our observations in
the last section we choose the Poisson data fidelity term
(cf. (15)) and use Fisher information as regularization
functional. For our experiment we focus on the region-
of-interest shown in Figure 10b, which corresponds to
the area around the myocardial tissue. As regularization
parameters we determine αt = 140, αb = 20, and β =
380, 000 (low SNR).

In Figure 10c and 10d we show the approximation
and segmentation result in the region-of-interest, respec-
tively. The segmented region corresponds to the my-
ocardium including the left and right ventricle. As can be
seen, the proposed segmentation framework can segment
the myocardium in data with very low SNR. Though,
we were not able to separate left and right ventricle as it
would be needed for myocardial perfusion quantification.
The reason for this is the used two-phase formulation in
(19), which is not suitable to segment different uptake
levels and additional background activity.
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(a) EM reconstruction (b) region-of-interest

(c) Fisher approximation (d) segmentation contour using
Fisher regularization (Poisson
model)

Figure 10: Segmentation result for reconstruction of car-
diac H2[15O] PET data.

7.2 Medical ultrasound imaging

The last case we want to investigate is medical ultrasound
data. As proposed in [45, 52] the physical noise occurring
in this imaging modality can be modeled by multiplica-
tive speckle noise as presented in 2.2.3 and hence the
speckle data fidelity term (cf. (16)) is an appropriate
choice in this context. In the following we concentrate
on the task of blood vessel segmentation, which can be
used in perfusion studies of different organs, e.g., the my-
ocardium [33, 82].

In Figure 11a we illustrate a section of an ultrasound
B-mode image containing parts of a human liver. The
darker regions within these data represent the blood ves-
sels to be segmented. In Figure 11b-11d we present three
segmentation results for β ∈ {1000, 2000, 5000} using
the classical Chan-Vese model (additive Gaussian noise)
from Section 4.2. As can be seen we were not able to seg-
ment the small structures of the blood vessels accurately
without over-segmenting the data. We compare the best
segmentation result for the classical CV approach with
β = 2000 against the corresponding extension to the
speckle noise model presented in Section 4.3. As can
be seen in Figure 11e by exchanging only the data fi-
delity term we can observe a significant improvement in
the segmentation accuracy and suppression of noise ar-
tifacts. Although, the result in Figure 11e appears to

(a) US data of human liver

(b) segmentation contour using
classical CV (β = 1000)

(c) segmentation contour using
classical CV (β = 5000)

(d) segmentation contour using
classical CV (β = 2000)

(e) segmentation contour us-
ing extension of CV (speckle
model)

(f) segmentation contour using
Fisher regularization (speckle
model)

(g) Fisher approximation
(speckle model)

Figure 11: Segmentation results for ultrasound (US) data
from an examination of a human liver comparing classical
and extended Chan-Vese (CV) method for speckle noise,
and Fisher information for speckle noise.
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segment the blood vessels within the image correctly, we
can identify some small structures that have been left
out. In order to include these microvessels we exchanged
the regularization term to the Fisher information for tar-
get and background region and used the regularization
parameters αt = 15, αb = 25, and β = 25. We could
not achieve any meaningful segmentation result using the
squared H1-seminorm regularization due to oversmooth-
ing of small structures.

As illustrated in Figure 11f the proposed segmentation
framework is able to segment even smallest structures
within the given data. Especially in low contrast re-
gions, e.g., the lower-left corner of the image, we observe
satisfying segmentation results. Figure 11g shows the
corresponding approximation of the data for the Fisher
information regularization and illustrates a non-constant
approximation of the target region while preserving edges
at the blood vessels within the image.

8 Conclusion

In this work we proposed a variational segmentation
framework for different physical noise models and ana-
lyzed the corresponding mathematical theory. In partic-
ular, we investigated a selected variety of regularization
terms and noise models, i.e., additive Gaussian noise,
Poisson noise, and multiplicative speckle noise, for au-
tomated image segmentation. Experimental results on
synthetic and real data show the necessity to adapt an
algorithm to present conditions, e.g., incorporating a-
priori knowledge about the solution.

We plan to translate the theoretical fundament provided
in this work to more real world applications and to vali-
date our variational segmentation framework on a variety
of realistic data. Furthermore, we plan to explore the in-
corporation of more physical noise models, e.g., Rayleigh-
or Gamma-perturbed data.
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[23] C. Chesnaud, P. Réfrégier, and V. Boulet,
Statistical region snake-based segmentation adapted
to different physical noise models, IEEE Trans. Pat-
tern Anal. Mach. Intell., 21 (1999), pp. 1145–1157.

[24] G. Chung and L. A. Vese, Energy minimization
based segmentation and denoising using a multilayer
level set approach, in Proceedings of the 5th Interna-
tional Workshop on Energy Minimization Methods
in Computer Vision and Pattern Recognition, LNCS
3757, Springer, 2005, pp. 439–455.

[25] D. Cremers, T. Pock, K. Kolev, and
A. Chambolle, Convex relaxation techniques for
segmentation, stereo, and multiview reconstruction,
in Markov Random Fields for Vision and Image Pro-
cessing, MIT Press, 2011.

[26] D. Cremers, M. Rousson, and R. Deriche, A
review of statistical approaches to level set segmen-

tation: Integrating color, texture, motion and shape,
Int. J. Comput. Vision, 72 (2007), pp. 195–215.

[27] N. Dey, L. Blanc-Féraud, C. Zimmer,
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Wasserstein gradient flow of the Fisher information
and the quantum drift-diffusion equation, Arch. Ra-
tion. Mech. Anal., 194 (2009), pp. 133–220.

[35] E. Giusti, Minimal Surfaces and Functions of
Bounded Variation, vol. 80 of Monographs in Math-
ematics, Birkhäuser, 1984.
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Équations Elliptiques, Academia, Prague, and Mas-
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