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Abstract We propose an exact global minimization

framework for variational image segmentation models,
such as the Chan-Vese model, involving four regions. A

global solution is guaranteed if the data term satisfies

a mild condition. It is shown theoretically and experi-

mentally that such a condition holds in practice for the

most commonly used type of data terms, such as the
Chan-Vese model and Mumford Shah model. If the con-

dition is violated, convex and submodular relaxations

are proposed which are not guaranteed to produce ex-

act solutions, but tends to do so in practice. We also
build up a convex relaxation for Pott’s model with four

regions, which is at least as tight as the tightest ex-

isting relaxation, but significantly simpler. Algorithms

are proposed which are very efficient due to the simple

formulations.

1 Introduction

Image segmentation is one of the core problems in im-

age processing and computer vision. Based on the in-
tensity values of the input image, one would like to par-

tition the image domain into several regions, each repre-

senting an object. Energy minimization formulations of

such problems have demonstrated to be especially pow-

erful, and have been developed independently in the dis-
crete and variational community. The Mumford-Shah

model [34] and Chan-Vese model [15,39] have been es-

tablished as some of the most fundamental variational

image segmentation models, whereas Pott’s model has
become one of the most important discrete optimization

models. Pott’s model and the Mumford-Shah model are

closely related in the limit as the number of pixels goes

to infinity.
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Minimization of the energy in these models poses

a fundamental challenge from a computational point
of view. In a discrete setting Pott’s model is NP-hard,

therefore an algorithm for minimizing the energy ex-

actly with reasonable efficiency is unlikely to exist. Nu-

merical approaches for the variational models, such as

the level set method, involves the minimization of non-
convex energy functionals. Therefore algorithms for min-

imizing the energy may easily get stuck in poor local

minima close to the initialization.

One notable exception where efficient global mini-

mization methods are available is segmentation prob-

lems with 2 regions. Potts model restricted to two re-
gions is computationally tractable in the discrete set-

ting and can be minimized by established algorithms

such as max-flow/min-cut (graph cuts) [19,9]. Convex

reformulations of variational segmentation models with

2 regions have been proposed in [19], which can be used
to design algorithms for computing global minima.

If the number of regions is larger than two, there are
no available algorithms that can produce global min-

ima. A level set formulation of the Chan-Vese model

with multiple regions appeared in [39], which has since

become very popular. It was proposed to solve the re-
sulting gradient descent equations numerically, leading

to a local minima of the non-convex energy functional

close to the initialization. In a discrete setting, alpha-

expansion and alpha-beta swap [9,10] are the most pop-

ular algorithms for approximately minimizing the en-
ergy in Pott’s model. More recently, attempts to derive

convex relaxations in a continuous variational setting

have been proposed [42,28,35,6,12]. Instead of solving

the original non-convex problem to a local minimum, a
convex ”relaxation” of the problem is solved globally.

These approaches cannot in general produce global so-

lutions of the original problems, but lead to good ap-
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proximations in many practical situations. If the regu-

larization term promotes a linear inclusion property of

the regions the optimization problem becomes easier,

and the energy can be minimized exactly by graph cuts

[24], but this assumption is usually not valid in image
segmentation applications.

The main advantages of variational models over dis-

crete optimization models is the rotational invariance

and ability to accurately represent geometrical entities
such as curve length and surface area without grid bias.

The discrete models are biased by the discrete grid, and

will favor curves or surfaces that are oriented along with

the grid, e.g. in horizontal, vertical or diagonal direc-

tions. On the other hand, discrete optimization prob-
lems are much easier to analyze and characterize by the

established field of computational complexity. It is also

easier to design global minimization algorithms in the

discrete setting, by applying established combinatorial
optimization algorithms. This includes in particular al-

gorithms for max-flow and min-cut, which may also be

very efficient under certain implementations [9]. How-

ever, a disadvantage is that these algorithms do not

parallelize as easily, in contrast to continuous optimiza-
tion algorithms which are suitable for massive parallel

implementation on graphics processing units (GPUs).

1.1 Contributions

This paper proposes an exact global minimization frame-

work for segmentation problems with 4 regions in the

level set framework of Vese and Chan [39], both in

a discrete setting and in a convex variational setting.
Because of a slight simplification of the regularization

term in this model, global minimization is not NP-hard.

First, in Section 3, it is shown that a discrete version

of the model can be minimized globally by computing

the minimum cut a novel graph, under a (mild) sub-
modularity condition on the data term. In Section 5,

a reformulation of the Chan-Vese model is proposed in

the variational setting, which is convex under the same

condition on the data term that made the discrete ver-
sion submodular. A threholding scheme, similar to the

one that appeared in [16] for two region problems, is

proposed for converting solutions of the convex relaxed

problem into global solutions of the original problem.

It is shown theoretically (Section 4) and experimen-
tally (Section 9.1) that the condition on the data term,

which guarantees a global minimum, is expected to hold

for commonly used data terms, such as those in the

Mumford-Shah model and Chan-Vese model. If the con-
dition does not hold, simpler submodular and convex

relaxations are proposed in Section 6. The relaxations

are not guaranteed to produce a global minimum of the

original problems, but conditions on the computed solu-

tion are derived for when they do. Experiments demon-

strate that global solutions can be obtained in practice

also in these cases.

In section 7, a new convex relaxation for variational
partitioning problems with Potts regularization is pro-

posed, by building on the previous results. The relax-

ation is at least as tight as the tightest existing relax-

ation [35], but significantly simpler. In consequence, it
is much easier to handle computationally. We also be-

lieve the proposed relaxation is the strictly tightest that

exists, but a proof of this will be quite involved and is

postponed to a future paper. Instead some arguments

are given to support the claim.
Efficient algorithms for the new convex formulations

and relaxations are proposed in Section 8, inspired by

previous work on continuous max-flow [40,3].

We focus fully on problems with 4 regions in this
work. Problems with 4 regions are important. By the

4 colour theorem, 4 regions suffice to describe any par-

tition of a 2D image. It is an open problem how to

incorporate this property into the segmentation models

in general. The method applies directly in some set-
tings like [23], where the four colour theorem was used

to segment 2D images in a level set framework with

four regions, in case rough a priori information of the

object locations was provided in advance. Furthermore,
in many applications one would like to divide the image

into 4 regions, such as brain MRI segmentation where

one wants to separate cerebrospinal fluid, gray matter,

white matter and background. The formulations can

also be extended to problems with more than four re-
gions. However, it is complicated to derive a general

framework that supports an arbitrary number of re-

gions. Instead, each special case (e.g. 8, 16 regions etc.)

should be investigated separately. Such generalizations
will be the topic of a future paper.

The sections on discrete optimization: Section 3 and

6.1 also appeared in shorter form in our conference pa-

per [4,5]

2 Chan-Vese model, Potts model and the

piecewise constant Mumford Shah model

The Pott’s model originates from statistical mechanics

[37], but has become fundamentally important in image
processing and computer vision, especially as energy

minimization formulation of segmentation and group-

ing problems. If the image domain Ω is continuous, one

seeks a partition {Ωi}ni=1 of Ω. Let fi(x) be the cost of
assigning x to Ωi, the Pott’s model generalized to the

continuous setting attempts to assign each x to the re-

gion Ωi with smallest cost fi(x), while minimizing the
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lengths of the boundaries of the partitions Ωi as spatial

regularity

min
{Ωi}n

i=1

n
∑

i=1

∫

Ωi

fi(x) dx + ν

n
∑

i=1

|∂Ωi| (1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k 6= l .

Here |∂Ωi| denotes the size of the boundary of the sub-

domain Ωi, i.e. the curve length in 2D and surface area

in 3D. In this paper, we let N denote the dimension of

Ω. The data cost functions fi should depend in some
sense on the input image I, an important example is

fi(x) = |I(x)− ci|
β , i = 1, ..., n (2)

where ci ∈ R are parameters associated with each Ωi,
for instance the mean intensity value inside Ωi when

β = 2. The piecewise constant Mumford Shah model

[34] has the form of (1) with data terms (2) and β = 2,

but minimizes additionally over the parameters ci ∈ R

min
{Ωi}n

i=1
,{ci}n

i=1

n
∑

i=1

∫

Ωi

|I(x)− ci|
β dx+ ν

n
∑

i=1

|∂Ωi| (3)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k 6= l ,

For fixed c, (3) has the same form as Pott’s model.
A simple algorithm can be constructed which alterna-

tively minimizes (1) with respect to ci and Ωi until con-

vergence. Although a global solution cannot be guar-

anteed, such a scheme is quite robust as shown in [2].

There has also been attempts to derive convex relax-
ations for the joint minimization problem (3) in case

n = 2 [11]. The most challenging problem is to opti-

mize in terms of the regions, and that will be the topic

of this paper.

2.1 Representation by level set functions

As a numerical realization, Chan and Vese [15,39] pro-

posed to represent the Mumford-Shah model with level
set functions, and solve the resulting gradient descent

equations numerically. In case of two region (n = 2),

the problem can be expressed in terms of a level set

function φ which satisfies φ(x) > 0 for x ∈ Ω1 and
φ(x) < 0 for x ∈ Ω2 as

min
φ

∫

Ω

{H(φ)f1 + (1−H(φ))f2}+ ν|∇H(φ)| dx (4)

where H(·) : R 7→ R is the Heaviside function H(x) = 0

if x < 0 and H(x) = 1 if x ≥ 0.

Instead of using the non-convex heaviside functions,

the problem can also be written directly in terms of a

binary function φ such that φ(x) = 1 for x ∈ Ω1 and

φ(x) = 0 for x in Ω2. This was first done in [31,32],

coined the piecewise constant level set method (PCLSM),

and resulted in the energy functional

min
φ∈B

∫

Ω

{φf1 + (1 − φ)f2}dx+ ν

∫

Ω

|∇φ| dx. (5)

In this paper we use the notation B for the set of binary

functions, i.e.

B = {φ : φ(x) ∈ {0, 1}, ∀x ∈ Ω}. (6)

In [39], Vese and Chan proposed a multiphase level set

framework for the piecewise constant Mumford Shah
model. By using m = log2(n) level set functions, de-

noted φ1, ..., φm, n regions could be represented in terms

of the nonconvex heaviside functions H(φ1), ..., H(φm).

An important special case is the representation of 4 re-
gions by two level set functions φ1,φ2 as follows

min
φ1,φ2

E(φ1, φ2) = ν

∫

Ω

|∇H(φ1)|dx+ ν

∫

Ω

|∇H(φ2)|dx

(7)

+

∫

Ω

{H(φ1)H(φ2)f2 +H(φ1)(1 −H(φ2))f1

+(1−H(φ1))H(φ2)f4 + (1−H(φ1))(1−H(φ2))f3}dx.

The above model can also be formulated directly in
terms of two binary functions φ1, φ2, which represents

the 4 regions as in Table 1. The resulting energy func-

tional is then

min
φ1,φ2∈B

E(φ1, φ2)

= ν

∫

Ω

|∇φ1|dx + ν

∫

Ω

|∇φ2|dx+ Edata(φ1, φ2), (8)

subject to (6), where

Edata(φ1, φ2) =

∫

Ω

{φ1φ2f2 + φ1(1− φ2)f1

+(1− φ1)φ2f4 + (1− φ1)(1 − φ2)f3}dx.

where f was given by (2) with β = 2. The problem
(8) is nonconvex because the binary constraints (6) are

nonconvex and the energy functional Edata(φ1, φ2) is

nonconvex in φ1, φ2. The above level set formulation

of the Mumford-Shah model is often referred to as the

Chan-Vese model.
Note that we have made a permutation in the in-

terpretation of the regions compared to [39], see Table

1. It can be checked that the energy is still exactly the

same for all possible φ1, φ2 (if the data functions fi
are permuted accordingly). This permutation is crucial

for making the corresponding discrete energy function

submodular.
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As pointed out in [39], the level set formulation (7),

(8) does not correspond exactly to the length term in

Pott’s model, because two of the six boundaries are

counted twice in (8), namely the boundary between Ω1

and Ω4 and the boundary between Ω2 and Ω3. The
remaining 4 boundaries are counted once.

Original Permuted

x ∈ region 1 iff φ1(x) = 1, φ2(x) = 1 φ1(x) = 1, φ2(x) = 0

x ∈ region 2 iff φ1(x) = 1, φ2(x) = 0 φ1(x) = 1, φ2(x) = 1

x ∈ region 3 iff φ1(x) = 0, φ2(x) = 1 φ1(x) = 0, φ2(x) = 0

x ∈ region 4 iff φ1(x) = 0, φ2(x) = 0 φ1(x) = 0, φ2(x) = 1

Table 1 Representation of four regions by two binary functions.
The interpretation of the regions can be permuted without influ-
encing the energy.

2.1.1 Discrete Approximations

The variational problems in the last section can also

be formulated in the discrete setting as combinatorial

optimization problems. Let us first mention there are
two variants of the total variation term. The isotropic

variant, by using 2-norm

TV2(φ) =

∫

Ω

|∇φ|2 dx =

∫

Ω

√

|φx1
|2 + ...+ |φxN

|2 dx

(9)

and the anisotropic variant, by using 1-norm

TV1(φ) =

∫

Ω

|∇φ|1 dx =

∫

Ω

|φx1
|+ ...+ |φxN

| dx. (10)

The anisotropic version is not rotationally invariant and

will therefore favor results that are aligned along the co-
ordinate system. The isotropic variant is preferred, but

cannot be handled by discrete optimization algorithms

(e.g. mapped to the cut on a graph).

Let P denote the set of grid points, and N k
p denote

the set of k nearest neighbors of p ∈ P . In case N = 2,
P = {(i, j) ⊂ Z

2} and for each p = (i, j) ∈ P

N 4
p = {(i± 1, j), (i, j ± 1)} ∩ P

N 8
p = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)} ∩ P .

Let φ1
p and φ2

p denote the function values of φ1 and φ2

at p ∈ P and denote the set of binary functions as

B = {φ : φp ∈ {0, 1}, ∀p ∈ P} (11)

A discrete approximation of the two region model (5)

can be derived as

min
φ∈B

∑

p∈P

φpf1(p) + (1 − φp)f2(p) + ν
∑

p∈P

∑

q∈Nk
p

wpq|φp − φq |,

(12)

where the usual choice of the data functions f are the

discrete version of (2)

fi(p) = |ci − u0
p|

β . (13)

If the weights are set to wpq = 1, and the neighbor-

hood system is set to 4 (k = 4), the last term corre-

sponds to a forward discretization of the anisotropic
total variation of φ. The weights wpq can be derived by

the Cauchy-Crofton formula of integral geometry as in

[8], to approximate the isotropic total variation (8) (eu-

clidian curve length). However, this requires that both

the mesh size goes to zero and the number of neighbors
in the neighborhood system N k goes to infinity, which

complicates computation.

In the same manner, a discrete approximation of the

model with four regions (8) can be expressed as

min
φ1,φ2∈B

Ed(φ
1, φ2) =

∑

p∈P

Edata
p (φ1

p, φ
2
p)

(14)

+ν
∑

p∈P

∑

q∈Nk
p

wpq |φ
1
p − φ1

q |+ ν
∑

p∈P

∑

q∈Nk
p

wpq|φ
2
p − φ2

q |

where

Edata
p (φ1

p, φ
2
p) = {φ1

pφ
2
pf2(p) + φ1

p(1− φ2
p)f1(p)) (15)

+(1− φ1
p)φ

2
pf4(p) + (1− φ1

p)(1− φ2
p)f3(p)}.

2.2 Related work on global optimization

2.2.1 Two regions

In case of two regions, the Chan-Vese/Mumford-Shah/Potts
model can be minimized globally. The discrete version

can be minimized by computing the minimum cut on

a graph [19]. In the continuous setting, a convex relax-

ation approach can be applied as shown in [16]. The

idea is to relax the non-convex binary constraint by the
convex constraint φ(x) ∈ [0, 1], ∀x ∈ Ω. It was shown

that thresholding the solution of the relaxed problem

at almost any threshold in (0, 1] yields an optimal so-

lution of the original problem. Since (5) is convex, this
procedure would yield the globally optimal solution.

One might immediately think the same idea could

be extended to the multiphase case by iteratively min-

imizing (8) for φ1 and φ2 in B′ and finally threshold
the results. However, since Edata(φ1, φ2) is not convex

with respect to φ1 and φ2, the minimization would not

be global.
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2.2.2 Multiple linearly ordered labels

In case the number of regions is larger than two, it is

possible to solve exactly the simpler problem where the

regularization term promotes a linear inclusion prop-
erty of the regions. Define the ”labeling function” u

over the continuous image domain Ω or the discrete

grid point P . Any partition {Ωi}ni=1 can be described in

terms of u by the convention u(x) = i, ∀x ∈ Ωi, i =

1, ..., n. Equivalently, a partition {Pi}
n
i=1 of the discrete

domain P can be expressed in u as up = i, ∀p ∈
Pi, i = 1, ..., n. Consider the following integer con-

strained problem

min
u

∑

p∈P

fup
(p) + ν

∑

p∈P

∑

q∈Nk
p

wpq|up − uq| (16)

subject to up ∈ {1, ..., n}, ∀p ∈ P . A continuous equiv-

alent can be defined as

min
u

∫

Ω

fu(x)(x) + ν

∫

Ω

|∇u| dx, (17)

subject to u(x) ∈ {1, ..., n}, ∀x ∈ Ω, which was first

done in [30]. In (17) and (16) the data term fu(x)(x)

is the data cost of assigning x to region Ωu(x). How-

ever, the regularization term of (17) does not corre-
spond to the length term in the Pott’s model (1) be-

cause of its dependency size of the discontinuities of u.

Instead of penalizing the jump from each region to the

next equally, the regularization term overpenalizes the
boundary between regions Ωi and Ωj where the indices

i and j differ by more than one. The overpenalization is

much more sever than the representation (8), see Fig-

ure 1 for an illustration. Such an overpenalization may

cause the boundary between such regions to split.

Ishikawa [24] showed that the discrete model (16)

can be minimized globally by computing the minimum

cut on a graph. Later, a convex optimization framework
was established for the continuous version (17) in [36].

2.2.3 Convex relaxations for Pott’s model

Convex relaxation methods have recently been proposed

for approximately minimizing the energy in the Pott’s

model with more than two regions n > 2 [42,28,35,13,

6]. However, unlike the relaxation for the model with

two regions (5), the model (17) with linearly ordered la-
bels, and the model (8) which will be presented in this

work, such relaxation approaches are not in general ex-

act. They may result in exact global solutions in some

situations, but will otherwise produce approximate so-
lutions. The relaxation of [35,13] is tightest, meaning

it will lead to the highest energy before binarization

(thresholding).

(a)

Fig. 1 The model (17) overcounts more severly than (8). In
the model (17), the transition Ω1 −Ω4 is penalized 3 times, the
transitions Ω1 − Ω3 and Ω2 − Ω4 are penalized 2 times while
transitions Ω1−Ω2 and Ω3−Ω4 are penalized once. In the model
(8), the transition Ω1−Ω4 is penalized 2 times, while all the other
transitions are penalized once.

3 Global minimization of 4-region Chan-Vese
model in discrete setting by graph cuts

In this section we show how the discrete approximation

of the Chan-Vese model (14) can be minimized exactly
by computing the minimum cut on a novel graph. In

section 5-8, a different approach is proposed in a varia-

tional setting based on convex optimization.

3.1 Brief review of Max-flow and Min-cut

Min-cut and max-flow are optimization problems de-

fined over a graph which are dual to each others. Im-
portant energy minimization problems in image pro-

cessing and computer vision can be represented as min-

cut or max-flow problems over certain graphs, and be

optimized globally by established efficient max-flow al-
gorithms. Such a min-cut/max-flow approach is often

called graph cuts in computer vision [18,7,9].

A graph G = (V , E) is a set of vertices V and a set

of directed edges E . We let (v, w) denote the directed

edge going from vertex v to vertex w, and let c(v, w)

denote the weight on this edge. For each v ∈ V the

neighborhood system N+(v) is defined as all w ∈ V
such that (v, w) ∈ E and N−(v) is defined as all w ∈ V
such that (w, v) ∈ E . In the graph cut scenario there

are two distinguished vertices in V , the source {s} and

the sink {t}. A cut on G is a partitioning of the vertices
V into two disjoint connected sets (Vs, Vt) such that

s ∈ Vs and t ∈ Vt . The cost of the cut is defined as

c(Vs,Vt) =
∑

(v,w)∈E s.t. v∈Vs,w∈Vt

c(v, w). (18)
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The minimum cut problem is the problem of finding a

cut of minimum cost.

The maximum flow problem can be defined over the

same graph. A flow p on G is a function p : E 7→ R. The
weights c(e) are upper bounds (capacities) on the flows

p(e) for all e ∈ E , i.e.

p(e) ≤ c(e), ∀e ∈ E (19)

For a given flow p, the residual capacities are defined as

R(e) = c(e)−p(e) ∀e ∈ E . In addition, flow conservation
is required at each vertex except s and t

∑

w∈N+(v)

p(v, w) −
∑

w∈N−(v)

p(w, v) = 0, ∀v ∈ V (20)

The max-flow problem is to find the maximum amount

of flow that can be pushed from {s} to {t} under the
above flow constraints. The total amount of flow in the

graph is at any time equal to the total amount of out-

going flow on the source edges. The max-flow problem

can therefore be formulated as

max
p

∑

v∈V

p(s, v) (21)

subject to (19) and (20). The theorem of Ford and Fulk-

erson says this is dual to the problem of finding the cut

of minimum cost on G, the min-cut problem. There-
fore, efficient algorithms for finding max-flow, such as

the augmented paths method [27] can be used for find-

ing minimum cuts in graphs. An efficient implementa-

tion of this algorithm specialized for image processing

problems can be found in [7]. This algorithm, which is
available on-line has been used in our experiments.

Graph cuts have been used in computer vision for

minimizing energy functions of the form

min
xi∈{0,1}

Ei(xi) +
∑

i<j

Ei,j(xi, xj),

where typically Ei is a data term, Ei,j is a regulariza-

tion term, i is the index of each grid point (pixel) and

xi is a binary variable defined for each grid point. In
order to be representable as a cut on a graph, it is re-

quired that the energy function is submodular [25,18],

i.e. the regularization term must satisfy

Ei,j(0, 0)+Ei,j(1, 1) ≤ Ei,j(0, 1)+Ei,j(1, 0), ∀i < j

3.2 Graph construction for energy minimization over
multiple regions

Observe that in the discrete energy function (14), not

only the regularization term, but also the data term is

(a) (b)

Fig. 2 (a) The graph corresponding to the data term at one grid
point p. (b) A sketch of the graph corresponding to the energy
function of a 1D signal of two grid points p and q. Data edges
are depicted as red edges and regularization edges are depicted
as blue arrows.

composed of pairwise interactions between binary vari-

ables. In this section we will construct a graph G such

that there is a one-to-one correspondence between cuts
on G and the binary functions φ1 and φ2, provided the

data term is submodular, i.e.

Edata
p (1, 1)+Edata

p (0, 0) ≤ Edata
p (1, 0)+Edata

p (0, 1) (22)

for each p ∈ P . Furthermore, the minimum cost cut

will correspond to binary functions φ1 and φ2 that min-

imizes the energy (14)

min
(Vs,Vt)

c(Vs,Vt) = min
φ1,φ2∈B

Ed(φ
1, φ2) +

∑

p∈P

σp. (23)

where σp ∈ R are fixed for each p ∈ P . In the graph,

two vertices are associated with each grid point p ∈ P .

They are denoted vp,1 and vp,2, and correspond to each

of the level set functions φ1 and φ2. Hence the set of
vertices is formally defined as

V = {vp,i | p ∈ P , i = 1, 2} ∪ {s} ∪ {t}. (24)

The edges are constructed such that the relationship

(23) is satisfied. We begin with edges constituting the

data term of (14). For each grid point p ∈ P they are

defined as

ED(p) = (s, vp,1) ∪ (s, vp,2)

∪(vp,1, t) ∪ (vp,2, t) ∪ (vp,1, vp,2) ∪ (vp,2, vp,1). (25)

The set of all data edges are denoted ED and defined

as ∪p∈PED(p). The edges corresponding to the regular-
ization term are defined as

ER = {(vp,1, vq,1), (vp,2, vq,2) ∀p, q ⊂ P s.t.q ∈ N k
p }.

(26)
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For any cut (Vs, Vt), the corresponding level set func-

tions are defined by

φ1
p =

{

1 if vp,1 ∈ Vs,

0 if vp,1 ∈ Vt,
φ2
p =

{

1 if vp,2 ∈ Vs,

0 if vp,2 ∈ Vt.
(27)

Weights are assigned to the edges such that the rela-

tionship (23) is satisfied. Weights on the regularization

edges are simply given by

c (vp,1, vq,1) = c (vq,1, vp,1) = c (vp,2, vq,2) = c (vq,2, vp,2)

= νwpq , ∀p ∈ P , q ∈ N k
p .

(28)

We now concentrate on the weights on data edges ED.

For grid point p ∈ P , let

c(vp,1, t) = A(p), c(vp,2, t) = B(p), c(s, vp,1) = C(p),

(29)

c(s, vp,2) = D(p), c(vp,1, vp,2) = E(p), c(vp,2, vp,1) = F (p).

In Figure 2(a) the graph corresponding to an image of

one pixel p is shown. It is clear that these weights must

satisfy















A(p) +B(p) = f2(p) + σp

C(p) +D(p) = f3(p) + σp

A(p) + E(p) +D(p) = f1(p) + σp

B(p) + F (p) + C(p) = f4(p) + σp

(30)

This is a non-singular linear system for the weights

A(p), B(p), C(p), D(p), E(p), F (p). Negative weights are

not allowed. By choosing σp large enough there will ex-
ist a solution with A(p), B(p), C(p), D(p) ≥ 0. However,

the requirement E(p), F (p) ≥ 0 implies that

f1(p)+f4(p) = A(p)+B(p)+C(p)+D(p)+E(p)+F (p)−2σp

≥ A(p) +B(p) + C(p) +D(p)− 2σp = f2(p) + f3(p)

for all p ∈ P . By inserting the data term (15) for f , we

obtain the following requirement

|c2 − u0
p|

β + |c3 − u0
p|

β ≤ |c1 − u0
p|

β + |c4 − u0
p|

β, (31)

for all p ∈ P . Or, by assuming the image contains all

gray values I ∈ [0, L], a sufficient condition on the dis-

tribution of the constant values c1, ..., c4

|c2− I|β + |c3− I|β ≤ |c1− I|β + |c4− I|β, ∀I ∈ [0, L].

(32)

If the distribution of the constant values satisfies (32),
there exists a solution to (30) with E(p), F (p) ≥ 0 for

all p ∈ P . Hence the problem can be solved globally by

computing the minimum cut on the graph.

(a) (b)

(c) (d)

Fig. 3 (a), (b) and (c) distributions of c which makes energy
function submodular for all β. (d) distribution of c which may
make energy function nonsubmodular for small β.

4 Analysis of submodular/convexity condition

We give a detailed analysis of the sufficient submod-

ular condition (32) in case of data terms of the form
(2). The condition is also sufficient for making the new

continuous variational formulation of (8) convex. The

condition says something about how evenly {ci}4i=1 are

distributed. First we characterize situations for which

(32) is always satisfied.

Proposition 1 Let 0 ≤ c1 < c2 < c3 < c4. (32) is

satisfied for all I ∈ [ c2−c1
2 , c4−c3

2 ] for any β ≥ 1.

Proposition 2 Let 0 ≤ c1 < c2 < c3 < c4. (32) is

satisfied for any β ≥ 1 if c2 − c1 = c4 − c3.

The proof of Prop 1, 2, 3 and 4 can be found in the

appendix. Further, it can be observed that (32) becomes
less strict as β increases, as the next two results show.

Proposition 3 Let 0 ≤ c1 < c2 < c3 < c4. If (32) is

satisfied for some β0 ≥ 1, then (32) is satisfied for all

β ≥ β0.

Proposition 4 Let 0 ≤ c1 < c2 < c3 < c4. There

exists a C ∈ N such that (32) is satisfied for any β ≥ C.

In fact we have observed that for β = 2, (32) is always

satisfied in practice for optimal constant values.

Examples where the condition is satisfied and may

fail are depicted in Figure 3. Prop. 3 is illustrated in Fig-

ure 3 (b) and (c). Figure 3 (d) shows the only possibility
in which (32) may be violated, i.e. c1, c2, c3 are clus-

tered compared to c4 (the symmetrical version would

also be a problem). However, the model (3) will dis-

favor solutions where the constants are very clustered.
Numerous experiments on images from the database [1]

demonstrate that under L2 data fidelity, (32) is always

satisfied for optimal values of c. Under L1 data fidelity,

it may be more easily violated.

In case (31) does not hold at some p ∈ P , the energy
function is non-submodular. Not only does this mean

it cannot in general be minimized by graph cut. It also

implies the minimization problem is NP-hard, hence no

algorithm exists that is guaranteed to solve the prob-
lem in polynomial time (unless P = NP ). In Section

6 relaxations are proposed which can produce global

solutions for most practical problems.
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5 Exact convex formulation of 4-region

Chan-Vese model in the continuous setting

Recall that the energy functional of the optimization

problem (8) is non-convex in φ1, φ2. In this section we
derive a formulation of (8) which is convex under the

same condition (32) that made the discrete energy func-

tion (14) submodular, and hence allows for the compu-

tation of global minimizers.

For each x ∈ Ω, letA(x), B(x), C(x), D(x), E(x), F (x)

be a solution to the linear system















A(x) +B(x) = f2(x) + σ(x)

C(x) +D(x) = f3(x) + σ(x)
A(x) + E(x) +D(x) = f1(x) + σ(x)

B(x) + F (x) + C(x) = f4(x) + σ(x)

(33)

where σ(x) can be an arbitrary number. This is the

same linear system as (30). Define the weights

C1
s (x) = C(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = B(x), (34)

C12(x) = E(x), C21(x) = F (x).

It can be checked that the following problem is equiva-
lent to the original problem (8)

min
φ1,φ2

EP (φ1, φ2) =

∫

Ω

(1−φ1(x))C1
s (x)+(1−φ2(x))C2

s (x) dx

+

∫

Ω

φ1(x)C1
t (x) + φ2(x)C2

t (x) dx

+

∫

Ω

max{φ1(x) − φ2(x), 0}C12(x) dx

−

∫

Ω

min{φ1(x) − φ2(x), 0}C21(x) dx

+ν

∫

Ω

|∇φ1| dx+ ν

∫

Ω

|∇φ2| dx. (35)

such that φ1, φ2 ∈ B, where B is the set of binary func-

tions defined in (6).

Proposition 5 Let φ1, φ2 be a minimizer of (35), then
φ1, φ2 is a minimizer of (8).

Proof For any φ1, φ2 ∈ B, E(φ1, φ2) = EP (φ1, φ2) +
∫

Ω
σ(x) dx. Therefore φ1, φ2 is a minimizer of (35) if

and only if φ1, φ2 is a minimizer of (8).

The energy functional of (35) is convex if and only if

C12(x), C21(x) ≥ 0 for all x ∈ Ω, i.e. iff E(x), F (x) ≥ 0
for all x ∈ Ω. The weights C1

s (x), C
2
s (x), C

1
t (x) and

C2
t (x) can be negative without influencing the convexity

of (35). As in Section 3, by comparing the sum of row

1-2 and row 3-4 and requiring E(x), F (x) ≥ 0 we get

the condition

f2(x) + f3(x) = A(x) +B(x) + C(x) +D(x)

≤ A(x) +B(x) + C(x) +D(x) + F (x) + E(x)

= f1(x) + f4(x) (36)

for all x ∈ Ω. By inserting the usual data term (2), we
get the requirement

|c2−u0(x)|β+|c3−u0(x)|β ≤ |c1−u0(x)|β+|c4−u0(x)|β ,

(37)

for all x ∈ Ω. By assuming the image u0 contains all
gray values I in the interval [0, L] we get the follow-

ing sufficient condition that (33) has a solution with

E(x), F (x) ≥ 0, and hence that (35) is convex

|c2 − I|β + |c3 − I|β ≤ |c1 − I|β + |c4 − I|β ∀I ∈ [0, L].

(38)

This is exactly the same sufficient condition (32) that

made the discrete energy function submodular. Detailed

analysis of this condition was given in Section 4. Anal-
ogously to the discrete setting [4], we provide here the

explicit expression for one of the solutions of (33)

A(x) = max{f2(x) − f4(x), 0},

C(x) = max{f4(x) − f2(x), 0}

B(x) = max{f4(x) − f3(x), 0},

D(x) = max{f3(x) − f4(x), 0}

E(x) = f1(x) + f4(x)− f2(x)− f3(x), F (x) = 0.

where fi(x), i = 1, ...4 are normally given by (2).

In the following sections, it is shown that the binary

non-convex constraints B can be relaxed and replaced

by the convex constraints φ1(x), φ2(x) ∈ [0, 1] ∀x ∈
Ω, such that the overall problem is convex and can

be solved globally. In this paper we use the following
notation for the relaxed convex constraints

B′ = {φ : φ(x) ∈ [0, 1], ∀x ∈ Ω} (39)

We start by deriving a dual formulation of (35) in case

C12(x), C21(x) ≥ 0. The dual model is interpreted as

a maximum flow problem over a continuous generaliza-
tion of the graph in Section 3.2. The dual model elim-

inates the problem of nondifferentiability of the data

term in (35), and allows to build up very efficient al-

gorithms which are presented in Section 8. The dual
model is inspired by our previous work [40,41], where

continuous max-flow and min-cut models corresponding

to binary (two region) problems were derived.
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5.1 Dual model

In the following sections, it is shown that the following

maximization problem is a strong dual problem to (35)

with either constraints φ1, φ2 ∈ B or φ1, φ2 ∈ B′

sup
ps,pt,p12,q

ED(ps, pt, p
12, q) =

∫

Ω

p1s(x) + p2s(x) dx (40)

subject to

p1s(x) ≤ C1
s (x), p2s(x) ≤ C2

s (x),

p1t (x) ≤ C1
t (x), p2t ≤ C2

t (x), (41)

−C21(x) ≤ p12(x) ≤ C12(x), (42)

|q1(x)|2 ≤ α, |q2(x)|2 ≤ α, ∀x ∈ Ω. (43)

div q1(x)−p1s(x)+p1t (x)+p12(x) = 0, a.e. x ∈ Ω (44)

div q2(x)−p2s(x)+p2t (x)−p12(x) = 0, a.e. x ∈ Ω. (45)

where pis, p
i
t, p

12 ∈ L1(Ω) and qi ∈ (C∞(Ω))N for i =
1, 2. The dual problem (40) can be interpreted as a max-

imum flow problem over a continuous generalization of

the graph proposed in Section 3.2. The dual variables

pis, p
i
t, p

12, qi i = 1, 2 are interpreted as flow functions

on the edges.

5.1.1 Connection to discrete max-flow problem

Recall that for each p ∈ P the data term was repre-

sented by the 6 edges (25). The flow on each of these
edges are constrained by the capacities defined in (29)

and (28), i.e.

P 1
s (p) ≤ c(s, vp,1) flow ≤ capacity on (s, vp,1)

P 2
s (p) ≤ c(s, vp,2) flow ≤ capacity on (s, vp,2)

P 1
t (p) ≤ c(vp,1, t) flow ≤ capacity on (vp,1, t)

P 2
t (p) ≤ c(vp,2, t) flow ≤ capacity on (vp,2, t)

P̃ 12(p) ≤ c(vp,1, vp,2) flow ≤ capacity on (vp,1, vp,2)

P̃ 21(p) ≤ c(vp,2, vp,1) flow ≤ capacity on (vp,2, vp,1)

For notational convenience, we use capital letters P,Q

to denote flow in discrete edges. The dual variables
p1s, p

2
s, p

1
t , p

2
t , p̃

12, p̃21 over the continuous domain Ω are

inspired by these discrete flow functions. They are con-

strained by the capacities

C1
s (x), C

2
s (x), C

1
t (x), C

2
t (x), C

12(x) and C21(x) respec-
tively. Note that p̃12 and p̃21 should satisfy

0 ≤ p̃12(x) ≤ C21(x), 0 ≤ p̃21(x) ≤ C21(x)

for all x ∈ Ω, but can be merged in p12 = p̃12 − p̃21.
The above two constraints then transform into (42).

For each pair of neighboring pixels (p, q) ∈ N , two

edges were constructed in the discrete graph G: (vp,1, vq,1)

and (vp2
, vq,2). LetQ

1 denote the flow function on (vp,1, vq,1)

and Q2 the flow function on (vp,2, vq,2). These flows are

constrained by

0 ≤ Q1(vp,1, vq,1) ≤ wpq , 0 ≤ Q2(vp2
, vq,2) ≤ wpq,

for all (p, q) ∈ N . In the same vein, the two spatial flow

fields qi ∈ (C∞(Ω))N i = 1, 2 are defined in the con-

tinuous setting, and should satisfy (43). Observe that

the continuous counterpart allows to measure the mag-
nitude of q1, q2 with 2-norm, which in turn produces

rotationally invariant results.

The flow conservation constraint (20) should hold

at each vp,1 and vp,2, i.e.
∑

q∈Nk
p

Q1(vp,1, vq,1)− P 1
s (p) + P 1

t (p)− P̃ 12(p) + P̃ 21(p) = 0,

∑

q∈Nk
p

Q2(vp,2, vq,2)− P 2
s (p) + P 2

t (p) + P̃ 12(p)− P̃ 21(p) = 0,

∀p ∈ P . The final two constraints (44) and (45) are

generalizations of discrete flow conservation to the con-

tinuous setting. The total amount of discrete flow in the

graph (21) is in this case
∑

p∈P

P 1
s (p) + P 2

s (p)

The objective functional (40) is a generalization of the

above, and measures the total amount of flow that orig-
inates from the source.

5.2 Primal-dual model

Introduce the lagrange multipliers, φ1 and φ2, to the

linear equality constraints (44) and (45). The problem

(40) can then be reformulated as the primal-dual prob-

lem

sup
ps,pt,p12,q

inf
φ1,φ2

∫

Ω

p1s(x) + p2s(x) dx (46)

+

∫

Ω

φ1(x)(div q1(x) − p1s(x) + p1t (x) + p12(x)) dx

+

∫

Ω

φ2(x)(div q2(x)− p2s(x) + p2t (x)− p12(x)) dx.

subject to (41), (42) and (43). By rearranging we get

sup
ps,pt,p12,q

inf
φ1,φ2

∫

Ω

(1−φ1(x))p1s(x)+ (1−φ2(x))p2s(x) dx

(47)

+

∫

Ω

φ1(x)p1t (x)+φ2(x)p2t (x) dx+

∫

Ω

(φ1(x)−φ2(x))p12(x) dx

+

∫

Ω

φ1(x) div q1(x) dx +

∫

Ω

φ2(x) div q2(x) dx.

subject to (41), (42) and (43).



10

5.3 Primal model

The inf and sup operators of the primal-dual model

(47) can be interchanged, because (47) satisfies all the

conditions of the mini-max theorem [17]. It also follows

that (47) has at least one saddle point. Observe that

all the dual variables pis, p
i
t, p

12, qi, i = 1, 2 in (47) are
independent, and can be optimized separately. The first

4 terms of (47) can be rewritten for i = 1, 2 as

sup
pi
s(x)≤Ci

s(x)

(1− φi(x))pis(x) =

{

(1− φi(x))Ci
s(x) if φi ≤ 1

∞ if φi > 1

(48)

sup
pi
t(x)≤Ci

t(x)

φi(x)pit(x) =

{

φi(x)Ci
t (x) if φi ≥ 0

∞ if φi < 0
(49)

From (48) and (49) it follows that optimal variables

φ1, φ2 must satisfy the constraints

φ1(x) ∈ [0, 1], φ2(x) ∈ [0, 1], ∀x ∈ Ω, (50)

i.e. φ1, φ2 ∈ B′ defined in (39). If this was not the case,
the primal-dual energy (47) would be infinite, contra-

dicting the existence of at least one saddle point.

The 5th term can also be optimized for p12 pointwise

as follows

sup
−C21(x)≤p12(x)≤C12(x)

(φ1(x)− φ2(x)) p12(x)

= max{φ1(x) − φ2(x), 0}C12(x)

−min{φ1(x) − φ2(x), 0}C21(x). (51)

The dual representation of total variation (see e.g. [33])

can be used to rewrite the two last terms of (47)

sup
q∈(C∞(Ω))N , s.t. |q|≤α

∫

Ω

φdiv q dx = α

∫

Ω

|∇φ| dx. (52)

Therefore, combining (48), (49), (51) and (52), by

maximizing the primal dual model (47) for
p1s, p

2
s, p

1
t , p

2
t , p

12, q1, q2, we obtain the primal model (35)

subject to the convex constraints (50), i.e. φ1, φ2 ∈ B′.

5.4 Global solutions by thresholding

We now show there exists binary solutions (i.e. φ1, φ2 ∈
B) to the relaxed problem (35) subject to φ1, φ2 ∈ B′,

which can be obtained by simple thresholding.

Theorem 1 Assume the data term of (8) satisfies the

condition (36), such that C12(x), C21(x) ≥ 0 for all

x ∈ Ω in (35). Let φ1∗, φ2∗ be any solution of (35)
subject to φ1(x), φ2(x) ∈ [0, 1] ∀x ∈ Ω. Denote by φℓ

i

the binary function

φℓ
i(x) =

{

1 , φi∗(x) ≥ ℓ

0 , φi∗(x) < ℓ
. (53)

Then for any ℓ ∈ (0, 1], (φℓ
1, φ

ℓ
2) is a solution of (35)

and (8) subject to φ1(x), φ2(x) ∈ {0, 1} ∀x ∈ Ω.

This theorem shows two important things. First, the

convex relaxation (35) subject to (50) is exact, the min-
imum energy of the relaxed problem always equals the

minimum energy of the original problem. Secondly, the

thresholding technique allows to convert solutions of

the relaxed problem into binary solutions of the origi-
nal problem, in case of non-uniqueness.

Proof Let pis
∗
, pit

∗
, p12

∗
, qi

∗
, φi∗ be optimal to the primal-

dual model (47). Define the level sets

Sℓ
i = {x : φi∗(x) ≥ ℓ} (54)

for i = 1, 2. Then, by (48), for any point x ∈ Ω\Sℓ
i

pis
∗
(x) = Ci

s(x) (55)

for i = 1, 2. This, together with the fact that for a.e.

x ∈ Sℓ
1

p1s
∗
(x) = div q1

∗
(x) + p1t

∗
(x) + p12

∗
(x). (56)

and for a.e. x ∈ Sℓ
2

p2s
∗
(x) = div q2

∗
(x) + p2t

∗
(x)− p12

∗
(x). (57)

implies that the total max-flow can be written
∫

Ω\Sℓ
1

C1
s (x) dx +

∫

Ω\Sℓ
2

C2
s (x) dx

+

∫

Sℓ
1

div q1
∗
(x) + p1t

∗
(x) + p12

∗
(x) dx

+

∫

Sℓ
2

div q2
∗
(x) + p2t

∗
(x)− p12

∗
(x) dx.

By (49), for any x ∈ Sℓ
i

pit
∗
(x) = Ci

t(x) (58)

for i = 1, 2. The terms involving qi
∗
, i = 1, 2, are just

∫

Sℓ
i

div qi
∗
(x) = LSℓ

i
(59)

where LSℓ
i
denotes the perimeter of the set Sℓ

i , see e.g.

Prop 4 of [6]. The terms involving p12
∗
can be rewritten

as follows
∫

Sℓ
1

p12
∗
(x) dx−

∫

Sℓ
2

p12
∗
(x) dx =

∫

Sℓ
1
\(Sℓ

1
∩Sℓ

2
)

p12
∗
(x) dx

+

∫

Sℓ
1
∩Sℓ

2

p12
∗
(x) − p12

∗
(x) dx −

∫

Sℓ
2
\(Sℓ

1
∩Sℓ

2
)

p12
∗
(x) dx

=

∫

Sℓ
1
\(Sℓ

1
∩Sℓ

2
)

C12(x) dx +

∫

Sℓ
2
\(Sℓ

1
∩Sℓ

2
)

C21(x) dx
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where the last equality follows by (51) since p12
∗
is op-

timal. By combining the above observations, the total

max-flow is
∫

Ω\Sℓ
1

C1
s (x) dx +

∫

Ω\Sℓ
2

C2
s (x) dx

+

∫

Sℓ
1

C1
t (x) dx +

∫

Sℓ
2

C2
t (x) dx

+

∫

Sℓ
1
\Sℓ

1
∩Sℓ

2

C12(x) dx +

∫

Sℓ
2
\Sℓ

1
∩Sℓ

2

C21(x) dx

+αLSℓ
1
+ αLSℓ

2
.

By writing this expression in terms of the characteristic

functions φℓ
1 and φℓ

2 of the sets Sℓ
1 and Sℓ

2, we get the

primal model energy (35) of φℓ
1 and φℓ

2. Hence φℓ
1 and

φℓ
2 must be optimal to the primal model (35).

6 Nonsubmodular/non-convex data terms

Assume now that the submodular/convexity condition

(32) is violated. Although the problem can be repre-

sented with negative E(.), F (.), it is no longer compu-

tational tractable. In a discrete setting, this requires to
find the minimal cut on a graph which contains nega-

tive edges, which is NP-hard. In a variational setting,

if E(x) or F (x) are negative for some x ∈ Ω, the vari-

ational problem (35) becomes non-convex, hence the
minimization algorithm may get stuck in a local min-

ima. In the next two subsections, we present simpler

problems (relaxations), which are submodular in the

discrete setting and convex in the continuous setting.

Conditions are derived for when the computed solutions
of the simpler problems are also solutions to the origi-

nal problems. It is our observation that these holds for

most practical problems. If they should not hold, the re-

laxations will provide good approximate solutions. We
start with the discrete setting in Section 6.1 and then

present similar results in a convex variational setting in

Section 6.2.

6.1 Submodular relaxation in discrete setting

Minimization of non-submodular energy functions in

computer vision has been the subject of previous re-
search, see [26] for a review. One of the most successful

approaches is the Quadratic Pseudo Boolean Optimiza-

tion (QBPO) [20,26]. In [38] it was shown that remov-

ing negative edges, often called truncation, can be effec-
tive in minimizing non-submodular functions. We show

that such a computationally simple submodular relax-

ation can produce global solution in practice for our

(a) G (b) G

Fig. 4 Illustration of graph G in case E(p) < 0.

problem. Furthermore, a criterion is derived for when

the minimum cut on the graph with removed edges of
negative weight is also a minimum cut on the original

graph with negative edge weights. This relaxation is

also easily transferable to the continuous setting.

For all p ∈ P where (32) is violated, let

A(p), B(p), C(p), D(p), E(p), F (p) be a solution to the

linear system with E(p) < 0 or F (p) < 0. Observe

that a solution always exists where either E(p) = 0 or
F (p) = 0. The explicit expression for one such solution

is given in Section 6.3.

Let G be the graph identically to G except that all
edges of negative weight are removed. That is, for each

p ∈ P , the weights on the data edges in G are con-

structed as

c(vp,1, t) = A(p), c(vp,2, t) = B(p),

c(s, vp,1) = C(p), c(s, vp,2) = D(p), (60)

c(vp,1, vp,2) = max(E(x), 0), c(vp,2, vp,1) = max(F (x), 0),

while the regularization edges are given as before by

(28). The minimum cut on G can easily be computed

by max-flow. As discussed in the previous section, the

condition (32) may only be violated if c1, c2, c3 are close

to each other compared to c4 and u0
p at p ∈ P is close to

c4. Measured by the data term, the worst assignment

of p is to phase 1, which has the cost |c1 − u0
p|

β. By

removing the edge with negative weight E(p) < 0, the

cost of this assignment becomes even higher |c1−u0
p|

β−
E(p). Alternatively, if c2, c3, c4 are close to each other

compared to c1 and u0
p is close to c1 then F (p) < 0. By

removing the edge with negative weight, the cost of the

worst assignment of u0
p becomes higher |c4−u0

p|
β−F (p).

We therefore expect minimum cuts on G to be almost

identical to minimum cuts on G. Define the sets

P1 = {p ∈ P | E(p) < 0, F (p) ≥ 0},

P2 = {p ∈ P | F (p) < 0, E(p) ≥ 0},

consisting of all p ∈ P for which either E(p) < 0 or

F (p) < 0.
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Assume the maximum flow has been computed on G,
let RA(p), RB(p), RC(p), RD(p) denote the residual ca-

pacities on the edges (vp,1, t), (vp,2, t), (s, vp,1), (s, vp,2)

respectively. The following theorem gives a criterion for

when the minimum cut on G yields the optimal solution
of the original problem.

Theorem 2 Let G be a graph as defined in (24)-(26)

and (28), with weights A(p), B(p), C(p), D(p), E(p), F (p)

satisfying (30). Let G be the graph with weights as in

G, with the exception c(vp,1, vp,2) = 0 ∀p ∈ P1 and

c(vp,2, vp,1) = 0 ∀p ∈ P2.

Assume the maximum flow has been computed on

the graph G. If

RA(p) +RD(p) ≥ −E(p), ∀p ∈ P1

and RB(p) +RC(p) ≥ −F (p), ∀p ∈ P2, (61)

then min-cut (G) = min-cut (G).

Proof We will create a graph G of only positive edge

weights, such that the minimum cut problem on G is

a relaxation of the minimum cut problem on G. The
graph G is constructed with weights as in G with the

following exceptions

c(vp,1, t) = A(p)−RA(p), ∀p ∈ P1,

c(s, vp,2) = D(p)−RD(p), ∀p ∈ P1

c(vp,2, t) = B(p)−RB(p), ∀p ∈ P2,

c(s, vp,1) = C(p)−RC(p), ∀p ∈ P2.

We first show min-cut(G) ≤ min-cut(G) ≤ min-cut(G).
The right inequality follows because all the edges in the

graph G have greater or equal weight than the edges

in the graph G. To prove the left inequality, observe
that only data edges for p ∈ P1 ∪ P2 differ between G
and G. For each p ∈ P1 there are 4 possibilities for the

cut (Vs, Vt). Since RA(p), RB(p), RC(p), RD(p) ≥ 0, the

cost of all the 3 cuts vp,1, vp,2 ∈ Vs, vp,1, vp,2 ∈ Vt and

vp,1 ∈ Vt, vp,2 ∈ Vs are lower in G than in G. The last
cut vp,1 ∈ Vs, vp,2 ∈ Vt has the cost A(p)+B(p)−E(p)

in the G and the cost A(p)+D(p)− (RA(p)+RD(p)) ≤
A(p)+D(p)+E(p) in the graph G. The same argument

shows that all possible cuts have a lower or equal cost
in G than in G for p ∈ P2.

Both G and G have only positive edge weights. Since

all the edges have greater or equal weight in G than in
G it follows that

max-flow(G) ≤ max-flow(G).

Hence, since the max flow on G is feasible on G it is

also optimal on G. Therefore, by duality min-cut(G) =
min-cut(G) which implies min-cut(G) = min-cut(G).

Therefore, by computing the max flow on G and

examining the residual capacities for criterion (61), it

can be checked whether the solution is optimal on G. It
is also possible to apply non-submodular minimization

algorithms such as

6.2 Convex relaxation in continuous variational setting

For all points x ∈ Ω where (32) is violated, let

A(x), B(x), C(x), D(x), E(x), F (x) be a solution to the

linear system with E(x) < 0 or F (x) < 0. See Section
6.3 for the explicit expression of one such solution. Let

Ω1 be the set of points where E(x) < 0 and Ω2 the set

of points where F (x) < 0, i.e.

Ω1 = {x ∈ Ω : E(x) < 0}, Ω2 = {x ∈ Ω : F (x) < 0}.

(62)

Let P denote the original primal problem (35) with

weights set to

C1
s (x) = C(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = B(x), (63)

C12(x) = E(x), C21(x) = F (x), ∀x ∈ Ω

as before. Since C12(x) or C21(x) are assumed negative
for some x ∈ Ω, the minimization problem (35) is non-

convex. A dual formulation of this problem cannot be

derived as in Section 5.1 because the arguments in this

section are not valid if C12(x) or C21(x) are negative.
In the same manner, max-flow does not make sense in

the discrete setting when edge capacities are negative.

A problem is now defined where all the negative

terms are removed. Primal-dual and dual formulations

of this problem can be derived as in Section 5.1. We
denote the primal problem as P , primal-dual problem

as PD and dual problem as D and define them as the

optimization of (35), (47) and (40) respectively, with

weights constructed as

C1
s (x) = C(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = B(x), (64)

C12(x) = max(E(x), 0), C21(x) = max(F (x), 0), ∀x ∈ Ω

Since all the weights are non-negative, the problem P

is convex and can be minimized globally. We are inter-

ested to know when a solution to the convex problem P

is also optimal to the problem P . This can be answered

by investigating the solution of the dual problem D.

Theorem 3 Let φ
i
; pis, p

i
t, p

12, qi; i = 1, 2 be a solution

of PD, i.e. φ
1
, φ

2
is a solution of P and pis, , p

i
t, p

12, qi; i =

1, 2 a solution of D. Define the residual capacities as

R1
s(x) = C1

s (x)− p1s(x), R2
s(x) = C2

s (x)− p2s(x), (65)
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R1
t (x) = C1

t (x)− p1t (x), R2
t (x) = C2

t (x) − p2t (x).

If

R1
t (x) +R2

s(x) ≥ −E(x), ∀x ∈ Ω1 (66)

and

R2
t (x) +R1

s(x) ≥ −F (x), ∀x ∈ Ω2, (67)

then (φ
1
, φ

2
) is optimal to the original problem P .

Proof Let EP denote the energy functional of the pri-

mal problem (35) with original weights (63), and let E
P

denote the energy functional of (35) with weights (64).

Then for any functions φ1, φ2 such that φ1(x), φ2(x) ∈
[0, 1] for all x ∈ Ω

E
P
(φ1, φ2) ≥ EP (φ1, φ2). (68)

Define a new problem P as the minimization of (35)

with weights (64) for all x ∈ Ω\(Ω1 ∪Ω2) and

C1
s (x) = C(x), C2

s (x) = p2s(x),

C1
t (x) = p1t (x), C2

t (x) = B(x), ∀x ∈ Ω1, (69)

C1
s (x) = p1s(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = p2t (x), ∀x ∈ Ω2, (70)

C12(x) = 0, C21(x) = 0, ∀x ∈ Ω1 ∩Ω2. (71)

Let EP denote the energy functional of (35) with the

above defined weights. We will show that

EP (φ1, φ2) ≤ EP (φ1, φ2) ≤ E
P
(φ1, φ2), ∀φ1, φ2 ∈ B′.

(72)

The right inequality is just a repetition of (68). To show

the left inequality, observe that for each x ∈ Ω1

EP (φ1(x), φ2(x))

= (1− φ1(x))C(x) + (1− φ2(x))p2s(x)

+ φ1(x)p1t (x) + φ2(x)B(x)

= (1− φ1(x))C(x) + (1− φ2(x))(D(x) −R2
s(x))

+ φ1(x)(A(x) −R1
t (x)) + φ2(x)B(x)

= (1− φ1(x))C(x) + (1− φ2(x))D(x) + φ1(x)A(x)

+ φ2(x)B(x) + φ1(x)(−R1
t (x)) + (1− φ2(x))(−R2

s(x))

The last two terms can be bounded by

φ1(x)(−R1
t (x)) + (1− φ2(x))(−R2

s(x))

≤ φ1(x)(1 − φ2(x))(−R1
t (x)) + φ1(x)(1 − φ2(x))(−R2

s(x))

= φ1(x)(1 − φ2(x))(−R1
t (x) −R2

s(x))

≤ max(φ1(x) − φ2(x), 0)(−R1
t (x)−R2

s(x))

≤ max(φ1(x) − φ2(x), 0)E(x)

Therefore

EP (φ1(x), φ2(x)) ≤ EP (φ1(x), φ2(x)). (73)

The same argument shows that (73) also holds for all

x ∈ Ω2. For x ∈ Ω\(Ω1 ∪ Ω2), EP (φ1(x), φ2(x)) =
EP (φ1(x), φ2(x)). Observe that since the maximum flow

pit, p
12, qi; i = 1, 2 in problem D is feasible in D, it is

by (72) also optimal on D. It follows that EP (φ
1
, φ

2
) =

E
P
(φ

1
, φ

2
), which by (72) implies EP (φ

1
, φ

2
) = E

P
(φ

1
, φ

2
).

6.3 Explicit expression for one solution

The explicit expression for one of the solutions of the

linear system (33) and (30) in case (32) is violated is

presented. We stick to the discrete notation where p

denotes spatial coordinates, the continuous analogue

where x denotes spatial coordinates is obvious (just re-

place up with u(x)). Consider two cases: first, if u0
p > c3,

then

E(p) = f1(p) + f4(p)− f2(p)− f3(p), F (p) = 0 (74)

A(p) = max{f2(p)− f4(p), 0} − E(p), (75)

C(p) = max{f4(p)− f2(p), 0} − E(p), (76)

B(p) = max{f4(p)− f3(p), 0} − E(p), (77)

D(p) = max{f3(p)− f4(p), 0} − E(p), (78)

in which case E(p) < 0. If u0
p < c2, then

F (p) = f1(p) + f4(p)− f2(p)− f3(p), E(p) = 0 (79)

A(p) = max{f1(p)− f3(p), 0} − F (p), (80)

C(p) = max{f3(p)− f1(p), 0} − F (p), (81)

B(p) = max{f2(p)− f1(p), 0} − F (p), (82)

D(p) = max{f1(p)− f2(p), 0} − F (p), (83)

in which case F (p) < 0. By Prop 1, the condition holds

whenever u0
p ∈ [c2, c3].

7 A tight convex relaxation of the Potts model

In this section we show that the convex reformulation

(35) can be used as the basis of a new convex relaxation

of Potts model (1) with four regions. The convex relax-

ation cannot in general result in global solutions of (1),
but is at least as tight as the tightest existing relaxation

[35]. It is significantly simpler than [35], since the num-

ber of side constraints and variables are much lower.

As a direct consequence, it is easier to handle compu-
tationally. The purpose of this paper is to propose the

relaxation, we leave detailed analysis to a future work.

The new relaxation is possibly also the strictly tightest
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that exist, but a proof of this will be quite involved and

is left as an open problem.

In [35] it was observed that multiple countings of

boundaries in the model (17) with linearly ordered la-

bels, could be suppressed by introducing additional con-
straints on the dual variables of the total variation term

of (17). The number of constraints grow quadratically

in the number of regions. In particular, 3 dual variables

and 7 dual constraints are necessary to represent 4 re-
gions. The resulting convex relaxation is not guaranteed

produce a global binary solution, but as shown in [35],

such an approach may produce good approximations

after thresholding. Furthermore, as shown in [35], Prop

4, the relaxation is strictly tighter than other recently
proposed approaches [42,29,6].

In section 5 it was shown that the model (35) could

be optimized globally by relaxing the binary constraints

of φ1 and φ2. As discussed in Section 2.2.2 this model
approximates Pott’s model much more closely than the

model (17). Two of the boundaries are measured twice

in (35), while all the remaining 4 boundaries are mea-

sured once. In contrast, the model (17) overcounts the

boundaries much more severely, see e.g. Figure 1. In
consequence, it suffices to introduce one additional con-

straint on the dual variables q1 and q2 in the model (35)

in order to measure each boundary exactly once.

Consider first the convex model (35), expressed in
terms of the dual formulation of total variation (52).

We then obtain

min
φ1,φ2

sup
q1,q2

EP (φ1, φ2) =

∫

Ω

(1− φ1(x))C1
s (x)

+(1− φ2(x))C2
s (x) + φ1(x)C1

t (x) + φ2(x)C2
t (x) dx

+

∫

Ω

max{φ1(x) − φ2(x), 0}C12(x) dx

−

∫

Ω

min{φ1(x) − φ2(x), 0}C21(x) dx

+ν

∫

Ω

φ1 div q1 dx+ ν

∫

Ω

φ2 div q2 dx. (84)

subject to

φ1(x) ∈ {0, 1} φ2(x) ∈ {0, 1}, ∀x ∈ Ω, (85)

|q1(x)| ≤ 1, |q2(x)| ≤ 1, ∀x ∈ Ω. (86)

Let x0 be a point on the boundary between region Ω3

and Ω2. Then φ1
−(x

0) = φ2
−(x

0) = 0 and φ1
+(x

0) =
φ2
+(x

0) = 1, therefore both the discontinuity of φ1 and

φ2 contributes to the energy of (84). In effect, such a

transition has twice the cost of other transitions. In

order to reduce the cost of this transition, the following
constraint is added to the dual variables

|q1(x) + q2(x)| ≤ 1, ∀x ∈ Ω. (87)

Table 2 Number of variables and constraints

Primal Primal Dual Dual
variables constraints variables constraints

Pock et. al. 3 4 3 6

Proposed 2 2 2 3

Since φ1 and φ2 are equal in a small neighborhood

B(x0) around x0 it follows that

ν

∫

B(x0)

φ1 div q1 dx+ ν

∫

B(x)

φ2 div q2 dx

= ν

∫

B(x0)

φ1 div(q1 + q2) dx.

Hence, taking the supremum w.r.t. q1, q2 over (86) and
(87), we obtain ν

∫

B(x0)
|∇φ1| dx as desired. For x0 at

the boundary betweenΩ1 andΩ4, φ
1
−(x

0) = 1, φ2
−(x

0) =

0 and φ1
+(x

0) = 0, φ2
+(x

0) = 1. Therefore, this transi-

tion also costs twice as much. Exactly the same ar-

gument shows that the additional constraint (87) also
suppresses overcounting of this boundary.

A convex relaxation is now formulated where the

non-convex binary constraints (85) are replaced by

φ1(x) ∈ [0, 1] φ2(x) ∈ [0, 1], ∀x ∈ Ω, (88)

In contrast to the model (35), the thresholding Theo-

rem 1 is not generally valid if the additional constraint

(87) is introduced. However, if the computed solution

φ1, φ2 is binary everywhere, it is also a global solution

to the nonconvex Potts model (1). Otherwise, thresh-
olding of φ1, φ2 will result in good approximate solu-

tions. This relaxation is at least as tight as [35]. It is

also possibly strictly tighter, but a proof will be quite

involved and is postponed to a future work. The special
case of a minimal cone in 3D, where the boundaries of

4 regions intersect, is one example we believe can be

used to show that our relaxation has a strictly higher

minimal energy than [35]. The number of primal and

dual variables and constraints are summarized in Table
2. Our approach involves significantly less variables and

constraints than [35] and is consequently much easier

to handle computationally.

If the data term does not satisfy the condition (37),
the relaxation from section 6.2 and theorem 3 can straight

forwardly be generalized to the convex relaxation of

Pott’s model in Section 7, in case the data term is not

submodular: Let φ
i
; pit, p

12, qi, i = 1, 2 be a solution to
PD with constraints (86), (87) and (85) and weights

set to (64). If R1
s(x), R

1
s(x), R

1
t (x), R

2
t (x) defined in (65)

satisfies (66) and (67), then φ
i
; pit, p

12, qi, i = 1, 2 is also

optimal to the same problem with original weights (63).

The proof is identical to the proof of Theorem 3.
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Algorithm 1 Multiplier-Based Algorithm

Choose some initialization for pis, p
i
t, qi and φi, let k = 1 and

start k−th iteration, which includes the following steps, until
convergence:

– Optimize pis, i = 1, 2 by fixing other variables

pis
k+1

:= arg max
pis(x)≤Ci

s(x)
Lc(p

i
s, p

i
t

k
, qi

k
, φk)

:= arg max
pis(x)≤Ci

s(x)

∫

Ω

pis dx

−
c

2

∥

∥

∥
pis − (pit

k
+ (−1)i+1p12

k
+ div qki ) + φik/c

∥

∥

∥

2
.

The optimal pis can be easily computed pointwise at each
x ∈ Ω;

– Optimize p12 by fixing other variables

p12
k+1

:= arg max
−C12(x)≤p21(x)≤C12(x)

Lc(p
i
s

k+1
, pit

k
, qi

k
, φk)

:= arg max
−C12(x)≤p21(x)≤C12(x)

−
∑

i=1,2

c

2

∥

∥

∥
pis

k+1
+ (pit

k
+ (−1)i+1p12 + div qi

k
) + φik/c

∥

∥

∥

2
.

– Optimize qi, i = 1, 2, by fixing other variables

qi
k+1

:= arg max
q∈Ki

Lc(p
k+1
s , pkt , q, φ

k) .

:= arg max
q∈Ki

−
c

2

∥

∥

∥
div q + pis

k+1
− pit

k
+ (−1)i+1p12

k+1
− φik

∥

∥

∥

2
,

(89)

for i = 1, 2. The above problem can either be solved itera-
tively by Chambolle’s projection algorithm [14], or approxi-
mately in one step through

qk+1
i = ΠKi

(

qki +c∇(div qki +pis
k+1

−pit
k
+(−1)i+1p12

k+1
−φik)

)

,

(90)

where ΠKi
is the projection operator onto Ki.

– Optimize pit, i = 1, 2 by fixing other variables

pit
k+1

:= arg max
pit(x)≤Ci

t(x)
Lc(p

i
s

k+1
, pit

k
, p12

k+1
qi

k
, φk)

:= arg max
pit(x)≤Ci

t(x)

−
c

2

∥

∥

∥
pit + (pis

k+1
+ (−1)i+1p12

k+1
+ div qi

k+1
) + φik/c

∥

∥

∥

2
.

– Update multipliers φi, i = 1, 2, by

φik+1
= φik−c (div qi

k+1
(−pis

k+1
+pit

k+1
(+(−1)i+1p12

k+1
) ;

– Let k = k + 1 go to the k + 1-th iteration until converge.

8 Algorithms

Algorithms for the convex formulations and relaxations

in Section 5-7 are presented based on the augmented la-

grangianmethod. In [3,40,41] the augmented lagrangian

method was applied on continuous max-flow formula-

tions of minimization problems with binary and linearly

ordered labels. The algorithms were shown to be very

efficient and outperform alternative approaches. We de-
rive similar algorithms based on the max-flow formula-

tions of the problems (35) and (84). Observe that the

lagrange multipliers φ1, φ2 are unconstrained in (46).

However, by construction optimal φ1, φ2 will satisfy the
relaxed binary constraints (50). In this section it is as-

sumed that Ω, the unknowns pis, p
i
t, p

12, qi, φi; i = 1, 2

and the differential and integration operators are dis-

cretized, but we stick with the continuous notation for

simplicity. The augmented lagrangian functional can be
formulated as

L(ps, pt, p
12, q, φ) =

∫

Ω

p1s(x) + p2s(x) dx (91)

+
2

∑

i=1

∫

Ω

φi(x)(div qi(x) − pis(x) + pit(x) + (−1)i+1p12(x)) dx

−
c

2

2
∑

i=1

|| div qi(x)− pis(x) + pit(x) + (−1)i+1p12(x)||2

An algorithm for optimizing (46) is constructed based
on the alternating direction method of multipliers [21],

see Alg. 7. A similar algorithm for two region problems

[41] was shown to converge very quickly, and outper-

form earlier approaches. The sets K1 and K2 in (89)
are the unit disks

K1 = K2 = {q : Ω 7→ R
N : ||q||∞ ≤ ν, qn|∂Ω = 0}.

Here ||q||∞ = maxx∈Ω |q(x)|2.

8.1 Algorithm for Convex Relaxed Pott’s model

The algorithm for the convex relaxed Pott’s model does
not change, except the variable q1 in step (89) is opti-

mized over the set

q1 ∈ K1 = {q : Ω 7→ R
N :

||q||∞ ≤ ν, ||q + q2
k
||∞ ≤ ν, qn|∂Ω = 0}

(92)

and q2 is optimized over the set

q2 ∈ K2 = {q : Ω 7→ R
N :

||q||∞ ≤ ν, ||q1
k+1

+ q||∞ ≤ ν, qn|∂Ω = 0}.
(93)

The sets (92) and (93) consist of an intersection of two

spheres. The euclidian projection onto such an inter-

section can be computed analytically, the details were
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given in appendix A of [3]. Therefore, the simple gra-

dient projection step (90) generalizes directly to this

setting. Alternatively, during each iteration, q1 and q2

can be simultaneously projected onto the set (87), (86)

by Dyjkstra’s iterative algorithm.

9 Experiments

Numerical examples are shown in Figure 5-11, where

the power β = 2 has been used in the data term. In

order to estimate the optimal constant values {ci}4i=1,

an alternating minimization algorithm is applied as fol-
lows:

Find initialization {c0i }
4
i=1 and solve for k = 1, ... until

convergence

1. {φk
i }

4
i=1 = argmin

{φi}4
i=1

E({φi}
4
i=1, {c

k−1
i }4i=1),

2. {cki }
4
i=1 = argmin

{ci}4
i=1

E({φk
i }

4
i=1, {ci}

4
i=1).

Step 1. is solved by the algorithms developed in this pa-

per. The optimization problem in step 2 is simple and
has a closed form solution: ci is the mean intensity value

within region Ωk
i when β = 2 and median intensity

when β = 1. Convergence means that the partition does

not change from one iteration to the next, and will usu-

ally occur in around 10 iterations. The constant values
can be initialized efficiently by the isodata algorithm

[22]. During each iteration of the above algorithm, the

energy minimization problem was submodular.

On the relatively simple image in Figure 5, the level
set method finds a good local minima. If the initializa-

tion is bad, the level set method gets stuck in an inferior

local minima also for this simple image as shown in Fig-

ure 6. White points indicate the zero level set of φ1 and

dark points indicate the zero level set of φ2.
More difficult images are presented in Figure 7 -

11. The L2 data fidelity term has been used (β = 2)

and the different methods are compared by keeping the

same optimal constant values {c∗i }
4
i=1 and regulariza-

tion parameter ν fixed, while minimizing in terms of

the regions. One can clearly see the advantages of the

global approach over earlier approaches.

In subfigure 8, 9 and 10 (b) the computed global

minimum of the discrete energy is shown. In subfig-
ures 8, 9 and 10 (c) the computed global minimum of

the convex reformulation of the Chan-Vese model are

shown, which takes values in [0, 1], but is binary at most

points. The binary result after thresholding φ1∗, φ2∗ at
the level ℓ = 1

2 are shown in subfigures (d), which is

a global minimum of the original problem according

to Theorem 1. Observe that the continuous version is

(a) (b) (c) (d)

Fig. 5 L2 data fidelity: (a) input, (b) level set method gradient
descent, (c) alpha expansion/alpha beta swap, (d) our approach.

(a) (b)

Fig. 6 Level set method: (a) bad initialization, (b) result.

rotationally invariant and, in contrast to the discrete

approach, produces results that are not biased by the

discrete grid.

9.1 Experiments on L2 data fitting term:

submodularity

In Section 4 we gave theoretical insights on how sub-

modularity of the energy function was related to the
distribution of the values ci, i = 1, ..., 4. It was shown

that the condition becomes less strict as β increases.

In this section we demonstrate that for L2 data fitting

term (β = 2 in (2)), the energy function is submodular
in practice. The L2 norm tolerates rather uneven dis-

tributions of ci, i = 1, ..., 4. In addition, the parameters

ci i = 1, ..., 4 that minimize the energy function will

not get very clustered. To verify this, we have run the

alternating optimization algorithm described at the be-
ginning of this section for optimizing the parameters ci,

i = 1, ..., 4 on all images from the data base [1]. In all

experiments, the submodularity condition was satisfied

during each iteration of the algorithm.

9.2 Non-submodular data terms

The purpose of this section is to demonstrate the relax-

ation approaches from Section 6 for minimization the

energy in case the data term is not submodular/convex.
For that reason, we have used L1 data term and fixed

the constant values c in such a way that the submodu-

larity condition is violated.

One such example is shown in Figure 12, which is a

modified version of the example in Figure 5, where the

average intensities values of 3 of the objects are close
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 (a) Input image, (b) ground truth, (c) level set method
gradient descent, (d) alpha expansion, (e) alpha-beta swap, (f)
global minimum computed by new graph cut approach in dis-
crete setting, (g) New convex optimization approach in continu-
ous setting before threshold, (h) convex minimization approach
after threshold (global optimum).

(a) (b)

(c) (d)

Fig. 8 L2 data fidelity: (a) Input, (b) global minimum dis-
crete Chan-Vese model 4 neighbors, (c) convex formulation before
threshold, (d) convex formulation after threshold (global mini-
mum).

compared to the 4th object. Some more natural exam-
ples are shown in Figure 13. Subfigures (b) show the set

of pixels p ∈ P1 ∪ P2, where the submodular condition

was violated. In all experiments β = 1. Subfigures (c)

show the set of pixels where the residual capacity con-

ditions (61) ((66) and (67) in continuous setting) were
violated, which is the empty set in all cases. Therefore,

the solutions obtained by the cut on the graphs G and

the solutions obtained from the convex relaxations, are

also global solutions to the original problems. These ex-
amples are typical: if the regularization parameter ν is

not set extremely high, the residual capacity condition

tends to be satisfied. To save space, only a subset of

(a) (b)

(c) (d)

Fig. 9 Segmentation with L2 data term: (a) Input, (b) graph cut
4 neighbors (c) convex formulation before threshold, (d) convex
formulation after threshold (global minimum).

(a) (b)

(c) (d)

Fig. 10 Segmentation with L2 data term: (a) Input, (b) re-
sult graph cut 8 neighbors in discrete setting (c) result convex
formulation before threshold, (d) result convex formulation after
threshold (global optimum).

(a) (b) (c)

(d) (e) (f)

Fig. 11 (a) Input image, (b) ground truth, (c) gradient descent,
(d) alpha expansion, (e) alpha-beta swap, (f) our approach.
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(a) (b) (c) (d)

Fig. 12 L1 data fidelity. Note that the constant values of
c1, c2, c3 are close to each other compared to c4. (a) Input image,
(b) set of pixels P1 ∪ P2 where the submodular condition was
violated, (c) set of pixels where the residual capacity criterion
(61) is not satisfied (empty set), (d) output image.

(a) (b)

(c) (d)

(e) (f)

Fig. 13 Segmentation with L1 data term: (a) Input, (b) set of
points where submodular condition (32) was violated, (c) set of
points where the residual capacity conditions (66) or (67) were
not satisfied (empty set), (d) result before threshold, (e) result
after threshold (global optimum).

our experiments are shown. If ν is set extremely high,

the residual capacity condition may be violated at a

small set of pixels. In this case, it cannot be concluded
whether the solution of the relaxed problems are also

solutions of the original problems, but will in any case

be good approximations.

Table 3 Number of iterations and number of flops per iteration
to reach energy precision 10−3 on Figure 8 (a).

Pock et al. Proposed

iterations flops pr. it. iterations flops pr. it.

290 4.7 ∗ 108 170 4.1 ∗ 107

(a) (b) (c) (d)

Fig. 14 (a) Input, all data terms are set to zero in the dark
region, (b) result of relaxation [42,28] and [6], (c) result of Chan-
Vese model (8) (d) result new relaxation from Section 7.

9.3 Convex relaxed Pott’s model

The convex relaxation of Pott’s model from Section 7 is

demonstrated in this section. As seen in Figure 14, the

relaxation is tight enough to reconstruct the global so-

lution on the quadruple junction example, Fig. 14 (due
to slight asymmetry the solution is unique), whereas the

relaxations [42,28] and [6] fail. In [13,35] it was shown

that [35] could also produce a nearly binary solution on

a similar example. The results after thresholding using
the schemes suggested in the different approaches are

shown.

In [35] a primal-dual gradient projection algorithm

was proposed for the relaxation based on (17). The al-

gorithm needs to project the 3 dual variables q1, q2, q3

onto a convex set described by 6 inequalities each iter-

ation. Since there is no closed form solution for com-

puting such a projection, an iterative algorithm must

be applied (Dyjkstra’s algorithm was suggested). This
slows down the convergence. Our relaxation involves

only 2 dual variables q1, q2 and 3 inequalities (87) and

(86), which is simpler to handle computationally. As

seen in Table 3, our algorithm converges in less num-

ber of iterations than [35] for the image in Figure 8
(a). More importantly, the computational cost per iter-

ation is much lower, as seen by the number of flops per

iteration.

10 Conclusions

We have presented an exact global optimization frame-
work for image segmentation models with four regions,

both in a discrete setting and a variational setting,

which includes the Chan-Vese model. If a condition

on the data term was satisfied, a global minimum was

guaranteed. It was shown theoretically and experimen-
tally that the condition holds for the most commonly

used data terms. If the condition was violated, which

could happen for the L1 data fitting term, relaxations

were proposed which could produce global solutions in
practice. Conditions on the ”residual capacities” of the

computed solution could be checked to verify whether

a global minima of the original problem had been ob-
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tained. A new convex relaxation of Pott’s model with

four regions was also proposed, which was at least as

tight as the tightest existing relaxation, but significantly

simpler to handle computationally. In the future, it

should be investigated whether the dominance of the
new relaxation over [35] is also strict.

In this work, we have restricted our attention to

four (or less) regions. The results can be generalized

to 2m regions by using m level set functions. In case
of m = 3 and 8 regions, the linear system which de-

termines the data term contains 12 unknowns (edges)

and 8 equations. In general, the conditions which guar-

antees submodularity will be more strict, therefore it

will be valuable to investigate relaxations as in Section
6. On the other hand, four regions suffice in theory to

segment any 2D image by the four color theorem, there-

fore it would be interesting to attempt formulating the

overall problem in term of 4 disconnected regions, where
different data cost functions are assigned to each dis-

connected component.

A Proofs of Prop 1-4

A.1 Proof of Prop 1

Proof Let c1−c2
2

≤ I ≤ c4−c3
2

. Then

|c2 − I|β ≤ |c1 − I|β and |c3 − I|β ≤ |c4 − I|β ,

for any β ≥ 1. Therefore, adding these two inequalities

|c2 − I|β + |c3 − I|β ≤ |c1 − I|β + |c4 − I|β .

A.2 Proof of Prop 3

When c1−c2
2

≤ I ≤ c4−c3
2

, the result follows from Prop (2).

Consider I < c2−c1
2

, then

|I − c1|
β0 ≤ |I − c2|

β0 ≤ |I − c3|
β0 ≤ |I − c4|

β0 .

Together with (32), this implies

0 < |I − c2|
β0 − |I − c1|

β0 ≤ |I − c4|
β0 − |I − c3|

β0 .

Therefore, there exists θ1 ≥ θ2 > 1 such that

|I − c4|
β0 = θ1|I − c3|

β0 and |I − c2|
β0 = θ2|I − c1|

β0 .

For β ≥ β0

|I − c4|
β = θβ−β0

1 |I − c3|
β and |I − c2|

β = θβ−β0

2 |I − c1|
β ,

where θβ−β0

1 ≥ θβ−β0

2 > 1, hence

|I − c2|
β + |I − c3|

β = θβ−β0

2 |I − c1|
β +

1

θβ−β0

1

|I − c4|
β

≤ θβ−β0

1 |I−c1|
β+

1

θβ−β0
1

|I−c4|
β ≤ θβ−β0

1 |I−c1|
β+

1

θβ−β0
1

|I−c4|
β ,

where the last inequality follows from |I−c1|β ≤ |I−c4|β . Exactly
the same argument can be used to show Prop 3 when I > c4−c3

2
.

A.3 Proof of Prop 4

Proof Assume first I > c3, then

|c1 − I| > |c2 − I| > |c3 − I|

Therefore, there exists a θ > 1 s.t.

|I − c1| = θ |c2 − I|.

Pick C1
I ∈ N s.t.

θβ ≥ 2, ∀β ≥ C1
I .

Then

|c1−I|β+|c4−I|β ≥ |c1−I|β ≥ 2|c2−I|β > |c2−I|β+|c3−I|β . ∀β ≥ C1
I

If I < c2, then

|c4 − I| > |c3 − I| > |c2 − I|

and thus the same argument can be used to show there exists
C2
I
∈ N such that

|c4 − I|β + |c1 − I|β > |c2 − I|β + |c3 − I|β , ∀β ≥ C2
I .

In case c2 ≤ I ≤ c3, the existence of such a C was proved in Prop
1, e.g. C = 1.

Therefore the condition (32) is satisfied for any I ∈ [0, L] by
choosing β ≥ C = maxI∈[0,L] max{C1

I , C
2
I }.

A.4 Proof of Prop 2

We will show the condition holds for β = 1, which by Prop 3
implies it holds for all β ≥ 1. Observe that if c1, c2 and c3, c4 are
equidistant it follows that c1 + c4 = c2 + c3. For I < c2

|I − c2|+ |I − c3| = (c2 − I) + (c3 − I) = −2I + (c2 + c3)

= −2I + (c1 + c4) = (c1 − I) + (c4 − I) ≤ |I − c1|+ |I − c4|.

For I ≥ c3

|I − c2|+ |I − c3| = (I − c2) + (I − c3) = 2I − (c2 + c3)

= 2I − (c1 + c4) = (I − c1) + (I − c4) ≤ |I − c1|+ |I − c4|.
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