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Abstract This work develops a convex optimization framework for image seg-
mentation models, where both the unknown regions and parameters describing each
region are part of the optimization process. Convex relaxations and optimization
algorithms are proposed, which produce results that are independent from the ini-
tializations and closely approximate global minima. We focus especially on prob-
lems where the data fitting term depends on the mean or median image intensity
within each region. We also develop a convex relaxation for the piecewise constant
Mumford-Shah model, where additionally the number of regions is unknown. The
approach is based on optimizing a convex energy potential over functions defined
over a space of one higher dimension than the image domain.

1 Introduction

Image segmentation is one of the most important problems in image processing
and computer vision. The task is to group the image pixels into several regions or
objects based on their intensity values. Energy minimization has become an estab-
lished paradigm to formulate such problem mathematically, where both data/scene
consistency and the regularity of the segmentation regions are encoded in an energy
potential. A major challenge is to solve the resulting NP-hard optimization problems
numerically.
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Variational models for image segmentation

In this work, we focus on image segmentation with Potts regularity [16], which
enforces region boundaries of minimal total length. We wish to partition the image
domain Ω into n regions {Ωi}n

i=1. For each point x ∈Ω and each i = 1, ...,n, define
the data cost function fi(x) of assigning x to the region Ωi. Image segmentation with
Potts prior and predefined data cost functions can then be formulated as

min
{Ωi}ni=1

n

∑
i=1

∫
Ωi

fi(x)dx+ α

n

∑
i=1

∫
∂Ωi

ds (1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = /0 , ∀k 6= l , (2)

where α is a parameter which controls the impact of the boundary regularization.
The model (1) will be referred to as Potts model in this work. When n > 2 the op-
timization problem (1) in a discrete setting is NP-hard, therefore it is generally too
difficult to find a global optimum. Algorithms exist that can compute good approx-
imations [3] and in some cases exact solutions for level set representations of the
problem [1]. In a continuous setting, several convex methods have recently appeared
that may often lead to global solutions, or otherwise produce good approximations
of global solutions [11, 22, 14, 2, 5].

An important example of the data costs in (1) is

fi(x) = |I0(x)−µi|β , (3)

where I0(x) is the input image function and µi ∈R, i = 1, ...,n are predefined region
parameters and β ≥ 1. An intuitive explanation of µi is the mean of the image inten-
sity I0 within region Ωi in case β = 2, or the median value within Ωi if β = 1. They
are, however, unknown in advance. Therefore, the function fi depends on the un-
known segmentation region Ωi and does not fit into the framework of (1). The most
ideal model should not rely on a post-processing step to determine the parameters,
instead the values µi should be part of the optimization process. In [6] and [13] such
an image segmentation model was formulated as follows

min
{Ωi}ni=1

min
{µi}ni=1∈X

n

∑
i=1

∫
Ωi

|I0(x)−µi|β dx + α

n

∑
i=1

∫
∂Ωi

ds (4)

subject to (2). The set X is typically the set of feasible gray values, which may be
the real line X = R or a discrete quantization X = {`1, ..., `L}. In contrast to (1)
along with (3), the energy is minimized over both {Ωi}n

i=1 and the region param-
eters {µi}n

i=1. The model (4) is often called the Chan-Vese model. If there is no
regularization, i.e. α = 0, (4) can be recognized as the ”k-means” model, which is
also an NP-hard problem. To solve (4), one possibility is alternative minimization
with respect to Ωi and µi until convergence as follows:
Find initialization {µ0

i }n
i=1. For k = 0, ... until convergence
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1. {Ω k+1
i }n

i=1 = argmin
{Ωi}ni=1

n

∑
i=1

∫
Ωi

|I0(x)−µ
k
i |β dx + α

n

∑
i=1

∫
∂Ωi

ds subject to (2) (5)

2. {µk+1
i }n

i=1 = argmin
{µi}ni=1∈X

n

∑
i=1

∫
Ω

k+1
i

|I0(x)−µi|β dx + α

n

∑
i=1

∫
∂Ω

k+1
i

ds (6)

Since (4) is not jointly convex, such a procedure does not in general produce a
global minimum, but converges to a local optimum depending on the initialization
of µ . Furthermore, there is no easy way to measure the quality of the converged
result.

Closely related is the piecewise constant Mumford-Shah model [13], which can
be expressed as a slight variation of (4) as (see Section 2.2)

min
n

min
{Ωi}ni=1

min
{µi}ni=1∈X

n

∑
i=1

∫
Ωi

|I0(x)−µi|β dx + α

n

∑
i=1

∫
∂Ωi

ds (7)

subject to (2). The energy potential (7) is also optimized over the number of regions
n. In spite of the seemingly higher complexity, we show the problem (7) is easier to
tackle than (4) in the following sections.

The optimization problem (4) can also be extended to more general data cost
functions fi(ξi,x), where ξi is some unknown parameter associated with region Ωi.

min
{Ωi}ni=1

min
{ξi}ni=1

n

∑
i=1

∫
Ωi

f (ξi,x)dx+ α

n

∑
i=1

∫
∂Ωi

ds (8)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = /0 , ∀k 6= l ,

One example is ξi = (µi,σi), where µi is the mean and σi is the standard deviation
of intensities in Ωi. The data term can then be formulated as the log of the Gaussian
distribution fi(µi,σi,x) = log( 1√

2πσi
exp(− (I0(x)−µi)

2

2σ2
i

)).

An image segmentation model based on the minimum description rule (MDL)
was proposed [23] which places a direct penalty to the number of appearing regions
of the Potts model (1). Recently, various algorithms have been proposed for com-
puting global or good approximations of global minima [9, 20, 18] of the resulting
optimization problems. We will also see that there is a close relationship between
such a MDL based segmentation model and (4) or (8) if fi and the penalty parameter
are chosen in a particular way, as discussed in Section 4.

Instead of optimizing over the continuous set X = R, the parameters µi in (4) or
(7) can be optimized over a finite set of real numbers X = {`1, ..., `L}, where L is
the number of elements in X . This is the case for digital images, where the image
intensity is quantized and the set X consists of a finite number of gray values, for
instance 256. When the L1 data fitting term is applied (that is, β = 1 in (3)), we
show there exists globally optimal {µi}n

i=1 that are also present in the input image.
Therefore, optimizing over the finite set will produce an exact global optimum. This
extends the result of [8] from 2 to any number of regions. A similar result can also
be found in [21] for denoising problems with total variation regularization.
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Contributions and previous work

Little work has been devoted to global optimization over the regions and parameters
simultaneously in the image segmentation models (4) or (7). In order to optimize
(4) or (7) over the finite set X , one simple, but very slow approach, is to minimize
the energy in the Potts model (1) for every combination of {µi}n

i=1 ∈ X , and finally
select the combination of {µi}n

i=1 ∈ X which yields the lowest energy. Since there
are a total of Ln such combinations when X contains L elements, a total number of
Ln problems of the form (1) need to be solved. In case of two regions, it is known
each subproblem can be solved exactly and globally [7], but L2 subproblems need
to be solved which would be rather slow as L becomes large.

Restricted to two regions and a finite set X , Darbon [8] developed an algorithm
which solved a sequence of two region problems with fixed parameters µ1 and µ2,
but avoided to check all L2 combinations. The number of two region subproblems
to be solved is still O(L2). In [4], Brown et al. cast a relaxation of the problem with
two regions and quantized parameters as an optimization problem over a higher
dimensional space. The size of the convex problem is O(|Ω |L2), where |Ω | is the
number of pixels, therefore the complexity of their algorithm is also O(|Ω |L2).
An approach based on the branch and bound method was proposed for two region
problems in [12]. In worst case its complexity is O(|Ω |L2), but the method appears
to converge linearly in the number of parameter values in practice. An algorithm was
proposed in [17] for segmentation problems with two regions, where a sequence
of L total variation regularized problems could be solved, followed by L simple
thresholding operations each step. The complexity is therefore effectively O(|Ω |L).

Contributions:
This work presents a jointly convex optimization framework for minimizing en-

ergy potentials of the form (4) over the regions and the parameters associated with
each region (such as mean intensities). We also derive a convex relaxation of the
piecewise constant Mumford-Shah model (7), where additionally the number of re-
gions are unknown. The convex relaxation of (4) can be applied for problems with
any number of regions, not just n = 2. Furthermore, the size of the convex relaxed
problems grow at most linearly in the number of potential parameter values L, i.e.
as O(|Ω |L).

The problems are first reformulated as minimization problems over binary func-
tions defined in a space of one higher dimension than the image domain. Convex
relaxations are then derived based on the reformulated problems. The method is not
guaranteed to always produce an exact solution, but some conditions are identified
for when this is possible. We begin by treating the piecewise constant Mumford
Shah model in Section 2.2. Next, we present convex relaxations for the problems
(4) and (8), where the number of regions are upper bounded. Fast algorithms are
derived in Section 4.
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2 Convex Relaxation Models

In this section the problems (4) and (7) are first reformulated as optimization prob-
lems in terms of a binary function in a space of one higher dimension than the image
domain. Convex relaxations are then derived based on the reformulated problems.
The new relaxations build on recently proposed convex relaxations for Potts model
(1) which are briefly reviewed next.

2.1 Convex Relaxation for Potts Model

Several convex relaxations for Potts model (1) have recently been proposed [11, 22,
14, 2]. Any such convex relaxation can be used as building block for the new relax-
ations of the more complicated models (4) and (7) proposed in this work. However,
we focus particularly on a simple relaxation for Potts model [11, 22, 2], which have
demonstrated to work well for practical problems. Let ui(x) be the characteristic
function of the region Ωi, defined as

ui(x) :=
{

1, x ∈Ωi
0, x /∈Ωi

, i = 1, . . . ,n .

Then, the Potts model (1) can be written in terms of ui as:

min
{ui}ni=1∈B

n

∑
i=1

∫
Ω

ui(x) fi(x)dx + α

n

∑
i=1

∫
Ω

|∇ui| dx (9)

subject to
n

∑
i=1

ui(x) = 1 , ∀x ∈Ω (10)

where B is the set

B = {u ∈ BV (Ω) : u(x) ∈ {0,1}, ∀x ∈Ω} (11)

and the total-variation of the characteristic function ui(x) encodes the length of the
boundary of the region Ωi.

A convex relaxation of (9), was proposed and studied in [11, 22, 19, 2] by instead
minimizing over the convex set

ui ∈ B′ = {u ∈ BV (Ω) : u(x) ∈ [0,1], ∀x ∈Ω} (12)

for i = 1, ...,n. If the solution of the relaxed problem is binary at all x ∈Ω , it is also
a global minimum of (1). Otherwise different schemes were proposed [11, 22, 2]
to generate a binary solution ũ, which may either be a global minimum or close
approximation to a global minimum of (1). The simplest such rounding scheme is
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just:
ũ(x) = e`(x), where `= argmax

i
ui(x) (13)

2.2 Convex relaxation for Piecewise-Constant Mumford-Shah
Model

In this section, we show that the piecewise constant Mumford-Shah model (7) can
be expressed as a special case of (9). In its most general form, the Mumford-Shah
model seeks an approximation image I and a set of curves Γ which minimizes

inf
Γ ,I

Eλ (Γ , I) =
∫

Ω

|I0(x)− I(x)|β dx+λ

∫
Ω\Γ
|∇I|2dx+α

∫
Γ

ds. (14)

Its piecewise constant variant can be regarded as the limit model as the penalty
parameter λ goes to infinity i.e.

inf
Γ ,I

E∞(Γ , I) (15)

Due to infinite weight on the term
∫

Ω\Γ |∇I|2, (15) enforces solutions I(x) that are
constant everywhere except for the discontinuity set Γ , i.e. the function I(x) is piece-
wise constant. The discontinuity set Γ therefore splits the domain Ω into a set of
subdomains, say n in number: {Ωi}n

i=1. The number n is unknown in advance, and
is part of the optimization process. The piecewise constant Mumford-Shah model
can therefore equivalently be formulated as (7), which is optimized over the regions
Ωi for i = 1, ...,n, the mean values µi of I(x) within each region Ωi for i = 1, ...,n
and the number of regions n.

Alternatively, (7) can be formulated in terms of the characteristic functions ui(x)
as:

min
n

min
{ui}ni=1∈B

min
{µi}ni=1∈X

E(u,µ,n) =
n

∑
i=1

∫
Ω

ui(x)|I0(x)−µi|β dx + α

n

∑
i=1

∫
Ω

|∇ui| dx

(16)
subject to

n

∑
i=1

ui(x) = 1 , ∀x ∈Ω .

Assume now that the set of feasible values µi is finite, i.e. X = {`1, ..., `L}. For
instance X may consist of the set of quantized gray values: X = {1, ...,L}. For each
element `i ∈ X define the corresponding characteristic function ui(x) ∈ B. We will
show the piecewise constant Mumford-Shah model (7) can be written as a minimiza-
tion problem over such a set {ui}L

i=1. More specifically, we show that the following
minimization problem is equivalent to the piecewise constant Mumford-Shah model
(16) if the feasible intensity values are restricted to X = {`1, ..., `L}.
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min
{ui}Li=1∈B

Eext({ui}L
i=1) =

L

∑
i=1

∫
Ω

ui|I0(x)− `i|β dx+α

L

∑
i=1

∫
Ω

|∇ui(x)|dx (17)

subject to
L

∑
i=1

ui(x) = 1, ui(x)≥ 0, ∀x ∈Ω , i = 1, ...,L. (18)

The above energy has the same form as (9).

Proposition 1. Given an optimum u∗ of (17). Let n∗ be the number of indices i for
which u∗i 6≡ 0. Define the set of indices {i j}n∗

j=1 ⊂ {1, ...,L} where u∗i j
6≡ 0. Then

({`i j}n∗
j=1,{u∗i j

}n∗
j=1,n

∗) is a global optimum of the piecewise constant Mumford-
Shah model (16) with X = {`1, ..., `L}.

The proof is given in the appendix.
In view of Prop. 1, a convex relaxation of the piecewise constant Mumford-Shah

model can be defined as the minimization of (17) over B′ = {u ∈ BV (Ω) : u(x) ∈
[0,1] ∀x ∈ Ω}. It has the same form as the convex relaxed Potts model, which has
already been studied in [11, 22, 2, 19].

The piecewise constant Mumford-Shah model (16) will naturally result in a
sparse solution, where the number of ’active’ regions n is relatively low in com-
parison to L. The regularization parameter α controls both regularity of the region
boundaries and the number of regions. If α = 0, the solution is just I = I0 and the
pixels are not grouped in any way, instead each pixel is regarded as a distinct region.
Therefore, the Mumford-Shah model may result in more regions than desired unless
α is set sufficiently high.

2.3 Jointly Convex Relaxation over Regions and Region
Parameters

In this section we propose a convex relaxation for image segmentation models where
the number of regions are fixed, e.g. (4) or (8). In many applications, the number
of regions is known in advance, but the region parameters are unknown. This is for
instance the case for segmentation problems with two regions where one wishes to
distinguish foreground and background.

We start by writing out (4) in terms of the characteristic functions ui of each
region Ωi as follows

min
{ui}ni=1∈B

min
{µi}ni=1∈X

n

∑
i=1

∫
Ω

ui(x)|I0(x)−µi|β dx + α

n

∑
i=1

∫
Ω

|∇ui| dx . (19)

s.t. ∑
n
i=1 ui(x) = 1 for all x ∈ Ω . In order to optimize (4) over the set µi ∈ X =

{`1, ..., `L}, i = 1, ...,n, we start by proposing two equivalent alternative reformula-
tions of (4):
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Alternative 1: For each binary-valued function ui, i = 1, ...,L, define a binary
variable vi ∈ {0,1}, with the interpretation vi = 1 if ui(x) 6= 0 for some x ∈ Ω and
vi = 0 else. Then (4) can be formulated as

min
u,v

Eext({ui}L
i=1) =

L

∑
i=1

∫
Ω

ui(x)|I0(x)− `i|β + α |∇ui|dx (20)

subject to

L

∑
i=1

ui(x) = 1 , ∀x ∈Ω , (21)

L

∑
i=1

vi ≤ n , (22)

ui(x)≤ vi , ∀x ∈Ω , i = 1, ...,L (23)
ui(x) ∈ {0,1} , ∀x ∈Ω , i = 1, ...,L (24)

vi ∈ {0,1} , i = 1, ...,L (25)

Alternative 2: The problem can also be formulated without the artificial variable
v. Observe that by definition, supx∈Ω ui(x) ≤ vi, therefore the constraints (22) and
(23) can be shortened by ∑

L
i=1 supx∈Ω ui(x)≤ n, which is also convex. Therefore the

problem can equivalently be formulated as

min
u

Eext({ui}L
i=1) =

L

∑
i=1

∫
Ω

ui(x)|I0(x)− `i|β + α |∇ui|dx (26)

subject to

L

∑
i=1

ui(x) = 1 , ∀x ∈Ω , (27)

L

∑
i=1

sup
x∈Ω

ui(x)≤ n , (28)

ui(x) ∈ {0,1} , ∀x ∈Ω , i = 1, ...,L (29)

The constraint (28) forces the solution to satisfy ui ≡ 0 for all but at most n
indices i∈ {1, ...,L}. The next result shows that an optimum of (19), or equivalently
of (4), can be obtained by finding an optimal solution u∗ to either of the two above
problems, (20) or (26), through the following proposition.

Proposition 2. Given an optimum u∗ of (20) or (26). Let n∗ be the number of indices
i for which u∗i 6≡ 0. Define the set of indices {i j}n∗

j=1 ⊂ {1, ...,L} such that u∗i j
6≡ 0.

Then {`i j}n∗
j=1,{u∗i j

}n∗
j=1 is a global optimum to (19) with X = {`1, ..., `L}.

Clearly, n∗ ≤ n, otherwise the constraints (28) or (23) would be violated. The rest
follows by an identical proof to that of Prop. 1.
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Both formulations (20) and (26) are nonconvex due to the binary constraints on u
and v. Convex relaxations can instead be derived by replacing the binary constraints
(24), (25) by

ui(x) ∈ [0,1], ∀x ∈Ω , i = 1, ...,L (30)
vi ∈ [0,1], i = 1, ...,L . (31)

The convex relaxations resulting from the two alternatives (20) and (26) are equiv-
alent as they share the same set of minimizers u. If the computed solution of the
relaxed problem is binary for all x ∈ Ω , it is also globally optimal to the original
problem. If not, a close approximation can be obtained by the binarization scheme
(13).

3 Some optimality results

In general, the convex relaxations are not guaranteed to produce an exact global
minimum, but will provide close approximations. In this section we derive some
conditions under which an exact solution can be obtained. First, we show that under
L1 data fidelity, the optimal gray values belong to the set of gray values which are
already contained in the image. Second, we show that in case of two regions (n =
2) a thresholding scheme for producing exact solutions can applied under some
conditions.

3.1 L1 Data Fidelity

Consider the models (1) and (7) with fi, i = 1, . . . ,n, given by (3) and β = 1, i.e. the
L1 fidelity term. Assume further the input image I0(x) is quantized and takes values
in the set {`1, ..., `L}. The next result shows that there exists optimal parameters µi,
i = 1, . . . ,n, that also take values in the same set {`1, ..., `L}. Hence it suffices to
optimize µ over the set X = {`1, ..., `L}. This result has previously been shown by
the two-region problems (n = 2) in [8].

Proposition 3. Given I0 : Ω 7→ {`1, ..., `L}, and consider the data term (3) with β =
1 and X = R. There exists globally optimal ({Ωi}n

i=1,{µ∗i }n
i=1,n) to the Mumford-

Shah model (7) or {Ωi}n
i=1,{µ∗i }n

i=1 to (4), where µ∗i ∈ {`1, ..., `L} for i = 1, ...,n.

Proof. The proof is by induction. When restricted to two regions, n = 2, the result
was proved in [8], Theorem 1. Assume the result holds for n = k, then there exists a
globally optimal solution {Ωi}k+1

i=1 ,{µi}k+1
i=1 ,k+ 1 to the Mumford-Shah model (7),

or {Ωi}k+1
i=1 ,{µi}k+1

i=1 to (4), where {µi}k+1
i=1,i6= j ∈ {1, ...,L}. We will show the result

also holds for n = k+1. Pick any j ∈ {1, ...,k+1}, and consider the image domain
Ω\Ω j. Clearly, {Ωi}k+1

i=1,i6= j,{µi}k+1
i=1,i 6= j,k is globally optimal to the Mumford Shah



10 Egil Bae, Jing Yuan and Xue-Cheng Tai

model in the domain Ω\Ω j. It remains to show that also µ j ∈{1, ...,L}. Pick any ` 6=
j ∈ {1, ...,L}. Then {Ωi}k+1

i=1,i 6=`,{µi}k+1
i=1,i6=`,k is globally optimal to the Mumford

Shah model in the domain Ω\Ω`. By the induction hypotheses it is possible that
{µi}k+1

i=1,i 6=` ∈ {1, ...,L}, which implies there exists optimal µ j ∈ {1, ...,L}.

3.2 Exactness of Relaxation for n = 2

The relaxations are not in general exact, but will produce solutions that are optimal
or nearly optimal. In case n = 2, exact solutions can be generated under some con-
ditions. It suffices that for two indices k, j, the boundary uk(x) = 1 and u j(y) = 1 is
attained for some x,y ∈Ω .

Proposition 4. Let u∗ be a solution of (26), or alternatively u∗,v∗ a solution of (20)
with n = 2, where the binary constraints B are replaced by the convex constraint B′.
Assume the variable v is binary, or equivalently, assume there exists k, j ∈ {1, ...,L}
such that uk(x) = 1 for some x ∈Ω and uk(y) = 1 for some y ∈Ω For any threshold
level t ∈ (0,1) define the function ũ such that

ũk(x) :=

1 , if u∗i (x)≥ t

0 , if u∗i (x)< t
, ũ j(x) :=

1 , if u∗i (x)> 1− t

0 , if u∗i (x)≤ 1− t
.

and ũi = ui for all i 6= k, j ∈ {1, ...,L}. Then (ũ,v∗) is a binary global optimum of
(20) subject to (21)-(23) and the binary constraints (24) and (25).

Proof. Since uk(x) = 1 for some x ∈Ω and uk(y) = 1 for some y ∈Ω , it follows by
constraint (28) that ui(x) = 0 for all i 6= k, j ∈ {1, ...,L}. Define φ = uk, then since
uk +u j = 1, φ = 1−u j. Define

φ̃(x) :=

1 , φ(x)≥ t

0 , φ(x)< t
.

and observe that φ̃ = ũk and φ̃ = 1− ũ j. Then

Eext(u) =
∫

Ω

uk(x)|I0(x)− k|β +u j(x)|I0(x)− j|β +α

∫
Ω

|∇uk|+ |∇u j|dx

=
∫

Ω

φ(x)|I0(x)− k|β +(1−φ(x))|I0(x)− j|β +2α

∫
Ω

|∇φ |dx

=
∫

Ω

φ̃(x)|I0(x)− k|β +(1− φ̃(x))|I0(x)− j|β +2α

∫
Ω

|∇φ̃ |dx

=
∫

Ω

ũk(x)|I0(x)− k|β + ũ j(x)|I0(x)− j|β +α

∫
Ω

|∇ũk|+ |∇ũ j|dx = Eext(ũ).
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The third equality follows by the thresholding theorem of [7] for relaxed binary
segmentation problems.

4 Algorithms

The convex relaxation for the piecewise constant Mumford-Shah model (17) has
the form of the convex relaxed Potts model [10, 22], and can be optimized by es-
tablished algorithms. In [19] a very efficient algorithm was proposed based on the
dual formulation, which can also be parallelized over each characteristic function.
This algorithm is therefore well suited for optimizing (17), which usually contains
a large number of characteristic functions.

The convex relaxation of (4) is a little more complicated due the the extra con-
straints. As stated in Section 2.3, there are two equivalent formulations of the relax-
ation. We will build up an algorithm based on alternative 2. We assume the optimal
number of regions n is attained (i.e. equality in (28)). If the optimal number of
regions is less than n, exactly the same solution would be produced by the convex
relaxation of the piecewise constant Mumford-Shah model, which is simpler to opti-
mize and could be checked by a separate calculation. Let γ be a Lagrange multiplier
for the constraint

L

∑
i=1

sup
x∈Ω

ui(x)−n = 0. (32)

The problem can then be stated as the saddle point problem

max
γ

min
u

L (u,γ) =
L

∑
i=1

∫
Ω

ui(x)|I0(x)− `i|β +α |∇ui|dx+ γ(
L

∑
i=1

max
x∈Ω

ui(x)−n)

(33)

s.t.
L

∑
i=1

ui(x) = 1, ui(x)≥ 0 ∀x ∈Ω , i = 1, ...,L, γ ≥ 0

In order to optimize (33), the Lagrangian method can be applied as follows: for
k = 1, ... until convergence

1. uk+1 = argminu L (u,γk), s.t. ∑
L
i=1 ui(x) = 1, ui(x)≥ 0 ∀x ∈Ω , i = 1, ...,L

2. γk+1 = max(0,γk + c(∑L
i=1 maxx∈Ω uk+1

i (x)−n)).

Observe that subproblem 1. has the same form as the label cost prior problem stud-
ied in [20, 18]. A fast algorithm for solving such problems was proposed in [18]. In
particular, it was shown 1. could be written as the primal-dual problem
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min
u∈B′, ∑

L
i=1 ui(x)=1, ∀x∈Ω

L (u,γk) = min
u

max
ps,pt ,q,r

∫
Ω

ps dx +
n

∑
i=1

∫
Ω

ui(divqi− ps + pi− ri)

(34)

s.t. pi(x) ≤ |I0(x)− `i|β , |qi(x)| ≤ α ,
∫

Ω

|ri(x)| dx ≤ γ
k ; i = 1 . . .n .

where ui works as a Lagrange multiplier. The above energy functional can be opti-
mized separately for ps, pi,qi and ri in closed form. Therefore the augmented La-
grangian method could be applied to efficiently solve the overall problem. In prac-
tice, only a few iterations are necessary before γ is updated.

5 Numerical Experiments

In this section we demonstrate numerically the new convex relaxation for optimizing
the energy in the image segmentation model (4) jointly over the regions and regions
parameters, and the new convex relaxation of the piecewise constant Mumford-Shah
model (7). In Figures 1, 2 and 4, we have used 100 quantization levels for the un-
known parameters, i.e. X = {0.01,0.02, ...,1.00} and in Figure 3, 255 levels have
been used. In order to visualize results, we depict the function u(x) = `i if x ∈ Ωi,
i = 1, ...,n.

Observe that the piecewise constant Mumford-Shah model may result in more
regions than desired, as shown in the last subfigures. This is especially visible in
Figure 1 and 2, whereas it leads to more reasonable results in Figure 3 and 4. By
instead minimizing (4), with the number of regions fixed to 2, in terms of the regions
and parameters µ1 and µ2, one is able to separate foreground and background in
Figure 1 and Figure 2. Observe that the piecewise constant Mumford-Shah model
leads to lower energy, since it is optimized over a larger feasible set.

The convex relaxations generate close approximations to a global minimum. To
verify this, we have used the estimated parameters µ1 and µ2 from the convex re-
laxation as initialization of the alternating minimization algorithm (5) - (6). In all
cases, the converged values of µ1 and µ2, after rounding to the nearest element in
X , did not change. This indicates strongly that the globally optimal values of µ1 and
µ2 within X , had been obtained by the convex relaxation method. In our experience,
the alternating algorithm (5) - (6) is rather robust to initialization and converges to
the same solution for many initializations of µ1 and µ2. However, an independent
work [4] presented examples where the alternating algorithm gets stuck in poor local
minima for exactly the input images in Figure 1 and 2.

6 Conclusions and future work

We end with some discussions on future work and conclusions.
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(a) (b) (c) (d)

Fig. 1 (a) Input image. (b)-(c) Convex relaxation of (4) with n = 2 and α = 0.15: (b) β = 2,
estimated parameters µ1 = 0.09,µ2 = 0.59 , energy = 1.25∗103; (c) β = 1 estimated parameters
µ1 = 0.06,µ2 = 0.62 , energy = 5.39∗103. (d) Convex relaxation of piecewise constant Mumford-
Shah model (7) with β = 1 and α = 0.15, energy = 3.31∗103.

(a) (b) (c)

Fig. 2 (a)Input image. (b) Convex relaxation of (4) with n = 2, β = 1 and α = 0.15: estimated
parameters µ1 = 0.23,µ2 = 0.93 , energy 9.23∗103. (d) Convex relaxation of piecewise constant
Mumford-Shah model (7) with β = 1, energy = 7.13∗103.

(a) (b) (c) (d)

Fig. 3 (a) Input. (b)-(c) Convex relaxation of (4): (b) n = 4, (c) n = 2. (d) Convex relaxation of
piecewise constant Mumford-Shah model (7).

(a) (b) (c) (d) (e) (f)

Fig. 4 (a) Input. (b) Ground truth. (c) Convex relaxation of Mumford-Shah functional: energy
212.02. (d)-(f) Convex relaxation of (4): (d) n = 4, (e) n = 3, (f) n = 2 energy = 219.78. In all
experiments β = 1.
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6.0.1 Extension to continuous label values

The convex optimization framework for (4) and requires that the set of feasi-
ble parameter values is quantized. The relaxations can also be extended to opti-
mization problems where the set of feasible parameter values is continuous, i.e.
X = R. Let `min be the smallest and `max be the largest value of µi. Define the
one-higher dimensional binary variable u(x, `) for each (x, `) ∈Ω × [`min, `max], i.e.
u : Ω × [`min, `max] 7→ {0,1}.

As a continuous generalization of (17), we argue the piecewise constant Mumford-
Shah model (7) can be formulated in terms of u as

min
u

∫ `max

`min

∫
Ω

u(x, `)|I0(x)− `|β + α|∇xu(x, `)|dxd` (35)

subject to ∫ `max

`min

u(x, `)∗δ (`)d`= 1, ∀x ∈Ω (36)

u(x, `) ∈ {0,1}, ∀(x, `) ∈Ω × [`min, `max]. (37)

where δ (`) is the delta distribution and the convolution is defined as u(x, `)∗δ (`) =∫
∞

−∞
u(x, `)δ (`− s)ds.

Let u∗(x, `) be an optimum of (35). We conjecture that w∗=
∫

∞

−∞
`u∗(., `)∗δ (`)d`

is a piecewise constant function that is a global minimizer of the piecewise constant
Mumford-Shah model (15). We believe the proof can be constructed as a direct
continuous generalization of the proof of Prop. 1, but will be more involved due
to measure theoretic aspects. It would be interesting to investigate how this result
relates to a recently proposed convex relaxation of the piecewise smooth Mumford-
Shah model [15].

6.0.2 Extension to Vector-Valued Parameters

The results discussed in Sec. 2.3 can easily be extended to more general problems of
the form (8), where ξ = (ξ1, ...,ξN) denote the vector-valued parameter associated
with each region. Let X = {`1

1, ..., `
1
L}× ...×{`N

1 , ..., `
N
L } denote the finite set of all

feasible ξ . For each i1, i2, ..., iN ∈ {1, ...,L} define the function ui1,...,iN : Ω 7→ {0,1}
and variable vi1,...,iN ∈ {0,1}. Then the model (8) can be written

min
u

L

∑
i1=1

...
L

∑
iN=1

∫
Ω

ui1,...,iN (x) f (ξ 1
i1 , ...,ξ

N
iN ,x) + α|∇ui1,...,iN | (38)

subject to
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L

∑
i1=1

...
L

∑
iN=1

ui1,...,iN (x) = 1 , ∀x ∈Ω (39)

L

∑
i1=1

...
L

∑
iN=1

max
x∈Ω

ui1,...,iN (x)≤ n, (40)

ui1,...,iN (x) ∈ {0,1} , ∀x ∈Ω , i1, ..., iN ∈ X . (41)

The equivalence between (8) and (38) follows by a straight forward generalization
of Prop. 2.

6.1 Conclusions

Image segmentation problems can successfully be modeled as the minimization of
an energy potential with respect to regions and parameters associated with each
region. In this work, we have reformulated such problems as the optimization of
binary functions in a space of one higher dimension than the image domain. Convex
relaxations and optimization algorithms have been proposed which does not depend
on initializations and produce close approximations to global minima. In contrast
to previous work, the complexity of our algorithm grows at most linearly with the
number of potential parameter values, and can be applied for segmentation problems
with any number of regions.

7 Proofs

Proof of Prop 1

Proof. Let ({ũ j}ñ
j=1,{`ĩ j

}ñ
j=1, ñ) be any other solution of (16). Define the vector

function
ū j = 0, for j ∈ {1, ...,L}\{ĩ1, ..., ĩñ}

ūĩ j
= ũ j for j = 1, ..., ñ.

Then ū belongs to the feasible set (18) of the problem (17).

Eext(ū)=
L

∑
i=1

∫
Ω

ūi|I0(x)−`i|2 dx+
L

∑
i=1

α

∫
Ω

|∇ūi|dx=
ñ

∑
j=1

∫
Ω

ūĩ j
|I0(x)−`i|2dx+

ñ

∑
j=1

α

∫
Ω

|∇ūĩ j
|dx

=
ñ

∑
i=1

∫
Ω

ũi|I0(x)− `ĩ j
|2 dx+

ñ

∑
i=1

α

∫
Ω

|∇ũi|dx = E({ũ j}ñ
j=1,{`ĩ j

}ñ
j=1, ñ).

But since u∗ is a global minimizer of Eext
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Eext(u∗)≤ Eext(ū) = E({ũ j}ñ
j=1,{`ĩ j

}ñ
j=1, ñ), (42)

and since

Eext(u∗) =
L

∑
i=1

∫
Ω

u∗i |I0(x)− `i|2 dx+
L

∑
i=1

α

∫
Ω

|∇u∗i |dx

=
n

∑
j=1

∫
Ω

u∗i j
|I0(x)− `i j |

2dx+
n

∑
j=1

α

∫
Ω

|∇u∗i j
|dx = E({u∗i j

}n
j=1,{i j}n

j=1,n). (43)

Combining (42) and (43) it follows that

E({u∗i j
}n

j=1,{i j}n
j=1,n)≤ E({ũ j}ñ

j=1,{`ĩ j
}ñ

j=1, ñ).

Hence {u∗i j
}n

j=1,{i j}n
j=1,n must be a solution to (16).
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